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This talk is based on

> An analogue of Cobham's theorem for fractals [Adamczewski-Bell 2011]

» On the sets of real numbers recognized by finite automata in multiple bases
[Boigelot-Brusten-Bruyére 2010]

> First-order logic and Numeration Systems [Charlier 2017]

» An analogue of Cobham's theorem for graph-directed iterated function systems
[Charlier-Leroy-Rigo 2015]

> On the structures of generating iterated function systems of Cantor sets
[Feng-Wang 2009]



Part 1

Three Cobham-like theorems: links between them and
generalizations



IFS and their attractors

An iterated function system (IFS) is a family of contraction maps
® = (¢1,..., k) of RY.

Theorem (Hutchinson 1981)
There is a unique nonempty compact subset K of R? with the

property K = Uf_;6i(K).

This set K is called the attractor of the IFS &.

Fractals and self-similarity [Hutchinson 1981]



The Cantor set

Example

The Cantor set C is the attractor of the IFS (¢1, ¢2) where
d1: X — %x and ¢o: x — %x—i—%.

As is the case for the Cantor set, we will restrict to IFS consisting
of contracting affine maps.

» Can C be the attractor of another IFS? If yes, which ones?

On the structures of generating iterated function systems of Cantor sets [Feng-Wang

2009]



A Cobham theorem for IFS

A homogeneous IFS is an IFS ® whose contracting affine maps all
share the same contraction ratio re.

An IFS ® = (¢1, ..., ¢k) satisfies the open set condition (OSC) if
there exists a nonempty open set V s.t. ¢1(V),...,ox(V) are
pairwise disjoint subsets of V.

Theorem (Feng-Wang 2009)

Let & be a homogeneous IFS of R satisfying the OSC, let
V= (nx+ty,...,rnx+ tx) and suppose that K is the attractor of
both ® and V.

> If dimpy(K) < 1 then (5[l € Q for each 1 < i < k.

» Ifdimy(K) =1, V is homogeneous, and K is not a finite

: : log ||
nion of intervals, then .
union of intervals, then oo eQ




A Cobham theorem for real numbers in integer bases

Theorem (Boigelot-Brusten-Bruyére 2010)

Let b, b’ > 2 be integers s.t. I';’gg,f, ¢ Q. A subset of RY is

simultaneously weakly b-recognizable and b’-recognizable iff it is
definable in (R, +,<,7Z).

Subsets of RY that are definable (by a first order formula) in the
structure (R, +, <,Z) are the finite unions of periodic repetitions of
polyhedra with rational vertices.

On the sets of real numbers recognized by finite automata in multiple bases

[Boigelot-Brusten-Bruyere 2010]



A Cobham theorem for self-similar subsets

Theorem (Adamczewski-Bell 2011)

Let b, b’ > 2 be integers s.t. l%% ¢ Q. A compact subset of [0, 1]
is simultaneously b-self-similar and b'-self-similar iff it is a finite

union of intervals with rational endpoints.

They conjectured an equivalent result in higher dimension:

Conjecture

Let b, b’ > 2 be integers s.t. I';’gg,f/ ¢ Q. A compact subset of

[0,1]7 is simultaneously b-self-similar and b'-self-similar iff it is a
finite union of polyhedra with rational vertices.

An analogue of Cobham's theorem for fractals [Adamczewski-Bell 2011]



The Cobham theorem

Theorem (Cobham 1969)
Let b, b’ > 2 be integers s.t. l%% ¢ Q. A subset of N is
simultaneously b-recognizable and b'-recognizable iff it is a finite

union of arithmetic progressions.

A subset X of N is b-recognizable if the set of all b-representations
val,;1(X) is accepted by a finite automaton, where

{—1
valp: {0,1,...,b— 1} = N, Ug_l---uoHZu;bi.
i=0

On the base-dependance of sets of numbers recognizable by finite automata [Cobham
1969]



Recognizing real numbers

In general real numbers are represented by infinite words.

In this context, we consider Biichi automata. An infinite word is
accepted when the corresponding path goes infinitely many times
through an accepting state.

We talk about w-languages and w-regular languages.
Example (A Biichi automaton)

a,b b

Q. 8



Regular languages vs w-regular languages

Regular and w-regular languages share some important properties:
they both are stable under

» complementation
» finite union

» finite intersection
» morphic image

> inverse image under a morphism.

Nevertheless, they differ by some other aspects. One of them is
determinism.



Deterministic Blichi automata
As for DFAs, we can define deterministic Buichi automata.

But one has to be careful as the family of w-languages that are
accepted by deterministic Biichi automata is strictly included in
that of w-regular languages.

Example

No deterministic Biichi automaton accepts the w-language
accepted by

a,b b

Q. 8



Weak Biichi automata

» A Biichi automaton is weak if each of its strongly connected
components contains either only final states or only non-final
states.

» Deterministic weak Biichi automata admit a canonical form.

» Therefore, such automata can be viewed as the analogues of
DFAs for infinite words.



[-representation of real numbers

Let 8 > 1 be a real number. For a real number x, any infinite word

U= U+ UjUug*U_1U_p--- over Z s.t.
valg(u) := Z ui B' = x
—oo<i<k

is a [-representation of x.

In general, this is not unique.



Example (3 = 1**[ , the golden ratio)

Consider x = Zﬂ_zi.
i>1
As we also have x = Zﬁ_’ = 57, the words
i>3

u=0%001111---, v =0%0101010--- and

are all 3-representations of x.

w = 0%10000- - -



[-expansions of real numbers

For x > 0, among all such 3-representations of x, we distinguish
the [-expansion

which is the infinite word over Ag = {0,...,[] — 1} obtained by
the greedy algorithm.

Reals in [0,1) have a B-expansion of the form 0x u with u € Aj”.

In particular dz(0) = 0% 0%,



Parry’s criterion

> We let Dy = 0*ds(R=9).
» Then we let S5 denote the topological closure of Dg.

» Finally, d;(1) denotes the lexicographically greatest w € Ag’
not ending in 0% s.t. valg(0 % w) = 1.

Theorem (Parry 1960)

Let u=up---uug*u_qu_p--- withu; €N forall i <¥. Then

u€ Dg <= Vk <UL, ugup_y--- < dg(1), and
uecSg < Vk </, ukuk_l---gdﬁ*(l).



Example (3 = 115, the Golden ratio)

We have seen that the words

u=0%x001111---, v=0%0101010---, w=0%1000---
are all 3-representations of x = Zizl B2,
We have d(1) = 101010 -

Thanks to Parry’s theorem, the [-expansions of real numbers in
[0,1) are of the form 0  u, where v € {0,1}* does not contain 11
as a factor and not ending in (10)~.

So w is the [-expansion of x, and both v and w belongs to Ss.



Representing negative numbers

In order to deal with negative numbers, we let 3 denote the integer
—a for all a € Z. Moreover we write

v=uv, uxv=uxv andu=u.

For x < 0, the (3-expansion of x is defined as

ds(x) = o ().

We let Ay = {0,1,...,[8] — 1} and A; = Ag U Az (with 0 = 0).



Multidimensional framework

Let 8 = 14

15

LtVs o 4 V/5). We have

Consider x = (x1, x2) = (=13
0 01 0O
1 01 01

O =

0 0 0 =
B)=1 0 1 &
where the first S-expansion is padded with some leading zeroes

With y = (x1,x) = (1+4‘/§, —%) we get

[l ]
o O

01
00

O =
= O

0 «x
ds(y) = o



Quasi-greedy representations

> We let S5(IRY) be the topological closure of 0%ds(RY).
> In particular, for d = 1, we have Sg(R) = Sg US_g.

> Let valg(uskv) to be the vector in RY obtained by evaluating
each component of u¥v.

» For X C RY, we define Sp(X) = Sg(Rd) N valgl(X)-

» The quasi-greedy [-representations of x € RY are the elements

in Sg(x).

Closed is closed
A subset X of RY is closed iff Sz(X) is closed.



3-recognizable subsets of RY

A subset X of RY is 3-recognizable if Sg(X) is w-regular.

Remarks and properties

» Two f-recognizable subsets of RY coincide iff they have the
same ultimately periodic quasi-greedy (3-representations.

» A B-recognizable subset X of RY is closed iff Sg(X) is
accepted by a deterministic Biichi automaton all of whose
states are final.

» But how to understand those sets in another way than the
regularity of their S-representations itself 7 How to prove that
a subset we are interested in is or is not 3-recognizable?



Parry numbers

A Parry number is a real number 3 > 1 for which dj(1) is
ultimately periodic.

Remarks and properties for Parry bases
» Corollary of Parry’s theorem: Sg is accepted by a weak
deterministic Biichi automaton, and hence so is Sz(R9).
> Sp(X) is w-regular iff so is dg(X).
» As a consequence, it is easy to provide examples of
[-recognizable sets.



Example (5 = 1+2\/§, the Golden ratio)

The following Biichi automaton accepts the w-language Sg.

*

To handle negative numbers, we make the union of two such
automata. For d > 1, we handle the sign of each components
separately: we get a union of 2¢ of such automata.



Weak [-recognizability

A subset X of RY is weakly (3-recognizable if Sg(X) is accepted by
a weak deterministic Biichi automaton.

About closed sets
A closed subset of RY is S-recognizable iff it is weakly
[-recognizable.



Back to the Cobham-like theorems

Let b, b’ > 2 be integers s.t. I'ggg((lf/)) ¢ Q.

Theorem (Boigelot-Brusten-Bruyére 2010)

A subset of R? is simultaneously weakly b-recognizable and
b'-recognizable iff it is definable in (R, +, <,7Z).

Theorem (Adamczewski-Bell 2011)

A compact subset of [0, 1] is simultaneously b-self-similar and
b’ -self-similar iff it is a finite union of closed intervals with rational
endpoints.



b-self-similarity

Let b > 2 be an integer.

A compact set X C [0,1]9 is b-self-similar if its b-kernel
{(bax —t)n[0,1]% ae N, te ([0,b7)N Z)d}

is finite.

An analogue of Cobham’s theorem for fractals [Adamczewski-Bell 2011]



Example (Pascal’s triangle modulo 2 is 2-self-similar)
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Example (The Menger sponge is 3-self-similar)




[-self-similarity

Instead of working in [0, 1], we work in /3 = [0, (g]__ll]

We also let Jz = [0, [?__11)

A compact subset X of Iﬁd is [-self-similar if its 5-kernel

{Bx-vnidaen, e @ pnzE).}

is finite.



Graph-directed iterated function systems (GDIFS)

A GDIFS is a 4-tuple (V,E,(X,,v € V),(¢e, e € E)) where
» (V,E) is a connected digraph s.t. each vertex has at least one
outgoing edge,
» for each v € V, X, is a complete metric space,

» for each edge in E from u to v, ¢e: X, — X, is a contraction
map.

Theorem
There is a unique list of non-empty compact subsets (K,,u € V)
s.t., forallue V, K, C X, and

Ku: U U ¢e(Kv)~

veV ecEy,,

The list (Ky,u € V) is called the attractor of the GDIFS.



Example (The Rauzy fractal is the attractor of a GDIFS)
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Linking Biichi automata, (-self-similarity and GDIFS

Theorem (C-Leroy-Rigo 2015)
If 8 is Pisot then, for any compact X C [0,
1. There is a Biichi automaton A over the alphabet Aﬁd s.t.
valg(0 % L(A)) = X.
2. X belongs to the attractor of a GDIFS on RY whose
contraction maps are of the form x — "Tért with t € Aﬁd.

{gl_ll]d, the f.a.a.e:

3. X is B-self-similar.

An analogue of Cobham'’s theorem for graph-directed iterated function systems

[Charlier-Leroy-Rigo 2015]



A Cobhame-like theorem for multidimensional b-self-similar
sets

Corollary
Any b-self-similar subset of [0,1]9 is weakly b-recognizable.

Corollary (simultaneously obtained by Chan-Hare 2014)

Let b, b’ > 2 be integers s.t. II(;)gglf/ ¢ Q. A compact subset of

[0,1]9 is simultaneously b-self-similar and b -self-similar iff it is a
finite union of rational polyhedra.




A Cobham-like theorem for GDIFS

Corollary

Let b, b’ > 2 be integers s.t. I':ggé’, ¢ Q.

A compact subset of R? is the attractor of two GDIFS,

one with contraction maps of the form x —> "—Zt with t € Abd and
the other with contraction maps of the form x — Xtt with t € Ab‘,’,

b/
iff it is a finite union of rational polyhedra.
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