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◮ Recognizable sets of integers

◮ Possible generalizations

◮ Büchi–Bruyère theorem:
applications in combinatorics and arithmetic



A computation model

We have many algorithms dealing with primality testing

Agrawal–Kayal–Saxena 2002

PRIMES is in P

base 2 : 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, . . .

base 3 : 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 101, . . .

 Concept of a decidable or recursive language:
there is a Turing Machine which, given a finite word as input,
accepts it if it belongs to the language and rejects it otherwise.



The Chomsky hierarchy (from Wikipedia)

Regular languages are accepted/recognized by finite automata
(the simplest model of computation).

The family of regular languages is closed under Boolean
operations, Kleene star, concatenation, (inverse) homomorphism,
projections, mirror image, . . .



Much simpler than a Turing machine, linearly reading symbols once

Here is an example of finite automaton over {0, 1}

1

1

0 0

accepting words with an even number of 1’s.



From integers to words

Choose a base k ≥ 2, any integer n > 0 can be uniquely written as

n =
ℓ−1∑

i=0

di k
i

with the digits di ∈ {0, . . . , k − 1} and dℓ−1 6= 0

repk (n) = dℓ−1 · · · d0.

Definition — the bridge between the two worlds

A set X ⊂ N is k -recognizable, if the set of base-k expansions of
the elements in X is accepted by some finite automaton, i.e.,
repk (X ) is a regular language.



Some examples

A 2-recognizable set

X = {n ∈ N | ∃i , j ≥ 0 : n = 2i + 2j } ∪ {1}

A B C D

0 0 0 0, 1

1 1 1

X = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, . . .}

rep2(X ) = {1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1100, . . .}



Some examples

◮ The set of even integers is 2-recognizable.

◮ More generally, the set of numbers congruent to r modulo m

is 2-recognizable; and thus, any finite union of arithmetic
progressions.

◮ The Prouhet–Thue–Morse set is 2-recognizable,

X = {n ∈ N | s2(n) ≡ 0 mod 2}

1

1

0 0

X = {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, . . .}

rep2(X ) = {ε, 11, 101, 110, 1001, 1010, 1100, 1111, 10001, . . .}

◮ The set of powers of 2 is 2-recognizable.



Digression about Prouhet’s problem (1851):

Question

Let k ≥ 1. Can you partition the set Sk = {0, . . . , 2k − 1} such
that ∑

i∈I

im =
∑

i∈Sk\I

im

for all m ∈ {0, . . . , k − 1} ?



More examples

Let X = {x0 < x1 < x2 < · · · } ⊆ N. Define

RX := lim sup
i→∞

xi+1

xi
and DX := lim sup

i→∞
(xi+1 − xi ).

Gap theorem (Cobham’72)

Let k ≥ 2. If X ⊆ N is a k -recognizable infinite subset of N,
then either RX > 1 or, DX < +∞.

A. Cobham, Uniform tag, Theory Comput. Syst. 6, (1972), 164–192.

Corollary

Let k , t ≥ 2. The set {nt | n ≥ 0} is NOT k -recognizable.

S. Eilenberg, Automata, Languages, and Machines, 1974.



More examples

Minsky–Papert 1966

The set P of prime numbers is not k -recognizable.

A proof using the gap theorem :

◮ Since n! + 2, . . . ,n! + n are composite numbers, DP = +∞

◮ Since pn ∈ (n lnn,n lnn + n ln lnn), RP = 1

E. Bach, J. Shallit, Algorithmic number theory, MIT Press

Schützenberger 1968

No infinite subset of P can be recognized by a finite automaton.



◮ conversion: X is k -recognizable IFF X is kn-recognizable

◮ Any ultimately periodic set is k -recognizable, for all k ≥ 2

◮ Cobham 1969: Let k , ℓ ≥ 2 be two multiplicatively
independent integers, i.e., if log k/ log ℓ is irrational.
If X ⊆ N is k -rec. AND ℓ-rec., then X is ultimately periodic.

T. Krebs, A more reasonable proof of Cobham’s theorem arxiv.1801.06704

So there are sets that are recognizable

◮ in every base (ultimately periodic sets);

◮ for an equiv. class multiplicatively dependent bases;

◮ in no base at all.

V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers (1994)



In several dimensions

A set X ⊂ N
d is k -recognizable, if the set of base-k expansions of

the d-tuples in X (padded accordingly) is accepted by some finite
automaton (reading a d-tuple of digits at a time).

 DFA reading l.s.d.f. for +, X = {(x , y , z ) ∈ N
3 | x + y = z}
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

Such a DFA exists for all bases (no arbit. long carry propagation).



These operations cannot be“recognized”by finite automata

◮ multiplication {(x , y , z ) ∈ N
3 | x · y = z}

◮ “general”base conversions, e.g., {(rep2(n), rep3(n)) | n ∈ N}



Link with combinatorics on words

Cobham 1972: A set is k -recognizable if and only if its
characteristic sequence 1X ∈ {0, 1}N is k -automatic.

A B C D

0 0 0 0, 1

1 1 1

f :







A 7→ AB

B 7→ BC

C 7→ CD

D 7→ DD

g :







A 7→ 0
B 7→ 1
C 7→ 1
D 7→ 0

f ω(A) = ABBCBCCDBCCDCDDDBCCDCDDDCDDDDDDD · · ·

g(f ω(A)) = 01111110111010001110100010000000 · · ·

X = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, . . .}



Link with combinatorics on words

0 7→ 01, 1 7→ 10

1

1

0 0

We get the so-called Thue–Morse word:

01101001100101101001011001101 · · · .



Link with combinatorics on words

k -automatic sequences have low complexity.

Proposition (Cobham)

If (xn)n≥0 is k -automatic, then its factor complexity

px (n) := #{xi · · · xi+n−1 | i ≥ 0} ∈ O(n)

J. Cassaigne, F. Nicolas, Factor complexity, Ch. 4 CANT’2010 (Cambridge).
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1000

1500

2000

pTM (2k + r) =

{
3 · 2k + 4(r − 1) , if 1 ≤ r ≤ 2k−1;
4 · 2k + 2(r − 1) , if 2k−1 < r ≤ 2k .



Link with combinatorics on words

An application in number theory

Theorem (Adamczewski–Bugeaud 2007)

The complexity function of the k -ary expansion of every irrational
algebraic number satisfies

lim inf
n→∞

p(n)

n
= +∞.

Corollary

Aperiodic k -automatic numbers are transcendental.

The Thue–Morse number

0

2
+

1

4
+

1

8
+

0

16
+

1

32
+

0

64
+

0

128
+

1

256
+ · · · ≃ 0.824907

is transcendental.



Link with combinatorics on words

A general question is“pattern avoidance”and“repetitions in words”
◮ A square : lekkerker
◮ An overlap : ananas
◮ A cube : lekkerkerkerk

Easiest theorem, a teaser

Over a binary alphabet, squares cannot be avoided.

M.R., Formal languages, Automata, Numeration Systems, ISTE 2014
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Link with combinatorics on words

Theorem (A. Thue 1906)

The Thue–Morse word is overlap free

0 7→ 01, 1 7→ 10

011010011001011010010110 · · ·

In particular, this word is aperiodic.

Squares can be avoided on a 3-letter alphabet

011
︸︷︷︸

a

01
︸︷︷︸

b

0
︸︷︷︸

c

011
︸︷︷︸

a

0
︸︷︷︸

c

01
︸︷︷︸

b

011
︸︷︷︸

a

01
︸︷︷︸

b

0
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c

01
︸︷︷︸

b

011
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a

0 · · ·
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Instead of integer base systems

Generalizations to other numeration systems / morphic sequences

◮ Zeckendorf expansions

49 = 1.34 + 0.21 + 1.13 + 0.8 + 0.5 + 0.3 + 1.2 + 0.1

repF (49) = 10100010.

◮ Pisot numeration systems

◮ abstract numeration systems (enumerate a language)

Theorem (A. Maes, M.R. 2002)

An infinite word is morphic IFF it is S -automatic for some abstract
numeration system S .



f :







S 7→ SABC

A 7→ A

B 7→ BCC

C 7→ C

g :







S 7→ 1
A 7→ 1
B 7→ 0
C 7→ 0

g(f ω(S )) = 1100100001000000100000000 · · ·

SA B

C

a

a

a

b

c

d
b, c

ε, b, c, d , ba, ca, cb, cc, da, baa, . . .



Let’s come back to Cobham’s theorem (1969)

Recap

Let k , ℓ ≥ 2 be two multiplicatively independent integers.
If a set X ⊆ N is k -rec. and ℓ-rec., then X is ultimately periodic

Generalizations/extensions

◮ Pisot systems

◮ morphic sequences (F. Durand)

◮ multidimensional setting



Theorem (Cobham–Semenov)

Let k , ℓ ≥ 2 be two multiplicatively independent integers.
If a set X ⊆ N

d is k -rec. and ℓ-rec.,
then X is definable in the first order structure 〈N,+〉.

=, 0,+, (∀x ), (∃x ),¬,→,∧,∨,↔

you can add constants, multiplication by a constant, congruences

Remark (d = 1)

The subsets of N that are definable in 〈N,+〉 are exactly the finite
union of arithmetic progressions.

→ The Thue-Morse word/set cannot be defined in 〈N,+〉.



We can thus define subsets of Nd

Presburger definable sets

A formula ϕ(x1, . . . , xd ) with d free variables,

{(n1, . . . ,nd ) ∈ N
d | 〈N,+〉 |= ϕ(n1, . . . ,nd )}

ϕ(x1, x2) ≡ ρ1(x1, x2)∨ρ2(x1, x2)∨ρ3(x1, x2)∨ρ4(x1, x2)∨φ(x1, x2)
where

ρ1(x1, x2) ≡ (2x2 < x1) ∧ (x1 + x2 ≡3 0) ,
ρ2(x1, x2) ≡ (2x2 ≥ x1) ∧ (x2 < x1) ∧ (x1 ≡4 1) ,
ρ3(x1, x2) ≡ (x2 > x1) ∧ (x2 < 3x1)

︸ ︷︷ ︸

a region

∧ ((2x1 + x2 ≡3 1) ∨ (x1 + x2 ≡3 0))
︸ ︷︷ ︸

a pattern

,

ρ4(x1, x2) ≡ (x2 ≥ 3x1) ∧ (x1 ≥ 2) ,
φ(x1, x2) ≡ (x1 = 0 ∧ x2 = 4) ∨ (x1 = 2 ∧ x2 = 2) ∨ (x1 = 4 ∧ x2 = 0)

∨(x1 = 5 ∧ x2 = 0)
︸ ︷︷ ︸

a few isolated points

.



y=3x
y=x

2y=x

pattern in R3

pattern in R2

pattern in R1



Presburger arithmetic ; decidable theory (quantifiers elimination)

A less trivial example (Frobenius’ problem)

Chicken McNuggets can be purchased only in 6, 9, or 20 pieces.
The largest number of nuggets that cannot be purchased is 43.

(∀n)(n > 43 → (∃x , y , z ≥ 0)(n = 6x + 9y + 20z ))

∧¬((∃x , y , z ≥ 0)(43 = 6x + 9y + 20z )) .

There is an algorithm with output TRUE/FALSE.



Let’s come back to chicken Mc nuggets and Thue–Morse

◮ The first one is given by a sentence in 〈N,+〉 ;

◮ For the second one, we need an extra function V2.

Vk (n) is the largest power of k dividing n (close to p-adic
valuation).

A set X ⊆ N
d is k -recognizable/k -automatic if and only if it

definable in 〈N,+,Vk 〉.

Theorem

For all k ≥ 2, the first order theory of 〈N,+,Vk 〉 is decidable.

Büchi’s proof: from formula to finite automata
emptiness and universality are decidable.
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Shallit et al.

Theorem

Let k ≥ 2. If one can express a property of a k -automatic
sequence x using quantifiers, logical operations, integer variables,
+, -, indexing into x (i.e., access to x (n)), and comparison of
integers or elements of x , then this property is decidable.

Is x ultimately periodic?

(∃N )(∃p > 0)(∀i ≥ N )x (i) = x (i + p).

Does it have an overlap?

(∃i ≥ 0)(∃ℓ ≥ 1)(∀j ∈ {0, . . . , ℓ})(x (i + j ) = x (i + ℓ+ j )).

D. Goč, D. Henshall, J. Shallit, Automatic theorem-proving in combinatorics on words (2013)

Hamoon Mousavi, Automatic Theorem Proving in Walnut.



Walnut : https://cs.uwaterloo.ca/~shallit/walnut.html

◮ You can do much more, letting some free variables,
enumeration

◮ used in more than 50 papers



Another recent example (Shallit arXiv.2112.13627)
the number of representations of n as the sum of two elements of
a given set:

R
(A)
1 (n) = #{(x , y) ∈ N

2 : x , y ∈ A ∧ x + y = n}

R
(A)
2 (n) = #{(x , y) ∈ N

2 : x , y ∈ A ∧ x + y = n ∧ x < y}

R
(A)
3 (n) = #{(x , y) ∈ N

2 : x , y ∈ A ∧ x + y = n ∧ x ≤ y}

Sárközy asked whether there exist two sets of positive integers A
and B , with infinite symmetric difference, for which

R
(A)
i (n) = R

(B)
i (n) for all sufficiently large n, i = 1, 2, 3.

G. Dombi (2002), Y.-G. Chen and B. Wang (2003).



◮ L. Schaeffer: the set of occurrences of abelian squares

(0110)(1100)

in the paperfolding word

(0 ⋆ 1)ω = 0010011000110110001001110011011 · · ·

is not 2-recognizable, even though the paperfolding word is
2-automatic. Hence such a property cannot be captured by a
formula in 〈N,+,V2〉.

◮ F. Klaedtke: Nested quantifiers could, in the worst-case, lead
to a tower of exponentials.



Some other related work on Sturmian words

◮ P. Hieronymi, D. Ma, R. Oei, L. Schaeffer, C. Schulz, J.
Shallit, Decidability for Sturmian words (2021)

◮ P. Hieronymi, Alonza Terry Jr, Ostrowski numeration systems,

addition, and finite automata, N. D. J. Form. Log. (2014)

◮ Reed Oei, Eric Ma, Christian Schulz, and Philipp Hieronymi,
Pecan




