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A B S T R A C T   

Allan-Herndon-Dudley syndrome (AHDS) is characterized by neuropsychomotor developmental delay/intellec
tual disability, neurological impairment with a movement disorder, and an abnormal thyroid hormone profile. 
This disease is an X-linked disorder that mainly affects men. We described a female patient with a de novo variant 
in the SLC16A2 gene, a milder AHDS phenotype, and a skewed X chromosome inactivation profile. We discuss 
the mechanisms associated with the expression of the phenotypic characteristics in female patients, including 
SLC16A2 gene variants and cytogenomic alterations, as well as preferential inactivation of the normal X 
chromosome.   

1. Introduction 

Allan-Herndon-Dudley syndrome (AHDS, OMIM #300523) is a rare 
X-linked disorder, which basically affects males. It is characterized by 
global developmental delay and/or intellectual disability, feeding dif
ficulties, hypotonia in infancy with poor head control, dystonia, chor
eoathetosis, paroxysmal movement disorder, pyramidal signs, and 
abnormal thyroid profile tests [1,2]. Most males have a severe intel
lectual disability with no speech acquisition and no development of 
motor milestones [1,2]. 

The SLC16A2 gene, located at Xq13.2, is associated with the AHDS. It 
encodes the MCT8 protein, a cellular transmembrane transporter spe
cific for thyroid hormones [3], which plays an important role in neu
rogenesis, neuronal migration, and myelination [4]. Affected 
individuals show high 3,3,5′-triiodothyronine (free t3), low triiodothy
ronine (free and total t4), normal levels of thyroid-stimulating hormone 
(TSH), and a free t3/t4 ratio > 0.75, leading to peripheral hyperthy
roidism, with consequent muscle wasting, high heart rate, and hyper
tension due to high t3 in serum. In contrast, there is central 
hypothyroidism because MCT8 is essential for thyroid hormones to cross 
the hematoencephalic barrier [4]. 

Although large deletions have been associated with severe enceph
alopathy, no genotype-phenotype association has been established 
[5,6]. 

Heterozygous female carriers of mutations in SLC16A2 are usually 
asymptomatic and show only abnormal laboratory thyroid tests [7–9], 
since they present a normal allele, besides the mutated one. 

Regarding the symptomatic carriers, the literature shows two female 
patients with AHDS who presented markedly skewed X-chromosome 
inactivation towards the allele without the variant: one due to a 
balanced X-9 translocation [5], and the other due to a deletion involving 
the SLC16A2 gene as well as the X-inactivation center [10]. Thus, 
investigating X-chromosome inactivation in symptomatic carriers of 
AHDS may also assist the genotype-phenotype correlation. 

We report a female patient, who shows a moderate phenotype of 
AHDS and heterozygous de novo missense SLC16A2 variant, and 
investigate her XCI pattern. 

2. Case presentation 

The 16-year-old female patient is the second child of a non- 
consanguineous couple with a healthy 17-year-old brother. She has 
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attention deficit hyperactivity and an intellectual quotient (IQ) of 71 
with autistic features. Her height was 1.66 m (50-85th centile), weight 
of 60 kg with a body mass index (BMI) of 21.8 kg/m2 (50-85th centile), 
span of 172 cm (6 cm above her height), and head circumference of 55 
cm (+2 SD). The blood pressure was 110 × 72 mmHg, and the heart rate 
was 93 beats/min. She has mild dysmorphic facial features (short fore
head, bitemporal narrowing, upslanted palpebral fissure, microtia I, 
narrow palate, and retrognathia), marfanoid habitus, joints hyper
flexibility, lumbar hyperlordosis, mild thoracic scoliosis, genu 

recurvatum, and dry skin in both arms. The thyroid workup showed high 
serum levels of total-t3 and free-t3 [total-t3 220ng/dL (RV 72-214 ng/ 
dL); free t3 0,39 ng/dL (RV 0,24–0,37 ng/dL)], with low level of free-t4 
[free-t4 0,9 ng/dL (RV 1,0–1,6 ng/dL)] and normal levels of TSH [TSH 
2,8 m UI/L (RV 0,50–4,9mUI/L)]. The brain magnetic resonance im
aging was unremarkable. 

Fig. 1. Sequencing and X-inactivation results from the family. (A) At the top, idiogram of the X chromosome showing the site of the SLCA16A2 gene, at Xq13.2 (red 
rectangle); and at the bottom, partial result of whole-exome sequencing showing the missense variant in SLC16A2: c.1388C > T:p.Pro463Leu(ENST00000587091) on 
the left, and the heterozygous SNP (rs5937843), mapped at chrX:74529484 (GRCh38), 54 base pairs downstream from the SLC16A2 variant, on the right. Note that 
the mutated SLC16A2 allele is in cis with the G allele of the SNP. (B) Partial results of Sanger sequencing show the heterozygous SLC16A2 variant (left) in the 
proposita and not in her parents, and the genotypes of the upstream SNP (right). At the bottom, a schematic representation of the SLC16A2 variant plus downstream 
SNP haplotypes of the different members of the family reveals that the SLC16A2 variant in the proposita is on the X-chromosome received from her father. (C) 
Electropherogram of the HUMARA results shows allele peaks from the microsatellite polymorphic marker in the first exon of the androgen receptor (AR) gene, 
located at Xq11.2. The allele peaks correspond to the PCR products of samples after mock digestion (top) and after digestion with the methylation-sensitive restriction 
enzymes HpaII and HhaI (bottom). The proposita presents a 212-bp allele of paternal origin and a 232-bp allele of maternal origin, which is preferentially inactive 
(inactivation ratio:29 ± 1:71 ± 1). Her mother presented skewed inactivation towards the 226-bp allele, with the 232-bp allele being preferentially active (inac
tivation ratio:78 ± 1:22 ± 1). 
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3. Cytogenetic and molecular analysis 

The proposita and her parents presented normal karyotypes. Whole- 
exome sequencing (WES) revealed a de novo rare missense variant in 
SLC16A2: c.1388C > T:p.Pro463Leu (ENST00000587091), confirmed 
by Sanger sequencing, which is absent in gnomAD and ClinVar. No 
deletion or duplication of the SLC16A2 gene was identified in the CNV 
analysis of the WES. In silico analyses support that this missense variant 
has a deleterious effect on protein structure or function, confirmed by a 
functional study [11]. The variant was classified as likely pathogenic 
according to the American College of Medical Genetics (ACMG – PS3, 
PM2, PM6, PP3). The haplotype analysis using a downstream single 
nucleotide polymorphism (SNP, rs5937843) revealed that the missense 
variant was present in the X chromosome that originated from the father 
(Fig. 1). 

XCI studies by HUMARA, as described by Favilla et al. [2021] [13], 
revealed inactivation of the maternal and paternal alleles in the ratio of 
71% and 29%, respectively, with the normal allele being preferentially 
inactive. Her mother presented a skewed XCI towards a different allele 
(78%:22%) (Fig. 1). 

4. Discussion and conclusions 

In our patient, WES revealed only one potential variant associated 
with developmental delay and autism. The variant is present in the 
coding region, leading to the Pro463Leu, which was previously associ
ated with partial loss of thyroid hormone transport activity [11]. The 
same variant c.1388C > T in the SLC16A2 gene was also described in an 
11-month-old male with global developmental delay, decreased muscle 
strength, hypotonia with severe head lag, and abnormal thyroid profile 
test [14]. Nonetheless, our proposita presents similar phenotypic char
acteristics including intellectual disability and marfanoid habitus like a 
man with AHDS described by Chevarin et al. [2019] [15]. 

Our patient has a normal karyotype, which excludes possible 
balanced X-autosome translocation linked to skewed X inactivation. 

The XCI ratio of 71%:29% in the proposita was considered unde
termined [16] but leans towards a mildly skewed inactivation pattern of 
the maternal chromosome. The reduced percentage of active normal 
alleles, as the paternal chromosome, harboring the mutation, was active 
in approximately 71% of the cells, which also indicates altered X-inac
tivation as a possible mechanism for the expression of the phenotype in 
females. 

Skewed X-chromosome inactivation can be seen in the general 
population [17], with levels of skewing increasing with age [18], as it 
may have been the case for the proposita's mother. However, it is also a 
common feature in symptomatic carriers of X-linked mutations, favoring 
the expression of the mutated allele [19,20], which is the case of the 
proband. 

The female patient with AHDS previously described by Frints et al. 
[2008] [5] presented a balanced translocation, 46,X,t(X;9)(q13.2;p24), 
with disruption of the SLC16A2 gene at the breakpoint. Due to a pref
erential inactivation of the normal chromosome, as expected for these 
cases, there was no functional copy of the SLC16A2 gene, resulting in the 
expression of the phenotype [5]. Another symptomatic female reported 
by Quesada-Espinosa et al. (2021) [10] presented a de novo 543 kb 
deletion of the X chromosome including exon 1 of the SLC16A2 gene as 
well as the JPX and FTX genes. The deleted X chromosome was found to 
be the active one in 95% of the blood cells, which was attributed to the 
participation of the JPX and FTX genes in the X-chromosome 
inactivation. 

In both patients, a markedly skewed inactivation associated with 
cytogenetic alterations was identified, unlike the proposita described 
here. This suggests that there are different mechanisms underlying 
skewness to express the phenotype in conditions with an X-linked 
pattern of inheritance, even though females may not present all the most 
frequent characteristics of the syndrome, like our patient. 

The mechanisms underlying this skewed choice towards inactivating 
the chromosome harboring the normal allele have not been elucidated 
yet. It has recently been described that additional deleterious mutations 
on the other X-chromosome may favor the negative selection of cells in 
which it is expressed, generating skewed XCI and contributing to the 
expression of a given phenotype [19]. However, such a mechanism was 
not identified in the proband. Even though we did not identify an 
extremely skewed XCI pattern towards the normal allele for the patient 
in peripheral blood, we may not rule out a more skewed XCI pattern in 
other tissues, which could impact the expression of her phenotype. 

Thus, different mechanisms may be responsible for the expression of 
the AHDS phenotype in female patients, all of them associated with 
pathogenic variants in the SLC16A2 gene as well as skewed X-chromo
some inactivation, which can cause milder symptoms compared to male 
patients. 
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