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BACKGROUND: The most important determinant of long-term survival in patients with
idiopathic pulmonary fibrosis is the right ventricular (RV) adaptation to the increased pul-
monary vascular resistance. Our aim was to explore RV contractile reserve during stress
echocardiography in early-stage IPF.

METHODS: Fifty early-stage patients with IPF and 50 healthy control patients underwent rest
and stress echocardiography, including RV two-dimensional speckle tracking echocardiog-
raphy. At peak exertion, blood gas analysis and spirometry were also assessed.

RESULTS: At rest, RV diameters weremildly increased in IPF; however, although RV conventional
systolic function indexes were similar between the IPF and control groups, RV global longitudinal
strain and RV lateral wall longitudinal strain (LWLS) were significantly reduced in the IPF cohort.
During physical exercise, patients with IPF showed a reduced exercise tolerance with lower
maximal workload (P< .01), level of oxygen saturation (P< .001), and peak heart rate (P< .01).
Systolic and diastolic BP values were similar in both groups. Systolic pulmonary artery pressure
(PAPs) increase (DPAPs) during exertion was higher in IPF vs healthy subjects (P < .0001); RV
LWLS increase (DRV LWLS) during exercise was lower in patients with IPF vs control patients
(P< .00001). By multivariable analysis, RV LWLS at rest andDRV LWLS were directly related to
peak exertion capacity, PAPs, and blood oxygen saturation level (SpO2; P < .0001). D RV LWLS
was directly related to diffusion lung carbon monoxide (P < .0001).

CONCLUSIONS: RV myocardial dysfunction is already present at rest in early-stage IPF and
worsens during exertion as detected by two-dimensional speckle-tracking echocardiography.
The RV altered contractile reserve appears to be related to reduced exercise tolerability and
impaired pulmonary hemodynamic. CHEST 2019; 155(2):297-306
KEY WORDS: 2D speckle tracking echocardiography; idiopathic pulmonary fibrosis; right
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Idiopathic pulmonary fibrosis (IPF) is the most common
type of chronic idiopathic interstitial pneumonia,1 with
rapid progression and a mean survival from diagnosis of
3 to 5 years.2,3 The nonsurgical approach to therapy with
antifibrotic medication slows the progression but cannot
induce regression of this lung disease.2 IPF can be
complicated by precapillary pulmonary hypertension
(PH),4,5 which is present in 35% to 40% of patients at
advanced stages of the disease. Patients with IPF referred
to lung transplantation manifest a PH prevalence of
about 85%.6,7 The onset of PH as well as the decline of
respiratory functional parameters including oxygen
desaturation < 88% at 6-min walking test, diffusion lung
carbon monoxide (DLCO) < 40% predicted, and a
change in FVC > 10% percentage points,8 are all
unfavorable prognostic factors.9–12 The most important
determinant of long-term survival in these patients,
however, is represented by the adaptation of the right
ventricle to increased pulmonary vascular resistance
(PVR).13

Most of the work in the scientific literature regarding the
right ventricle in IPF has focused on the presence of PH
at rest and the consequences of increased afterload on
right ventricular (RV) function at the advanced stages of
IPF.4,5,14–23 RV global longitudinal strain (GLS) turned
out to be an important determinant of outcome (right-
sided heart failure, clinical deterioration, and mortality)
in patients with PH.24

D’Andrea et al25 have shown that in patients affected by
IPF without evidence of PH, FVC, and mean pulmonary
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arterial pressure represent independent determinants of
RV GLS, explaining about 70% of its variability;
moreover, RV GLS has been demonstrated to be
associated with 6-min walking test and is an
independent predictor of functional capacity.25

Although transthoracic echocardiography is the
standard practice for the evaluation of RV function in
resting conditions, stress echocardiography (SE) should
be considered as a diagnostic technique to assess
pulmonary hemodynamic during exercise as well as RV
contractile reserve.26–29

It has been already demonstrated that, in late stages of
interstitial lung disease, RV dysfunction is more
evident during physical exercise.14-17 An inadequate
increase of pulmonary blood flow during exertion may
contribute to exercise intolerance. In these patients, the
right ventricle adapts to an already increased afterload
at rest during exercise, with further uncoupling of the
RV contractile reserve in relation to the downstream
pulmonary vascular afterload.17-23 A paucity of data
are available about RV dysfunction in early-stage IPF
and its progression during the course of worsening
disease.

The aim of this study was to explore resting and exercise
RV contractile reserve among early-stage patients with
IPF. For this purpose, we applied two-dimensional
speckle tracking echocardiography (2DSTE), which
provides angle-independent information about
segmental and global myocardial deformation.

Methods
Study Population

From June 2017 to December 2017, 50 patients affected by early-stage
IPF referred to the Rare LungDiseases Unit – Cardiorespiratory
Department, Monaldi Hospital, Naples, Italy, were enrolled.
Echocardiography analysis was performed by our echocardiography
laboratory, Division of Cardiology, Luigi Vanvitelli University -
Naples, Monaldi Hospital. The diagnosis of IPF was made on the
basis of the American Thoracic Society and European Respiratory
Society 2011 Guidelines.30,31 Patients with a history of pulmonary
thromboembolism or other forms of diffuse parenchymal lung
disease or coexisting rheumatologic disease were excluded. To form
the control group, healthy subjects referred to our cardiology
department for voluntary cardiovascular screening were assessed. In
agreement with exclusion criteria, subjects affected by systemic
hypertension, diabetes, dyslipidemia, and/or a history of
cardiovascular disease were excluded. The final control group was
represented by 50 sedentary healthy subjects.

All patients underwent comprehensive clinical assessment at rest and
SE including RV 2DSTE; furthermore, at peak exertion, blood gas
analysis and spirometry were also registered.
[ 1 5 5 # 2 CHES T F E B R U A R Y 2 0 1 9 ]

mailto:antonellodandrea@libero.it
mailto:antonellodandrea@libero.it
https://doi.org/10.1016/j.chest.2018.11.015


The study was approved by the institution’s ethics board and each
participant provided informed consent.

Imaging Protocol and Measurements

Standard transthoracic echocardiography, Doppler evaluation, and
strain analysis were performed at rest and at peak exertion using
market available equipment (Vivid E9, GE Healthcare, Milwaukee,
WI). All measurements were assessed, as an average of three
consecutive beats, independently by two authors (A.D. and S.S.),
cardiologists expert in echocardiography, according to the latest
European and American guidelines and recommendations.26,32-34

The following parameters were performed: basal RV diameter, mid-
cavity RV diameter, and longitudinal diameter in the apical four-
chamber view at the end-diastole; RV outflow tract (RVOT) at the
subpulmonary region from the parasternal short-axis view. As an
index of RV longitudinal systolic function, tricuspid annular plane
systolic excursion (TAPSE) was determined in a standard apical
four-chamber view.

Spectral Doppler Analysis

Tissue Doppler imaging (TDI) was used to determine RV peak systolic
velocity (TDI systolic peak (Sm) wave) in an apical four-chamber view.
In the parasternal short-axis or in the apical four-chamber views, the
peak tricuspid regurgitant velocity (TRV), was measured. On the
basis of the TRV, pulmonary artery systolic pressure (PAPs) was
calculated as Bernoulli’s principle: (4 � TRV2) þ RAP, where RAP
is the right atrial pressure. RV stroke volume was calculated as the
product of RVOT area and RVOT time-velocity integral.29 PVR was
estimated using the following equation: PVR ¼ PAPm � PCWP/
COrif, where PAPm is the mean pulmonary artery pressure
calculated as PAPs � 0.61 þ 2 mm Hg, according to Chemla et al,35

CO is the cardiac output derived from the stroke volume, and
PCWP is the pulmonary capillary wedge pressure, estimated for all
cases of 10 mm Hg.

Regarding the left heart chambers, left ventricular (LV) involvement
was estimated as expression of RV-LV interdependence in this
setting; hence, LV diastolic parameters (E and A peak velocities and
E/mean e0 ratio) and stroke volume were determined.16,36

2D Echocardiographic RV Strain

For RV strain calculation, a region of interest, including the entire RV
myocardial wall, was traced on the endocardial cavity interface of the
RV-focused apical four-chamber view at peak systole by a point-and-
click approach. Then, a second, larger region was automatically
generated, which was near the epicardium with a width of 10 mm.
The tracking algorithm followed the endocardium through the entire
cardiac cycle. Myocardial thickening was represented with a negative
value; myocardial thinning was represented with a positive value.37,38

The software then automatically divided the image into six standard
segments and provided an automated tracking-quality score as
feedback of the stability of the regional speckle tracking, ranging
from 1.0 (excellent tracking) to 3.0 (poor tracking) arbitrary units. A
tracking score value < 2.5 was determined as acceptable. The
tracking process and conversion to Lagrangian strains were
performed offline using a dedicated software (EchoPAC PC 2D
strain, GE Healthcare). Longitudinal strains for each segment were
measured and averaged for RV septal and lateral walls. In addition,
the software calculated RV GLS by averaging local strains along the
entire right ventricle.38,39 With the same procedure, LV longitudinal
strain was evaluated in apical views. If RV and LV function are
chestjournal.org
preserved, GLS is more negative (higher number numerically);
alternatively, when RV or LV function deteriorates, GLS is less
negative.25,40,41

Exercise SE

All participants recruited in the study, after the resting
echocardiogram, underwent a supine bicycle exercise SE as a
standard protocol characterized by incremental 2-min steps of 25
watts.42-44 At peak exertion, functional parameters such as maximal
oxygen desaturation, maximal heart rate, maximal systolic BP, and
maximal workload (number of watts achieved by supine bicycle test)
were evaluated.

Echocardiographic parameters evaluated at baseline and at peak
exertion included RV end-diastolic chamber size, RV systolic
parameters (TAPSE and TDI Sm wave), PAPs, RV stroke volume,
LV diastolic parameters, LV stroke volume, and 2DSTE LV and RV
analysis.45

Statistical Analysis

Statistical analyses were performed using a commercially available
package (SPSS, Rel. 21.0. 2016, SPSS Inc., Chicago, IL). Variables are
presented as mean � SD. Two-tailed t test for paired and unpaired
data was used to assess changes between groups. Linear regression
analyses and partial correlation test by Pearson’s method were used
to assess univariate relations.

To identify significant independent determinants of RV myocardial
strain in patients affected by IPF, their individual association with
clinical, functional, and echocardiographic variables was assessed by
multivariable Cox regression analysis. The following variables were
included in the analysis: clinical peak exercise parameters (age, heart
rate, oxygen saturation, systolic BP, diastolic BP, BMI); functional
respiratory and metabolic parameters such as FVC, FEV1, FEV1/
FVC, DLCO, DLCO/alveolar volume, pH, PCO2, PO2, bicarbonate, and
lactate levels); standard echocardiographic parameters (RV diameters,
TAPSE, PAPs, TDI Sm wave), RV stroke volume, LV stroke volume,
Doppler mitral flow velocities, and the TDI E0 septal and lateral
mitral annular diastolic velocities and the mean between the two
values). These variables were selected according to their clinical
relevance and potential effect on RV function, as demonstrated by
previous studies.4,11

Variable selection was performed in the multivariable linear regression
analysis using an interactive stepwise backward elimination method,
each time excluding the variable with the highest P value according
to Wald statistics. The assumption of linearity was tested graphically
by studying the smoothed Martingale residuals from the null model
plotted against the covariate variables. Linearity assumptions were
satisfied. The Hosmer-Lemeshow goodness of fit test was used to
check that the model adequately fit the data. The model also
underwent bootstrap validation (200 runs).2 To decrease the inflation
of the type 1 error rate resulting from multiple testing, the statistical
significance was defined as two-sided P value < .05. Receiver
operating characteristic curve analysis was performed to select
optimal cutoff values of echocardiographic parameters.
Reproducibility of 2DSTE measurements was determined in all the
subjects. Interobserver variability and intraobserver variability were
evaluated using both Pearson’s bivariate two-tailed correlations and
Bland-Altman analysis. Relation coefficients, 95% confidence limits,
and percent errors were reported.
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Results
No statistically significant differences were noted
between the two groups in age, BMI, heart rate, or
systolic and diastolic BP. Oxygen saturation at rest was
significantly lower in patients with IPF (Table 1).

Echocardiographic Findings of LV and RV Function
at Rest in Early-Stage IPF

Left ventricular function was similar among the IPF and
control cohorts (Table 2). RV diameters were mildly
increased in IPF. RV conventional systolic function
indexes (TAPSE and TDI Sm wave, RV stroke volume
and PAPs) were similar among the IPF and control
groups (Table 2; Fig 1).

RV speckle tracking was obtainable at rest in 95% of the
total analyzed segments. The remaining 5% segments
TABLE 1 ] Demographic and Functional Parameters at Res

Variable IPF (n ¼ 50)

Rest parameters

Age 61.2 � 8.3

Sex (men/women) 35/15

Smokers, % .

BMI, kg/m2 27.5 � 3

Resting HR, beats/min 71.9 � 9.1

SBP, mm Hg 128.3 � 5.1

DBP, mm Hg 80.6 � 5

SpO2, % 83.4 � 10.3

6MWT distance, m 490 � 13

Peak exertion parameters

Watt achieved 100.3 � 25

Maximal SBP, mm Hg 165.3 � 12

Maximal DBP, mm Hg 88.4 � 10

Maximal HR, beats/min 107.5 � 26

SpO2, % 70.2 � 16.3

Blood gas analysis

pH 7.37 � 4.5

PCO2, mm Hg 36.5 � 4

PO2, mm Hg 80.7 � 8.2

HCO3, mEq/L 213,8 � 27

Lactate, mmol/L 49.9 � 24

FVC, % 75.9 � 15

FEV1, % 81.3 � 16

FEV1/FVC 85.9 � 13

DLCO, % 53.6 � 14

DLCO/AV 39.2 � 18

6MWT ¼ 6-min walking test; DBP, diastolic BP; DLCO ¼ diffusion lung carbon m
significant; SBP ¼ systolic BP; SpO2 ¼ blood oxygen saturation level; VA ¼ alv
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were not considered because of a suboptimal tracking
score (> 2.5). Overall, the tracking score was < 2.0 for
83% of the analyzed segments. In patients with IPF, RV
GLS and RV lateral wall longitudinal strain (LWLS)
were significantly reduced. This variation was
statistically significant in all the analyzed segments
(Table 2; Fig 2).

As for left heart chambers, LV stroke volume, E/e0 ratio,
and 2STDE strain were comparable between the two
groups.

Echocardiographic and Spectral Doppler Evaluation
During Exercise in Early-Stage IPF

During physical exertion, systolic function indexes such
as TAPSE and TDI Sm wave and RV stroke volume were
comparable between the two groups. PAPs increase
t and at Peak Exertion in the Overall Study Population

Control Patients (n ¼ 50) P

59.4 � 6.3 NS

34/16 NS

. 31% vs 28%

28.3 � 2 NS

73.5 � 8.2 NS

130.3 � 6.1 NS

79.5 � 7.1 NS

92.5 � 5.1 <.001

. .

125.4 � 50 <.01

161. 4 � 11 NS

85 � 16 NS

115.3 � 26 < 0.01

89.4 � 12 <0.001

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

onoxide; HR ¼ heart rate; IPF ¼ idiopathic pulmonary fibrosis; NS ¼ not
eolar volume.
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TABLE 2 ] RV and LV Standard Echo and 2DSTE Measurements at Baseline and Peak Exertion in the Overall Study
Population

Variable IPF Control Patients P

Rest measurements

RVD1, mm 34.4 � 2.3 28 � 3.4 <.01

RVD2, mm 27.3 � 28 29 � 3.2 NS

RVD3, mm 64.4 � 4.6 69.9 � 5.5 <.05

RVOT diameter, mm 22.9 � 3.2 26 � 3.1 <.01

PAPs, mm Hg 18.6 � 8.8 15.3 � 6 <.05

PVR, WU 3.4 � 1.9 1.8 � 0.7 <.01

TAPSE, mm 20.3 � 3.3 21 � 3.1 NS

TDI RV peak systolic velocity Sm, cm/s 13.9 � 4 12.8 � 0.3 NS

RV stroke volume, mL 86.3 � 18 89.4 � 6 NS

RV lateral wall longitudinal strain 2DSTE, % -9.4 � 4.8 -17.6 � 3.3 <.001

RV GLS, % -14.5 � 4,6 -18.4 � 2.8 <.01

PW mitral peak E velocity, cm/s 62.3 � 10 68.4 � 13 NS

TDI septal E0, cm/s 10.5 � 11 11.3 � 1 3 NS

TDI lateral E0, cm/s 16.6 � 14 15.8 � 16 NS

Mitral E/E0 ratio 8.3 � 2.2 6.4 � 3.1 NS

LV stroke volume, mL 88.5 � 25 90.4 � 12 NS

LV strain 4 CH, % -19.4 � 3.2 -19.3 � 4 NS

LV strain 5 CH, % -19.3 � 3.1 -19.6 � 3.3 NS

LV strain 2 CH, % -18.2 � 3.3 -19.2 � 3.6 NS

LV GLS -18.4 � 3.3 -19.4 � 4.1 NS

Peak exertion measurements

RVD1, mm 36.6 � 3.6 30.3 � 3.1 <.01

RVD2, mm 29.1 � 3.3 31 � 3.1 NS

RVD3, mm 68.4 � 9.5 70 � 3.1 NS

RVOT diameter, mm 23.1 � 3.3 24 � 3.1 NS

PAPs, mm Hg 40.7 � 18.6 32.5 � 5 <.001

TAPSE, mm 24.3 � 5.5 25.3 � 6 NS

TDI RV peak systolic velocity Sm, cm/s 19.5 � 5.6 21.2 � 6.1 NS

RV stroke volume, mL 109.4 � 6.6 112.3 � 10.3 NS

RV lateral wall longitudinal strain 2DSTE, % -11.4 � 9.3 -22.4 � 4.2 <.0001

RV GLS, % -15.3 � 5.5 -23-9 � 4.9 <.0001

PW mitral peak E velocity, cm/s 99.1 � 12.3 90.3 � 14.3 NS

TDI septal E0, cm/s 10.8 � 12.3 18.9 � 13.1 NS

TDI lateral E0, cm/s 12.5 � 13.3 19.4 � 16 <.01

Mitral E/E0 ratio 9.2 � 2.4 8.3 � 3.1 NS

LV stroke volume, mL 110.4 � 10.1 116.3 � 13.6 NS

LV Strain 4CH, % -22.3 � 3.2 -24.3 � 5.3 NS

LV Strain 5CH, % -21.4 � 3.3 -23.6 � 4.2 NS

LV Strain 2CH, % -20.5 � 3.9 -22.4 � 4.5 NS

2DSTE ¼ 2-dimensional speckle tracking echocardiography; CH ¼ chambers; GLS ¼ global longitudinal strain; LV ¼ left ventricular; PAPs ¼ systolic
pulmonary artery pressure; PVR ¼ pulmonary vascular resistance; PW ¼ pulsed wave, RVD1 ¼ basal right ventricle diameter; RVD2 ¼ mid-cavity RVD;
RVD3 ¼ longitudinal RVD; RVOT ¼ right ventricular outflow tract; TAPSE ¼ tricuspid annular plane systolic excursion; TDI ¼ tissue Doppler imaging.
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Figure 1 – Standard echocardiography. A, Mild pulmonary artery enlargement. B, Right ventricular enlargement, with normal function by (C) tricuspid
annular plane systolic excursion and (D) tissue Doppler analysis.
(DPAPs) during exertion, calculated as the difference
between PAPs at peak exertion and PAPs at rest, was
higher in patients with IPF (Table 3).

RV Deformation (Strain) Analysis During Exercise
in Early-Stage IPF

RV GLS and RV LWLS increase (D RV GLS and D RV
LWLS, respectively) were lower compared with healthy
subjects (Table 3).

Exercise Tolerance and Vital Parameters at Peak
Exertion in Early-Stage IPF

During physical exercise, patients with IPF showed a
reduced exercise tolerance with a lower maximal
workload, level of oxygen saturation, and peak heart
rate. Systolic and diastolic BP values were similar in both
groups (Table 1).

Regression Analysis of Variables

On univariate analysis, RV LWLS at rest was directly
related to peak exertion capacity expressed in watts
(r ¼ -0.58, P < .0001), and to PAPs and blood oxygen
saturation level (SpO2) at peak exertion (r ¼ 0.55,
P < .0001; and r ¼ -0.44, P < .0001, respectively).
Moreover, during exercise, D RV LWLS was directly
302 Original Research
related to DPAPs (r ¼ - 0.51, P < .0001), to lactate
(r ¼ -0.49, P < .0001) and to DLCO (r ¼ 0.53, P < .0001).

Multivariable analyses confirmed that RV LWLS at rest
was directly related to peak exertion expressed in watt,
peak PAPs, and SpO2 (Table 4), whereas D RV LWLS
was significantly and independently associated with
DPAPs, lactate, and DLCO.

Discussion

Resting RV Function

In the present study, RV GLS and RV LWLS were
significantly reduced in IPF despite preserved RV
systolic function assessed by “conventional” echo-
Doppler indices (TAPSE and TDI Sm wave). These data
confirm a subclinical impairment of RV myocardial
function even in the early stages of IPF. Of note, a
prognostic effect of RV regional myocardial deformation
in IPF has been previously demonstrated, with an RV
LWLS # -12% as the only independent predictor of
cardiovascular events, including sudden cardiac death,
during the follow-up.40 As a result, a full cardiac work-p
of the patient affected by early-stage IPF should include
the assessment of RV function through 2DSTE to detect
[ 1 5 5 # 2 CHES T F E B R U A R Y 2 0 1 9 ]



Figure 2 – RVGLS and RVLW strain. A-C, at rest and at (B-D) peak exertion in the same patient affected by IPF, with significant RV contractile
reserve as detected by two-dimensional strain improvement. IPF, idiopathic pulmonary fibrosis; RVGLS ¼ right ventricular global longitudinal strain;
RVLW ¼ right ventricular lateral wall.
a subclinical impairment, stratify the risk, and timely
start the appropriate therapy.
RV Function During Exercise

The present study represents the first report exploring
both pulmonary pressures and RV contractile reserve
during stress tests in early-stage IPF, demonstrating RV
dysfunction during physical exertion along with
impaired exercise tolerance. The reduced functional
capacity in patients was highlighted by a lower maximal
workload, an impaired chronotropic response, and a
reduced peak SpO2 level.
TABLE 3 ] Echocardiographic Parameters Reaching Statisti
Peak Exertion in IPF Population and Healthy Con

Variable IPF

DPAPs, mm Hg 23.1 �
DPAPs, % 122.1 �
DRV lateral wall longitudinal strain 2DSTE 2.1 �
DRV lateral wall longitudinal strain 2DSTE, % 22.2 �
DRV GLS 2DSTE 1.2 �
DRV GLS 2DSTE, % 8.2 �

See Table 1 and 2 legends for expansion of abbreviations.

chestjournal.org
In particular, during physical exertion, the DPAPs from
resting state to peak exercise significantly increased in
the IPF group compared with the healthy control
patients. Such dynamic increase in pulmonary pressure
may be due to an impairment of the physiologic
vasodilatory response of pulmonary vascular bed along
with hypoxia-induced generalized pulmonary
vasoconstriction during exercise stress. In addition, DRV
GLS and DRV LWLS were both significantly reduced in
patients with IPF compared with the control group. The
lower DRV GLS and DRV LWLS in patients with
confirm the early RV myocardial involvement, with
impaired contractile reserve despite traditional indices of
c Significance: Difference Between Basal Value and
trol Patients

Control Patients P

2.2 16.9 � 3.3 <.001

12.2 109.2 � 8.3 <.0001

0.9 5.3 � 2.2 <.001

0.9 31.3 � 2.2 <.0001

0.6 5.9 � 2.4 <.00001

2.6 33.6 � 9.4 <.00001
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TABLE 4 ] Multivariate Analysis Model: Correlation
Between RV Lateral Wall Longitudinal Strain
and DRV Lateral Wall Longitudinal Strain
With Univariate Clinical Parameters

Variable HR P

RV lateral wall longitudinal strain (at
rest)

Watt (peak) -0.50 <.001

PAPs (peak) 0.98 <.001

SpO2 0.36 <.01

D RV lateral wall longitudinal strain (at
peak exercise)

DPAPs -0.48 <.001

Lactate -0.41 <.01

DLCO 0.51 <.001

See Table 1 legend for expansion of abbreviations.
RV systolic function remaining within the normal
reference ranges. This finding could be in part also due
to the dependence of the peak systolic strain from the
afterload. It is possible that PVR increases more in the
patients with IPF than in healthy control patients during
exercise, thus leading to a lower DRV GLS and DRV
LWLS.

Of note, our study has clearly underlined a direct
relationship between DPAPs and DRV LWLS in patients
with IPF. This direct correlation may further reflect the
interdependence, during physical stress, between the
increasing pressure workload represented by the “sick
pulmonary circulation” and the inability of the right
ventricle to adapt its contractile function to the
increased metabolic demand.

This uncoupling between pulmonary pressures and RV
function in IPF can lead to a self-sustaining maladaptive
process, in which the alteration of pulmonary
hemodynamic worsens RV contractile dysfunction, which
in its turn is responsible for the insufficient increase of
pulmonary blood flow, with further impairment of
pulmonary gas exchange that finally results in a reduced
tolerance to exercise. This pathologicmechanism is further
confirmed in our study by the statistically significant
correlation between RV LWLS at rest and both peak
workload and SpO2 nadir at peak exertion, and by the
associations between DRV LWLS and blood lactate, which
is considered a marker of inadequate tissue perfusion and
prolonged tissue hypoxia.

Finally, DRV LWLS also resulted significantly related to
DLCO, which is an important independent predictor of
304 Original Research
mortality within 2 years of IPF diagnosis.44 In this
perspective, an SE including the evaluation of both
pulmonary pressures and RV contractile reserve through
2DSTE could be useful during the follow-up of IPF to
identify sooner those patients who are at greater risk for
developing clinical cardiac dysfunction and therefore
require appropriate therapy.

Study Limitations

MRI and right heart catheterization represent the gold
standard for right heart function and hemodynamic
respectively. On the other hand, echo-Doppler
echocardiography has been demonstrated to be an
accurate tool in the evaluation of right heart structure,
function, and pressure.41,46 They also are noninvasive,
have no radiation burden, and are easier to perform in
nearly every clinical setting; there also are few
limitations intrinsic to right heart strain analysis.
Because there is no currently available 2DSTE-dedicated
software for RV strain analysis, we applied a software
package (EchoPAC PC, GE Healthcare) designed for the
strain analysis of the left ventricle to the right ventricle.
For global RV deformation analysis, the 2DSTE software
is not able to discriminate between LV and RV septal
components; this influences > 50% of the resulting GLS
of the right ventricle assessed in apical four-chamber
views.

Next, although the RV-focused apical four-chamber
view was believed to provide accurate assessment on RV
longitudinal deformation, it would be desirable to obtain
information about the whole deformation of RV
chamber. Circumferential RV strain was not measured
from parasternal long-axis and short-axis views because
the right ventricle in these views shows an insufficient
wall thickness.

Finally, this is a single-center study with a small sample
dimension that does not allow for definitive general
conclusions regarding the myocardial deformation index
in patients with IPF.

Conclusions
RV myocardial dysfunction is already “silently” present
at rest in early-stage IPF and it worsens during exertion,
as detected by 2DSTE. The RV altered contractile
reserve appears to be related in these patients to reduced
exertion tolerability and impaired pulmonary
hemodynamic.

Further investigation by use of resting and exercise
2DSTE are needed.
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