

ESICUP 2022, Toledo, Spain

Leloup Emeline Paquay Célia Pironet Thierry

A mathematical formulation for a Capacitated Vehicle Routing Problem with pickups, Time Windows and 3D packing constraints

Outline

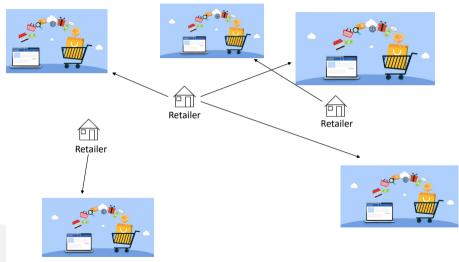
- Introduction
- Problem definition
- Mathematical formulation
- Experimental analysis
 - Instances
 - Computational results
- 5 Constructive matheuristic: Insert-and-Fix
- 6 Conclusion and future work

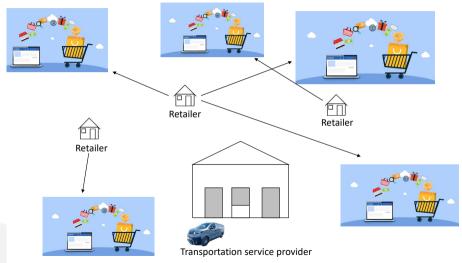
Outline

- Introduction
- 2 Problem definition
- Mathematical formulation
- Experimental analysis
 - Instances
 - Computational results
- © Constructive matheuristic: Insert-and-Fix
- 6 Conclusion and future work

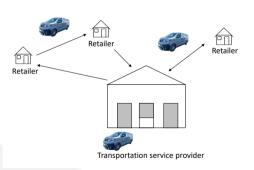
Retailer

Retailer

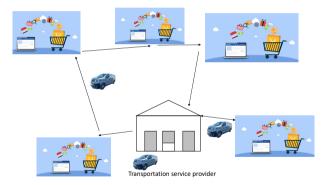




Day 1: Pickup



Day 2: Delivery



Outline

- Introduction
- 2 Problem definition
- Mathematical formulation
- Experimental analysis
 - Instances
 - Computational results
- 5 Constructive matheuristic: Insert-and-Fix
- 6 Conclusion and future work

- 8 Belgian transportation service providers:
 - unknow dimensions

- 8 Belgian transportation service providers:
 - unknow dimensions
 - rectangular boxes

- 8 Belgian transportation service providers:
 - unknow dimensions
 - rectangular boxes
 - large time windows

- 8 Belgian transportation service providers:
 - unknow dimensions
 - rectangular boxes
 - large time windows
 - split pickup

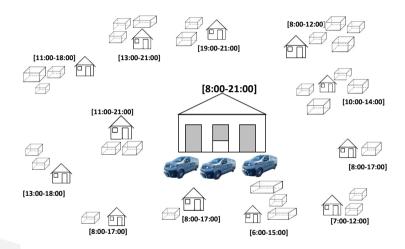
- 8 Belgian transportation service providers:
 - unknow dimensions
 - rectangular boxes
 - large time windows
 - split pickup
 - outsourcing (administrative burden)

- 8 Belgian transportation service providers:
 - unknow dimensions
 - rectangular boxes
 - large time windows
 - split pickup
 - outsourcing (administrative burden)

3L-CVRPTW with pickup operations, split pickups and possible outsourcing of some customers' requests

The problem is \mathcal{NP} -hard since it combines two \mathcal{NP} -hard problems: the Capacitated Vehicle Routing Problem and the 3D Loading Problem.

Problem definition: objective



Objective function: minimise total cost while responding to all requests

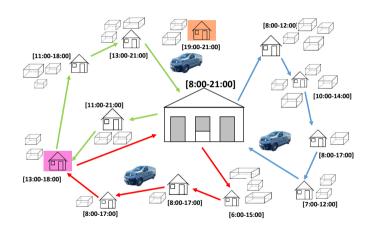
Problem definition: routing constraints

Routing constraints:

- Each route starts and ends at the depot
- Each vehicle may leave the depot at most once

Time constraints:

- Duration to complete a route does not exceed the maximum driver working duration
- Pickup operations must occur within the customer's time windows

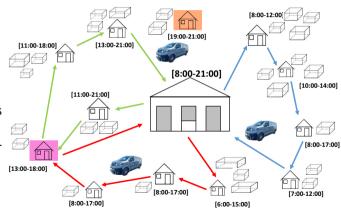


Problem definition: routing constraints

Customer satisfaction: Every customer should have his boxes transported either by a vehicle of the SP or by a subcontractor.

Split pickup is allowed

Outsourced customer \rightarrow all his boxes must be loaded by the subcontractor; penalty costs per outsourced customer



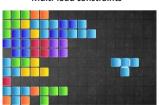
Problem definition: loading constraints (Bortfeldt and Wäscher (2013)) AT EACH CUSTOMER LOCATION

Weight capacity constraint

Geometric constraints

Horizontal 90°-rotation constraints Fragility constraints

Multi-load constraints



Stability constraints

Vertical
Horizontal/dynamic

Problem definition: stability constraints

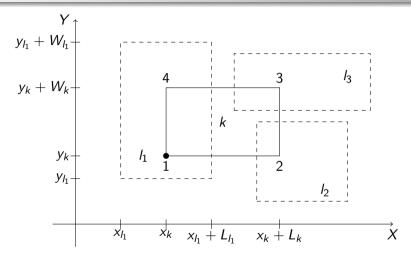


Figure: Example of four corners of a box k supported by boxes l_1 , l_2 and l_3 (dashed lines)

Problem definition: stability constraints

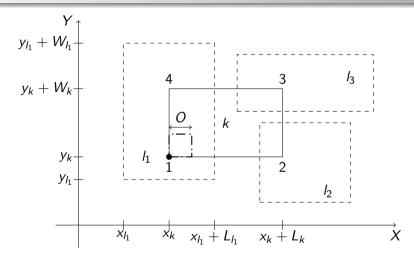


Figure: Example of four corners of a box k supported by boxes l_1 , l_2 and l_3 (dashed lines)

Problem definition: summary

Minimise the transportation and outsourcing costs subject to:

- customer satisfaction
- routing constraints
- time constraints
- loading constraints
 - weight capacity constraint
 - geometric constraints
 - vertical stability
 - horizontal 90°-rotation constraints
 - fragility constraints
 - multi-load constraints

Outline

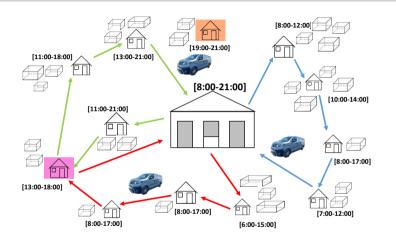
- Introduction
- 2 Problem definition
- Mathematical formulation
- Experimental analysis
 - Instances
 - Computational results
- 5 Constructive matheuristic: Insert-and-Fix
- 6 Conclusion and future work

Set of vehicles: $f \in \{1, ..., F\}$

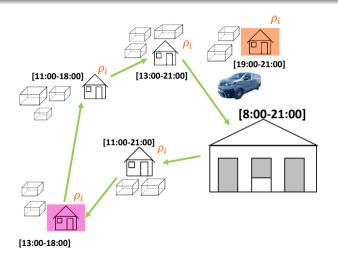
- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0

- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$

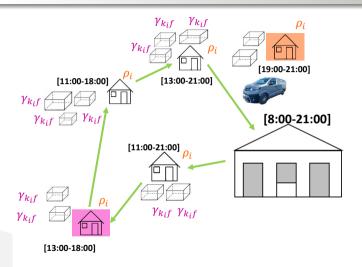
- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$
- Set of boxes per customer i: $k_i \in \{1, ..., |\mathcal{I}_i|\}$



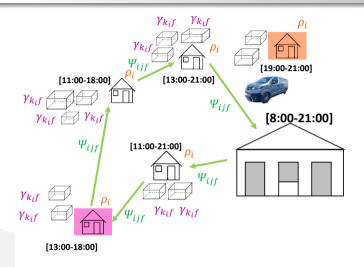
- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$
- Set of boxes per customer i: $k_i \in \{1, ..., |\mathcal{I}_i|\}$



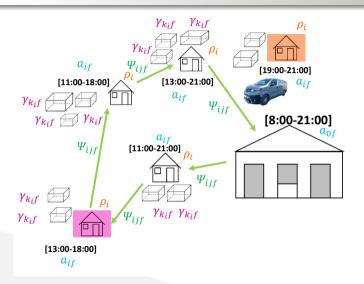
- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$
- Set of boxes per customer i: $k_i \in \{1, ..., |\mathcal{I}_i|\}$



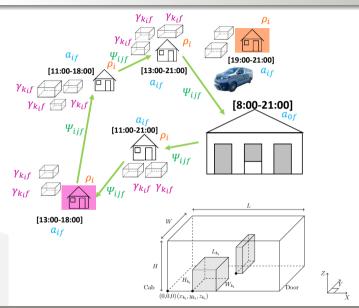
- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$
- Set of boxes per customer i: $k_i \in \{1, ..., |\mathcal{I}_i|\}$



- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$
- Set of boxes per customer i: $k_i \in \{1, ..., |\mathcal{I}_i|\}$



- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$
- Set of boxes per customer i: $k_i \in \{1, ..., |\mathcal{I}_i|\}$



- Set of vehicles: $f \in \{1, ..., F\}$
- Depot: i = 0
- Set of customers: $i \in \{1, ..., N\}$
- Set of boxes per customer i: $k_i \in \{1, ..., |\mathcal{I}_i|\}$

Mathematical formulation: Constraints I

Objective function: minimise the transportation and outsourcing costs of the service provider

<u>Customer satisfaction:</u> \forall customer i and box k_i of customer i

$$\min \sum_{f=1}^{F} \sum_{i=0}^{N} \sum_{\substack{j=0\\j\neq i}}^{N} C_{ij} \Psi_{ijf} + \sum_{\substack{i=1\\\text{outsourcing costs}}}^{N} P_{i} \rho_{i}$$

$$\sum_{f=1}^F \gamma_{k_if} = 1 - \rho_i$$

Mathematical formulation: Constraints II

Routing constraints:

$$\sum_{\substack{i=0\\i\neq j}}^{N} \Psi_{ijf} = \sum_{\substack{I=0\\l\neq j}}^{N} \Psi_{jlf} \qquad \forall f \in \{1,...,F\}, j \in \mathcal{V} \qquad \text{flow conservation}$$

$$\sum_{j=1}^{N} \Psi_{0jf} \leq 1 \qquad \forall f \in \{1,...,F\} \qquad \text{no multi-trip}$$

$$\sum_{j=0}^{N} \Psi_{ijf} \geq \gamma_{k_if} \qquad \forall f \in \{1,...,F\}, i \in \mathcal{V} \setminus \{0\}, k_i = 1,..., |\mathcal{I}_i| \qquad \text{visit if loaded}$$

Mathematical formulation: Constraints III

Time constraints (I): Pickup operations must occur within the customer's time-windows

$$A_i \leq a_{if} \qquad \forall f \in \{1,...,F\}, i \in \mathcal{V} \qquad \text{earliest arrival}$$

$$a_i + \sum_{\substack{j=0\\j \neq i}}^N S_i \Psi_{ijf} \leq A_i + (B_i - A_i) \sum_{\substack{j=0\\j \neq i}}^N \Psi_{ijf} \qquad \forall f \in \{1,...,F\}, i \in \mathcal{V} \qquad \text{latest arrival}$$

$$\forall f \in \{1,...,F\}, i \in \mathcal{V} \setminus \{0\} \qquad \text{return depot}$$

Mathematical formulation: Constraints IV

Time constraints (II):

$$a_{if} + \sum_{\substack{j=0 \\ j \neq i}}^{N} S_i \Psi_{ijf} + T_{i0} - a_{0f} \leq \Delta + (B_0 - A_0)(1 - \sum_{\substack{j=0 \\ j \neq i}}^{N} \Psi_{ijf}) \qquad \forall f \in \{1, ..., F\}, i \in \mathcal{V} \setminus \{0\}$$

$$\mathbf{a}_{if} + S_i \Psi_{ijf} + T_{ij} - \mathbf{a}_{jf} \leq \mathbf{M'} (1 - \Psi_{ijf})$$

$$\mathbf{a}_{0f} + T_{0j} - \mathbf{a}_{jf} \leq \mathbf{M'}(1 - \Psi_{0jf}) \qquad \forall f \in \{1, ..., F\}, j \in \mathcal{V} \setminus \{0\}$$

maximum working duration
$$\forall f \in \{1,...,F\}, i,j \in \mathcal{V} \setminus \{0\}, i \neq i$$

$$i \neq j$$

 $\forall f \in \{1, ..., F\}, j \in \mathcal{V} \setminus \{0\}$
sequencing

Leloup E., Paguay C., Pironet Th.

Mathematical formulation: Constraints V

Weight capacity constraint:

$$\sum_{i=1}^{N} \sum_{k_i=1}^{|\mathcal{I}_i|} M_{k_i} \gamma_{k_i f} \leq M \quad \forall f \in \{1, ..., F\}$$

- Geometric constraints
- Vertical stability
- Horizontal 90°-rotation constraints
- Fragility constraints
- Multi-load constraints

Outline

- Introduction
- 2 Problem definition
- Mathematical formulation
- Experimental analysis
 - Instances
 - Computational results
- 5 Constructive matheuristic: Insert-and-Fix
- 6 Conclusion and future work

• Combined the benchmark instances from Solomon (1987) and Bortfeldt and Yi (2020)

- Combined the benchmark instances from Solomon (1987) and Bortfeldt and Yi (2020)
- Generated 10 instances for 5, 10, 15, 20 customers respectively for small and large time windows

- Combined the benchmark instances from Solomon (1987) and Bortfeldt and Yi (2020)
- Generated 10 instances for 5, 10, 15, 20 customers respectively for small and large time windows
- On average 2 boxes per customer

- Combined the benchmark instances from Solomon (1987) and Bortfeldt and Yi (2020)
- Generated 10 instances for 5, 10, 15, 20 customers respectively for small and large time windows
- On average 2 boxes per customer
- On average 11%-12% of fragile boxes

- Combined the benchmark instances from Solomon (1987) and Bortfeldt and Yi (2020)
- Generated 10 instances for 5, 10, 15, 20 customers respectively for small and large time windows
- On average 2 boxes per customer
- On average 11%-12% of fragile boxes
- 3 vehicles, weight capacity 1200kg

Computational results I

The linear formulation is implemented in Java using IBM ILOG CPLEX 12.10 library as Branch-and-Bound (B&B) solver. Tests were performed on a workstation with a computation time limit of **one hour** for every instance run.

			Number of customers (N)				
			5	10	15	20	
	Instances sol	ved at optimality [%]	100.00	90.00	30.00	0.00	
Small TW	Time [sec.]	Mean (sd.)	0.19 (0.07)	392.05 (1140.90)	533.72 (328.34)	/	
	GAP [%]	Mean (sd.)	/	84.94 (0.00)	84.06 (15.75)	96.75 (2.19)	
	Instances sol	ved at optimality [%]	100.00	90.00	10.00	0.00	
Large TW	Time [sec.]	Mean (sd.)	1.41 (2.51)	685.48 (1099.04)	3461.55 (0.00)	/	
	GAP [%]	Mean (sd.)	/	6.47 (0.00)	94.26 (4.55)	97.81 (0.84)	

Table: Evolution of the computational time and percentage of instances solved at optimality (F = 3)

Leloup E., Paguay C., Pironet Th.

Computational results II

Objective function: minimise the transportation and outsourcing costs of the service provider

$$\min \sum_{f=1}^{F} \sum_{i=0}^{N} \sum_{\substack{j=0 \ j \neq i}}^{N} C_{ij} \Psi_{ijf} + \sum_{\substack{i=1 \ \text{outsourcing costs}}}^{N} P_{i} \rho_{i}$$

				Number of customers (N)			
		5	10	15	20		
	Instances solved at optimality [%]	100.00	90.00	30.00	0.00		
Small TW	Final solution outsourcing all customers [%]	0.00	0.00	10.00	80.00		
	Instances solved at optimality [%]	100.00	90.00	10.00	0.00		
Large TW	Final solution outsourcing all customers [%]	0.00	0.00	30.00	80.00		

Table: Evolution of the percentage of outsourcing (F = 3)

Outline

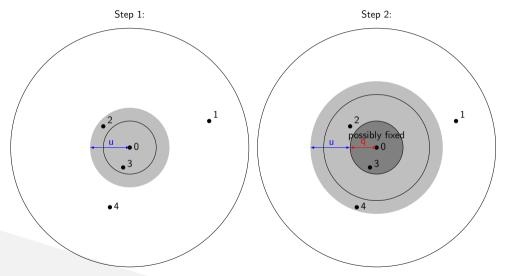
- Introduction
- 2 Problem definition
- Mathematical formulation
- Experimental analysis
 - Instances
 - Computational results
- 5 Constructive matheuristic: Insert-and-Fix
- 6 Conclusion and future work

Constructive matheuristic: Insert-and-Fix I

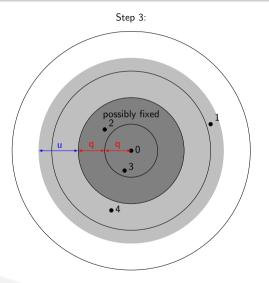
Insert-and-Fix

- decompose the problem into smaller subproblems
- sequential routing and packing
- adaptative to some disruptions

Constructive matheuristic: Insert-and-Fix II



Constructive matheuristic: Insert-and-Fix III



Constructive matheuristic: sorting methods and decision policies

Sorting methods: are related to the way customers are added

Sorting method	Distance	Distance	A_i	Distance depot
Sorting method	A_i	Polar angle	Polar angle	Distance customers

Table: Some possible sorting methods

Decision policy: is related to the decision policy used to fix variables

Decision policy	$\gamma_{oldsymbol{k_if}}=1$	$\rho_i = 0$	$\gamma_{k_if}=1$	Ψ_{jif} s.t.
	$(x_{k_i},y_{k_i},z_{k_i})$			$\rho_i = 0$

Table: Some possible decision policies

Outline

- Introduction
- 2 Problem definition
- Mathematical formulation
- Experimental analysis
 - Instances
 - Computational results
- 5 Constructive matheuristic: Insert-and-Fix
- 6 Conclusion and future work

Conclusion and future work

- Complete mathematical formulation
- Computational limitations

Perspectives:

- Constructive matheuristic: Insert-and-Fix
- Use the solution from the I&F as initial solution in CPLEX or in an improvement heuristic
- Disruptions occurring during the day

ESICUP 2022, Toledo, Spain

Leloup Emeline Paquay Célia Pironet Thierry

A mathematical formulation for a Capacitated Vehicle Routing Problem with pickups, Time Windows and 3D packing constraints

References I

- Bortfeldt, A., & Wäscher, G. (2013). Constraints in container loading—a state-of-the-art review. European Journal of Operational Research, 229(1), 1–20.
- Bortfeldt, A., & Yi, J. (2020). The split delivery vehicle routing problem with three-dimensional loading constraints. European Journal of Operational Research, 282(2), 545–558.
- Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations research, 35(2), 254–265.

