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Abstract
Peroxisomes are ubiquitous organelles formed by peroxisome biogenesis (PB). During PB, peroxisomal matrix proteins 
harboring a peroxisome targeting signal (PTS) are imported inside peroxisomes by peroxins, encoded by PEX genes. Genetic 
alterations in PEX genes lead to a spectrum of incurable diseases called Zellweger spectrum disorders (ZSD). In vitro drug 
screening is part of the quest for a cure in ZSD by restoring PB in ZSD cell models. In vitro PB evaluation is commonly 
achieved by immunofluorescent staining or transient peroxisome fluorescent reporter expression. Both techniques have several 
drawbacks (cost, time-consuming technique, etc.) which we overcame by developing a third-generation lentiviral transfer 
plasmid expressing an enhanced green fluorescent protein fused to PTS1 (eGFP–PTS1). By eGFP–PTS1 lentiviral transduc-
tion, we quantified PB and peroxisome motility in ZSD and control mouse and human fibroblasts. We confirmed the stable 
eGFP–PTS1 expression along cell passages. eGFP signal analysis distinguished ZSD from control eGFP–PTS1-transduced 
cells. Live eGFP–PTS1 transduced cells imaging quantified peroxisomes motility. In conclusion, we developed a lentiviral 
transfer plasmid allowing stable eGFP–PTS1 expression to study PB (deposited on Addgene: #133282). This tool meets the 
needs for in vitro PB evaluation and ZSD drug discovery.

Keywords Peroxisome biogenesis · Peroxisome biogenesis disorder · Zellweger spectrum disorder · Peroxisome targeting 
signal · Lentivirus

Introduction

Peroxisomes are single membrane-bound ubiquitous orga-
nelles involved in numerous metabolic pathways including 
very long- and branched-chain fatty acids oxidation, and 
reactive oxygen species detoxification (Wanders 2014). They 
are formed and maintained in a process called peroxisome 
biogenesis (PB) [reviewed in (Fujiki 2016)]. PB is governed 
by proteins called peroxins (PEX) through processes includ-
ing peroxisome membrane assembly, peroxisomal matrix 
protein import, and peroxisome fission. Peroxisomal matrix 
protein import begins by the recognition of a peroxisome 
targeting signal (PTS) 1 or 2 (by PEX5 or PEX7, respec-
tively) on matrix proteins newly synthetized in the cytosol 
[reviewed in (Dias et al. 2016; Emmanouilidis et al. 2016)]; 
afterwards, the matrix proteins are translocated into the per-
oxisome lumen, and finally, PEX5 and PEX7 are released 
in the cytosol for another round of import. Along with 
PB, peroxisome proliferation, peroxisome autophagy (i.e., 
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pexophagy), and peroxisome motility take part in the peroxi-
some homeostasis in response to external stimuli [reviewed 
in (Neuhaus et al. 2016)]. Beside their complex biogenesis 
and regulation, peroxisomes are in close contact with other 
organelles like mitochondria and the endoplasmic reticulum 
[reviewed in (Farre et al. 2019)].

Genetic alterations in PEX genes lead to peroxisome 
biogenesis disorder (PBD) in cells and Zellweger spectrum 
disorders (ZSD) in patients [reviewed in (Argyriou et al. 
2016)]. ZSD is a continuum spectrum between severely 
affected patients (former Zellweger syndrome) which die of 
a progressive liver insufficiency during the first year of life, 
to mildly affected patients (former infantile Refsum disease) 
which suffer from leukodystrophy, failure to thrive, develop-
mental delay, and hepatic dysfunction. These patients rarely 
survive after the third decade and the lack of independent 
living skills is the most handicapping (Berendse et al. 2016). 
To date, supportive management is considered the standard 
of care, as no validated curative treatment has shown clinical 
benefits (Klouwer et al. 2015). In the quest for a cure, liver 
and hepatocyte transplantation (Demaret et al. 2018; Mat-
sunami et al. 2016; Sokal et al. 2003; Van Maldergem et al. 
2005) have been used to deliver a large amount of functional 
peroxisomes to patients, with clinical and biological success. 
Beside this cellular approach, a molecular approach based on 
in vitro drug screening aims at restoring PB in cell models 
before starting clinical trials. Several compounds (arginine, 
betaine, hydroxychloroquine, etc.) are able to restore PB 
in vitro, mostly in cell carrying the PEX1-G843D hypo-
morphic mutation (Berendse et al. 2013; Law et al. 2017; 
MacLean et al. 2019; Wei et al. 2000; Zhang et al. 2010). 
This molecular approach requires powerful tools to evaluate 
PB in vitro, especially in cell donors harboring peroxisomal 
mosaicism. Peroxisomal mosaicism refers to heterogene-
ous peroxisome labeling in cell population (see below) in 
which some cells harbor import-competent peroxisomes, 
while adjacent cells contain import-deficient peroxisomes 
(ghosts) (Argyriou et al. 2016). Peroxisomal mosaicism was 
reported in fibroblasts and liver biopsies from mild ZSD 
patients (Giros et al. 1996; Mandel et al. 1994).

Immunofluorescence (IF) and transient peroxisomal fluo-
rescent reporter transfection are two techniques of choice to 
evaluate PB in vitro. IF labeling a peroxisomal membrane 
protein [e.g., the 70-kDa peroxisomal membrane protein 
(PMP70)] and a peroxisomal matrix protein (e.g., the cata-
lase) allows import-competent peroxisomes identification by 
measuring colocalization between both markers (Soliman 
et al. 2018). Colocalization is lower in ZSD cells than in 
control, because the catalase is not properly imported inside 
peroxisomes (PMP70-positive particles). Plasmid transfec-
tion is a second approach used to transiently express a fluo-
rescent protein fused to a PTS which drives the reporter to 
peroxisomes (Koster and Waterham 2017). This technique 

demonstrates a diffuse cytosolic signal or a punctiform pat-
tern in ZSD and control cells, respectively (Ebberink et al. 
2011; Sexton et al. 2010). IF and transient peroxisomal fluo-
rescent reporter transfection have several drawbacks such as 
the heaviness and the cost of the techniques. Moreover, the 
fixation required by IF precludes any dynamic study and 
the transfection technique is hampered by its cell toxicity, 
its transientness, and a low efficiency, especially on primary 
cells such as human fibroblasts (Schrader et al. 2017).

To overcome all these limitations, we developed a 
third-generation lentiviral transfer plasmid expressing an 
enhanced green fluorescent protein (eGFP) fused to a PTS1 
(eGFP–PTS1). By this approach, we obtained a highly effi-
cient and stable eGFP–PTS1 expression both in mouse and 
human fibroblasts. eGFP automated signal analysis allowed 
to distinguish efficiently ZSD from control cell donors and 
to quantify peroxisome motility.

Materials and methods

Cell isolation and culture

Control and ZSD human fibroblasts were obtained by 
skin biopsy from a previously reported patient with PEX1 
deficiency, after written informed consent (Demaret et al. 
2018; Sokal et al. 2003). Mouse fibroblasts from Pex1wt/wt 
and Pex1G844D/G844D embryos were collected from a mild 
ZSD mouse model as described previously (Hiebler et al. 
2014; Tymms and Kola 2001). We selected the Pex1-G844D 
mouse model, because the mutation is equivalent to the com-
mon PEX1–G843D hypomorphic human mutation. The 
Pex1–G844D mutation confers a high level of peroxisomal 
mosaicism in ZSD fibroblasts. It challenged our method to 
distinguish between control and ZSD cell donors (Berendse 
et al. 2019). Mice experiments were approved by the Ethi-
cal Committee for Animal Experimentation at the Health 
Science Sector, UCLouvain, Brussels, Belgium (2017/UCL/
MD/006). Both cell types were cultured in Dulbecco’s Modi-
fied Eagle Medium high glucose (DMEM, Gibco, 41965-
039) supplemented with 10% fetal bovine serum (FBS, 
Gibco, 10270-106) and 1% penicillin/streptomycin (P/S, 
Gibco, 15140-122), and cultured at 37 °C in a fully humidi-
fied atmosphere containing 5%  CO2. Cells were trypsi-
nized (Trypsin–EDTA, Gibco, 25300-054) and seeded at a 
defined frequency and density (Table 1). Cell viability was 
always > 95% as measured by trypan blue 0.2% exclusion 
assay (HyClone, Thermo Fisher Scientific, SV30084.01).

Peroxisome targeting signal cloning

The eGFP fused to PTS1 from pEGFP-C1 + SKL (Addgene 
#53450) was amplified by polymerase chain reaction (PCR) 
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(GoTaq G2 Hot Start Polymerase, Promega, M740A) 
according to the manufacturer’s instructions. Primer 
sequences were F-5′-GGC ACC AAA ATC AAC GGG AC-3′ 
and R-5′-GGCG GTC GAC GTT TCA GGT TCA GGG GGA 
GG-3′ (including a 5′ non-hybridizing SalI restriction site—
underlined). The PCR product and pRRLSIN.cPPT.PGK-
GFP.WPRE (Addgene #12252) were separately digested 
overnight (ON) at 37 °C with 10 U SalI (SalI, Thermo Fisher 
Scientific, #ER0641) and 10 U BsrGI (Bsp1407I, Thermo 
Fisher Scientific, #ER0931) in Tango 2X buffer (Tango 
Buffer 10X, Thermo Fisher Scientific, BY5) (Fig.  1a). 
Restriction enzyme heat inactivation at 65 °C for 20 min was 
performed on the digested products. A small amount of the 
digested products was run on a 1% agarose gel (UltraPure 
Agarose, Invitrogen, 15510-027) containing intercalating 
agent diluted 1/20.000 (Midori Green Advance DNA Stain, 

Nippon Genetics, MG04) at 120 V during 45 min to con-
firm the successful digestion. Ligation was performed with 
a 1:3 vector:insert molar ratio according to the manufac-
turer’s instructions (T4 DNA Ligase, New England, Bio-
Labs, M0202S). Chemically competent E. coli were trans-
formed with the ligation product (One Shot TOP10, Thermo 
Fisher Scientific, C404006) and plated onto LB agar plate 
containing ampicillin 100 µg/mL (Ampicillin sodium salt, 
Gibco, 11593027). Colonies were screened by PCR with 
the following primers F-5′-GTG TTC CGC ATT CTG CAA 
G-3′ and R-5′-AGC AGC GTA TCC ACA TAG CG -3′. Ladder 
(GeneRuler 1 kb Plus DNA Ladder, Thermo Fisher Scien-
tific, SM1334) and PCR products were run on a 1% agarose 
gel showing a 925 or 1067 bp product for the native and the 
modified vector, respectively (Fig. 1b). Plasmid amplifica-
tion and purification (PureYield Plasmid Maxiprep System, 

Table 1  Characteristics of 
the fibroblasts analyzed and 
transduced

a Mouse embryonic day

Species Age Disease status Plating density Passage Passages 
during the 
study

Mouse E13.5a Control 15,000 cells/cm2 Twice a week P4–P27
Mouse E13.5a ZSD 15,000 cells/cm2 Twice a week P5–P42
Human 9 years Control 5000 cells/cm2 At 80% confluency P3–P17
Human 18 years ZSD 5000 cells/cm2 At 80% confluency P8–P22
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Fig. 1  a Cloning approach outline. The open reading frame of 
enhanced green fluorescent protein (EGFP) fused to the peroxisome 
targeting signal 1 (PTS1) was amplified from a donor plasmid (Dn). 
During amplification, a SalI restriction site was created thanks to a 
non-hybridizing 5′ end on the reverse primer (black arrow with box). 
The amplicon and the acceptor plasmid (Acc) were digested with 
BsrGI and SalI. Both digestion products were ligated and the ligation 
product was transformed in chemocompetent bacteria. Red arrows 
below the acceptor plasmid represents the primers used to run screen-

ing PCR on bacterial colonies emerging after transformation. b Aga-
rose gel of the colony screening PCR products. Products from colo-
nies (1–5) and controls (Acc and Dn) were run on gel electrophoresis. 
Colonies 1, 2, 4, and 5 PCR produced a 1067 base pairs (bp) frag-
ment showing genetic material insertion between primers compared 
to the 925 bp fragment of the Acc PCR. Dn PCR amplified no frag-
ment as the PCR was designed for. Colony 3 PCR amplified a 925 bp 
because of cloning failure
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Promega, A2392) was performed on a colony containing the 
modified vector (pRRLSIN.cPPT.PGK-GFP-PTS1.WPRE). 
Next-generation sequencing confirmed the expected plasmid 
sequence (Online Resources 1–4). The amplified plasmid 
passed the quality controls from a nonprofit plasmid reposi-
tory and is available in open access (Addgene, #133282).

Lentivirus production

HEK293FT cells (Invitrogen, R70007, cultivated accord-
ing to the provider’s instructions) at 70% confluency on 
CELLSTAR Cell Culture Flasks (Greiner Bio-One, 690 
175) were transfected with PTS1 modified lentiviral transfer 
plasmid pRRLSIN.cPPT.PGK-GFP-PTS1.WPRE (Addgene, 
#133282), and pCMV-VSV-G, pMDLg/pRRE, pRSV-Rev 
(Addgene, #8454, #12251, #12253) third-generation len-
tiviral packaging system in a 4/1/1/1 molar ratio using 
Lipofectamine 2000 Transfection Reagent (Thermo Fisher 
Scientific, 11668-030) in Opti-MEM (Gibco, 31985-062) 
according to the manufacturer’s instructions. After 6 h, 
transfection medium was replaced by growing medium 
without antibiotics. Every 24 h for 3 days, the eGFP–PTS1 
lentivirus-containing supernatant (eGFP–PTS1–LV) was 
harvested, centrifuged for 5 min at 2500 g to remove cell 
debris, and aliquoted and stored at − 80 °C.

Fibroblasts (n = 4) at 50–70% confluency were incubated 
48 h with eGFP–PTS1–LV and hexadimethrine bromide at 
a final concentration of 6 µg/mL (Sigma-Aldrich, H9268, 
diluted in distilled water and filtered at 0.22 µm). Trans-
duced cells were expanded, trypsinized, and suspended at 
 107 cells/mL in 0.22 µm filtered phosphate-buffered saline 
(PBS, Lonza, 15-512F), 2% FBS, and 1 mM ethylenediami-
netetraacetic acid tetrasodium salt hydrate (EDTA, Sigma-
Aldrich, E5391-250G). Fluorescence-activated cell sorting 
(FACS) on an FACSAriaIII (BD Biosciences) was used to 
collect eGFP-positive (eGFP+) fibroblasts (i.e., eGFP–PTS1 
transduced cells). To avoid the sorting of cell doublets or 
cell aggregates, single cells were sequentially selected on 
forward scatter area (FSC-A)/forward scatter width (FSC-
W) and side scatter area (SSC-A)/side scatter width (SSC-
W) dot plots. The sorting was performed using an 85 μm 
nozzle at 45 psi, and a flow rate that allowed collecting 
2000 events per second. The data acquisition and analysis 
were performed using the FACSDiva software (BD Bio-
sciences). The sorting was performed to get at least 150,000 
eGFP+ cells, and purity was verified a first time just after the 
sorting and a second time > 5 passages after sorting.

Immunofluorescence

Fibroblasts seeded on 12 mm round autoclaved glass cov-
erslips no. 1 (VWR, 631-1577) in 24-well plates (Greiner 
Bio-One, 662 160) were fixed with 1 volume formaldehyde 

4% (VWR, 11699408) on culture medium (formaldehyde 
final concentration of 2%) during 5 min at room temperature 
(RT) and then 10 min with the original solution (formalde-
hyde final concentration of 4%). Fixed cells were washed 
three times with PBS and permeabilized with Triton-X100 
0.5% (Sigma-Aldrich, X100-500ML) in PBS (PBS tablets 
diluted in distilled water, Gibco, 18912-014) during 15 min 
at RT. Permeabilized cells were washed three times with 
PBS and a blocking step was achieved with 1 h incubation 
in normal goat serum 5% (NGS, Sigma-Aldrich, G9023-
10ML) in PBS at RT. Cells were incubated ON at 4 °C with 
primary antibodies anti-catalase (Thermo Fisher Scientific, 
A21987, lot 1673440) and anti-PMP70 (Abcam, ab85550, 
lot GR99621-1) diluted in NGS 0.5% in PBS at 1/100 and 
1/1000, respectively. Cells were washed three times with 
PBS and incubated with AlexaFluor 488 goat anti-mouse 
(Thermo Fischer Scientific, A11001) and AlexaFluor 594 
goat anti-rabbit (Thermo Fischer Scientific, A11012) diluted 
in NGS 0.5% in PBS at 1/500 for 90 min at RT and pro-
tected from light. Control immunolabeling was performed 
with secondary antibodies alone. Immunolabeled cells 
were washed three times with PBS and nuclei were stained 
with diamidino-2-phenylindole dihydrochloride (DAPI, 
Sigma-Aldrich, D9542-1MG) diluted in distilled water at a 
final concentration of 0.2 µg/mL. Cells were washed three 
times with PBS and they were mounted with fluorescence 
mounting medium (Dako, S3023) on Superfrost Plus slides 
(Thermo Fisher Scientific, J1800AMNT). Cells were imaged 
on a cell observer spinning disk confocal microscope (Zeiss) 
using a Plan Apochromat 100 ×/1.4 Oil DICII objective.

eGFP–PTS1 transduced cells seeded on µ-Slide glass 
bottom (Ibidi, 80287) were imaged at 37 °C during all the 
acquisition with a picture taken every 10 s for 45 cycles.

Image analysis

Our strategy was to detect PBD with a relatively small 
number of cell pictures. Overlap and correlation of cata-
lase/eGFP–PTS1 and PMP70 signals were investigated by 
calculating Manders’ overlap coefficient (MOC, measure of 
the fraction of overlapping pixels) and Pearson’s correla-
tion coefficient (PCC, measure of the covariance in the two 
signals) using Axiovision v. 4.8.2.0 (Zeiss). Using a fixed 
intensity threshold for each signal, we defined four zones 
on a scatter-plot. Zone 3 was the zone above the threshold 
for both signals. MOC and POC were calculated on zone 
3 (Online Resource 5). Illustrative image profiles were 
obtained with ZEN 2.3 Blue Edition (Zeiss).

Peroxisomes automated quantification was performed 
with ImageJ 1.52p (National Institutes of Health). Native 
high-definition (.czi) images were imported using Bio-
Formats 6.3. The green (eGFP) and the blue (DAPI) chan-
nels were sequentially analyzed with a macro. In the green 



Histochemistry and Cell Biology 

1 3

channel, the mean intensity of total image was measured 
for each sample. In a second step, the peroxisomes were 
segmented into individual particles according to the green 
signal. The number, size (µm2), and mean intensity of 
the individualized peroxisomes were calculated using the 
AnalyzeParticles tool. Finally, nuclei were counted using 
the same approach in the blue channel for normalization 
purposes.

Time‑lapse analysis

The image sequences (45 frames, one every 10 s) were 
opened in native high-definition format (.czi) with ImageJ 
1.52p (National Institutes of Health). The signal was normal-
ized by local contrast to ensure a homogeneous illumination 
throughout the sequence. The bright spots corresponding 
to the peroxisomes were then analyzed with the TrackMate 
plugin (Tinevez et al. 2017). As a result, the maximal speed 
for each individual track (referred to as peroxisome track 
maximal velocity) was calculated and exported for statisti-
cal analysis.

Figure drawing and statistical analysis

Publisher (Office 365, Microsoft) was used to draw the 
figures. Two-tailed Mann–Whitney tests or Student’s t test 
with confidence intervals of 95% were performed using 
GraphPad Prism v.5.02 for Windows (GraphPad Software). 
P-values < 0.05 were considered significant.

Results

Peroxisome targeting signal 1 (PTS1) 
was functionally cloned in eGFP lentiviral vector 
allowing stable eGFP–PTS1 expression

Peroxisome targeting signal 1 (PTS1) was cloned in frame at 
the 3′ extremity of the eGFP in the third-generation lentivi-
ral transfer plasmid (Fig. 1a). A screening PCR designed to 
encompass the cloning site in the acceptor plasmid showed 
an increased fragment length in accordance with the cloned 
fragment (Fig. 1b). HEK293FT cells transiently transfected 
with the original (pRRLSIN.cPPT.PGK-GFP.WPRE) or the 
PTS1 modified (pRRLSIN.cPPT.PGK-GFP-PTS1.WPRE) 
lentiviral transfer plasmids harbored a diffuse green signal 
(cytosolic location) or a punctiform green signal (peroxiso-
mal location), respectively (Fig. 2a). This highlighted the 
modified eGFP localization achieved by PTS1 cloning.

Fibroblasts (n = 4) were transduced with eGFP–PTS1–LV. 
FACS on the four cell populations measured a transduction 
efficiency ranging from 44.4% (cryopreserved lentiviruses) 
to 86.5% (freshly produced lentiviruses) (Fig. 2b). After 

eGFP+ cell sorting, ~ 100% of the cells were eGFP+ and this 
was conserved in all donors after > 8 passages (Fig. 2c). All 
the eGFP–PTS1 analyses described below were carried out 
on the four donors sorted populations.

Decreased catalase + PMP70 colocalization 
confirmed PBD in ZSD cells

Double IF targeting a peroxisomal matrix protein (cata-
lase) and a peroxisomal membrane protein (PMP70) was 
performed to evaluate PB in cells, as published previously 
(Santos et al. 1988).

Catalase staining distribution was punctiform in control 
donors but lighter and more diffuse (in mouse fibroblasts) in 
the cytoplasm of ZSD cells, suggesting a lack of peroxiso-
mal catalase import (i.e. PBD) (Figs. 3a1–4). In ZSD mouse 
fibroblasts, some cells displayed clear punctiform catalase 
staining next to cells with diffuse catalase staining (peroxi-
somal mosaicism) (Fig. 3a2).

PMP70 staining evidenced a lower number of peroxi-
somes with enlarged size or irregular shape (peroxisomal 
ghosts) in ZSD donors than in controls (Fig. 3a5–8, see 
inserts). Size and number of peroxisomal ghosts were pre-
viously reported to depend on the PEX mutation (Soliman 
et al. 2018).

The low or absent catalase + PMP70 colocalization in 
ZSD donors confirmed the PBD. The distinct signal colo-
calizations in adjacent ZSD mouse fibroblasts brought firmly 
the peroxisomal mosaicism to light (Fig. 3a10).

Profile lines were drawn on merged images to pre-
cisely visualize the catalase + PMP70 colocalization 
(Fig. 3a13–16). The peroxisomal mosaicism in ZSD mouse 
fibroblasts was highlighted by the presence of colocalized 
green and red signal next to individual red or green peaks 
on the same profile line. MOC and PCC were calculated for 
catalase and PMP70 signals. MOC and PCC were higher 
in controls compared to ZSD donors (Fig. 3b, c). Further-
more, among ZSD donors, MOC and PCC were particularly 
low in ZSD human fibroblasts, demonstrating the very low 
colocalization and underlying the absence of peroxisomal 
mosaicism in this donor.

eGFP–PTS1 + PMP70 colocalization was efficient 
to evaluate PB

We measured eGFP–PTS1 + PMP70 colocalization to evalu-
ate PB. We confirmed that eGFP–PTS1 + PMP70 colocaliza-
tion was similar to catalase-PMP70 colocalization achieved 
by IF.

eGFP–PTS1 signal was punctiform in control fibroblasts 
and diffuse in ZSD fibroblasts cytoplasm (Fig. 4a1-4). In 
eGFP–PTS1 transduced ZSD mouse fibroblasts, peroxisomal 
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mosaicism was detected (Fig. 4a2) similar to what catalase 
IF demonstrated (Fig. 3a2).

Transduced cells were labeled by PMP70 IF. The low 
eGFP–PTS1 + PMP70 colocalization in ZSD donors con-
firmed the PBD (Fig. 4a10, 12). Profile lines were drawn 
on merged images to visualize the eGFP–PTS1 + PMP70 
colocal izat ion (Fig.   4a13–16) .  The dif ferent 
eGFP–PTS1 + PMP70 colocalization profiles in adjacent 
ZSD mouse fibroblasts confirmed peroxisomal mosaicism 
in this donor (Fig. 4a10). Peroxisomal mosaicism was fur-
ther highlighted by the presence of colocalized green and 
red signals next to individual red or green peaks on the same 
profile line (Fig. 4a14).

MOC and PCC were calculated to quantify the correlation 
between eGFP–PTS1 and PMP70 signals. MOC and PCC 
were higher in control donors than in ZSD donors (Fig. 4b, 

c). Among ZSD donors, MOC and PCC were strongly 
reduced in ZSD human fibroblasts, underlying the absence 
of peroxisomal mosaicism in this donor.

These results demonstrated that PMP70 colocal-
ized with our eGFP–PTS1 fusion product, and that 
eGFP–PTS1 + PMP70 signals was as sensitive as common 
IF protocol (catalase + PMP70) to evaluate PB in vitro.

eGFP–PTS1 signal alone allowed PB evaluation 
and peroxisome morphometry in living cells

eGFP signal from the 4 eGFP–PTS1 transduced donors 
was analyzed alone to evaluate PB without the need for 
cell transfection nor IF. Signal analysis was performed with 
ImageJ using the AnalyzeParticles tool (Fig. 5a).

Fig. 2  a HEK293FT transfected with pRRLSIN.cPPT.PGK-GFP.
WPRE (left panel) or pRRLSIN.cPPT.PGK-GFP-PTS1.WPRE (right 
panel). Note the change in enhanced green fluorescent protein (eGFP) 
localisation achieved by peroxisome targeting signal 1 (PTS1) clon-
ing. Scale bar: 50 µm. b Cell sorting strategy after pRRLSIN.cPPT.

PGK-GFP-PTS1.WPRE transduction. Before sorting, 86.5% of the 
ZSD mouse fibroblasts were eGFP-positive. c Side scatter area (SSC-
A)/eGFP area dot plots correspond to the 4 transduced donors > 8 
passages after cell sorting. The analysis showed eGFP signal stability 
(> 97%)
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Fig. 3  a Catalase (green) and 70-kDa peroxisomal membrane protein 
(PMP70, red) immunofluorescence (IF) staining. Inserts show higher 
magnification of the boxed area. IF highlighted a lower colocalization 
of both signals in Zellweger spectrum disorder (ZSD) donors. Peroxi-
somal mosaicism (i.e., a mixed population of cells with and without 
functional peroxisome biogenesis) was detected in ZSD mouse fibro-
blasts as shown inside the dotted area (a10). Dotted lines localize the 
profile analysis (a13–16). In ZSD donors, profiles showed no local-
ized correlation of intensities between both signals (marked with +), 
representing peroxisome biogenesis disorder. In ZSD mouse fibro-
blasts, some localized correlations of intensities were still present 
(marked with asterisk) representing residual peroxisome biogenesis 

among the peroxisome biogenesis disorder (i.e., peroxisomal mosai-
cism). Nuclei are stained with diamidino-2-phenylindole dihydro-
chloride (DAPI). Scale bar: 20  µm. Representative pictures of 30 
micrographs by donor. b Manders’ overlap coefficient (MOC) and 
c Pearson’s correlation coefficient (PCC) graphs representing corre-
lation of catalase and PMP70 signals among the four donors. MOC 
ranges from 0 to 1 and PCC ranges from − 1 to 1, with higher val-
ues indicating stronger correlation. Both coefficients concluded to a 
lower correlation (i.e., colocalization) in ZSD donors than in controls. 
Unpaired Student’s t test two-tailed, n = 30, mean ± 95% confidence 
interval, ***p < 0.0001
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Fig. 4  a 70-kDa peroxisomal membrane protein (PMP70, red) immu-
nofluorescent staining on cells transduced with an enhanced green 
fluorescent protein fused to a peroxisome targeting signal 1 (eGFP–
PTS1). This method highlighted lower signal colocalization in Zell-
weger spectrum disorder (ZSD) donors. Peroxisomal mosaicism (i.e., 
a mixed population of cells with and without functional peroxisome 
biogenesis) was detected in ZSD mouse fibroblasts as shown inside 
the dotted area (a10). Dotted lines localize the profile analysis (a13–
16). In ZSD donors, profiles showed the absence of localized correla-
tion of intensities between both signals (marked with +), represent-
ing peroxisome biogenesis disorder. In ZSD mouse fibroblasts, some 
localized correlations of intensities were still present (marked with 

asterisk) representing residual peroxisome biogenesis among the per-
oxisome biogenesis disorder (i.e., peroxisomal mosaicism). Nuclei 
were stained with diamidino-2-phenylindole dihydrochloride (DAPI). 
Scale bar: 20 µm. Representative pictures of 30 micrographs by con-
dition. b Manders’ overlap coefficient (MOC) and c Pearson’s cor-
relation coefficient (PCC) graphs representing the colocalization of 
eGFP–PTS1 and PMP70 signals among the four donors. MOC ranges 
from 0 to 1 and PCC ranges from − 1 to 1, with higher values indicat-
ing stronger colocalization. Both coefficients highlighted lower colo-
calization in ZSD donors. Unpaired Student’s t test two-tailed, n = 30, 
mean ± 95% confidence interval, ***p < 0.0001
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Among the four eGFP–PTS1 transduced donors, eGFP 
signal mean intensity (i.e., on the entire micrograph) was 
significantly higher in ZSD donors, indicative of a more 
diffuse eGFP signal in these donors (Fig. 5b). Concerning 
eGFP+ particles, the mean intensity was higher in controls 
than in ZSD donors, suggesting stronger eGFP–PTS1 per-
oxisomal import in control donors (Fig. 5b).

In human fibroblasts, the eGFP+ particles number (nor-
malized per cell number) and the average size (in µm2) of 
these particles were significantly lower in ZSD than in con-
trol fibroblasts (Fig. 5b). These results indicate that ZSD 
human fibroblasts contained less peroxisome matrices, of 
smaller size and with weaker eGFP signal than control cells.

Peroxisome motility was analyzed on photographs taken 
every 10 s from living cells transduced with eGFP–PTS1 
(Online Resources 6, 7). The time-lapses were analyzed 
using automated tracking tool to quantify eGFP+ particles 
motility and peroxisome track maximal velocity (i.e., the 
maximal velocity recorded for each peroxisome) (Fig. 5c). 
In ZSD human fibroblasts, the fastest particles were sig-
nificantly slower than in controls as shown by the cumu-
lative incidence of the peroxisome track maximal velocity 
(Fig. 5d) and on the 25 fastest velocities recorded from the 
4 donors (Fig. 5e).

Discussion

The aim of this study was to develop a new accessible 
method to evaluate PB in vitro. Our third-generation len-
tiviral vector allowed persistent expression of eGFP–PTS1 
fusion product and stable fluorescent signal along cell pas-
sages in control and ZSD mouse and human fibroblasts. 
First, eGFP–PTS1 pattern was similar to catalase, a peroxi-
somal matrix protein. Second, eGFP–PST1 colocalization 
with PMP70, a peroxisome membrane protein, was similar 
to catalase colocalization with PMP70, demonstrating cor-
rect technical sensitivity and no eGFP–PTS1 fusion product 
interaction with PB. Third, eGFP–PTS1 signal alone was 
sufficient to discriminate ZSD from control cells and allowed 
live cell imaging for peroxisome motility quantification.

eGFP–PTS1–LV allowed us to reach up to > 85% trans-
duction efficiency on primary cells. After eGFP+ cell sort-
ing, the signal remained > 97% for more than eight passages 
without any sign of signal loss. Our FACS approach col-
lected cells with different eGFP–PTS1 expression levels 
among the same population (Fig. 2c). This did not impede 
the precision of the different parameters measured after-
wards. Yet, a more stringent cell sorting approach (i.e., a 
narrower positive cell gating) could potentially lead to 
reduced dispersion of the parameters measured.

Classical PB evaluation is achieved by transient transfec-
tion of a peroxisomal reporter plasmid with cationic lipid 

transfection agents such as Lipofectamine [36] or micropora-
tion [37]. Lipofectamine transfection efficiency is very low 
on primary cells (< 1% in our experience on skin fibroblasts) 
and the compound exhibits cell toxicity. Microporation is 
more efficient than Lipofectamine on primary cells, but 
requires tricky optimization steps and expensive single-
use cassettes [20]. Both techniques lead to transient protein 
expression and thus require transfection step before every 
experiment. Moreover, PTS1 protein import pathway is 
saturable (Brickner et al. 1997). Since transient transfection 
achieve high protein expression levels (Hunter et al. 2019), 
PTS1 protein import pathway saturation by highly expressed 
eGFP–PTS1 thanks to transient transfection cannot be 
excluded. To our knowledge, the transfection or micropo-
ration effect on PB was never studied. After establishing 
transduced cells population, fibroblasts are ready for many 
experiments without potentially confounding factors.

Peroxisomes size and speed measured by eGFP–PTS1 
particle analysis and tracking were comparable to previous 
publication based on eGFP–PTS1 transient transfection 
(Metz et al. 2017). The cloning steps did not impede the 
correct eGFP–PTS1 localization. The lentiviral transduc-
tion did not modify the peroxisome matrix microscopic 
characteristics.

eGFP–PTS1 signal and catalase IF staining colocalized 
with PMP70 IF staining depending on the cell PB capacity. 
MOC and PCC used to quantify this colocalization as the 
reflect of PB in our study were previously used to study 
pexophagy by the colocalization of catalase or PMP70 with 
autophagy receptors (Deosaran et al. 2013; Marcassa et al. 
2018) and to decipher the link between peroxisomes and 
the endoplasmic reticulum (Mast et al. 2016). MOC quan-
tifies the overlap between two signals without evaluating 
the intensity of them, whereas PCC takes the intensity into 
account to give a correlation coefficient. In our study, both 
MOC and PCC gave similar results, because green and 
red signal overlapped and were also positively correlated 
in intensity. Using these two methods, we demonstrate the 
colocalization of PMP70 with catalase and eGFP–PTS1 in 
peroxisomes of cells with functional PB and evidence the 
defective important in ZSD cells.

eGFP+ particles number, eGFP+ average area, and per-
oxisome track maximal velocity were statistically different 
between control and ZSD donors in human fibroblasts but 
not in mouse fibroblasts. This could be explained by per-
oxisomal mosaicism highlighted by eGFP–PTS1 signal in 
ZSD mouse fibroblasts (Fig. 4a10) but not detected in ZSD 
human fibroblasts (Fig. 4a12). ZSD mouse fibroblasts iso-
lated from a similar mild ZSD mouse model were already 
shown to exhibit peroxisomal mosaicism (Berendse et al. 
2019). Moreover, the PEX1-G844D protein expressed in 
ZSD mouse fibroblasts was shown to be expressed in nor-
mal quantity but with a lower functionality, meaning that 
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the mutation has a reduced impact on the protein (i.e., 
affecting only functionality but not stability) (Argyriou 
et al. 2019). In human fibroblasts, peroxisomal mosai-
cism was shown in cells from mildly affected ZSD patients 
(Giros et al. 1996; Mandel et al. 1994). In our study, ZSD 
human fibroblasts were collected from a ZSD patient 
presenting already in the neonatal period with facial dys-
morphism, feeding disturbance, cholestasis, and typical 
biochemical abnormalities (Demaret et al. 2018). In con-
clusion, our method is able to detect PBD in cells from 

classical ZSD donors, but our tool is also sensitive enough 
to decipher PBD in cells with milder phenotype.

To our knowledge, this is the first report, validation, 
and public availability (Addgene #133282) of a lentiviral 
transfer plasmid encoding a peroxisome targeted marker. 
The strengths of this method are its security, stable protein 
expression evaluated in two eukaryote species, easy setup, 
and PB sensitivity similar to catalase staining. The use of 
a single transduction (compared to recurrent transfections 
required by Lipofectamine or microporation) and single 
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signal (compared to catalase + PMP70 colocalization) make 
it suitable and convenient for high-throughput screening. 
Some limitations are inherent to the technology used like 
handling in a biosafety level 2 environment and cell sorting 
requirement to get 100% cell positivity. Yet, these steps are 
to be performed only once for a given cell type. In the future, 
eGFP–PTS1 transduced ZSD cell donors with different PEX 
mutations could be exposed to chaperones to evaluate their 
effect on the PBD (MacLean et al. 2019).

Conclusions

We developed an eGFP–PTS1 stable and highly potent third-
generation lentiviral expression system in eukaryotic cells to 
study PB in vitro which allowed us to quantify and measure 
peroxisomes and their motility.
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