
Graph-Based Optimization 
Modeling Language (GBOML) 

TotalEnergies

May 19, 2022

Bardhyl Miftari
Mathias Berger
Damien Ernst



Many energy system planning and control problems can be 
formulated as mathematical programs



For example, we may want to design and operate a system 
producing synthetic fuel so as to minimise its cost 



Mathematical programs found in energy system planning 
and control applications have special structure



Notably, the underlying system is often a collection of 
subsystems whose operation must be optimized over time

Subsystems can be viewed
as different model components or
blocks



This structure can be represented via a hypergraph 
abstraction augmented with some concept of time-indexing



Sets of nodes, hyperedges and time periods define the 
hypergraph and time-indexed structure

set of nodes set of time periods

set of hyperedges



We distinguish between internal variables belonging to 
nodes and coupling variables used to link nodes

internal variables coupling variables



Each node has its own objective and constraints while 
hyperedges implement coupling constraints

coupling constraints

node objective

node constraints



Working with optimization models involves at least four 
basic steps

      Formulate
         Model

     Implement 
        Model

         Solve
         Model 

    Post-Process
        Results

Step 1 Step 2 Step 3 Step 4



We will focus on the second step: model encoding and 
implementation

      Formulate
         Model

     Implement 
        Model

         Solve
         Model 

    Post-Process
        Results

Step 1 Step 2 Step 3 Step 4



Two classes of tools are available to implement models

1.    Algebraic Modeling Languages (AMLs):

● Formulation close to mathematical notation (e.g., index-based notation)
● Very expressive (e.g., can represent any mixed-integer nonlinear program)
● Often interface with multiple solvers
● Sometimes open source
● Examples : 



Two classes of tools are available to implement models

2.    Object-Oriented Modeling Environments (OOMEs):

● Focus on one particular application (e.g., generation expansion planning) 
● Usually make use of predefined components that can be “imported”
● Typically have advanced data processing capabilities tailored to application
● Often open source
● Examples :



Each approach has drawbacks

AMLs typically fail to expose or exploit block structure, although this may be 
used to:
● simplify model encoding 
● enable model re-use 
● speed up model generation
● facilitate the use of structure-exploiting algorithms

OOMEs, for their part:

● Lack expressiveness
● Often cumbersome to add new components
● Usually rely on AMLs and inherit any shortcomings



GBOML combines the strengths of AMLs and OOMEs 

● open-source and stand-alone



GBOML combines the strengths of AMLs and OOMEs 

● open-source and stand-alone

● any mixed-integer linear program can be represented



GBOML combines the strengths of AMLs and OOMEs 

● open-source and stand-alone

● any mixed-integer linear program can be represented

● hierarchical block structure can be exposed and exploited



GBOML combines the strengths of AMLs and OOMEs 

● open-source and stand-alone

● any mixed-integer linear program can be represented

● hierarchical block structure can be exposed and exploited

● syntax is close to mathematical notation



GBOML combines the strengths of AMLs and OOMEs 

● open-source and stand-alone

● any mixed-integer linear program can be represented

● hierarchical block structure can be exposed and exploited

● syntax is close to mathematical notation

● time-indexed models can be encoded easily



GBOML combines the strengths of AMLs and OOMEs 

● open-source and stand-alone

● any mixed-integer linear program can be represented

● hierarchical block structure can be exposed and exploited

● syntax is close to mathematical notation

● time-indexed models can be encoded easily

● re-using and combining model components is straightforward



GBOML combines the strengths of AMLs and OOMEs 

● open-source and stand-alone

● any mixed-integer linear program can be represented

● hierarchical block structure can be exposed and exploited

● syntax is close to mathematical notation

● time-indexed models can be encoded easily

● re-using and combining model components is straightforward

● interfaces with various solvers are available



GBOML is a modeling language with its own parser 

● Software developed in Python:
○ Has very few dependencies (PLY, NumPy, SciPy)

○ Provides two methods to encode models (file and Python API)
○ Interfaces with several solvers (Gurobi, CPLEX, Xpress, Cbc/Clp, HiGHS and DSP)

○ Produces plain .csv or structured .json outputs

● Model structure is exploited on multiple levels:
○ Model encoding via dedicated language constructs

○ Model generation via parallelism and multiprocessing

○ Solving via structure-exploiting solvers such as DSP



GBOML takes inputs from a file or Python script and 
returns the solution in a .csv or .json file



A Jupyter notebook has been prepared to illustrate how 
GBOML can be used 



References 

[1] Mathias Berger et al., (2021). “Remote Renewable Hubs for Carbon-Neutral Synthetic Fuel 
Production”, in Frontiers in Energy Research 9, p.200. DOI 10.3389/fenrg.2021.671279. 
https://www.frontiersin.org/article/10.3389/fenrg.2021.671279  

[2] Miftari et al., (2022). GBOML: Graph-Based Optimization Modeling Language. Journal of Open 
Source Software, 7(72), 4158, https://doi.org/10.21105/joss.04158

[3] Miftari et al., (2022). GBOML repository: https://gitlab.uliege.be/smart_grids/public/gboml

[4] Freepik Icons (used on slides 10-11): https://www.flaticon.com/authors/freepik

https://www.frontiersin.org/article/10.3389/fenrg.2021.671279
https://doi.org/10.21105/joss.04158

