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Cantor real bases and alternate bases

Let β = (βn)n≥0 be a sequence of real numbers greater than 1 and such that
∏∞

n=0 βn is
infinite.

A β-representation of a real number x is an infinite sequence a = (an)n≥0 of integers such that

x =
a0
β0

+
a1
β0β1

+
a2

β0β1β2
+ · · ·

An alternate base is a periodic Cantor base. In this case, we simply write β = (β0, . . . , βp−1)
and we use the convention that
I βn = βn mod p

I β(n) = (βn, . . . , βn+p−1)

for all n ≥ 0. We call the number p the length of the alternate base β.



Greedy algorithm

For x ∈ [0, 1], a distinguished β-representation

dβ(x) = (εn)n≥0,

called the β-expansion of x , is obtained from the greedy algorithm:
I r0 = x
I εn = bβnrnc and rn+1 = βnrn − εn for n ∈ N.

For each n, we have εn ∈ {0, 1, . . . , bβnc}.

Thus, the β-expansions are written over the alphabet {0, 1, . . . , max
0≤i<p

bβic}.



Parry’s theorem for alternate bases and alternate β-shift

The quasi-greedy β-expansion of 1 is d∗β(1) = limx→1− dβ(x).

Theorem (Charlier & Cisternino 2021)
An infinite sequence a0a1a2 · · · of non-negative integers belongs to the set {dβ(x) : x ∈ [0, 1)}
if and only if anan+1an+2 · · · <lex d∗

β(n) (1) for all n ∈ N.

For an alternate base β, the set {dβ(x) : x ∈ [0, 1)} is not shift-invariant in general.

The β-shift is defined as the topological closure of the set

p−1⋃
i=0

{dβ(i) (x) : x ∈ [0, 1)}.

Theorem (Charlier & Cisternino 2021)
The β-shift is sofic if and only if d∗

β(i) (1) is eventually periodic for all i ∈ {0, . . . , p − 1}.

In view of this result, we refer to such alternate bases as the Parry alternate bases.



Example

Let β = ( 1+
√
13

2 , 5+
√
13

6 ). We can compute d∗
β(0) (1) = 200(10)ω and d∗

β(1) (1) = (10)ω .

The following finite automaton accepts the set of factors of elements in the β-shift.

0, 0 0, 1 0, 2 0, 3 0, 4

1, 0 1, 1

2

0, 1

0 0
1

0

0

1

0

0



Aims of this work

I Algebraic properties of Parry alternate bases.
1. A necessary condition for being a Parry alternate base is that the product δ =

∏p−1
i=0

βi is an
algebraic integer and β0, . . . , βp−1 ∈ Q(δ).

2. A sufficient condition for being a Parry alternate base if that δ is a Pisot number and
β0, . . . , βp−1 ∈ Q(δ).

I Normalization of alternate base representations.

If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ), then the normalization function is computable by a
finite Büchi automaton. Such an automaton is effectively given.



Spectrum as a tool

The notion of spectrum associated with a real base β > 1 and an alphabet of the form
Ad = {0, 1, . . . , d} with d ∈ N was introduced by Erdős, Joó and Komornik in 1990.

For our purposes, we use a generalized concept of complex spectrum, and study its topological
properties.

Let δ ∈ C such that |δ| > 1 with an alphabet A ⊂ C.

The spectrum associated with δ and A is the set

XA(δ) =

{
`−1∑
i=0

aiδ`−1−i : n ∈ N, ai ∈ A

}
.

We say that a word a0 · · · a`−1 over A corresponds to the element
∑`−1

i=0 aiδ`−1−i in the
spectrum XA(δ).



The following result shows that topological properties of the spectrum are linked with
arithmetical aspects of the numeration system.

Theorem (Frougny & Pelantová 2018)
Let β > 1 and d ∈ N. Then Z(β, d) is accepted by a finite Büchi automaton if and only if the
spectrum Xd (β) has no accumulation point in R.

For the case of real bases and symmetric integer alphabets, there is a complete characterization
of the bases which give spectra without accumulation points in dependence on the alphabet.

Theorem (Akiyama & Komornik 2013, Feng 2016)
Let β > 1 and d ∈ N. The spectrum Xd (β) has no accumulation point in R if and only if
either β − 1 ≥ d or β is a Pisot number.



Set of δ-representations of zero and complex zero automaton

For a complex base δ and an alphabet A of complex numbers, we define

Z(δ,A) = {a ∈ AN :
+∞∑
n=0

an
δn+1 = 0}.

Generalizing ideas from Frougny, we define a Büchi automaton

Z(δ,A) = (Q, 0,Q,A,E).

I States: Q = XA(δ) ∩ {z ∈ C : |z| ≤ M
|δ|−1} where M = max{|a| : a ∈ A}.

I Transitions: E = {(z, a, zδ + a) : z ∈ Q, a ∈ A}.

Proposition
The Büchi automaton Z(δ,A) accepts the set Z(δ,A).



Linking the complex spectrum and the complex zero automaton

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
Let δ be a complex number such that |δ| > 1 and let A be an alphabet of complex numbers.
Then the following assertions are equivalent.

1. The set Z(δ,A) is accepted by a finite Büchi automaton.

2. The zero automaton Z(δ,A) is finite.

3. The spectrum XA(δ) has no accumulation point in C.



Towards an analogous result for alternate bases

I We consider a fixed alternate base β = (β0, . . . , βp−1).
I We set δ =

∏p−1
i=0 βi .

I We consider a p-tuple D = (D0, . . . ,Dp−1) where, for all i ∈ {0, . . . , p − 1}, Di is an
alphabet of integers containing 0.

I We use the convention that for all n ∈ Z, Dn = Dn mod p and D(n) = (Dn, . . . ,Dn+p−1).

Grouping terms p by p, the equality

x =
a0
β0

+
a1
β0β1

+ · · ·+
ap−1

β0β1 · · ·βp−1
+ · · ·

can be written as

x =

∑p−1
i=0 aiβi+1 · · ·βp−1

δ
+

∑p−1
i=0 ap+iβi+1 · · ·βp−1

δ2
+ · · ·

If we add the constraint that each letter an belongs to Dn, then we obtain a δ-representation
of x over the alphabet

D =

{
p−1∑
i=0

aiβi+1 · · ·βp−1 : ∀i ∈ {0, . . . , p − 1}, ai ∈ Di

}
.



Alternate spectrum

For δ =
∏p−1

i=0 βi and the alphabet D, we consider the spectrum XD(δ).

For each i ∈ {0, . . . , p − 1}, we let X(i) denote the spectrum built from the shifted base β(i)

and the shifted p-tuple of alphabets D(i).

In particular, we have X(0) = XD(δ).

Lemma
For each i ∈ {0, . . . , p − 1}, we have X(i) · βi + Di = X(i + 1) where X(p) = X(0).



Alternate zero automaton
For each i ∈ {0, . . . , p − 1}, we define

M(i) =
+∞∑
n=i

max(Dn)∏n
k=i βk

and m(i) =
+∞∑
n=i

min(Dn)∏n
k=i βk

.

We define a Büchi automaton associated with an alternate base β and a p-tuple of alphabets
D as

Z(β,D) = (Qβ,D , (0, 0),Qβ,D ,∪p−1i=0 Di ,E)

where
I Qβ,D =

⋃p−1
i=0 ({i} × (X(i) ∩ [−M(i),−m(i)]))

I E is the set of transitions defined as follows: for (i , s), (j, t) ∈ Qβ,D and a ∈ ∪p−1i=0 Di ,
there is a transition (i , s) a−−→ (j, t) if and only if j ≡ i + 1 (mod p), a ∈ Di and
t = βi s + a.

Proposition
The Büchi automaton Z(β,D) accepts the set

Z(β,D) = {a ∈
+∞∏
n=0

Dn :
+∞∑
n=0

an∏n
k=0 βk

= 0}.



An example

Consider the alternate base β = ( 1+
√
13

2 , 5+
√
13

6 ) and D = ({−2,−1, 0, 1, 2}, {−1, 0, 1}).
Then M(0) = valβ((21)ω) ' 1.67994 and M(1) = valβ(1) ((12)ω) ' 1.86852.

0, 0

0, 10,−1

0,−β1 0, β1 0, β1−10,−β1+1

0, 2β1−20,−2β1+2 0, β1−20,−β1+2

1, 0

1, 11,−1

1, β0−11,−β0+1 1, β0−21,−β0+2

1, β0−3 1,−β0+3

2 −2

1

0 −1

Zero automaton Z(β,D)

For instance, the infinite words 1(10)ω and (012121)ω have value 0 in base β (where 1 and 2
designate the digits −1 and −2 respectively).



Linking the alternate spectrum and the alternate zero automaton

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
Let β be an alternate base of length p and let D be a p-tuple of alphabets of integers
containing 0. Then the following assertions are equivalent.

1. The set Z(β,D) is accepted by a finite Büchi automaton.

2. The zero automaton Z(β,D) is finite.

3. The spectrum XD(δ) has no accumulation point in R.



Necessary conditions on β to be a Parry alternate base
Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
If β is a Parry alternate base, then
I δ is an algebraic integer
I βi ∈ Q(δ) for all i ∈ {0, . . . , p − 1}.

Let me give some intuition on an example.
Let β = (β0, β1, β2) be a base such that the expansions of 1 are given by

dβ(1) = 30ω , d
β(1) (1) = 110ω , d

β(2) (1) = 1(110)ω .

We derive that β0, β1, β2 satisfy the following set of equations
3
β0

= 1,
1
β1

+
1

β1β2
= 1,

1
β2

+
( 1
β2β0

+
1
δ

)
δ

δ − 1
= 1,

where δ = β0β1β2.

Multiplying the first equation by δ, the second one by β1β2 and the third one by (δ − 1)β2, we
obtain the identities

3β1β2 − δ = 0, −β1β2 + β2 + 1 = 0, β1β2 + (2− δ)β2 + δ − 1 = 0.

In a matrix formalism, we have( 3 0 −δ
−1 1 1
1 2−δ δ−1

)(
β1β2
β2
1

)
=
(

0
0
0

)
.



The existence of a non-zero vector (β1β2, β2, 1)T as a solution of this equation forces that the
determinant of the coefficient matrix is zero:

δ2 − 9δ + 9 = 0.

Hence we must have δ = 9+3
√
5

2 = 3ϕ2 where ϕ = 1+
√
5

2 is the golden ratio.

We then obtain
β1β2 =

δ

3
= ϕ2 and β2 = β1β2 − 1 = ϕ2 − 1 = ϕ.

Consequently,

β1 =
β1β2
β2

=
ϕ2

ϕ
= ϕ and β0 =

δ

β1β2
=

3ϕ2

ϕ2 = 3.

Indeed, the triple β = (3, ϕ, ϕ) is an alternate base giving precisely the given expansions of 1.



For obtaining the values β0, β1, β2 from the known eventually periodic expansions we have
used the fact that β0, β1, β2 and δ = β0β1β2 are solutions of a system of polynomial equations
in four unknowns x0, x1, x2, y , in our case

3x1x2 − y = 0
−x1x2 + x2 + 1 = 0

x1x2 + (2− y)x2 + y − 1 = 0
x1x2x3 = y .

The solution of the system yielded that δ is a root of a monic polynomial with integer
coefficients, i.e., is an algebraic integer.

The same strategy can be applied to any Parry alternate base.



A sufficient condition on β to be a Parry alternate base

As previously:
I δ =

∏p−1
i=0 βi

I D = (D0, . . . ,Dp−1) is a p-tuple of alphabets of integers containing 0
I D is the corresponding alphabet of real numbers.

Proposition
If Di ⊇ {−bβic , . . . , bβic} for all i ∈ {0, . . . , p − 1} and if the spectrum XD(δ) has no
accumulation point in R, then β is a Parry alternate base.

Proposition
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then the spectrum XD(δ) has no
accumulation point in R.

As a consequence, we get

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then β is a Parry alternate base.



Some remarks

I The condition of δ being a Pisot number is neither sufficient nor necessary for β to be a
Parry alternate base.
1. Even for p = 1, there exist Parry numbers which are not Pisot.
2. To see that it is not sufficient for p ≥ 2, consider the alternate base β = (

√
β,
√
β) where β

is the smallest Pisot number. The product δ is the Pisot number β. However, the β-expansion
of 1 is equal to d√

β
(1), which is aperiodic.

I The bases β0, . . . , βp−1 need not be algebraic integers in order to have a Parry alternate
base.

To see this, consider β = ( 1+
√

13
2 , 5+

√
13

6 ). For this base, we have d
β(0) (1) = 2010ω and

d
β(1) (1) = 110ω . However, 5+

√
13

6 is not an algebraic integer.

I For the same non Pisot algebraic integer δ, there may exist a Parry alternate base
α = (α0, · · · , αp−1) and a non-Parry alternate base β = (β0 · · ·βp−1) such that∏p−1

i=0 αi =
∏p−1

i=0 βi = δ.



Generalization of Schmidt’s results

Define Per(β) = {x ∈ [0, 1) : dβ(x) is ultimately periodic}.

Theorem (Charlier, Cisternino & Kreczman 2022)
1. If Q ∩ [0, 1) ⊆

⋂p−1
i=0 Per(β(i)) then β0, . . . , βp−1 ∈ Q(δ) and δ is either a Pisot number

or a Salem number.

2. If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then Per(β) = Q(δ) ∩ [0, 1).

Theorem (Charlier, Cisternino & Kreczman 2022)
If δ is an algebraic integer that is neither a Pisot number nor a Salem number then Per(β)∩Q
is nowhere dense in [0, 1).



Alternate bases whose set of zero representations is accepted by a finite
Büchi automaton

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
The following assertions are equivalent.

1. The set Z(β,D) is accepted by a finite Büchi automaton for all p-tuple of alphabets of
integers D = (D0, . . . ,Dp−1).

2. The set Z(β,D) is accepted by a finite Büchi automaton for one p-tuple of alphabets of
integers D = (D0, . . . ,Dp−1) such that Di ⊇ {−bβic , . . . , bβic} for all i ∈ {0, . . . , p − 1}
and bβjc ≥ dδe − 1 for some j ∈ {0, . . . , p − 1}.

3. δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ).



Normalization in alternate base
The normalization function is the partial function νβ,D mapping any β-representation
a ∈
∏

n∈N Dn of a real number x ∈ [0, 1) to the β-expansion of x .

We say that νβ,D is computable by a finite Büchi automaton if there exists a finite Büchi
automaton accepting the set{

(u, v) ∈
∏
n∈N

(Dn × {0, . . . , dβne − 1}) : valβ(u) = valβ(v) and ∃x ∈ [0, 1), v = dβ(x)
}
.

First ingredient.
Consider two p-tuples of alphabets D = (D0, . . . ,Dp−1) and D′ = (D′0, . . . ,D′p−1).
We set D −D′ = (D0 − D′0, . . . ,Dp−1 − D′p−1).

From the zero automaton Z(β,D −D′), we define a converter Cβ,D,D′ from D to D′, that is,
a Büchi automaton accepting the set

{(u, v) ∈
∏
n∈N

(Dn × D′n) : valβ(u) = valβ(v)}.

Proposition
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ), then the converter Cβ,D,D′ is finite.



Second ingredient.
In the case where β is a Parry alternate base, we can define a Büchi automaton accepting the
set {dβ(x) : x ∈ [0, 1)}.

For β = ( 1+
√
13

2 , 5+
√
13

6 ), we have seen that d∗
β(0) (1) = 200(10)ω and d∗

β(1) (1) = (10)ω .

0, 0 0, 1 0, 2 0, 3 0, 4

1, 0 1, 1 1, 2

2

0, 1

0 0
1

0

0

1

0

0

1

0

Combining these two automata, we obtain the following result.

Theorem (Charlier, Cisternino, Masáková & Pelantová 2022)
If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ), then the normalization function νβ,D is
computable by a finite Büchi automaton.



Thank you!


