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This talk is based on

◮
An analogue of Cobham's theorem for fra
tals [Adam
zewski-Bell 2011℄

◮
On the sets of real numbers re
ognized by �nite automata in multiple bases

[Boigelot-Brusten-Bruyère 2010℄

◮
First-order logi
 and Numeration Systems [Charlier 2017℄

◮
An analogue of Cobham's theorem for graph-dire
ted iterated fun
tion systems

[Charlier-Leroy-Rigo 2015℄

◮
On the stru
tures of generating iterated fun
tion systems of Cantor sets

[Feng-Wang 2009℄



Part 1

Three Cobham-like theorems: links between them and

generalizations



IFS and their attra
tors

An iterated fun
tion system (IFS) is a family of 
ontra
tion maps

Φ = (φ
1

, . . . , φ
k

) of Rd

.

Theorem (Hut
hinson 1981)

There is a unique nonempty 
ompa
t subset K of Rd

with the

property K = ∪k

i=1

φ
i

(K ).

This set K is 
alled the attra
tor of the IFS Φ.

Fra
tals and self-similarity [Hut
hinson 1981℄



The Cantor set

Example

The Cantor set C is the attra
tor of the IFS (φ
1

, φ
2

) where
φ
1

: x 7→ 1

3

x and φ
2

: x 7→ 1

3

x + 2

3

.

As is the 
ase for the Cantor set, we will restri
t to IFS 
onsisting

of 
ontra
ting a�ne maps.

◮
Can C be the attra
tor of another IFS? If yes, whi
h ones?

On the stru
tures of generating iterated fun
tion systems of Cantor sets [Feng-Wang

2009℄



A Cobham theorem for IFS

A homogeneous IFS is an IFS Φ whose 
ontra
ting a�ne maps all

share the same 
ontra
tion ratio rΦ.

An IFS Φ = (φ
1

, . . . , φ
k

) satis�es the open set 
ondition (OSC) if

there exists a nonempty open set V s.t. φ
1

(V ), . . . , φ
k

(V ) are
pairwise disjoint subsets of V .

Theorem (Feng-Wang 2009)

Let Φ be a homogeneous IFS of R satisfying the OSC, let

Ψ = (r
1

x + t

1

, . . . , r
k

x + t

k

) and suppose that K is the attra
tor of

both Φ and Ψ.

◮
If dim

H

(K ) < 1 then

log |r
i

|
log |rΦ| ∈ Q for ea
h 1 ≤ i ≤ k.

◮
If dim

H

(K ) = 1, Ψ is homogeneous, and K is not a �nite

union of intervals, then

log |rΨ|
log |rΦ| ∈ Q.



A Cobham theorem for real numbers in integer bases

Theorem (Boigelot-Brusten-Bruyère 2010)

Let b, b′ ≥ 2 be integers s.t.

log b

log b

′ /∈ Q. A subset of Rd

is

simultaneously weakly b-re
ognizable and b

′
-re
ognizable i� it is

de�nable in 〈R,+,≤,Z〉.

Subsets of Rd

that are de�nable (by a �rst order formula) in the

stru
ture 〈R,+,≤,Z〉 are the �nite unions of periodi
 repetitions of

polyhedra with rational verti
es.

On the sets of real numbers re
ognized by �nite automata in multiple bases

[Boigelot-Brusten-Bruyere 2010℄



A Cobham theorem for self-similar subsets

Theorem (Adam
zewski-Bell 2011)

Let b, b′ ≥ 2 be integers s.t.

log b

log b

′ /∈ Q. A 
ompa
t subset of [0, 1]

is simultaneously b-self-similar and b

′
-self-similar i� it is a �nite

union of intervals with rational endpoints.

They 
onje
tured an equivalent result in higher dimension:

Conje
ture

Let b, b′ ≥ 2 be integers s.t.

log b

log b

′ /∈ Q. A 
ompa
t subset of

[0, 1]d is simultaneously b-self-similar and b

′
-self-similar i� it is a

�nite union of polyhedra with rational verti
es.

An analogue of Cobham's theorem for fra
tals [Adam
zewski-Bell 2011℄



The Cobham theorem

Theorem (Cobham 1969)

Let b, b′ ≥ 2 be integers s.t.

log b

log b

′ /∈ Q. A subset of N is

simultaneously b-re
ognizable and b

′
-re
ognizable i� it is a �nite

union of arithmeti
 progressions.

A subset X of N is b-re
ognizable if the set of all b-representations

val

−1

b

(X ) is a

epted by a �nite automaton, where

val

b

: {0, 1, . . . , b − 1}∗ → N, uℓ−1

· · · u
0

7→
ℓ−1

∑

i=0

u

i

b

i .

On the base-dependan
e of sets of numbers re
ognizable by �nite automata [Cobham

1969℄



Re
ognizing real numbers

In general real numbers are represented by in�nite words.

In this 
ontext, we 
onsider Bü
hi automata. An in�nite word is

a

epted when the 
orresponding path goes in�nitely many times

through an a

epting state.

We talk about ω-languages and ω-regular languages.

Example (A Bü
hi automaton)

a, b

b

b



Regular languages vs ω-regular languages

Regular and ω-regular languages share some important properties:

they both are stable under

◮

omplementation

◮
�nite union

◮
�nite interse
tion

◮
morphi
 image

◮
inverse image under a morphism.

Nevertheless, they di�er by some other aspe
ts. One of them is

determinism.



Deterministi
 Bü
hi automata

As for DFAs, we 
an de�ne deterministi
 Bü
hi automata.

But one has to be 
areful as the family of ω-languages that are
a

epted by deterministi
 Bü
hi automata is stri
tly in
luded in

that of ω-regular languages.

Example

No deterministi
 Bü
hi automaton a

epts the ω-language
a

epted by

a, b

b

b



Weak Bü
hi automata

◮
A Bü
hi automaton is weak if ea
h of its strongly 
onne
ted


omponents 
ontains either only �nal states or only non-�nal

states.

◮
Deterministi
 weak Bü
hi automata admit a 
anoni
al form.

◮
Therefore, su
h automata 
an be viewed as the analogues of

DFAs for in�nite words.



β-representation of real numbers

Let β > 1 be a real number. For a real number x , any in�nite word

u = u

k

· · · u
1

u

0

⋆ u−1

u−2

· · · over Z s.t.

valβ(u) :=
∑

−∞<i≤k

u

i

βi = x

is a β-representation of x .

In general, this is not unique.



Example (β =
1+

√
5

2

, the golden ratio)

Consider x =
∑

i≥1

β−2i

.

As we also have x =
∑

i≥3

β−i = β−1

, the words

u = 0⋆001111 · · · , v = 0⋆0101010 · · · and w = 0⋆10000 · · ·

are all β-representations of x .



β-expansions of real numbers

For x ≥ 0, among all su
h β-representations of x , we distinguish

the β-expansion

dβ(x) = x

k

· · · x
1

x

0

⋆ x−1

x−2

· · ·

whi
h is the in�nite word over Aβ = {0, . . . , ⌈β⌉ − 1} obtained by

the greedy algorithm.

Reals in [0, 1) have a β-expansion of the form 0 ⋆ u with u ∈ A

ω
β .

In parti
ular dβ(0) = 0 ⋆ 0ω.



Parry's 
riterion

◮
We let Dβ = 0

∗
dβ(R

≥0).

◮
Then we let Sβ denote the topologi
al 
losure of Dβ.

◮
Finally, d

∗
β (1) denotes the lexi
ographi
ally greatest w ∈ A

ω
β

not ending in 0

ω
s.t. valβ(0 ⋆ w) = 1.

Theorem (Parry 1960)

Let u = uℓ · · · u1u0 ⋆ u−1

u−2

· · · with u

i

∈ N for all i ≤ ℓ. Then

u ∈ Dβ ⇐⇒ ∀k ≤ ℓ, u
k

u

k−1

· · · < d

∗
β (1), and

u ∈ Sβ ⇐⇒ ∀k ≤ ℓ, u
k

u

k−1

· · · ≤ d

∗
β (1).



Example (β =
1+

√
5

2

, the Golden ratio)

We have seen that the words

u = 0 ⋆ 001111 · · · , v = 0 ⋆ 0101010 · · · , w = 0 ⋆ 1000 · · ·

are all β-representations of x =
∑

i≥1

β−2i

.

We have d

∗
β(1) = 101010 · · · .

Thanks to Parry's theorem, the β-expansions of real numbers in

[0, 1) are of the form 0 ⋆ u, where u ∈ {0, 1}ω does not 
ontain 11

as a fa
tor and not ending in (10)ω .

So w is the β-expansion of x , and both v and w belongs to Sβ.



Representing negative numbers

In order to deal with negative numbers, we let a denote the integer

−a for all a ∈ Z. Moreover we write

u v = u v , u ⋆ v = u ⋆ v and u = u.

For x < 0, the β-expansion of x is de�ned as

dβ(x) = dβ(−x).

We let Aβ = {0̄, 1̄, . . . , ⌈β⌉ − 1} and Ãβ = Aβ ∪ Aβ (with 0̄ = 0).



Multidimensional framework

Let β = 1+
√
5

2

.

Consider x = (x
1

, x
2

) = (1+
√
5

4

, 2+
√
5). We have

dβ(x) =
0 0 0 ⋆ 1 0 0 1 0 0 · · ·
1 0 1 ⋆ 0 1 0 1 0 1 · · ·

where the �rst β-expansion is padded with some leading zeroes.

With y = (x
1

, x
2

) = (1+
√
5

4

,−1

2

), we get

dβ(y) =
0 ⋆ 1 0 0 1 0 0 · · ·
0 ⋆ 0 1 0 0 1 0 · · ·



Quasi-greedy representations

◮
We let Sβ(R

d ) be the topologi
al 
losure of 0

∗
dβ(R

d ).

◮
In parti
ular, for d = 1, we have Sβ(R) = Sβ ∪ Sβ .

◮
Let valβ(u⋆v) to be the ve
tor in Rd

obtained by evaluating

ea
h 
omponent of u⋆v .

◮
For X ⊆ Rd

, we de�ne Sβ(X ) = Sβ(R
d ) ∩ val

−1

β (X ).

◮
The quasi-greedy β-representations of x ∈ Rd

are the elements

in Sβ(x).

Closed is 
losed

A subset X of Rd

is 
losed i� Sβ(X ) is 
losed.



β-re
ognizable subsets of Rd

A subset X of Rd

is β-re
ognizable if Sβ(X ) is ω-regular.

Remarks and properties

◮
Two β-re
ognizable subsets of Rd


oin
ide i� they have the

same ultimately periodi
 quasi-greedy β-representations.

◮
A β-re
ognizable subset X of Rd

is 
losed i� Sβ(X ) is
a

epted by a deterministi
 Bü
hi automaton all of whose

states are �nal.

◮
But how to understand those sets in another way than the

regularity of their β-representations itself ? How to prove that

a subset we are interested in is or is not β-re
ognizable?



Parry numbers

A Parry number is a real number β > 1 for whi
h d

∗
β(1) is

ultimately periodi
.

Remarks and properties for Parry bases β

◮
Corollary of Parry's theorem: Sβ is a

epted by a weak

deterministi
 Bü
hi automaton, and hen
e so is Sβ(R
d ).

◮
Sβ(X ) is ω-regular i� so is dβ(X ).

◮
As a 
onsequen
e, it is easy to provide examples of

β-re
ognizable sets.



Example (β =
1+

√
5

2

, the Golden ratio)

The following Bü
hi automaton a

epts the ω-language Sβ .

10

0

10

0

⋆

⋆

0

1

0

To handle negative numbers, we make the union of two su
h

automata. For d > 1, we handle the sign of ea
h 
omponents

separately: we get a union of 2

d

of su
h automata.



Weak β-re
ognizability

A subset X of Rd

is weakly β-re
ognizable if Sβ(X ) is a

epted by

a weak deterministi
 Bü
hi automaton.

About 
losed sets

A 
losed subset of Rd

is β-re
ognizable i� it is weakly

β-re
ognizable.



Ba
k to the Cobham-like theorems

Let b, b′ ≥ 2 be integers s.t.

log(b)
log(b′) /∈ Q.

Theorem (Boigelot-Brusten-Bruyère 2010)

A subset of Rd

is simultaneously weakly b-re
ognizable and

b

′
-re
ognizable i� it is de�nable in 〈R,+,≤,Z〉.

Theorem (Adam
zewski-Bell 2011)

A 
ompa
t subset of [0, 1] is simultaneously b-self-similar and

b

′
-self-similar i� it is a �nite union of 
losed intervals with rational

endpoints.



b-self-similarity

Let b ≥ 2 be an integer.

A 
ompa
t set X ⊂ [0, 1]d is b-self-similar if its b-kernel

{

(baX − t) ∩ [0, 1]d : a ∈ N, t ∈ ([0, ba) ∩ Z)d
}

is �nite.

An analogue of Cobham's theorem for fra
tals [Adam
zewski-Bell 2011℄



Example (Pas
al's triangle modulo 2 is 2-self-similar)



Example (The Menger sponge is 3-self-similar)



β-self-similarity

Instead of working in [0, 1], we work in Iβ =
[

0, ⌈β⌉−1

β−1

]

.

We also let Jβ =
[

0, ⌈β⌉−1

β−1

)

A 
ompa
t subset X of I

d

β is β-self-similar if its β-kernel

{

(βa

X − t) ∩ I

d

β : a ∈ N, t ∈ (βa

Jβ ∩ Z[β])d .
}

is �nite.



Graph-dire
ted iterated fun
tion systems (GDIFS)

A GDIFS is a 4-tuple (V ,E , (X
v

, v ∈ V ), (φ
e

, e ∈ E )) where

◮ (V ,E ) is a 
onne
ted digraph s.t. ea
h vertex has at least one

outgoing edge,

◮
for ea
h v ∈ V , X

v

is a 
omplete metri
 spa
e,

◮
for ea
h edge in E from u to v , φ

e

: X
v

→ X

u

is a 
ontra
tion

map.

Theorem

There is a unique list of non-empty 
ompa
t subsets (K
u

, u ∈ V )
s.t., for all u ∈ V , K

u

⊆ X

u

and

K

u

=
⋃

v∈V

⋃

e∈E
uv

φ
e

(K
v

).

The list (K
u

, u ∈ V ) is 
alled the attra
tor of the GDIFS.



Example (The Rauzy fra
tal is the attra
tor of a GDIFS)

T (1)

T (2) T (3)

h h

h

h + π(P(1))

h + π(P(1))



Linking Bü
hi automata, β-self-similarity and GDIFS

Theorem (C-Leroy-Rigo 2015)

If β is Pisot then, for any 
ompa
t X ⊆
[

0, ⌈β⌉−1

β−1

]

d

, the f.a.a.e:

1. There is a Bü
hi automaton A over the alphabet A

d

β s.t.

valβ(0 ⋆ L(A)) = X.

2. X belongs to the attra
tor of a GDIFS on Rd

whose


ontra
tion maps are of the form x 7→ x+t

β
with t ∈ A

d

β .

3. X is β-self-similar.

An analogue of Cobham's theorem for graph-dire
ted iterated fun
tion systems

[Charlier-Leroy-Rigo 2015℄



A Cobham-like theorem for multidimensional b-self-similar

sets

Corollary

Any b-self-similar subset of [0, 1]d is weakly b-re
ognizable.

Corollary (simultaneously obtained by Chan-Hare 2014)

Let b, b′ ≥ 2 be integers s.t.

log b

log b

′ /∈ Q. A 
ompa
t subset of

[0, 1]d is simultaneously b-self-similar and b

′
-self-similar i� it is a

�nite union of rational polyhedra.



A Cobham-like theorem for GDIFS

Corollary

Let b, b′ ≥ 2 be integers s.t.

log b

log b

′ /∈ Q.

A 
ompa
t subset of Rd

is the attra
tor of two GDIFS,

one with 
ontra
tion maps of the form x 7→ x+t

b

with t ∈ A

d

b

and

the other with 
ontra
tion maps of the form x 7→ x+t

b

′ with t ∈ A

d

b

′ ,

i� it is a �nite union of rational polyhedra.
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