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Abstract

Online speech processing imposes significant computational demands on the listening brain, the underlying mechanisms of which
remain poorly understood. Here, we exploit the perceptual “pop-out” phenomenon (i.e. the dramatic improvement of speech
intelligibility after receiving information about speech content) to investigate the neurophysiological effects of prior expectations
on degraded speech comprehension. We recorded electroencephalography (EEG) and pupillometry from 21 adults while they rated
the clarity of noise-vocoded and sine-wave synthesized sentences. Pop-out was reliably elicited following visual presentation of the
corresponding written sentence, but not following incongruent or neutral text. Pop-out was associated with improved reconstruction
of the acoustic stimulus envelope from low-frequency EEG activity, implying that improvements in perceptual clarity were mediated
via top-down signals that enhanced the quality of cortical speech representations. Spectral analysis further revealed that pop-out was
accompanied by a reduction in theta-band power, consistent with predictive coding accounts of acoustic filling-in and incremental
sentence processing. Moreover, delta-band power, alpha-band power, and pupil diameter were all increased following the provision
of any written sentence information, irrespective of content. Together, these findings reveal distinctive profiles of neurophysiological
activity that differentiate the content-specific processes associated with degraded speech comprehension from the context-specific
processes invoked under adverse listening conditions.
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Introduction
The ability to understand spoken language is a remark-
able feat of human cognition. Fluent speech recogni-
tion requires the parsing of a continuously changing
acoustic signal into a series of discrete units, and the
mapping of these units onto abstract representations
spanning multiple scales (Halle and Stevens 1962; Hickok
and Poeppel 2007). Such processing must occur quickly
enough to keep abreast of the unfolding speech stream
(Christiansen and Chater 2016), while remaining robust
to signal variation and degradation (Mattys et al. 2012;
Guediche et al. 2014). There is growing consensus that
the brain meets these demands by predicting sensory
input on the basis of prior knowledge (Kuperberg and
Jaeger 2016; Bornkessel-Schlesewsky and Schlesewsky
2019; Brodbeck and Simon 2020). However, the neuro-
computational mechanisms supporting such processes
remain poorly understood.

Prediction has long been accorded an important role
in language comprehension (e.g. Miller and Isard 1963;
Tulving and Gold 1963). Contemporary predictive coding

models of speech processing formalize this notion in
terms of (hierarchical) Bayesian inference, whereby per-
ceptual experience reflects the integration of “top-down”
prior expectations (derived, e.g. from lexical, speaker,
or world-knowledge) and “bottom-up” sensory evidence
(see Friston and Kiebel 2009; Heilbron and Chait 2018).
On this view, resolved speech content constitutes the
brain’s “best guess” about the causes of its sensory input,
given an internal model of the way sensations are gener-
ated (cf. “analysis-by-synthesis”; Halle and Stevens 1959;
Poeppel et al. 2008).

Prior knowledge plays a decisive role in word recogni-
tion. Under adverse listening conditions, speech intelli-
gibility can be improved by the provision of prior infor-
mation about lexical content (e.g. hearing the undis-
torted version of the word, or reading its written tran-
scription; Giraud et al. 2004; Dehaene-Lambertz et al.
2005). Such information typically engenders a dramatic
improvement in the subjective clarity of the degraded
utterance—a striking change in perceptual experience
referred to as “pop-out” (Davis et al. 2005).
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Predictive coding and perceptual pop-out

Consistent with the empirical predictions of predictive
coding theory, auditory cortical responses to degraded
words tend to be suppressed during the experience of
pop-out (Sohoglu et al. 2012; Sohoglu and Davis 2016; cf.
Banellis et al. 2020). Similar findings have been observed
during the restoration or “filling-in” of speech sounds
at the sublexical level (Riecke et al. 2012; Shahin et al.
2012; Leonard et al. 2016). Interestingly, auditory corti-
cal responses to degraded words depend on both the
severity of stimulus degradation and the accuracy of
prior expectations: while clearer speech evokes greater
suppression of cortical responses when expectations are
realized, neural activity is enhanced when expectations
are violated (Blank and Davis 2016; Sohoglu and Davis
2020). This coheres with the view that the discrepancy
between predicted and actual sensory inputs (prediction
error) is modulated by the quality of sensory evidence,
whereby noisier stimuli are assigned a lower degree of
confidence or precision.

Few studies have investigated the predictive mecha-
nisms of pop-out during continuous speech processing.
Consistent with the (sub)lexical studies mentioned
above, functional magnetic resonance imaging has
shown that degraded sentences elicit increased primary
auditory cortical activation relative to clear speech,
indicative of increased sensory prediction error (Tuen-
nerhoff and Noppeney 2016). The contrast between
unintelligible and intelligible speech was characterized
by the activation of higher order cortical regions that
appeared to modulate lower level sensory processing.
Electrocorticographic recordings of high-frequency
broadband activity have further revealed the rapid tun-
ing of auditory cortical ensembles during sentence pop-
out, whereby hearing the undistorted sentence renders
neuronal populations more sensitive to speech-specific
spectro-temporal auditory features of the subsequently
replayed degraded stimulus (Holdgraf et al. 2016). These
findings suggest prior exposure to clear speech induces
altered patterns of neural activity that serve to enhance
the extraction of linguistic information from noisy input.
However, this study was unable to establish whether
such cortical plasticity is driven by top-down or bottom-
up mechanisms.

More recently, “cortical tracking” techniques (Wöst-
mann, Fiedler, Obleser 2017; Beier et al. 2021) have
been used to investigate electroencephalographic (EEG)
correlates of degraded speech comprehension. Baltzell
et al. (2017) reported that the cross-correlation between
the amplitude envelopes of the acoustic stimulus and
broadband (1–50 Hz) EEG activity is increased while
listening to degraded vs. clear sentences. This effect
was amplified when degraded stimuli were rendered
intelligible by prior exposure to the undistorted version of
the utterance, implying that prior experience of sentence
content improves the alignment (or “entrainment”;
see Obleser and Kayser 2019) of neural oscillations to

the speech envelope. Di Liberto et al. (2018) further
demonstrated that sentence pop-out is associated with
enhanced phonemic encoding activity in the delta
(but not the theta) band. This effect was accompanied
by evidence of an overall reduction in phoneme-level
processing, concordant with the predictive coding view
that accurate prior expectations suppress low-level
cortical responses to sensory input.

The present study
In this study, we deployed a unique combination of ana-
lytic techniques spanning stimulus reconstruction, time–
frequency/spectral analysis, and pupillometry to bring
recent findings from the speech pop-out literature into
contact with the spectral architecture of language pro-
cessing and perceptual inference. Specifically, this mul-
timodal suite of analyses was designed to complement
previous model-based analyses of degraded speech pro-
cessing (e.g. Holdgraf et al. 2016; Di Liberto et al. 2018;
Sohoglu and Davis 2020) with mechanistic insights into
the neurophysiological activity that accompanies pop-
out. While these studies showed that prior information
led to enhanced sensory processing and more precise
neural tuning to acoustic features, our use of backward
modeling (i.e. stimulus reconstruction) allowed us to
directly quantify changes in the fidelity of auditory corti-
cal speech representations depending on the availability
of prior information (Cervantes Constantino and Simon
2018), and to map these effects to their neurophysiologi-
cal correlates.

We furthermore compared the effects of prior infor-
mation on sentence processing across two complemen-
tary forms of speech degradation. To do so, we used: (1)
noise-vocoding, which obscures spectral cues with white
noise (Shannon et al. 1995); and (2) sine-wave synthe-
sis, which obliterates fine-grained temporal structure
(Remez et al. 1981). Although vocoding is a popular tech-
nique for degrading speech stimuli, little is known about
the neurophysiological correlates of pop-out in sine-wave
speech (but see Lee and Noppeney 2011; Khoshkhoo
et al. 2018). Crucially, we trained our decoder on an
independent dataset (EEG recorded while listening to an
undistorted narrative) to test our prediction that stimu-
lus reconstruction tracks the enhanced neural represen-
tation of sensory content as opposed to specific features
of degraded speech.

Finally, our study departs from previous reports by
rigorously controlling the extent to which differences
in sensory processing and neurophysiological activity
can be ascribed to top-down mechanisms. Given the
exquisite sensitivity of auditory cortical ensembles
to spectro-temporal speech features (Holdgraf et al.
2016), exposure to clear speech might induce bottom-
up changes in cortical activity that facilitate subsequent
encoding of the degraded stimulus. The present study
avoids this potential confound by using visual informa-
tion (written text) to instill top-down expectations about
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the linguistic content of degraded stimuli (Wild et al.
2012; Sohoglu et al. 2014). We also contrasted the effects
of correct and incorrect prior information against a
baseline condition in which no written sentence informa-
tion was provided, thus enabling us to characterize the
influence of prior information on auditory and higher-
level processing independent of its lexical content,
while also disentangling the effects of “misinformed” vs.
“uninformed” expectations. In this way, we were able to
cross-modally manipulate prior knowledge and sentence
intelligibility while holding prior exposure to acoustic
stimuli constant across conditions.

We hypothesized that a multivariate decoder model
trained on EEG responses to undistorted continuous
speech would reconstruct the acoustic envelope of
degraded sentences more accurately after listeners
had been provided with correct (but not incorrect or
no) written information about sentence content. This
prediction was borne out in both the noise-vocoded and
sine-wave speech conditions. Moreover, this effect was
accompanied by a selective reduction in theta-band
activity. Our analysis also revealed general effects of
prior expectation, whereby delta-band power, alpha-
band power, and pupil diameter were all increased
while the listener evaluated whether degraded speech
corresponded to written sentence information. Together,
these results demonstrate that top-down mechanisms
shape the online integration of bottom-up sensory
information during continuous speech processing.

Materials and methods
Participants
Twenty-one native English-speaking adults were recruited
to participate in this study. Of these, 2 were excluded
due to faulty EEG recordings. The remaining sample
comprised 8 females and 11 males aged 19–33 years
(M = 25.8, SD = 4.5). All participants reported normal (or
corrected-to-normal) vision and audition.

All participants provided written, informed consent,
and were remunerated AU$30 for their time. This pro-
tocol was approved by the Monash University Human
Research Ethics Committee (Project ID: 10994).

Stimuli
A total of 80 pairs of English sentences were constructed.
These sentence pairs had similar (but not identical)
grammatical structures and lengths (11.7 words on
average, range: 8–15). Each sentence was vocoded using
Apple OS’s noise-to-speech command “say” (voice:
“Alex”; gender: male; sampling rate: 44.1 kHz; rate: 200
words/min). Each vocoded sentence was approximately
3.5 s long and was then concatenated 3 times to obtain
audio files of ∼ 10.5 s. The sounds were saved in the
audio interchange file format (AIFF) and converted to
the MPEG-1 Audio Layer III (MP3) format using the “Swiss
Army Knife of Sound” (SoX) command line utility.

We then used publicly available scripts written for
PRAAT (Boersma and Weenink 2011) to turn clear speech
into sine-wave speech (SWS) and noise-vocoded speech
(NVS). These files were saved in the waveform audio
file (WAV) format. Clear audio files were also converted
to the WAV format. In SWS, phonemes’ formants are
replaced by sinusoids at the same frequency, stripping
fine-grained temporal acoustic features from the original
clear speech and thereby making SWS speech-like but
unintelligible (Remez et al. 1981). In NVS, the envelope
of clear speech in a set of fixed logarithmically spaced
frequency bands (here, 7 bands) was used to modulate
the amplitude of band-limited white noise for each fre-
quency band. This transformation preserves the tempo-
ral cues of the original signal but erases the spectral cues
(Shannon et al. 1995). Consequently, SWS and NVS repre-
sent 2 complementary ways of degrading clear speech by
removing fine-grained temporal cues (SWS) or spectral
information (NVS; see Fig. 1A).

The amplitude of the degraded speech was equalized
across all sentences and the duration was adapted to a
fixed 10.5 s interval using the VSOLA algorithm. In addi-
tion to these sentences, in the training session, we also
played an audiobook (Cat-Skin from Grimms’ Fairy Tales,
LibriVox) to participants for a duration of 11′ 38′′. The
properties of the speech (female voice, rate, etc.) were not
modified except for the overall volume (same volume as
degraded sentences). All auditory stimuli were delivered
using the Psychtoolbox extension (v3.0.14; Brainard 1997)
for Matlab (R2018b; The MathWorks, Natick, MA, USA)
running on Linux. The stimuli were played using speakers
placed in front of the participant.

Experimental design and procedure
Participants performed the experimental task in a well-
lit room while sitting at a desk with their head stabi-
lized on a chinrest ∼50 cm from the monitor. Follow-
ing a 9-point eye-tracker calibration, participants were
instructed to actively attend to the audiobook narration
(training) while maintaining fixation on a cross at the
centre of the computer screen. They subsequently per-
formed 6 blocks of 16 experimental trials each (test trials)
for a total of 96 trials (16 trials per condition). Participants
were instructed to maintain central fixation and refrain
from excessive blinking while listening to the sentence
presentations, but were permitted to blink and saccade
outside these periods. Blocks were separated by self-
paced breaks, with a recalibration of the eye-tracker prior
to block 4. In total, the experimental procedure lasted
approximately 75 min.

Each test trial started with the presentation of one
noisy stimulus (NVS or SWS; 10.5 s long). Participants
were then asked to rate the clarity (intelligibility) of
the noisy stimulus on a 4-point scale (1 = “I did not
understand anything”; 2 = “I understood some of the
sentence”; 3 = “I understood most of the sentence”; 4
= “I clearly understood everything”). Following this first
clarity rating, participants were visually displayed either
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Fig. 1. Experimental design and behavioral results. (A) Cochlear representations (see Methods for details) of 3.5 s of clear speech (left), SWS (middle) and
NVS (right). (B) In each trial, participants listened to 2 repetitions of the same noisy speech. The 2 presentations of the stimuli were interleaved with
either (i) the corresponding written sentence (correct prior; condition P+), (ii) a different sentence (incorrect prior; condition P–), or (iii) hash symbols
(no prior; condition P0). Following each presentation of the stimulus, participants were asked to indicate the subjective clarity of the stimulus they
heard. EEG was recorded throughout the task. (C) Clarity ratings for the SWS (left, circles) and NVS (right, diamonds) stimuli. Participants were asked to
rate the stimuli after the 1st (unfilled circles and diamonds) and 2nd (filled circles and diamonds) presentations. Clarity ratings are averaged for each
stimulus type and prior condition (P+: green; P–: orange; P0: purple). Individual data-points are shown with small circles (SWS) and diamonds (NVS).
The 2 average ratings of each participant and each category are connected with a continuous line if it increases from the 1st to 2nd presentation and a
dashed line if it decreases. Large circles and diamonds show the average across the sample (n = 19 participants) and error bars show the standard error
of the mean (SEM) across participants. Stars indicate the significance levels of posthoc contrasts across condition levels (marginalized over stimulus
type; ∗∗∗: P < 0.001, ∗∗: P < 0.01, ∗: P < 0.05).
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the corresponding written sentence (P+ condition), a dif-
ferent sentence (P– condition), or 4 hash symbols in lieu
of a sentence (P0 condition), for a fixed duration of 4 s. In
all cases, the same noisy stimulus was presented a sec-
ond time and participants were asked to rate the clarity
of the stimulus using the same 4-point scale. Following
this, when a sentence was visually displayed between
the 2 presentations (P+ and P– conditions), participants
were asked to indicate whether the displayed sentence
corresponded to the noisy stimulus (Yes or No). A pause
of 1.5–2 s (random jitter) was introduced before starting
the next trial. See Fig. 1B for a schematic illustration of
the trial procedure.

Participants heard a total of 96 sentence stimuli. Sen-
tences were sampled from a pool of 80 stimulus pairs
distributed amongst 5 lists (Lists A-E, 160 stimuli). Four
lists of 16 stimulus pairs were attributed to experimental
conditions (stimulus type: SWS or NVS; prior condition:
P+, P–). For these conditions, only 1 member of each
stimulus pair was presented (e.g. 16 NVS P– stimuli from
list A, 16 NVS P+ from list B, 16 SWS P– from list C, 16
SWS P+ from list D; total: 64) and the remaining paired
stimuli were not used. This allowed us to present to
participants, in the case of the P– condition, a sentence
close to (but different from) the one heard in the trial, and
never heard or seen earlier or later on in the experiment.
For the P0 condition, as no pairing was needed since
no written sentence was shown to the participant, the
remaining list of 16 pairs was split into the SWS and
NVS conditions and formed 16 stimuli per condition (e.g.
16 NVS P0 from list E and 16 SWS P0 from list E; total:
32). Condition attribution was randomly assigned and
counterbalanced across participants following a Latin-
square design. Overall, every stimulus was novel when
presented the first time and heard exactly twice within
1 trial throughout the whole experiment and across all
conditions.

EEG acquisition and preprocessing
The EEG was continuously recorded during both the
training (audiobook) and test trials (noisy speech) from
64 Ag/AgCl EasyCap mounted active electrodes. The
recording was acquired at a sampling rate of 500 Hz using
a BrainAmp system in conjunction with BrainVision
Recorder (v1.21.0402; Brain Products GmbH, Gilching,
Germany). AFz served as the ground electrode and FCz
as the online reference.

Offline preprocessing was performed in MATLAB
R2019b (v9.7.0.1319299; The MathWorks, Natick, MA,
USA) using custom-build scripts incorporating functions
from the FieldTrip (v20200623; Oostenveld et al. 2011) and
EEGLAB (v2019.1; Delorme and Makeig 2004) toolboxes.
For the training data, the EEG was segmented in a single
epoch from 5 s before the start of the audiobook to 5 s
after its end. For test trials, EEG data were segmented
into 20 s epochs beginning 5 s before stimulus onset.
All epochs were centered around 0 prior to high- and
low-pass filtering (1 Hz and 125 Hz, respectively; 2-pass

4th-order Butterworth filters). A notch (discrete Fourier
transform) filter was also applied at 50 and 100 Hz to
mitigate line noise.

For test trials, epoch and channel data were manually
screened for excessive artifact using the ft_rejectvisual
function. A median 3 channels (range = [1, 5]) and 2
epochs (range = [0, 5]) were rejected per participant (note,
an additional 5 trials were missing for 1 participant due
to a technical error). For training data, we performed
only the channel rejection procedure. Rejected channels
were interpolated via the weighted neighbor approach
as implemented in the ft_channelrepair function (where
channel neighbors were defined by triangulation).

Channels were rereferenced to the common average
prior to independent component analysis (runica imple-
mentation in FieldTrip of the logistic infomax ICA algo-
rithm; Bell and Sejnowski 1995). ICA was performed on
the test and training data separately to ensure system-
atic differences between clear and degraded speech pro-
cessing did not impair or bias source separation. Com-
ponents were visually inspected and those identified
as ocular (median number of rejected components = 2;
range = [0, 3]), cardiac (median = 0, range = [0, 2]), or non-
physiological (median = 0, range = [0, 2]) in origin were
subtracted prior to backprojection.

Pupillometry acquisition and preprocessing
Eye-movements and pupil size on both eyes were
recorded with a Tobii Pro TX300 system (Tobii Pro) at a
sampling rate of 300 Hz. We recorded good-quality data
in only 17 participants. One participant had incomplete
data (43/96 trials). The eye-tracker was calibrated at
the start of each recording. Blinks were detected as
interruptions of the eye-tracking signal on each eye
independently (maximum duration = 5 s). For each of
these blinks, the pupil size was corrected by linearly
interpolating the median signal preceding the blink
onset ([−0.1, 0]s) and following the blink offset ([0, 0.1]s).
The corrected signal was then low-pass filtered below
6 Hz (2-pass 4th-order Butterworth filter) and the pupil
size for each eye averaged together. The continuous
averaged pupil data were then epoched according to the
presentation onset ([−1, 11]s) and both the 1st and 2nd
presentation windows were baseline corrected using the
average pupil size before the 1st presentation ([−1, 0]s).
Event-related pupil dilation responses were computed
on these epochs (see Fig. 4B).

Data analysis
Stimulus reconstruction
We used a stimulus reconstruction approach to estimate
the quality of auditory processing from the EEG. In par-
ticular, we focused on the reconstruction of the auditory
envelope of the noisy speech from EEG recordings. Our
rationale was that participants’ ability to extract relevant
cues from noisy speech should be reflected in a better
entrainment of EEG activity by the noisy speech (cf.
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Baltzell et al. 2017) and/or a better encoding of acoustic
features, both resulting in a better ability to reconstruct
the envelope of the auditory input from EEG recordings.
A similar approach was successfully applied to decode
attention when participants are exposed to clear speech
in a multitalker environment (O’Sullivan et al. 2015; Leg-
endre et al. 2019), or to reconstruct the envelope of noise-
masked speech segments (Cervantes Constantino and
Simon 2018).

We first extracted the acoustic envelope of the training
and test stimuli in the 2–8 Hz band. This band was chosen
for its correspondence with syllabic rhythms and the
robust entrainment of EEG oscillations with the speech
envelope observed in this frequency band (Giraud and
Poeppel 2012; Peelle and Davis 2012; O’Sullivan et al.
2015). To do so, we ran the 10.5 s degraded speech as well
as the training stimulus through a peripheral auditory
model using the standard spectro-temporal excitation
pattern approach (STEP; Leaver and Rauschecker 2010).
The stimuli were first resampled at 22.05 kHz and passed
through a bandpass filter simulating outer- and middle-
ear preprocessing. Cochlear frequency analysis was then
simulated by a bank of linear gammatone filters (n = 128
filters). Temporal integration was applied on each filter
output by applying half-wave rectification and a 100 Hz
low-pass 2nd-order Butterworth filter. Next, square-root
compression was applied to the smoothed signals and
the power in each frequency band was log-transformed.
Finally, the auditory envelope was computed by summing
the envelope of the 128 gammatone filters and down-
sampled to 100 Hz.

For each presentation of the (training or test) stim-
uli, we processed the EEG recordings as follows: ICA-
corrected data epochs were rereferenced to the average
of all EEG electrodes, bandpass-filtered between 2 and
8 Hz using a 2-pass finite-impulse response (FIR) filter,
and then resampled at 100 Hz. We trimmed the EEG
epochs so that the start and end corresponded to the
start and end of the stimulus presentation.

We then used the multivariate temporal response
function (mTRF) Toolbox (v2.0; Crosse et al. 2016) for
Matlab to build a linear model between auditory and EEG
signals from the training session (clear speech). By using
an independent part of the experiment compared to test
trials, and by using clear speech, we ensured that the
model was not affected by our experimental design and
represented normal speech processing. EEG data were
shifted relative to the auditory envelope from 0 to 300 ms
in steps of 10 ms (31 time lags), allowing the integration
of a broad range of EEG data to reconstruct each stimulus
time point. The linear model was optimized to map the
EEG signal from each electrode and time lag to the sound
envelope. The obtained filter (matrix of weights: sensor ×
time lags) was then used in the test trials to reconstruct
the stimuli.

In the test trials, we used the model trained on clear
speech (training set) to reconstruct the envelope of the
noisy stimuli. This was done independently for each of
the 2 presentations of the stimuli in each trial. Finally,

the reconstructed envelope was compared to the enve-
lope of the degraded stimulus played for this trial (NVS
or SWS) by computing the Pearson’s correlation coeffi-
cient between the real and reconstructed envelope of
the degraded speech. We computed this coefficient for
the 3 repetitions of the same sentence in each stimulus
presentation. This coefficient (bounded between −1 and
1) was used as an index of the quality of the stimulus
reconstruction. In our analyses, we focused on the first
presentation of the sentence within a given trial and the
first following the presentation of the correct (P+), incor-
rect (P–), or no (P0) visual sentence information (first 3.5 s
of each presentation). This decision mitigated potential
fluctuations in task engagement over the course of the
2nd presentation depending on whether the stimulus
elicited pop-out.

Time–frequency decomposition
EEG data from test trials were subjected to spectral
(time–frequency) analysis. Preprocessed datasets were
rereferenced to the average of linked mastoids. Spectral
power estimates were then computed for epochs
spanning −2 to 12 s relative to stimulus onset over a
frequency range of 1–30 Hz (1 Hz increments) using
the ft_freqanalysis function (Hanning taper length = 1 s;
100 ms increments). As in the stimulus reconstruction
analysis, time–frequency analysis was limited to the
first iteration of each sentence presentation period
(timepoints spanning [0.5, 3] s; first and last 0.5 s omitted
to avoid spurious/confounding effects pertaining to
sentence onset/offset and spectral leakage).

Channel-level spectral power estimates were averaged
across time for each trial, and averaged across trials
for each factorial combination of sentence type, prior
condition, and presentation order. Averaged power
estimates were then log10 transformed and subjected
to a nonparametric cluster-based permutation analysis
(Maris and Oostenveld 2007) as implemented in FieldTrip.
Briefly, this procedure involved computing dependent-
samples t-tests across pairwise power estimates for each
corresponding channel × frequency bin, identifying t-
values that exceed a specified alpha threshold (0.025,
2-tailed test), and clustering these samples into spatio-
spectrally contiguous sets (minimum 2 neighboring
channels located within a 40 mm radius; average 3.9
neighbors per channel). T-values within each resolved
cluster were then summed and the maximum value
assessed against a Monte Carlo simulation-based ref-
erence (null) distribution generated over 1000 random
permutations. We derived a Monte-Carlo P-value from
this comparison, which we used to determine the
significance of the identified clusters.

To test the interaction of interest, the difference
between 1st and 2nd presentation power estimates
was contrasted across pairwise combinations of prior
conditions for each sentence type. Clusters with a
Monte Carlo P-value < 0.05 were deemed indicative of
a significant difference between contrasts. Importantly,
this procedure only licenses inferences about the
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existence of a statistically significant difference between
contrasts; it does not permit the topographic or spectral
localization of such effects (see Maris and Oostenveld
2007; Maris 2012; Sassenhagen and Draschkow 2019).
This caveat notwithstanding, the frequency bounds of
the resolved clusters were used to inform the selection
of frequency band limits in the subsequent linear mixed-
effects regression analysis (see Statistical modeling section
below).

Time-resolved oscillatory activity
To examine the temporal evolution of electrophys-
iological dynamics during sentence processing, we
complemented our analysis of time-averaged changes
in spectral power with time-resolved profiles of induced
(i.e. nonphase-locked) oscillatory activity. These profiles
were derived using an intertrial variance method of
estimating event-related (de)synchronization (Kalcher
and Pfurtscheller 1995; Pfurtscheller and Lopes da Silva
1999).

ICA-corrected, mastoid-referenced EEG data were
high- and low-pass filtered (1-pass zero-phase FIR filters)
into the same frequency bands derived following the
time–frequency cluster-based permutation analysis. For
each frequency band, filtered signals were divided into
factorial combinations of stimulus type, prior condition,
and presentation order, and the evoked response sub-
tracted from each set. Waveforms were then squared,
log10 transformed, and averaged within each set. The
resulting spectral profiles were smoothed using a moving
average filter (movmean, 500 ms sliding window) and
downsampled to 10 Hz. Please note, induced responses
were not scaled according to a prestimulus reference
period, since doing so would have conflated differences
between the prior and no-prior conditions during the
visual presentation period with differences between
these conditions during the 2nd auditory presentation
period.

Spectral profiles of induced activity were compared
across conditions using a similar cluster-based permu-
tation approach to that described above (time–frequency
decomposition), with the exception that channel-wise
power estimates were clustered over the temporal (rather
than frequency) dimension. Permutation tests evaluating
the temporal evolution of induced power dynamics were
performed on the entire 2nd presentation window ([−1,
11]s). This analysis was conducted separately for SWS
and NVS sentences, in order to explore qualitative dif-
ferences in the temporal patterning of neural responses
to these 2 stimulus types. The temporal dynamics of
pupil size were examined using the same statistical
procedure in the temporal domain, but without the
spatial (electrode) dimension.

Statistical modeling
Statistical analysis of trial-level subjective clarity rat-
ings, frequency band power, and stimulus reconstruction
scores was performed in R (v4.1.1; R Core Team 2021). Our

general strategy for each analysis was to fit the appro-
priate mixed-effects model to the dependent variable of
interest from the 2nd presentation, and regress these
estimates onto the corresponding estimate from the 1st
presentation (including the 1st presentation estimate
as a covariate essentially functions as a form of base-
line correction; see Alday 2019). Trial number was also
included as a proxy for time-on-task, thereby controlling
for the effects of perceptual learning (Davis and John-
srude 2007; Eisner et al. 2010; Sohoglu and Davis 2016)
and other potential sources of nonstationarity (Benwell
et al. 2019). Additional independent variables were stim-
ulus type (SWS, NVS), prior condition (P+, P–, P0), and
the interaction between these factors, which were intro-
duced into each model in that order. Model compar-
isons (see below) were performed using the anova func-
tion to assess whether the additional complexity intro-
duced by each new fixed (and accompanying random)
effect term was merited by a sufficient improvement in
model fit. Categorical variables (stimulus type, prior con-
dition) were sum-to-zero contrast-coded (reference level
coded −1).

All mixed-effects models were fitted with by-participant
random intercepts. We attempted to fit maximal random
effects structures for all fixed effects of interest (i.e.
stimulus type, prior condition, stimulus type × prior
condition) on this intercept (Barr et al. 2013). Simpler
random effects structures were selected when the max-
imal model failed to converge, generated a singular fit,
or when random effects could be reduced in complexity
without significant impairment of model fit (Matuschek
et al. 2017). Random intercepts were also specified for
sentence items in all models; EEG electrode channel
locations were included as random intercepts in the
spectral power models only (see Liebherr et al. 2021, for
a similar approach).

Subjective clarity ratings following the 2nd presenta-
tion were modeled as ordinal data using (logit-linked)
cumulative link mixed-effects models (i.e. proportional
odds mixed-models). These models were fit via the
Laplace approximation using the clmm function from
the ordinal package (v2019.12-10; Christensen 2019) in R.
No assumptions about the distance between cut-point
thresholds were specified.

Linear mixed-effects models for spectral power (aver-
aged over time and frequency bins; first sentence itera-
tion only) and stimulus reconstruction scores (first sen-
tence iteration only) were fitted using the lmer function
from the lme4 package (v1.1-27.1; Bates et al. 2015). In
addition to the fixed effects described above (which were
again introduced in a sequential fashion to enable model
comparison), an ordered factor encoding the clarity rat-
ing on the 1st presentation was included as a covariate.
Model diagnostics were assessed with the aid of the
performance package (v0.8.0; Lüdecke et al. 2021).

The significance of main effect and interaction terms
for each winning model was assessed using likelihood-
ratio chi-square tests from Type-II analysis-of-deviance
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tables obtained via the RVAideMemoire package (v0.9-81;
Hervé 2021) for the cumulative link mixed-effects mod-
els; equivalent tables were obtained from the car package
(v3.0-12; Fox and Weisberg 2019) for the linear mixed-
effects models. Significant effects were disambiguated
using posthoc contrasts (Tukey-corrected for multiple
pairwise comparisons; Sidak-corrected for pairwise inter-
action contrasts) obtained from the emmeans package
(v1.7.1-1; Lenth 2021), which was also used to estimate
marginal mean predictions for model visualization. For
completeness, β coefficients (log odds in the case of
the cumulative link mixed-models) and standard errors
(SEs) are reported alongside corresponding analysis-of-
deviance results for significant model terms. Model pre-
dictions and individual-level estimates were visualized
with the aid of the tidyverse package (v1.3.1; Wickham
et al. 2019).

Data and code availability
De-identified raw and preprocessed data are openly
available on the Open Science Framework platform:
https://osf.io/5qxds (Corcoran et al. 2021). The code used
to produce the analyses reported in this manuscript are
archived on GitHub: https://github.com/corcorana/SWS_
NVS_code (Corcoran et al. 2022).

Results
Correct prior information evokes perceptual
pop-out
We first examined participant- and group-level average
clarity ratings to determine if our protocol was successful
in eliciting perceptual pop-out (Fig. 1C). We found that
prior condition had a significant effect on clarity ratings
following the 2nd stimulus presentation: including
prior condition within the cumulative link mixed-
effects model yielded a significant improvement in
fit (χ2(2) = 1325, P < 0.001). Allowing prior condition to
interact with stimulus type further enhanced model fit
(χ2(2) = 7.41, P = 0.025). This model revealed significant
main effects of prior condition (χ2(2) = 57.95, P < 0.001;
βP+ = 4.21, SE = 0.27; βP- = −2.03, SE = 0.13) and stimulus
type (χ2(1) = 13.71, P < 0.001; βSWS = 0.18, SE = 0.69), in
addition to the significant interaction of these factors
(βSWS:P+ = −0.29, SE = 0.10; βSWS:P– = 0.15, SE = 0.08).

To interrogate these results, we performed posthoc
contrasts comparing differences in clarity ratings
between stimulus types and prior conditions. Clarity
ratings were significantly higher following SWS stimuli
than NVS stimuli (z-ratio = 2.64, P = 0.008). Clarity was sig-
nificantly higher for P+ than both the P0 (z-ratio = 14.81,
P < 0.001) and P– (z-ratio = 16.10, P < 0.001) conditions,
consistent with the experience of perceptual pop-out.
Conversely, clarity levels did not significantly differ
between P0 and P– (z-ratio = 1.00, P = 0.575), confirming
that participants needed to be provided with the correct
sentence information for pop-out to occur. Interaction
contrasts further confirmed that the increase in clarity

ratings observed in the P+ condition was stronger for
NVS than SWS stimuli (P+ vs. P0: z-ratio = 2.51, P = 0.036;
P+ vs. P–: z-ratio = 2.56, P = 0.032), owing to the lower
average clarity of NVS stimuli in the absence of correct
prior information (see Fig. 1C).

Finally, all participants performed at or near ceiling
level when asked to determine if the visually displayed
sentence (P+ or P– condition) corresponded to the audi-
tory stimulus (mean performance: 95.8% ± 1.3 and 95.0%
± 1.4 for SWS and NVS, respectively). This indicates
that participants were almost always able to distinguish
whether correct information had been supplied, even
when the perceived clarity of the degraded sentence
remained low.

Correct prior information enhances stimulus
reconstruction
Having established the efficacy of our prior condition
manipulation, we next explored the neurophysiolog-
ical substrates of the pop-out effect by examining
participant- and group-level average reconstruction
coefficients (Fig. 2). The mixed-effects model for recon-
struction scores revealed a significant main effect
of stimulus type (χ2(1) = 23.49, P < 0.001; βSWS = 0.036,
SE = 0.007), indicating that reconstruction scores, just
as clarity ratings, were higher following SWS than NVS
stimuli. Importantly, a significant main effect was also
observed for prior condition (χ2(2) = 15.97, P < 0.001;
βP+ = 0.022, SE = 0.006; βP– = −0.009, SE = 0.006). In fact,
model comparisons indicated that models not including
the prior condition effect fitted the data significantly
worse (χ2(2) = 15.92, P < 0.001), but including interaction
terms (2-way interaction between prior condition and
stimulus type; 3-way interaction between prior condi-
tion, stimulus type, and baseline reconstruction score)
did not fit the data significantly better (all Ps > 0.10).

Again, we interrogated the main effect of prior con-
dition with posthoc pairwise comparisons. These con-
trasts revealed that reconstruction scores for the 2nd
presentation were higher in the P+ compared to P0 (t-
ratio = 3.66, P < 0.001) and P– (t-ratio = 3.22, P = 0.004) con-
ditions, respectively. Reconstruction scores did not signif-
icantly differ between P– and P0 (t-ratio = 0.44, P = 0.90).
In sum, the effect of prior condition on reconstruction
scores matched the pattern of effects found on clarity
ratings, suggesting a link between perceptual pop-out
and auditory cortical encoding.

We subsequently examined whether the stimulus
reconstruction scores could predict the clarity of stimuli
on the 2nd presentation above and beyond the prior con-
dition. To do so, we refitted the cumulative link mixed-
effects model reported above with additional terms
encoding the main-effect of reconstruction score, and its
interaction with stimulus type and prior condition. These
additional terms delivered a significant improvement in
model fit (χ2(6) = 13.27, P = 0.039). This model revealed
a significant 3-way interaction (χ2(2) = 8.43, P = 0.015;
βSWS:P+:REC = 1.51, SE = 0.59; βSWS:P-:REC = –0.24, SE = 0.47),
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Fig. 2. Correct priors improve stimulus reconstruction. (A) The envelope of noisy speech was reconstructed from EEG recordings (n = 19 participants, see
Methods) and a stimulus reconstruction score was computed for the first 3.5 s (first iteration of the sentence) of each stimulus presentation (1st: unfilled
markers; 2nd: filled markers) and for the SWS (left, circles) and NVS (right, diamonds) stimuli separately. Reconstruction scores are averaged for each
stimulus type and prior condition (P+: green; P–: orange; P0: Purple). Individual data-points are shown with small circles (SWS) and diamonds (NVS).
The 2 average ratings of each participant and each category are connected with a continuous line if it increases from the 1st to 2nd presentation and
a dashed line if it decreases. Large circles and diamonds show the average across the sample (n = 19 participants) and error bars show the SEM across
participants. Stars indicate the significance levels of posthoc contrasts across condition levels (∗∗∗: P < 0.001, ∗∗: P < 0.01, ∗: P < 0.05). (B) Correlation
between clarity ratings and reconstruction scores on the 2nd presentation for SWS (left, circles) and NVS (right, diamonds). Individual data-points are
shown with small circles (SWS) and diamonds (NVS). Large circles and diamonds show the average across the sample (n = 19 participants) and error
bars show the SEM across participants. The Pearson’s correlation coefficient computed across conditions for the SWS and NVS is shown on each graph
along with the associated P-value.

whereby higher reconstruction scores predicted greater
improvement in the subjective clarity of SWS stimuli
following the provision of correct vs. no sentence
information (z-ratio = 2.87, P = 0.012). No such differences
were found for the P+ vs. P– (z-ratio = 1.82, P = 0.191) nor
P– vs. P0 contrasts (z-ratio = 1.40, P = 0.411).

Prior information exerts frequency-specific
effects on speech processing
We next examined how the provision of correct or
incorrect prior information impacted brain responses
to degraded speech. Grand-average time-frequency
representations from the 2nd presentation period are

displayed for each prior condition in Fig. 3A. Cluster-
based permutation tests revealed significant differences
in the average power across prior conditions for each
stimulus type. Relative to the absence of written
sentence information (P0), correct sentence information
(P+) resulted in significant positive clusters (indicative
of increased mean power) spanning 12–17 Hz in the SWS
condition (P = 0.006), and 11–15 Hz in the NVS condition
(P = 0.005). Similarly, incorrect sentence information (P–)
resulted in a significant positive cluster spanning 10–
15 Hz in the SWS condition (P = 0.002). No significant
clusters were identified for the corresponding NVS
contrast. Topographies visualizing the distribution of
these clusters are presented in Fig. 3B.
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Fig. 3. Time–frequency analysis and mixed-effects modeling. (A) Time-frequency representation depicting grand-average power over the course of the
2nd sentence presentation following the provision of correct (P+), incorrect (P–), or no (P0) written sentence information (averaged across stimulus
types). Each presentation comprised 3 iterations of the same noisy stimulus (∼3.5 s each). Spectral power estimates from each frequency bin were
baseline-corrected using the mean power estimate from the corresponding frequency bin averaged over all time bins spanning the 1st presentation
period. (B) Topographic distribution of electrodes’ involvement in the clusters identified via cluster-based permutation analysis of the first sentence
iteration. Scale indicates probability of electrode inclusion (i.e. the proportion of times an electrode was included within the cluster) within the 10–15 Hz
range used to define the alpha-band. These plots indicate that significant clusters were predominantly composed of electrodes over posterior scalp
regions for P+ vs. P0 contrasts, and more broadly distributed for the SWS P– vs. P0 contrast. (C) Visualization of linear mixed-effects model predictions
for delta (1–3 Hz), theta (4–9 Hz), and alpha (10–15 Hz) power during the first sentence iteration for each prior condition (P+: green; P–: orange; P0: purple;
marginalized over stimulus type). Individual data-points are shown with small circles. Large circles show the estimated marginal means for the prior
condition across the sample (n = 19 participants); error bars show the SEM across participants. Stars indicate the significance levels of posthoc contrasts
across condition levels (∗∗∗: P < 0.001, ∗∗: P < 0.01, ∗: P < 0.05). Note, estimates have been mean-centered for the purposes of visualization.
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In order to investigate these modulations in (high)
alpha-band activity in more detail, we used linear-mixed
effects regression analysis to model trial-level power
fluctuations in the frequency band spanning 10–15 Hz.
Additional models were also specified for the delta (1–
3 Hz), theta (4–9 Hz), and beta (16–30 Hz) bands. It is worth
noting that each of these frequency bands have been
associated with speech processing in previous studies
(see Discussion). All electrode channels were included in
the random effects structure for each model. In each set
of nested model comparisons across the 4 frequency
bands, the full model (i.e. including the fixed effect
and by-participant random slope interactions between
stimulus type and prior condition) demonstrated signifi-
cantly better fits than the reduced models.

The main effect of stimulus type was significant in
the delta (χ2(1) = 5.87, P = 0.015; βSWS = −0.007, SE = 0.003)
and theta (χ2(1) = 5.53, P = 0.019; βSWS = −0.005, SE = 0.003)
models, indicating that NVS stimuli tended to elicit
higher mean power than SWS stimuli. This effect was
nonsignificant in the alpha (χ2(1) = 1.78, P = 0.182) and
beta (χ2(1) = 1.68, P = 0.194) models. The main effect of
prior condition was significant for all frequency bands
except beta (Delta: χ2(2) = 16.63, P < 0.001; βP+ = 0.005,
SE = 0.005; βP– = 0.015, SE = 0.004; Theta: χ2(2) = 15.56,
P < 0.001; βP+ = −0.023, SE = 0.006; βP– = 0.020, SE = 0.005;
Alpha: χ2(2) = 30.70, P < 0.001; βP+ = 0.010, SE = 0.007;
βP– = 0.021, SE = 0.006; Beta: χ2(2) = 0.14, P = 0.931). The
interaction between stimulus type and prior condition
was significant in the alpha model (χ2(2) = 6.21, P = 0.045;
βSWS:P+ = −0.001, SE = 0.004; βSWS:P– = 0.008, SE = 0.004),
but nonsignificant in the other frequency bands (Delta:
χ2(2) = 0.97, P = 0.617; Theta: χ2(2) = 2.88, P = 0.237; Beta:
χ2(2) = 0.26, P = 0.877).

The estimated effects of prior condition on mean
spectral power in the delta-, theta-, and alpha-bands
are visualized in Fig. 3C. Posthoc comparisons revealed
that delta power was significantly increased following
P+ compared to P0 (z-ratio = 2.37, P = 0.047), and P–
compared to P0 (z-ratio = 3.91, P < 0.001); the difference
between P+ and P– was nonsignificant (z-ratio = 1.48,
P = 0.300). Alpha-band power showed a similar pattern,
whereby power was increased following P+ compared to
P0 (z-ratio = 3.60, P < 0.001), and following P– compared
to P0 (z-ratio = 5.47, P < 0.001). Notably, the difference
between P– and P0 was more pronounced for SWS than
NVS stimuli (z-ratio = 2.49, P = 0.038). Again, there was
no significant difference in alpha power between P+
and P– (z-ratio = 0.95, P = 0.607). By contrast, the theta
model revealed a significant decrease in power following
P+ compared to P0 (z-ratio = 2.64, P = 0.022) and P– (z-
ratio = 4.27, P < 0.001); the difference between P– and P0
was nonsignificant (z-ratio = 1.94, P = 0.127).

Prior information induces increased alpha power
and pupil size during sentence processing
Finally, we focused more specifically on the effect
of prior information (P+/P– vs. P0) on participants’

neurophysiological activity, regardless of the correctness
of this information. Consistent with our analysis of time-
averaged spectral power, the time-course of induced
alpha-band activity during the 2nd presentation period
was modulated by the provision of prior information.
Cluster-based permutation analysis across all electrodes
confirmed that P+ and P– both induced significant
increases in alpha power compared to P0 during the 2nd
auditory presentation (Fig. 4A). These positive clusters
were broadly distributed over the entire scalp, with
posterior electrode sites spanning the largest number
of time bins (SWS: P+ vs. P0 = [0.8, 3.6]s, P– vs. P0 = [0.8,
3.3]s; NVS: P+ vs. P0 = [1.1, 3.7]s, P– vs. P0 = [0.9, 3.7]s). Note
that these effects were preceded by significant negative
clusters spanning the prestimulus period, most likely
reflecting alpha desynchronization in response to the
processing of visually presented sentence information
(SWS: P+ vs. P0 = [−1, 0.4]s, P– vs. P0 = [−1, 0.3]s; NVS: P+
vs. P0 = [−1, 0.6]s, P– vs. P0 = n.s.). Induced activity did not
significantly differ between P+ and P– conditions.

We complemented our analysis of alpha power
dynamics with a cluster-based permutation on pupil
dilation responses during sentence processing. Similar
to the alpha-band findings above, P+ and P– conditions
both evoked increased pupil size compared to P0 (Fig. 4B).
When examining SWS and NVS stimuli separately, we
observed a significant cluster for both P+ vs. P0 and P–
vs. P0 contrasts (SWS: [0.7, 6.4]s, [3.8, 11]s; NVS: [0.6, 11]s,
[0.6, 11]s, for P+ vs. P0 and P– vs. P0, respectively).

Discussion
This study leveraged the pop-out phenomenon to inves-
tigate the predictive mechanisms underpinning contin-
uous speech processing. Our key finding suggests that
sentence pop-out is mediated via a top-down mechanism
that enhances the quality of auditory cortical represen-
tations. This observation—which was replicated across
two markedly different kinds of acoustic degradation—
is consistent with recent electrophysiological evidence
that the encoding of degraded speech features is signifi-
cantly improved after exposure to the undistorted speech
stream (Holdgraf et al. 2016; Baltzell et al. 2017; Di Liberto
et al. 2018). Crucially, our use of cross-modal (written)
information to induce expectations about sentence con-
tent ensured these effects could not have arisen due to
prior auditory experience of the clear utterance, but were
exclusively driven by top-down information. Our design
further ensured that the quality and quantity of acous-
tic stimulation were held constant across conditions,
thereby eliminating potential confounds stemming from
stimulus novelty and repetition effects. Our data thus
provide compelling evidence in support of a predictive
coding explanation of sentence pop-out.

This study is the first to use a neural decoding
approach to explore the effects of prior information
on sentence pop-out. Combining this approach with
complementary analyses of spectral power and pupil
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Fig. 4. Expectations modulates alpha power and pupil size. Temporal dynamics of induced alpha power (A) and pupil size (B) over the course of the
2nd presentation period for each stimulus type (top: SWS; bottom: NVS) and prior condition (P+: green; P–: orange; P0: purple). Alpha power is averaged
over parieto-occipital electrodes (see black dots on the inset) and expressed as log10 units. Pupil size is averaged across the two eyes and expressed in
arbitrary units. Error shades show the SEM across participants (n = 19 participants for alpha power and n = 17 for pupil, see Methods). Horizontal bars
show the clusters of times showing significant differences (cluster-permutation, P < 0.05, see Methods) between the P+ and P0 conditions (green), and
P– and P0 conditions (orange).

diameter revealed distinctive patterns of neurophysio-
logical activity that differentiated the content-specific
processes (decrease in theta power) associated with
the experience of sentence pop-out (P+ condition) from
context-specific processes (increase in delta power, alpha
power, and pupil size) associated with the generic pro-
cessing of degraded speech following prior information
(P+ and P– conditions). Similar results were observed
regardless of whether the acoustic stimulus had been
degraded via the removal of spectral or temporal
features, speaking to the generality of these effects as
indices of auditory perceptual inference. We interpret
these findings in light of previous studies of auditory
filling-in, speech processing under adverse listening
conditions, and the spectral architecture of predictive
coding (Arnal and Giraud 2012; Bastos et al. 2012, 2020;
Fontolan et al. 2014; Sedley et al. 2016; Auksztulewicz
et al. 2017).

Sentence pop-out is accompanied by enhanced
stimulus reconstruction
In line with previous studies using written text to elicit
the pop-out of degraded words (e.g. Sohoglu et al. 2012;

Sohoglu and Davis 2016), sentence intelligibility was
markedly improved by the provision of correct prior
information (P+) only. Incongruent prior information (P–)
did not significantly affect clarity ratings compared to
the neutral prior (P0) condition (cf. Sohoglu et al. 2014).
Although NVS was rated less-clear on average than
SWS, sentence pop-out was reliably obtained across both
stimulus conditions.

This pop-out effect was accompanied by two main
electrophysiological correlates: (1) improved stimulus
reconstruction (an index of cortical speech envelope
tracking), and (2) theta-band (4–9 Hz) power suppression.
The stimulus reconstruction finding suggests that infor-
mation extracted from the written sentence promotes
the modulation of low-frequency EEG activity while
listening to the corresponding sentence, such that the
phase dynamics of the EEG signal better approximate
the temporal fluctuations of the speech envelope. This
finding is striking for at least 2 reasons: First, the partici-
pant never hears the undistorted version of the sentence
at any point in the experiment; hence, the effect is likely
mediated by top-down mechanisms rather than low-
level adaptations induced by prior sensory experience.
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Second, the decoding model used to reconstruct the
original speech envelope was trained on brain responses
to natural, continuous speech (i.e. audiobook narration).
As such, the model was never exposed to the particular
acoustic features of degraded stimuli, suggesting that
improvements in stimulus reconstruction could be
detected on the basis of generalization from cortical
responses to clear speech.

The enhancement of stimulus reconstruction quality
in the P+ condition, and the additional improvement in
goodness-of-fit brought about by the incorporation of
trial-level reconstruction scores into the clarity rating
model, support the notion that reconstruction quality is a
reliable indicator of subjective speech clarity. Given that
clarity and reconstruction scores were both improved
by correct sentence information in the absence of any
physical alteration of the auditory stimulus, our findings
suggest that top-down information contributes to the
experience of pop-out by restoring or enhancing the
spectro-temporal detail of degraded speech features (cf.
Holdgraf et al. 2016; Cervantes Constantino and Simon
2018). This observation accords with previous reports
that the quality of speech tracking covaries with speech
intelligibility (Ahissar et al. 2001; Luo and Poeppel 2007;
Gross et al. 2013; Peelle et al. 2013; Ding and Simon
2014; Doelling et al. 2014), as when vocoded speech is
rendered intelligible after hearing the clear version of
the utterance (Baltzell et al. 2017). These results also
complement findings from studies that have directly
manipulated speech tracking and intelligibility through
top-down attentional modulation (Rimmele et al. 2015)
and bottom-up transcranial stimulation (Riecke et al.
2018).

Theta-band suppression indexes sentence
comprehension
Improved sentence comprehension and stimulus recon-
struction in the P+ condition were accompanied by a rel-
ative reduction in theta-band activity. Mean theta power
was also more reduced while listening to SWS stimuli,
which tended to elicit higher clarity ratings on average
than NVS stimuli (suggesting that NVS constituted a
more acoustically (or cognitively) challenging stimulus
than SWS; see Peelle 2018). These findings are consis-
tent with previous reports linking perceptual filling-in
and speech intelligibility with the attenuation of sen-
sory cortical responses (e.g. Sohoglu et al. 2012; Sohoglu
and Davis 2016), including evidence directly implicating
theta-band suppression (e.g. Riecke et al. 2009, 2012;
Strauß, Kotz, et al. 2014). They also highlight the utility
of complementing stimulus reconstruction techniques
with spectral power analysis.

The inverse relation between theta-band power and
speech intelligibility can be explained by the involvement
of theta dynamics in the retrieval and integration of
linguistic representations during online sentence pro-
cessing (Bastiaansen et al. 2010; Halgren et al. 2015; Lam
et al. 2016; Piai et al. 2016; Cross et al. 2018). From a

predictive coding perspective, the provision of correct
prior information furnishes the listener with an accurate
prediction (hypothesis) about the auditory input they are
about to encounter. Such information activates lexical
representations in working memory, engendering top-
down messages that propagate through descending neu-
ronal pathways to sensory cortices. In this way, correct
priors may instantiate neural “templates” that facilitate
the extraction and integration of syntactic and phono-
logical structures from the acoustic stream (Hickok et al.
2011; Tuennerhoff and Noppeney 2016), thereby inhibit-
ing theta-band activity (cf. Keitel et al. 2017; Rommers
et al. 2017; Donhauser and Baillet 2020).

Delta power, alpha power, and pupil dilation as
correlates of active listening
Listening to degraded speech following the provision
of written sentence information (P+, P–) resulted in
elevated delta-band power compared to the absence of
such information (P0; Fig. 3C). Delta oscillations have
been implicated in the synthesis of higher-level linguistic
structure (Keitel et al. 2018; Meyer and Gumbert 2018;
Molinaro and Lizarazu 2018; Etard and Reichenbach
2019; Kaufeld et al. 2020), although much of this
literature concerns phase (rather than power) dynamics.
Elevated delta-band power might derive from attempts to
parse continuous speech according to the segmentation
prescribed by the written sentence (cf. Ding et al. 2016;
Bonhage et al. 2017; Meyer et al. 2017). Alternatively,
it might reflect increased phase-synchrony driven by
precise expectations about the timing of salient auditory
input (Lakatos et al. 2008; Schroeder and Lakatos 2009;
Calderone et al. 2014; Arnal et al. 2015; Kayser et al. 2015;
Boucher et al. 2019).

Increased alpha-band power and pupil dilation have
received comparatively more widespread attention in the
speech comprehension literature, most notably in associ-
ation with effortful, “active” listening under adverse con-
ditions (Zekveld et al. 2010; Wöstmann et al. 2015; Dim-
itrijevic et al. 2017, 2019). Parametric increases in alpha-
band power (e.g. Obleser and Weisz 2012; cf. Hauswald
et al. 2020) and pupil size (e.g. Winn et al. 2015; cf. Zekveld
et al. 2018) have been reported as the severity of speech
degradation intensifies, complementing recent evidence
that covariation between pupil diameter and alpha-band
activity indexes fluctuations in arousal and attentional
states (Pfeffer et al. 2022; cf. Podvalny et al. 2021; Sharon
et al. 2021). Notably, the differences we observed in these
dependent variables between the prior and no-prior con-
ditions cannot be ascribed to stimulus properties, since
the degree of acoustic degradation was held constant
across conditions. Likewise, such differences cannot be
explained by sentence (un)intelligibility (cf. Becker et al.
2013) or prior (in)congruence, given the similarity of the
responses induced by P+ and P– conditions.

Following previous work implicating alpha oscillations
in the top-down inhibition of task-irrelevant cortical net-
works (Klimesch et al. 2007; Jensen and Mazaheri 2010)
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or stimuli (Kerlin et al. 2010; Strauß, Wöstmann, Obleser
2014; Wöstmann et al. 2016; Wöstmann, Lim, Obleser
2017), the transition from alpha desynchronisation dur-
ing the presentation of written sentence information,
to a marked and widespread pattern of synchroniza-
tion following auditory stimulus onset, might reflect the
dynamic re-allocation of attentional resources from the
visual to the auditory domain (i.e. a covert attentional
switch from visual sampling during reading to auditory
sampling during active listening; cf. Foxe et al. 1998; Fu
et al. 2001; Henry et al. 2017). Note that the event-related
synchronization observed in the P+ and P– conditions
significantly exceeded corresponding power estimates in
the P0 condition (Fig. 4A), implying that speech onset
promoted a concerted synchronization of alpha-band
oscillations (rather than a mere restoration of baseline
levels of activity following the offset of visual stimuli).

An additional (but not mutually exclusive) explanation
of this effect derives from the putative role of alpha-
band synchronization in the working memory processes
responsible for mapping online auditory inputs to spe-
cific linguistic predictions (i.e. hypotheses about sen-
tence content induced by prior information; cf. Obleser
et al. 2012; Meyer et al. 2013; Sedley et al. 2016; Wilsch
and Obleser 2016). This explanation is appealing given
the close correspondence between the time-course of the
alpha-band synchronization and the first sentence itera-
tion. Given the immediacy of the pop-out effect, attempts
to match the prior with incoming acoustic information
are unlikely to persist beyond the first sentence itera-
tion—either the hypothesis instantiated by the prior is
confirmed and the sentence correctly parsed (cf. Friston
et al. 2021), or it is disconfirmed and abandoned. This
hypothetical process would seem concordant with the
temporal evolution of the induced response, which peaks
∼2 s following sentence onset, declining thereafter.

While pupil diameter also showed a marked increase
at the beginning of the auditory stimulus presentation
following written sentence information, this response
decayed at a much slower rate than that of the alpha syn-
chronization. Moreover, the profile of the pupil response
following prior information varied across stimulus types:
while pupil dilation was protracted in both the P+ and
P– conditions during NVS, this effect was curtailed for
P+ and delayed for P– during SWS. Such differences
cohere with the notion that pupil diameter and alpha-
band dynamics may tap dissociable cognitive processes
(cf. McMahon et al. 2016; Miles et al. 2017; Alhanbali et al.
2019; Podvalny et al. 2021).

Given the tight linkage between pupil size and the
neuromodulatory regulation of arousal and attention
(Joshi and Gold 2020; Dahl et al. 2022), we interpret
these results in terms of generic aspects of cognitive task
engagement (Hess and Polt 1964; Kahneman and Beatty
1966; Beatty 1982; Zekveld and Kramer 2014; Hjortkjær
et al. 2020). Increased pupil diameter in both the P+ and
P– conditions is consistent with a greater allocation of
cognitive resources to the auditory stream when prior

information is available, as compared to an absence
of prior information in the P0 condition. Participants
may have been quicker to disengage from SWS stimuli
during the P+ condition since it may have been easier
to arbitrate the congruence of the written and acoustic
stimuli given the increased clarity of SWS during the
1st auditory presentation. NVS, on the other hand, may
have presented a more challenging stimulus in general
(cf. lower average clarity ratings; Fig. 1C), thus explaining
the more consistent and protracted dilation response
observed across P+ and P– conditions.

An important caveat to the interpretation of these
results is that the low-level visual properties of written
text stimuli were not precisely matched to ensure parity
across conditions. It is thus feasible that differences
in luminance might be partially responsible for the
differential patterns of alpha-band power and pupil
size dynamics observed during the 2nd presentation
period. However, while posterior alpha-band activity
may “rebound” following the offset of visual stimuli,
such effects typically unfold over the course of ∼1 s
(see, e.g. Pfurtscheller and Lopes da Silva 1999). By
contrast, the synchronization effect observed here
persisted for 3–4 s, consistent with the duration of
the first sentence iteration. Moreover, the evoked pupil
response in the period preceding visual stimulus offset
was very similar across conditions, implying that the
average difference in luminance between P0 and P+/P–
conditions was negligible (recall that the pupil response
was baseline-corrected to the pretrial interval, which
always featured a blank screen). Finally, we note that the
interaction between stimulus type and prior condition
in the alpha power model, and the distinct patterning
of pupil responses >4 s after the onset of SWS stimuli,
are difficult to explain in terms of visual stimulus
differences. Rather, these specific response profiles are
more likely to derive from the cognitive factors outlined
above.

Conclusion
This study isolated the electrophysiological effects of
cross-modal prior information on auditory cortical sen-
tence processing, providing further evidence of the top-
down predictive mechanisms that support continuous
speech comprehension. By manipulating the content
of prior expectations while holding bottom-up auditory
input and prior stimulus exposure constant, we found
that correct expectations led to improved perceptual
clarity and enhanced stimulus reconstruction, which
could result from the enhanced cortical representation
of degraded speech. Furthermore, neurophysiological
measures revealed that these effects were accompanied
by distinctive functional profiles: while theta activity
was relatively reduced following correct sentence
information only, delta power, alpha power, and pupil
size were all increased following any written information.
These findings suggest that theta-band activity indexes

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhac094/6543487 by guest on 18 M

ay 2022



Andrew W Corcoran et al. | 15

the efficiency of incremental sentence processing and
is sensitive to speech intelligibility, whereas delta- and
alpha-band oscillations, along with pupil size, may track
more domain-general predictive mechanisms involved
in active listening.
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