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Abstract

The coexistence of osteoporosis and sarcopenia has been recently considered in some groups as a

syndrome termed ‘osteosarcopenia’. Osteoporosis describes low bone mass and deterioration of the

micro-architecture of the bone, whereas sarcopenia is the loss of muscle mass, strength and function.

With an ageing population the prevalence of both conditions is likely to increase substantially over the

coming decades and is associated with significant personal and societal burden. The sequelae for an

individual suffering from both conditions together include a greater risk of falls, fractures, institutional-

ization and mortality. The aetiology of ‘osteosarcopenia’ is multifactorial with several factors linking

muscle and bone function, including genetics, age, inflammation and obesity. Several biochemical

pathways have been identified that are facilitating the development of several promising therapeutic

agents, which target both muscle and bone. In the current review we outline the epidemiology, patho-

genesis and clinical consequences of ‘osteosarcopenia’ and explore current and potential future man-

agement strategies.

Key words: bone, muscle, osteoporosis, sarcopenia, osteosarcopenia, falls, fracture, strength

Introduction

Osteoporosis and sarcopenia are both common age-

associated diseases that often coexist. Within an ageing

population the prevalence of both these conditions is

expected to rise in the future, increasing the risk of fra-

gility fractures, which are themselves associated with

significant morbidity and mortality [1]. Hence, losses in

independence seen in later life are associated with both

bone and muscle loss [2].

The economic burden of osteoporotic fragility frac-

tures is high, costing approximate £4 billion per annum

in the UK [3]. Osteoporosis is characterized by deterior-

ation in bone microarchitecture resulting in reduced

BMD, increased bone fragility and a heightened risk of

fracture even as a consequence of minor trauma [4, 5].

Unlike osteoporosis, the economic burden of sarcope-

nia is poorly characterized, although one study esti-

mated direct costs attributable to sarcopenia in the

USA, in the year 2000, to be $18.5 billion [6]. A recent

systematic review exploring the healthcare costs of sar-

copenia showed a large heterogeneity between studies
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but, globally, showed trends towards greater healthcare

costs for the sarcopenic population [7]. The etymology

of sarcopenia is from the Greek ‘sarx’ for muscle and

‘penia’ meaning ‘loss’ [8]. It is a condition characterized

by progressive, age-related loss of muscle mass and

function. Unlike osteoporosis, no single broadly

accepted clinical definition of sarcopenia has yet been

established, although all definitions recognize that meas-

uring muscle mass in isolation is inadequate, as a meas-

ure of muscle function is also required. Sarcopenia was

previously defined, in 2010, by the European Working

Group on Sarcopenia in Older People (EWGSOP) as the

presence of low muscle mass, reduced muscle strength

and physical performance [9]. This definition was

updated in 2019 (EWGSOP2) with a greater focus on

low muscle strength as the primary parameter charac-

terizing sarcopenia [10]. The new definition defines sar-

copenia as reduced hand grip strength or chair stand

test together with a reduced skeletal muscle mass

index, with severe sarcopenia defined as additional poor

physical performance, as assessed by gait speed, timed

up and go, short performance battery test and 400-

metre walk test. A further definition of sarcopenia pro-

posed by the Foundation for the National Institutes of

Health (FNIH) Sarcopenia Project similarly comprises

grip strength and the ratio of appendicular lean mass

over BMI [9]. Epidemiological studies have found an as-

sociation between sarcopenia and falls history, whether

defined by the EWGSOP [11, 12] or by using appendicu-

lar lean mass/BMI [13]. Furthermore, a study of older

community-dwelling individuals from the Hertfordshire

Cohort Study has shown that sarcopenia, as defined

using the FNIH definition, is associated with higher

prevalent fractures [14].

When osteoporosis and sarcopenia occur in consort it

has recently been suggested that they be referred to as

‘osteosarcopenia’ [7]. It should be noted that the few

studies that have considered this issue suggest the risks

of serious morbidity are notably higher when osteopor-

osis and sarcopenia coexist [15]. Furthermore, evidence

showing overlap in the pathophysiology of sarcopenia

and osteoporosis raises the possibility of common po-

tential treatments for the two conditions [16]. Indeed,

new medications are being developed that exploit the

cross-talk between bone and muscle and will be

explored in this review [17].

Prevalence of coexistence of
osteoporosis and sarcopenia

Bone mass typically reduces by �30% between the

third and seventh decades [18] and it is estimated that

one in three women and one in five men over the age of

50 years will suffer a fragility fracture [19]. In older peo-

ple, fractures occur more frequently in females, with

rates becoming approximately twice those of men over

the age of 50 years; in older individuals, the forearm, hip

and vertebrae are the sites most susceptible to fracture

[20].

Muscle fibre parameters appear relatively stable until

the end of the fourth decade of life, after which

muscle fibre loss accelerates, resulting in �30% loss

of muscle mass by 80 years of age [9]. Sarcopenia is

a common condition of ageing with a prevalence in

community-dwelling older individuals varying from be-

tween 1 and 29% in populations over the age of

50 years, based on the EWGSOP [21], and is projected

to affect >200 million individuals worldwide in the next

40 years [9].

In contrast to osteoporosis and sarcopenia consid-

ered individually, there are few data on the epidemiology

of osteosarcopenia, as the condition has only recently

been proposed. A UK study has reported that in osteo-

porotic post-menopausal females the prevalence of sar-

copenia was 50% [15], while a study by Di Monaco and

colleagues of 340 Italian Caucasian women with hip

fracture, who subsequently underwent DXA scanning,

showed that for sarcopenic woman the adjusted odds

ratio for T-score �–2.5 was 1.80 (95% CI 1.07, 3.02)

[22]. Evidence supports an increased prevalence of

osteosarcopenia with advancing age, with a Chinese

study of adults over the age of 80 years reporting rates

of 10.4% in men and 15.1% in women [23]. More re-

cently, a study of 288 older subjects in Belgian showed

that sarcopenic subjects had a 4-fold higher risk of hav-

ing coexisting osteoporosis compared with non-

sarcopenic individuals (odds ratio¼4.18; 95% CI 1.92,

9.12) [24].

Consequences of the coexistence of
osteoporosis and sarcopenia in patients

Coexistence of sarcopenia and osteoporosis has been

associated cross-sectionally with depression, malnutri-

tion, peptic ulcer disease, inflammatory arthritis and

reduced mobility [15]. Studies from Australia and

China have demonstrated that individuals with both

osteoporosis and sarcopenia are at higher risk of falls

and fractures than those with osteoporosis or sarcope-

nia alone [15, 23]. The resultant fractures, and particu-

larly hip fractures, are associated with significant

morbidity; approximately half of previously ambulatory

individuals are unable to mobilize independently post

hip fracture [25]. Furthermore, 55% of individuals

>90 years of age are unable to live independently fol-

lowing fracture [25]. Frailty is defined as a multidimen-

sional syndrome of loss of reserves (energy, physical

ability, cognition, health) that gives rise to vulnerability

in older people [26]. A number of older people are

both frail or prefrail, and also have osteoporosis and

sarcopenia; in one study the conditions were found to

coexist in 26.3% of frail men and 38.5% of frail

women (compared with 1.6% of non-frail men and

1.9% of non-frail women) [23]. In a study of Korean

hip fracture patients, where 1 year mortality overall

was remarkably low, the presence of osteosarcopenia

was associated with a 1-year mortality rate of 15.1%

Michael A. Clynes et al.

530 https://academic.oup.com/rheumatology

D
ow

nloaded from
 https://academ

ic.oup.com
/rheum

atology/article/60/2/529/6024426 by U
niversity of Liege user on 19 M

ay 2022



compared with patients with osteoporosis (5.1%) or

sarcopenia alone (10.3%) [27].

Factors associated with osteoporosis
and sarcopenia

Genetic factors

Genetic factors are important in the achievement of

peak bone mass [28, 29]. Recent data from UK Biobank

suggest that muscle strength, and therefore likely sarco-

penia, is also partially genetically regulated [30]. Vitamin

D receptor polymorphisms have been shown to be

associated with both sarcopenia and osteoporosis [31].

Alcohol

Excess alcohol intake has a detrimental effect on skel-

etal health. In addition to its direct toxic effect on osteo-

blast function, there are additional adverse effects on

gonadal function, protein metabolism, calcium metabol-

ism, physical activity and falls risk [32–34]. A meta-

analysis conducted by Kanis and colleagues showed

that drinking above 2 units of alcohol a day is associ-

ated with an increased risk of fracture [35]. There is lim-

ited evidence linking alcohol use to muscle mass,

however a study of 608 community-dwelling older men

in France has demonstrated that heavy alcohol intake

(>210 g/week) is associated with low muscle mass [36].

Cigarette smoking

Like alcohol, cigarette smoking has a deleterious effect

on both bone and muscle health. A meta-analysis by

Law and Hackshaw demonstrated worse bone health in

female smokers compared with non-smokers [37]. The

mechanism through which cigarette smoking impacts

upon BMD and fracture risk is multifactorial and likely to

include the increased likelihood of early menopause, on

average 9 months earlier, enhanced metabolism of ex-

ogenous oestrogens and reduced body weight [2]. Both

smoking and alcohol intake are well established risk fac-

tors for fracture and are therefore included in the

FRAXTM fracture risk assessment tool [38].

There is less evidence linking cigarette smoking to

loss of muscle mass, but a recent meta-analysis showed

cigarette smoking was associated with an increased risk

of developing sarcopenia [39]. The association between

cigarette smoking and sarcopenia may be as a conse-

quence of smoking being associated with low levels of

physical activity and low BMI [40, 41].

Physical activity

Physical activity levels have a profound impact on both

bone and muscle health. Studies have demonstrated

that physical activity prevents bone loss; the most ef-

fective type of exercise intervention on femoral neck

BMD appears to be non-weight bearing high force exer-

cise such as progressive resistance strength training for

the lower limbs while the most effective intervention for

spine BMD was combination exercise programmes [42].

Conversely, prolonged immobilization is associated with

reduction in BMD and increased fracture risk [43]. There

are several trials which have shown that exercise in

older people results in improved muscle mass and phys-

ical performance [44, 45].

Diet

There is evidence to suggest that a good diet is essen-

tial for the development and maintenance of good bone

and muscle health. For example, adequate calcium and

vitamin D intake has been linked to both bone and

muscle mass [46]. Weak evidence was detected to sup-

port a reduction in fracture risk when taking calcium

alone [relative risk (RR) 0.90; 95% CI 0.80, 1.00]. By

contrast, a meta-analysis conducted by Bischoff-Ferrari

and colleagues found a potentially increased risk of hip

fracture in individuals taking calcium supplementation

alone, although a relatively low number of participants

were included [47]. The analysis performed by Tang and

colleagues showed that when calcium and vitamin D

supplementation were combined, the RR of any fracture

was 0.87 (95% CI 0.77, 0.97), compared with 0.90 (95%

CI 0.80, 1.00) for calcium alone [46]. Additionally, a

meta-analysis conducted by Bolland and colleagues

demonstrated that a combination of calcium with vitamin

D supplementation reduced the risk of all fractures (RR

0.89; 95% CI 0.86, 0.99) and vertebral fractures (RR

0.86; 95% CI 0.74, 1.00), but not forearm or hip frac-

tures [48]. Overall, these data suggest that a combin-

ation of vitamin D and calcium supplementation affords

a modest reduction in fracture risk and is more effective

than calcium supplementation alone. There is less evi-

dence for the use of calcium supplementation alone in

reducing muscle mass and function decline [49, 50].

There is evidence to suggest that supplementation with

vitamin D has a small yet significant effect on increasing

muscle strength, but not muscle mass or power [51].

The effect was most pronounced in patients with base-

line vitamin D deficiency. Furthermore, experimental

studies have demonstrated both histological and elec-

trophysiological changes in muscle in severe vitamin D

deficiency [52–54]. There is some evidence to suggest

that dietary protein intake may also be important for

maintaining bone and muscle mass [55]. For example, it

has been demonstrated in participants from the

Shanghai Women’s health Study that that a high soy

consumption is associated with a lower risk of fracture

[56], and that in fasting older subjects, muscle protein

synthesis is reduced [57].

Age, sex and ethnicity

Advancing age and female sex is associated with the

development of both osteoporosis and sarcopenia. It

has been estimated that in American women over the

age of 85 years, 70% are osteoporotic at the hip, lumbar

spine or forearm and a further 27% are osteopenic,

whereas the majority of women under the age of

50 years have normal BMD [58]. Epidemiological studies

Osteosarcopenia
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have shown that in Caucasian women aged 50 years,

the remaining lifetime risk of fragility fracture is 17.5%

for hip fracture, 15.6% for vertebral fracture and 16%

for distal forearm fracture. The corresponding risk for

men is 6%, 5% and 2.5% [19]. It has been estimated

that the prevalence of sarcopenia is 5–13% for adults

aged 60–70 years and increases to 11–50% for adults

aged above 80 years [59]. North American studies have

shown that age- and sex-adjusted hip fracture rates are

generally higher in White than in Black or Asian popula-

tions [60], and higher muscle mass has been described

in Black populations [61].

Osteosarcopenic obesity

Low BMI is a risk factor for low BMD and for fragility

fracture, with individuals with a BMI <20 kg/m2 at the

greatest risk [2]. Conversely, studies have suggested

that obesity can be a protective factor against bone loss

[62–64]. Interestingly, obesity is not protective against

fracture at all skeletal sites, with an increased fracture

risk at the proximal humerus, upper leg and ankle [65,

66]. Furthermore, low-trauma fractures are equally

prevalent in obese and non-obese women [66]. The pro-

tective effect of adiposity on bone mass at some skel-

etal sites may be in part explained by the well-

documented relationship between peripheral oestrogen

levels and obesity, with most circulating oestrogens pro-

duced in fat tissue via conversion of androgens post-

menopause [62]. Obese individuals have a greater abso-

lute maximum muscle strength compared with non-

obese persons, suggesting that increased adiposity acts

as a chronic overload stimulus on muscles, so increas-

ing muscle size and strength. However, when maximum

muscular strength is normalized to body mass, obese

individuals appear weaker [67], which leads to an im-

pairment of physical function [44, 45]. With advancing

age the composition of body tissue changes with an

overall increase in body fat and decrease in muscle

mass, which often occurs despite overall body weight

remaining stable. This excess adipose tissue in combin-

ation with low muscle mass has been termed ‘sarco-

penic obesity’ and has been shown to be associated

with impaired function and increased disability [68, 69].

Pathophysiology

Muscle and bone function are closely related, with

shared mechanical and molecular mechanisms. The

mechanical interaction between muscle and bone is

described by the ‘mechanostat’ theory, which states

that muscle imposes mechanical forces on bone, and if

these exceed a set threshold the equilibrium of bone

turnover shifts away from bone resorption in favour of

bone formation [70]. It is thought that this occurs as

increases in muscle mass induce the stretching of peri-

osteum and collagen fibres, which results in the stimula-

tion of bone growth [71]. As both bone and muscle

mass are intrinsically linked to the reduction in physical

performance observed with ageing this lends credence

to the importance of mechanical loading in the mainten-

ance of the bone–muscle unit.

The molecular mechanisms linking bone to muscle

function, known as bone–muscle cross-talk, are less

well defined. Hormones identified as playing a key role

in the development of osteosarcopenia include growth

hormone/insulin-like growth factor-1 (GH/IGF1) and go-

nadal sex hormones [17]. Human muscle and bone cells

both express oestrogen receptors, hence hormone re-

placement therapy in post-menopausal women is able

to both preserved bone and muscle mass [72].

Furthermore, early menopause without treatment with

exogenous oestrogen is a strong risk factor for future

fragility fracture [73]. The pathogenesis of male age-

related osteoporosis and sarcopenia are less well char-

acterized, but it is thought that oestrogens derived from

the metabolism of androgens play a role in preserving

bone mass and that low testosterone results in reduced

protein synthesis with the subsequent loss of muscle

mass [74]. Indeed, low testosterone levels in older men

are predictive of frailty and incident falls [75, 76]. GH

and IGF1 both exert a positive influence on osteoblasts

in addition to their anabolic actions on muscle [77].

Chronic non-communicable diseases such as chronic

obstructive pulmonary disease, heart failure and malig-

nancy are associated with cachexia, which describes

the loss of body weight including lean muscle mass.

Cachexia is associated with the increased production of

pro-inflammatory cytokines (particularly IL-6, IL-1 and

TNF) and the resultant inflammatory state results in loss

of bone and muscle mass. ‘Inflammaging’ describes a

mechanism through which bone and muscle mass are

likely linked. The term inflammaging was originally

coined in the year 2000 to describe chronic, low-grade

inflammation that increases with age and is a significant

risk factor for morbidity and mortality in older people

[78]. This increase in the levels of background inflamma-

tion with age is thought to occur as a result of cumula-

tive exposure to environmental and infective antigens,

which result in the production of reactive oxygen spe-

cies. Reactive oxygen species stimulate the release of

additional cytokines from the innate and acquired im-

mune system, thus tipping the immune balance in favour

of a chronic inflammatory state [79]. Studies have linked

chronically raised inflammatory cytokines to the devel-

opment of sarcopenia, possibly through the activation of

the ubiquitin–protease pathway [2, 80] and increased

pro-inflammatory cytokines such as TNF-a, IL-1 and IL-

6, which promote bone resorption [81, 82]. Furthermore,

epidemiological studies have shown positive associa-

tions between both osteoporosis and sarcopenia and

CRP, which is a marker of active inflammation [83–89].

Factors known as myokines, released from muscle,

and osteokines, released from bone such as osteocal-

cin, are known to be one mechanism of communication

between the two tissues. A myokine called myostatin

has been extensively studied and has been shown in

mice to play an important role in the impaired
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proliferative capacity of muscle and bone progenitor

cells with ageing [90]. Furthermore, the Wnt-b–catenin

signalling pathway has been shown to mediate bone–

muscle cross-talk by controlling both osteoblastic activ-

ity and muscle regeneration [91]. Understanding the mo-

lecular pathways by which muscle and bone interact

provides potentially exciting molecular targets for the

development of therapeutics for the treatment of

osteosarcopenia.

Management of osteosarcopenia

Both osteoporosis and sarcopenia are amenable to

therapeutic interventions, although many more pharma-

ceutical agents are currently available for the treatment

of osteoporosis. Lifestyle interventions include ensuring

adequate protein intake, progressive resistance exercise

and vitamin D replacement when necessary.

Physical activity and exercise

As previously discussed, physical activity has a pro-

found effect on both bone and muscle strength.

Prolonged immobilization is a well-established risk factor

for loss of bone density [2] and a meta-analysis has

demonstrated that physical activity has a significant pro-

tective effect on BMD at the lumbar spine [42].

Furthermore, a meta-analysis of 14 prospective studies

has shown a significant inverse relationship between

increasing level of physical activity and risk of hip frac-

ture in older women [92]. Similarly, studies have shown

that lifelong physical exercise serves to preserve muscle

structure and function [93], and increases in mid-life

physical activity reduce the risk of impaired mobility in

later life [94, 95]. There is evidence to suggest that re-

sistance training is the most effective form of physical

exercise to improve muscle strength and physical per-

formance in older people [96].

Nutrition

Adequate vitamin D intake is associated with better BMD

and muscle mass and function; a linear positive associ-

ation was observed between BMD and serum 25(OH)D

level up to a level of 75 nmol/l in White US populations

[97]. Indeed, to prevent age-related deterioration in mus-

culoskeletal health, the European Society for Clinical and

Economic Aspects of Osteoporosis, Osteoarthritis and

Musculoskeletal Diseases (ESCEO) recommends a vita-

min D intake of 800 IU/daily to maintain 25(OH)D levels

>50 nmol/l in post-menopausal women [2]. Adequate

protein intake is essential, with 5–12% of older men and

20–24% of older women consuming inadequate levels

(<0.66 g/kg body weight per day) in the USA [98]. To in-

crease the anabolic response to protein in older people,

it has been suggested that a higher protein intake of 1.0–

1.2 g/kg body weight per day is taken post-exercise [99].

A recent meta-analysis to explore whether the use of nu-

tritional supplementations improves physical performance

in older people showed nutritional supplementation can

improve a number of physical performance outcomes,

particularly when they include multi-nutrients and in peo-

ple already affected by specific medical conditions, or by

frailty/sarcopenia [100].

Therapeutic targets

As pharmacotherapy for osteoporosis is well estab-

lished, the majority of medications currently used in the

management of osteosarcopenia are focussed on tar-

geting bone separately from muscle, and include

bisphosphonates, denosumab and teriparatide therapy.

As osteoporosis and sarcopenia are associated, several

new therapies are currently being developed to target

bone and muscle in tandem. For example, selective an-

drogen receptor modulators, such as andarine, have an

anabolic effect on muscle and bone, with few of the an-

drogenic side effects associated with testosterone ther-

apy [17]. Another potential therapeutic target is irisin, a

hormone-like myokine produced in abundance by skel-

etal muscle cells in response to exercise. Following its

release into the circulation, irisin acts upon white adipo-

cytes, inducing the browning response and subsequent-

ly activating non-shivering thermogenesis [101].

Promisingly, recent studies have also suggested a role

for irisin on the musculoskeletal system, with positive

effects on cortical mineral density and geometry in mice

with upregulation of the irisin precursor (FNDC5) in skel-

etal muscle fibres [102]. Myostatin is a myokine associ-

ated with impaired muscle and bone mass with ageing

and the myostatin inhibitor ‘follistatin’ has been shown

to induce significant improvement in diabetic bone re-

generation in mice [103]. As detailed previously, osteo-

sarcopenia may, at least in part, be a lipotoxic disease

and in vitro studies have demonstrated that inhibiting

fatty acid synthetase using cerulenin, which prevents

adipose cells from releasing fatty acids, rescues osteo-

blasts from fat-induced toxicity and cell death [104].

Furthermore, treatment in vivo with cerulenin has been

shown to protect osteoblasts from lipotoxicity, while res-

cuing oophorectomized mice from their osteoporotic

phenotype [105]. Other potential therapeutic targets that

are currently being explored include anti-sclerostin anti-

bodies, cathepsin K inhibitors and GH secretagogues.

Conclusion

The coexistence of osteoporosis and sarcopenia is an

increasingly recognized condition that is associated with

significant morbidity, mortality and societal cost. As the

population ages, its prevalence is set to increase dra-

matically over the coming decades, with an estimated 2

billion individuals over 60 years of age affected by the

year 2050 [9]. Identifying those individuals at risk of

developing coexisting osteoporosis and sarcopenia,

may enable clinicians to intervene and ameliorate the

consequences of osteosarcopenia.
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