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Electromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of magnetodynamics with
hysteresis. If the lamination is large with respect to its thickness, field and current distributions are accurately resolved by solving
a one-dimensional finite element magnetodynamic problem with hysteresis across half the lamination thickness. This 1D model is
able to deliver mesoscocpic information to be used, after appropriate homogenization, in the macroscopic modelling of an electrical
machine or transformer. As each evaluation of such a homogenised model implies a finite element simulation at the mesoscale, a
monolithic coupling might be very time-consuming. This paper proposes an alternative approach, assuming a periodic excitation of
the system, where the parameters of a parametric homogenized material law are determined in each finite element with a neural
network. The local material law can then be used as a conventional constitutive relationship in a 2D or 3D modelling, with a massive
speed-up with respect to the monolithic coupling.
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I. INTRODUCTION

DESPITE an urgent need in industry, there does not
yet exist a practical and accurate simulation method to

account for magnetic losses in ferromagnetic laminated cores
in electrical machine simulations [1]. The detailed analysis of
the energy efficiency of electrical machines remains thus a
critical open problem, in particular for modern applications
with power electronic components switching at higher and
higher frequencies [2]. The complexity of this issue is re-
lated with the fact that magnetic losses are the macroscopic
outcome of the intricate combination of micro or mesoscopic
level phenomena : eddy currents, skin effect, saturation and
hysteresis. Those phenomena are strongly influenced by both
the microstructure of the ferromagnetic material and the lam-
inated structure of the core. Magnetic losses are thus actu-
ally determined at geometrical scales much smaller than that
of the electrical machine application. An accurate magnetic
loss simulation thus requires an explicit modelling of these
phenomena, which requires either a fine discretization of all
laminations or complex homogenization techniques. In both
cases, simulations are extremely costly with days or even
weeks of computation, making them impracticable in industrial
conception processes [3], [4]. In practice, magnetic losses are
usually evaluated a posteriori, based on the induction field
computed by the macroscopic electrical machine simulation
[5]–[7]. This can however be quite inaccurate. A much more
accurate, but still fast, approach based on homogenization
and neural networks is presented in this paper. Assuming a
periodic excitation of the system, the micro- and mesoscopic
phenomena are approximated in the macroscopic model by
an irreversible parametric homogenized material law, whose
parameters are determined by evaluating a neural network.

II. PARAMETRIC HOMOGENIZED MATERIAL LAW

Due to a large aspect ratio, magnetic fields in ferromagnetic
laminated cores can be accurately resolved by solving the laws
of magnetodynamics with hysteresis over half a lamination
thickness [8]. Through homogenization, the solution of this
1D mesoscopic problem is used to identify the irreversible
macroscopic law [9]
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where H is the magnetic field, B the magnetic flux density, Ḃ
its time derivative, and pk the parameters to be identified. Some
normalization constants µ⋆ = 1000 µ0, H⋆ = 1000 A/m
and f⋆ = 200 Hz are also introduced to maintain the pk
parameters in a limited range. The law has two terms that
represent respectively a reversible and an irreversible part of
the magnetic field H. The first term, involving 3 parameters, is
a reversible anhysteretic saturation curve. The term with p3 is a
dynamic viscosity-like term accounting for the development of
eddy currents in the lamination. The term with a square root,
finally, accounts for the fact that the saturation curve is shifted
to the right in the H−B plane when Ḃ is positive, and to the
left when Ḃ is negative, with a maximum shift equal to the
coercive field of the ferromagnetic material.

In general, the pk parameters are identified so as to match
as accurately as possible, e.g., by a mean squared error min-
imization, the homogenized 1D mesoscopic problem solution
computed for a given local field excitation H(P, t) over one
period [9]. Since different elements in a typical macroscopic fi-
nite element model undergo different field excitations (compare



H(P1, t), H(P2, t) and H(P3, t) on Fig. 1), the identification
should be done repeatedly in every element of the macroscopic
problem. This makes a monolithic coupling highly time con-
suming as the 1D mesoscopic problem has to be solved anew
for every element in the mesh.
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Fig. 1. Mesh of the macroscopic model. Fields vary from one element to the
other. Notably, three H curves are exhibited.

In this paper, this high computational cost is avoided through
the use of a neural network specifically trained to realise
efficiently and accurately the needed mapping H(P, t) 7→ pk.

III. NEURAL NETWORK

The chosen neural network can be described as a physics-
informed auto-encoder. Auto-encoders (see Fig. 2a) are neural
networks made up of two parts: the encoder which summarizes
the input data and the decoder which reconstructs the input
from the encoder summary. In case the decoder accurately
reconstructs the input, all the input information is efficiently
condensed by the encoder which therefore acts as a feature
extractor.

The auto-encoder architecture is implemented by having the
encoder predict the pk values while the H(B, Ḃ, pk) law (1)
plays the role of the decoder. The architecture is presented on
Fig. 2b and the main training parameters are provided in Tab. I.

To train the neural network, an excitation H(t) sampled
into a sequence of 100 points over a period is given, after
min-max normalization, as input to the neural network. This
sequence then flows through an embedding network reducing
it to a 10-element vector representation of the input. At that
level, the main frequency f is concatenated to the sequence.
Doing so, rather than adding the frequency to the 100 item long
input sequence, gives f more weight in the learning process.
The encoder network returns pk values which are injected into
the H(B, Ḃ, pk) function together with the sequences B and
Ḃ. This returns an estimation Ĥ and the mean squared error
between H and Ĥ is evaluated and backpropagated.

TABLE I
PARAMETERS OF THE NEURAL NETWORK TRAINING.

Batch size: 500 training set: 200 000 sequences
Learning rate: 0.0005 Validation set: 50 000 sequences
Optimizer: Adam Test set: 50 000 sequences
Nbr. of epochs: 50 epochs Learning time: 6 minutes
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Fig. 2. (a) Auto-encoder architecture. The encoder summarizes the information
held at its input. From this summary, the decoder tries to recover the input
data. This architecture allows feature extraction. (b) Architecture of the neural
network. From a sequence H and its frequency f , the neural network predicts
some pk values which are injected in the parametric homogenized material
law (1) together with the sequences B and Ḃ corresponding to the input
sequence H. The law 1 returns an estimation Ĥ of the input sequence H.
This neural network can be seen as an auto-encoder where the encoder is a
simple multilayer perceptron, the summarized data is the pk values, and the
decoder is the parametric homogenized material law (1).

IV. DATASET GENERATION

In order to train the neural network, a large dataset is
generated. This dataset is composed of sequences H(t) with
a sampling rate of 100 points per period. Scalar sinusoidal
excitations with at most one harmonic are considered to be
representative of the excitation sequences encountered during
the macro simulation:

H(t) = H0 sin(2πf0t) + χH1 sin(2πf1t+ φ). (2)

The parameters values used in (2) to generate the training
dataset are drawn stochastically. The notations U and UN
express uniform distributions respectively over real and integer
numbers: P(χ = 1) = 80% and P(χ = 0) = 20% to
consider one or no harmonic, H0 ∼ U(100, 2000), f0 ∼
U(50, 500), f1 = αf0 with α ∼ UN (2, 14), H1 = βH0 with
β ∼ U(0, 1√

f1
) and φ ∼ U(0, 2π). The dataset is completed

with the corresponding sequences B, obtained by solving the
1D mesoscopic problem with a M23535A 10 electrical steel
lamination on the one hand, and with the sequences Ḃ obtained
by centered differentiation of the latters on the other hand.



V. NUMERICAL RESULTS

In this section, the accuracy and computation time are
compared for the identification of the pk parameters by mean
squared error minimization or by using the neural network.
In both cases, the error with the homogenized solution Hi,
i = 1, . . . , 100, of the 1D mesoscopic problem is given by:

error =

√∑100
i=1(Ĥi −Hi)2∑100

i=1 H
2
i

. (3)

The mean error evaluated on the test set is similar with both
approaches. It is evaluated at 19.9% when using the neural
network and at 20% with the mean squared error minimisation.

Fig. 3 displays the results obtained with the three excitation
sequences H(Pi, t) depicted in Fig. 1. It notably shows, by
comparing the reversible anhysteretic curve with the other three
curves, how poor the conventional modelling of ferromagnetic
cores with a non-conduction saturable material is compared to
a modelling with an irreversible material law like (1).

On the other hand, the neural network approach yields
an impressive gain in computation time. On an i7-9750H
CPU, using pytorch v1.9.0 and considering one se-
quence, the neural network pk prediction and the evaluation
of H(B, Ḃ, pk) take about 0.5 ms altogether whereas, in the
same conditions, the 1D mesoscopic problem resolution takes
about 2 seconds. A speed-up of more than three orders of
magnitude is thus obtained. This speed-up gets even higher
when considering a higher number of sequences, since multiple
sequences can be handled at once by the neural network. For
instance, the neural network and the H(B, Ḃ, pk) evaluations
of 10 000 sequences is performed in 34 ms.

VI. IMPROVED MATERIAL LAW

One has observed in the previous section that the neural
network approach and mean squared error minimization return
similar errors. Furthermore, increasing the neural network ca-
pacity does not lead to any significant improvement. The main
limitation thus originates from the H(B, Ḃ, pk) law (1), which
probably over-constrains the problem. Further improvements
could be obtained by modifying this law.

The terms to add can be assessed by using one-input-one-
output neural networks. These neural networks can be seen
as high-capacity-parametric one-variable functions that can be
learned during the training of the global system. Once the train-
ing is achieved, these functions are approximated analytically
and the analytical expressions are added as new terms in the
law. This procedure led to the following modification of the
law (1):

H(B, Ḃ, pk) =

(
p0 + p1

(
|B|

µ⋆H⋆

)2p2
)

B

µ⋆

+

p3 +
p4√

p25 + ( |Ḃ|
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Fig. 3. Response of the different models to the excitation sequences presented
in Fig. 1 with the neural network or by mean squared minimization. The
homogenized 1D mesoscopic problem solution is the reference. The neural
network provides an important speed-up and similar results as the mean
squared minimization. In both cases, the prediction is far more accurate than
the conventional modelling.

With this modified law, the error drops down to 9.5% with
the neural network, and to 10.3% with the mean squared
error minimisation. Fig. 4 displays the improved responses to
the three excitation sequences of Fig. 1. To conclude, Fig. 5
presents the distribution of the pk parameters and of the error
in function of the parameters H0 (between 100 and 2000 A/m)
and f0 (between 50 and 500 Hz) in (2), holding χ = 1,
H1 = H0/4, f1 = 5f0 and φ = 0 constant. It is observed that
the identified parameters depend smoothly on the excitation
field H(t), and that expected features related to, e.g., magnetic
saturation show clearly and consistently.

VII. CONCLUSIONS

Hysteresis and eddy currents in ferromagnetic laminations
can be modelled with an irreversible parametric material law.
A mapping relating the material law parameter values with the
local field excitations is needed to avoid performing repeatedly
the time-consuming identification process. This paper has
shown that a specifically trained neural network can realise
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Fig. 4. Response to the excitation sequences presented in Fig. 1 with the
modified material law (4). The error is reduced by a factor 2 compared to the
initial law (1).

this mapping with a speed-up of several orders of magnitude
and an improved accuracy.

In future work, vector field excitations and the non-periodic
regime will be considered. The replacement of the analytic ma-
terial law by a neural network is also a promising continuation
of this work.
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