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> Recognizable sets of integers
P Possible generalizations

» Biichi—Bruyére theorem:
applications in combinatorics and arithmetic



A COMPUTATION MODEL

We have many algorithms dealing with primality testing

AGRAWAL-KAYAL-SAXENA 2002

PRIMES is in P

base 2: 1,10,11,100,101,110,111,1000,1001,1010, 1011, ...

base 3: 1,2,10,11,12,20,21,22,100,101, 101, ...

~» Concept of a decidable or recursive language:
there is a Turing Machine which, given a finite word as input,
accepts it if it belongs to the language and rejects it otherwise.



The Chomsky hierarchy (from Wikipedia)

VT E Automata theory: formal languages and formal grammars [hide]
Chomsky hierarchy Grammars Languages Abstract machines

Type-0 Unrestricted Recursively enumerable Turing machine
- (no common name) Decidable Decider

Type-1 Context-sensitive Context-sensitive Linear-bounded
— Positive range concatenation Positive range concatenation® PTIME Turing Machine
— Indexed Indexed* Nested stack
— — — Thread automaton
— Linear context-free rewriting systems  Linear context-free rewriting language  restricted Tree stack automaton
= Tree-adjoining Tree-adjoining Embedded pushdown

Type-2 Context-free Context-free Nondeterministic pushdown
= Deterministic context-free Deterministic context-free Deterministic pushdown
— Visibly pushdown Visibly pushdown Visibly pushdown

Type-3 Regular Regular Finite
— - Star-free Counter-free (with aperiodic finite monoid)
- Non-recursive Finite Acyclic finite

Each category of languages, except those marked by a *, is a proper subset of the category directly above it.
Any language in each category is generated by a grammar and by an automaton in the category in the same line.

Regular languages are accepted /recognized by finite automata
(the simplest model of computation).

The family of regular languages is closed under Boolean
operations, Kleene star, concatenation, (inverse) homomorphism,
projections, mirror image,



Much simpler than a Turing machine, linearly reading symbols once

Here is an example of finite automaton over {0, 1}

0 0
1

accepting words with an even number of 1's.



FROM INTEGERS TO WORDS

Choose a base k > 2, any integer n > 0 can be uniquely written as

with the digits d; € {0,...,k — 1} and dy_y # 0

vepy(n) = dp_1 -+ do.

DEFINITION — THE BRIDGE BETWEEN THE TWO WORLDS

A set X C N is k-recognizable, if the set of base-k expansions of
the elements in X is accepted by some finite automaton, i.e.,
rep,(X) is a regular language.



SOME EXAMPLES

A 2-RECOGNIZABLE SET

X={neN|TJi,j>0:n=204+2}U{1}

O 01

o8-

X =1{1,2,3,4,5,6,8,9,10,12,16,17,18,20,24, . ..}
rep,(X) = {1,10, 11,100,101, 110, 1000, 1001, 1010, 1100, . .. }




SOME EXAMPLES

> The set of even integers is 2-recognizable.

» More generally, the set of numbers congruent to r modulo m
is 2-recognizable; and thus, any finite union of arithmetic
progressions.

» The Prouhet—Thue-Morse set is 2-recognizable,

X ={neN| s(n)=0mod 2}

X ={0,3,5,6,9,10,12,15,17,18,...}
rep, (X ) = {e, 11,101,110, 1001, 1010, 1100, 1111, 10001, ... }

> The set of powers of 2 is 2-recognizable.



Digression about Prouhet’s problem (1851):

QUESTION
Let £ > 1. Can you partition the set Sy = {0,...,2¥ — 1} such
that

ILD S

i€l 1€SE\1

forall m € {0,...,k—1} 7



MORE EXAMPLES

Let X = {2y <z <22 <---} CN. Define

. Ti+1 .
Rx := limsup 1 and Dy = limsup (241 — ;).
i—00 Z; i—00

GAP THEOREM (COBHAM’72)

Let £ > 2. If X C N is a k-recognizable infinite subset of N,
then either Rx > 1 or, Dx < +o0.

A. Cobham, Uniform tag, Theory Comput. Syst. 6, (1972), 164-192.

COROLLARY

Let k,t > 2. The set {n' | n >0} is NOT k-recognizable.

S. Eilenberg, Automata, Languages, and Machines, 1974.



MORE EXAMPLES

MINSKY—PAPERT 1966

The set P of prime numbers is not k-recognizable.

A proof using the gap theorem :
» Since n!+2,...,n!+ n are composite numbers, Dp = +o0
» Sincep, € (nlnn,ninn+nininn), Rp=1

E. Bach, J. Shallit, Algorithmic number theory, MIT Press

SCHUTZENBERGER 1968

No infinite subset of P can be recognized by a finite automaton.



» conversion: X is k-recognizable IFF X is k™-recognizable

v

Any ultimately periodic set is k-recognizable, for all £ > 2

» Cobham 1969: Let k,¢ > 2 be two multiplicatively
independent integers, i.e., if log k/log ¢ is irrational.
If X CNis k-rec. AND {-rec., then X is ultimately periodic.

T. Krebs, A more reasonable proof of Cobham'’s theorem arxiv.1801.06704

So there are sets that are recognizable
> in every base (ultimately periodic sets);
» for an equiv. class multiplicatively dependent bases;
P in no base at all.

V. Bruyere, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers (1994)



IN SEVERAL DIMENSIONS

A set X C N is L-recognizable, if the set of base-k expansions of
the d-tuples in X (padded accordingly) is accepted by some finite
automaton (reading a d-tuple of digits at a time).

~~ DFA reading l.s.d.f. for +, X = {(z,y,2) e N3 | 2+ y = 2}

0

o O

—

— =
—_
O
o
—_

Such a DFA exists for all bases (no arbit. long carry propagation).



These operations cannot be “recognized” by finite automata
» multiplication {(z,y,2) € N3 |z -y = 2}

> “general” base conversions, e.g., {(repy(n),reps(n)) | n € N}



LINK WITH COMBINATORICS ON WORDS

Cobham 1972: A set is k-recognizable if and only if its
characteristic sequence 1x € {0, 1}N is k-automatic.

Q.'9.'9."Q

R

A— AB A—0

) B +— BC ) B—1
Y coep 99 ¢
D+~ DD D—0

f“(A) = ABBCBCCDBCCDCDDDBCCDCDDDCDDDDDDD - - -
g(f“(A)) = 01111110111010001110100010000000 - - -
X ={1,2,3,4,5,6,8,9,10,12,16, 17, 18,20, 24, ...}



LINK WITH COMBINATORICS ON WORDS

0—01, 1—10

We get the so-called Thue—Morse word:

01101001100101101001011001101 - - - .



LINK WITH COMBINATORICS ON WORDS

k-automatic sequences have low complexity.

PRrROPOSITION (COBHAM)

If (zn)n>0 is k-automatic, then its factor complexity

pe(n) == #{zi - Tiyn-1 | 1 > 0} € O(n)

J. Cassaigne, F. Nicolas, Factor complexity, Ch. 4 CANT’'2010 (Cambridge).

3-2F 41 4(r—1) ,if 1<r <2k

k _
pTM(2 +r)_{42k+2(7,,_1) if 2k—l<r§2k'



LINK WITH COMBINATORICS ON WORDS

An application in number theory

THEOREM (ADAMCZEWSKI-BUGEAUD 2007)

The complexity function of the k-ary expansion of every irrational
algebraic number satisfies
p(n)

liminf —~% = +00
n—00 n

COROLLARY

Aperiodic k-automatic numbers are transcendental.

The Thue—Morse number

o 1 1. 0 1 0 0 1
o bbb -~ 0.824
5178 16 " 32 61 T8 T ase T 0824907

is transcendental.



LINK WITH COMBINATORICS ON WORDS

A general question is “pattern avoidance” and “repetitions in words”
> A square : lekkerker
» An overlap : ananas
> A cube : lekkerkerkerk

EASIEST THEOREM, A TEASER

Over a binary alphabet, squares cannot be avoided.

M.R., Formal languages, Automata, Numeration Systems, ISTE 2014
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LINK WITH COMBINATORICS ON WORDS

A general question is “pattern avoidance” and “repetitions in words”
> A square : lekkerker
» An overlap : ananas
> A cube : lekkerkerkerk

EASIEST THEOREM, A TEASER

Over a binary alphabet, squares cannot be avoided.

M.R., Formal languages, Automata, Numeration Systems, ISTE 2014
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LINK WITH COMBINATORICS ON WORDS

THEOREM (A. THUE 1906)

The Thue—Morse word is overlap free

0— 01,1~ 10

011010011001011010010110 - - -

In particular, this word is aperiodic.



LINK WITH COMBINATORICS ON WORDS

THEOREM (A. THUE 1906)

The Thue—Morse word is overlap free

0— 01,1~ 10

011010011001011010010110 - - -

In particular, this word is aperiodic.
Squares can be avoided on a 3-letter alphabet

011 01 O 011 0 01 011 01 O 01 0110---
NS S S S S S S

a b c a c b a b c b a



INSTEAD OF INTEGER BASE SYSTEMS

Generalizations to other numeration systems / morphic sequences

» Zeckendorf expansions
49=134+0214+113+084+054+03+1.2+0.1

rep(49) = 10100010.

» Pisot numeration systems

» abstract numeration systems (enumerate a language)

THEOREM (A. MAEs, M.R. 2002)

An infinite word is morphic IFF it is S-automatic for some abstract
numeration system S.



S — SABC S—1

£ A= A ) A1
"] B~ BCC 9°Y B—o
C—C C—0

g(f“(S)) = 1100100001000000100000000 - - -

. 3\

9

g, b,c,d,ba,ca,cbh,cc,da,baa, ...




Let's come back to Cobham'’s theorem (1969)

REcCAP

Let k,¢ > 2 be two multiplicatively independent integers.
If a set X C Nis k-rec. and /f-rec., then X is ultimately periodic

Generalizations/extensions
» Pisot systems
» morphic sequences (F. Durand)

» multidimensional setting



THEOREM (COBHAM—SEMENOV)

Let k,¢ > 2 be two multiplicatively independent integers.
If a set X C N is k-rec. and f-rec.,
then X is definable in the first order structure (N, +).

) 07 +7 (V.T), (Ell’), -, =, /\7 \/7 A

you can add constants, multiplication by a constant, congruences

REMARK (d =1)

The subsets of N that are definable in (N, +) are exactly the finite
union of arithmetic progressions.

— The Thue-Morse word/set cannot be defined in (N, +).



We can thus define subsets of N¢

PRESBURGER DEFINABLE SETS

A formula (1, ..., 24) with d free variables,

{(m,...,ng) € N | (N, +) = o(n1,...,nq)}

@(21, 12) = p1(21,22) V pa(T1, 22) V p3(21, 22) V pa(@1, 22) V H(1, 72)
where

p(z,m2) = QRuo<z)A(n1+22=50),
p2(x1,12) = Qua>m)A(za<z)A(11=41),
p3(z1,22) = (22> @) A (22 <3:) A (211 + 22 =3 1)V (11 + 22 =3 0)),
a region a pattern
pa(x1,m2) = (22> 311) A (11 > 2),
(]5((]31,352) = (35120/\1'2:4)\/(1'1:2/\1'2:2)\/(351:4/\35220)
V(zgn =5 Az =0).

a few isolated points



pattern in R2

pattern in R1
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Presburger arithmetic ; decidable theory (quantifiers elimination)

A LESS TRIVIAL EXAMPLE (FROBENIUS’ PROBLEM )

Chicken McNuggets can be purchased only in 6, 9, or 20 pieces.
The largest number of nuggets that cannot be purchased is 43.

(Vn)(n > 43 — (Jz,y,2z > 0)(n = 62 + 9y + 20z))
A=((3z,y,z > 0)(43 = 62 + 9y + 202)) .
There is an algorithm with output TRUE/FALSE.



Let's come back to chicken Mc nuggets and Thue—Morse
» The first one is given by a sentence in (N, +) ;

» For the second one, we need an extra function V5.

Vi(n) is the largest power of k dividing n (close to p-adic
valuation).



Let's come back to chicken Mc nuggets and Thue—Morse
» The first one is given by a sentence in (N, +) ;

» For the second one, we need an extra function V5.

Vi(n) is the largest power of k dividing n (close to p-adic
valuation).

A set X C N¢ is li-recognizable/k-automatic if and only if it
definable in (N, +, Vi).

THEOREM
For all k > 2, the first order theory of (N, +, V}) is decidable.

Biichi's proof: from formula to finite automata
emptiness and universality are decidable.



Shallit et al.

THEOREM

Let £ > 2. If one can express a property of a k-automatic
sequence z using quantifiers, logical operations, integer variables,
+, -, indexing into z (i.e., access to z(n)), and comparison of
integers or elements of x, then this property is decidable.

Is  ultimately periodic?
(3N)(3p > 0)(Vi > N)z(i) = z(i + p).
Does it have an overlap?

(i >0) (3> 1)(Vj €{0,....00)(x(i +j) = z(i + L+ 7))

D. Gog, D. Henshall, J. Shallit, Automatic theorem-proving in combinatorics on words (2013)

Hamoon Mousavi, Automatic Theorem Proving in Walnut.



Walnut : https://cs.uwaterloo.ca/"shallit/walnut.html

(base) $ java Main.prover

eval test "~(EL EL Aj (((1>0) & (j<1)) => ( (T[1+31=TL(i+3)+1]) & (T[LI=TLC(L+L)+L)]))))":
1>0 has 2 states: 8ms

j<l has 2 states: Oms
(1>0&j<1l) has 2 states: 6ms
TL(L+3)I=TI((i+3)+1)] has 12 states: 30ms
T[1]=T[((1+1)+1)] has 6 states: 5ms
(TLC#I) I=TIC(L+3)+ ) I&T[1]=T[((1+1)+1)]) has 72 states: 5ms

((15083<1)=>(T[(i+3)1=T[((i+3)+1)1&T[L]=T[((i+1)+1)])) has 97 states:
(A 3 ((1>083<1)=>(T[(i+3)1=T[((i+3)+1)]&T[1]1=T[((i+1)+1)]))) has 1 states: 40ms

(EU (A 3 ((1>083<1)=>(T[(1+3)1=TL((i+3)+VI&T[1]=T[((i+1)+1)1)))) has 1 states: Oms

(E1 (EL (A3 ((15683<L)=>(T[(1+3)I=TL((i+3)+V)I&T[LI=TL((i+1)+1)1))))) has 1 states: @ms

~(E1 (E1 (AJ ((1>083<1)=>(T[(1+3)]=TL((i+3)+L)I&T[1]I=TL((1+1)+1)1))))) has 1 statés: ems
total computation time: 108ms

11ims

» You can do much more, letting some free variables,
enumeration

P used in more than 50 papers



Another recent example (Shallit arXiv.2112.13627)
the number of representations of n as the sum of two elements of
a given set:

R (n) = #{(z.y) eN* 12,y € ANz +y=n)
RM(n)=#{(e.y) eN? o,y e ANa+y=nAz<y)
RV (n) = #{(z,y) eN* 1z, y € ANz +y=nAz <y}

Sarkozy asked whether there exist two sets of positive integers A
and B, with infinite symmetric difference, for which
R(A)(n) = REB)(n) for all sufficiently large n, ¢ = 1,2, 3.

2

G. Dombi (2002), Y.-G. Chen and B. Wang (2003).



» L. Schaeffer: the set of occurrences of abelian squares
(0110)(1100)
in the paperfolding word
(0% 1)¥ =0010011000110110001001110011011 - - -

is not 2-recognizable, even though the paperfolding word is
2-automatic. Hence such a property cannot be captured by a
formula in (N, +, V5).

> F. Klaedtke: Nested quantifiers could, in the worst-case, lead
to a tower of exponentials.



Some other related work on Sturmian words
» P. Hieronymi, D. Ma, R. OQei, L. Schaeffer, C. Schulz, J.
Shallit, Decidability for Sturmian words (2021)
» P. Hieronymi, Alonza Terry Jr, Ostrowski numeration systems,
addition, and finite automata, N. D. J. Form. Log. (2014)

» Reed QOei, Eric Ma, Christian Schulz, and Philipp Hieronymi,
Pecan
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Pecan: An Automated Theorem Prover

Pecan is an automated theorem prover. You can view the manual (which is currently rather incomplete) here. Below, you
can enter a program and click "Run" to try out Pecan; there are several example programs you can try out. There are some
limitations: some features of Pecan are not available, your programs must be under 10° characters, and your programs will
time out after 5 minutes. If that's too limiting, you should look into installing Pecan on your own computer. Instructions are
available at the repository: hitps:/github.com/ReedOei/Pecan. If you use Pecan in your research, please cite this paper
Enter a Pecan program below:

| Basic Arithmetic | Chicken McNuggets | Plotting | Thue-Morse Word | Sturmian Words |

#import("SturmianWords/ostrowski defs.pn")

#load("SturmianWords/automata/antisquare.aut”, "hoa", antisquare(a,i,n))
#load("SturmianWords/automata/eventually periodic.aut", "hoa", eventually periodic(a, p))
#load("SturmianWords/automata/palindrome.aut”, "hoa", palindrome(a, i, n))

// See the GitHub repo for more: https://github.com/Reed0Oei/SturmianWords

Let a be bco standard.
Let i,n,m,p be ostrowski(a).

Theorem ("Sturmian words are not eventually periodic”, {
forall a, p. !@no_simplify[eventually_periodic(a, p)]

1.

Theorem ("Sturmian words contain palindromes of every length.", {
forall a, n. if n > 0@ then exists i. palindrome(a, i, n)

1.

Theorem ("There are finitely many antisquares”, {
forall a. exists m. forall i,n. if antisquare(a,i,n) then n <= m
e




