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Abstract

Hybrid modelling reduces the misspecification
of expert models by combining them with ma-
chine learning (ML) components learned from
data. Like for many ML algorithms, hybrid model
performance guarantees are limited to the training
distribution. Leveraging the insight that the expert
model is usually valid even outside the training do-
main, we overcome this limitation by introducing
a hybrid data augmentation strategy termed expert
augmentation. Based on a probabilistic formal-
ization of hybrid modelling, we show why expert
augmentation improves generalization. Finally,
we validate the practical benefits of augmented
hybrid models on a set of controlled experiments,
modelling dynamical systems described by ordi-
nary and partial differential equations.

1. Introduction
Generalization to unseen data is a key property of a use-
ful model. When training and test data are independently
and identically distributed (IID), one way to check general-
ization is by evaluating the model on a held out subset of
the training data or with k-fold cross validation. Unfortu-
nately, this setting is often unrealistic because the training
scenario is rarely fully representative of the test scenario.
This has motivated lot of recent research efforts to focus
on the robustness of ML models (Gulrajani & Lopez-Paz,
2020; Geirhos et al., 2020; Koh et al., 2021). Common
strategies can be broadly grouped in two categories: The
first class of methods aims at aligning specific properties of
the model (e.g., invariance, equivariance, monotonicity, etc.)
with expertise on the problem of interest (Cubuk et al., 2019;
Mahmood et al., 2021; Keriven & Peyré, 2019; Silver et al.,
2017). The second category is data focused (Sagawa et al.,
2019; Arjovsky et al., 2019; Krueger et al., 2021; Creager
et al., 2021) and leverages variations present in the training
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Figure 1. APHYNITY, an existing hybrid modelling strategy, is
unable to predict accurately the dynamic of a 2D diffusion reac-
tion for a shifted test distribution although it predicts well con-
figuration that follows the training distribution. On the opposite,
APHYNITY+, the same model fine-tuned with our data augmen-
tation, generalizes to shifted distributions as expected from the
validity of the underlying physics.

data, e.g. by minimizing worst case sub-group performance,
to achieve robustness.

The data oriented methods, which include Group-
DRO (Sagawa et al., 2019) and Invariant Risk Minimiza-
tion (Arjovsky et al., 2019, IRM), can be very appealing be-
cause they only require implicit specification of invariances
via domains or environments. However, these methods’ per-
formance is limited to variations present in the training data
and the inductive bias of the ML algorithm. This may be in-
sufficient when the modelling problem is too complex or the
variations of interest are not present in the training data. On
the other hand, methods based on domain-specific expertise
do not suffer from such limitations. Embedding expertise
into a model can be done via architectural inductive biases
(LeCun et al., 1995; Xu et al., 2018), data augmentation
(Cubuk et al., 2019), or a learning objective (Cranmer et al.,
2020) that enforces established symmetries of the problem.
As an example, simple data augmentation techniques com-
bined with convolutions lead to excellent performance on
natural image problems (Cubuk et al., 2019). Another nat-
ural approach to embed expertise in ML models, and the
one studied in this paper, is called hybrid learning (HyL).
HyL combines an expert model (e.g., physics-motivated
equations) with a learned component that improves the ex-
pert model so that the combination better fits real-world
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data. A particularity of HyL is the central role played by the
expertise, which is supposed to provide a simple and well-
grounded parametric description of the process considered.
HyL usually considers the expert model as an analytical
function, or as a set of equations, that relates the expert
parameters to the quantity of interest. The expert model
is often motivated by the underlying physics of the system
considered. Hence, we will use the terms expert model and
physical model interchangeably.

In recent work (Yin et al., 2021; Takeishi & Kalousis, 2021;
Qian et al., 2021; Mehta et al., 2020; Lei & Mirams, 2021;
Reichstein et al., 2019), HyL demonstrated success in com-
plementing partial physical models and improving the infer-
ence of the corresponding parameters. However, contrarily
to the common belief that HyL achieves better generaliza-
tion than black box ML models, we argue that hybrid models
do not meet their promise regarding robustness. Although
HyL achieves strong performance on IID test distributions
by exploiting the inductive bias of the expert models, we
show that their performance collapses when the test domain
is not included in the training domain. This is unsatisfactory
as the expert model is typically well-defined for a range of
parameters that can correspond to realistic data far outside
of the training distribution. A test distribution not covered
by the training data, but for which an expert model exists,
happens often in the real world. As an example, Qian et al.
(2021) apply HyL to a pharmacological model describing
the effect of a COVID-19 treatment for which only a lim-
ited quantity of real-world data is available. In this context,
although the underlying biochemical dynamic of treatments
is well modelled, data is often scarce and biased. Therefore,
the hybrid model does not necessarily generalize to con-
figurations that are well modelled by the pharmacological
model but unseen during training.

We introduce expert augmentations for training augmented
hybrid models (AHMs), a procedure that extends the range
of validity of hybrid models and improves generalization as
pictured by Figure 1. Our contribution is to first formalise
the HyL problem as: 1) Learning a probabilistic model par-
tially defined by the expert model; 2) Performing inference
over this probabilistic hybrid model. In this context, we
show that HyL is vulnerable to distribution shifts for which
the expert model is well defined (see Figure 1, bottom row).
Motivated by our analysis, we propose to fine-tune the hy-
brid model on an expert-augmented dataset that includes
distribution shifts (see results of augmentation in Figure 1,
middle row). These expert augmentations only rely on the
hybrid model itself, leveraging that the expert model is also
well-defined outside of the training distribution. Our exper-
iments on various controlled HyL problems demonstrate
that AHMs achieve multiple orders of magnitude superior
generalization in realistic situations and can be applied to
any state-of-the-art HyL algorithm.

Ze X Za

Ye Y

Expert model

Figure 2. A hybrid probabilistic model which describes the rela-
tionship between the input X and the output Y for a configuration
of the system as defined by the latent variables Ze and Za. The pre-
scribed expert model defines the conditional density p(ye|ze, x),
where Ye is an approximation of Y . Hybrid learning aims at
learning the conditional distribution p(y|za, ye, x).

2. Hybrid learning
In order to show that our proposed expert augmentations
lead to robust models, we first formalize hybrid learning
with the probabilistic model depicted in Figure 2. In this
Bayesian network, capital letters denote random variables
(e.g., Y ) and, in the following, we will use calligraphic let-
ters for the domain of the corresponding realization (e.g.,
y ∈ Y). In our formalism, the expert model is a conditional
density p(ye|x, ze) that describes the distribution of the
expert response Ye to an input x together with a parametric
description of the system ze, denoting expert or physical
parameters. We augment the expert model with the interac-
tion model which is a conditional distribution p(y|x, ye, za)
that describes the distribution of the observation Y given
the input x, the expert model response ye, and a parametric
description of the interaction model za.

Our final goal is to create a robust predictive model
p(y|x, (xo, yo)) of the random variable Y , given the input x
together with independent observations (xo, yo) of the same
system, where the subscript o denotes an observed quantity.
As a concrete example, we consider predicting the evolution
of a damped pendulum (described in Section 4.1) given its
initial angle and speed (x =

[
θ, θ̇
]
) and a sequence of obser-

vations of the same pendulum. The expert model we assume
is able to describe a frictionless pendulum whose dynamic is
only characterized by one parameter ze := ω0, denoting its
fundamental frequency. A perfect description of the system
should model the friction with a second parameter za := α,
the damping factor. In this problem, (xo, yo) and (x, y) are
IID realization of the same pendulum which corresponds,
in general terms, to samples from p(x, y|za, ze) for some
fixed but unknown values of za and ze. The expert variables
ze (e.g., ω0) together with za (e.g., α) should accurately
describe the system that produces Y (e.g., the evolution of
the pendulum’s angle and speed along time) from X (e.g.,
the initial pendulum’s state). In our setting we assume that
we are given a pair (xo, yo) (e.g., past observations) from
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which we can accurately infer the state of the system (za, ze)
as described by the interaction and expert models, and then
predict the distribution of Y for a given input x (e.g., fore-
casting future observations) to the same system. Because
the interaction between ze and y is essentially defined by
the expert model, it should be possible, and preferable, to
learn an accurate predictive model of Y whose accuracy is
independent from the training distribution of the expert vari-
ables ze. Provided all probability distributions in Figure 2
are known, the Bayes optimal hybrid predictor pB can be
written as

pB(y|x, (xo, yo)) = Ep(za,ze|(xo,yo)) [p(y|x, za, ze)] . (1)

We observe that the Bayes optimal predictor explicitly de-
pends on the posterior p(za, ze|(xo, yo)) which is itself a
function of the marginal distribution over ze. This may pre-
clude the existence of a good predictor that is invariant to
shift of p(ze). However, in the following we will consider
that the pair (xo, yo) contains enough information about the
parameters za, ze. As a consequence, the posterior distri-
bution shrinks around the correct parameters value and the
effect of the prior becomes negligible.

2.1. Hybrid generative modelling

We consider expert models that are deterministic; that is,
for which pθ(ye|x, ze) is a Dirac distribution. The expert
model describes the system as a function fe : X ×Ze → Ye
that computes the response ye to an input x, parameterized
by expert variables ze. The goal of hybrid modelling is to
augment the expert model with a learned component from
data as depicted in Figure 2. Formally, given a dataset
D = {(x(i), y(i))}Ni=1 of N IID samples, we aim to learn
the interaction model pθ(y|x, ye, za) that fits the data well
but is close to the expert model. For example, we could
define closeness via a small L2-distance between expert
and hybrid outputs or via a small Kullback-Leibler (KL)
divergence between the marginal distributions of Y and Ye.

Learning a model that is close to the expert model and fits
the training data well is a hard problem. However, the
APHYNITY algorithm (Yin et al., 2021) and the Hybrid-
VAE (Takeishi & Kalousis, 2021, HVAE) are two recent
approaches that offer promising solutions to this problem.
We now briefly describe these two methods and how they
can be used to approximate the Bayes optimal predictor of
(1). Our augmentation strategy is compatible (and effective)
with both approaches.

APHYNITY. Yin et al. (2021) formulate hybrid learning
in a context where the expert model is an ordinary differ-
ential equation (ODE). They consider an additive hybrid
model that should perfectly fit the data, which is equivalent
to assuming the conditional distribution pθ(y|x, ye, za) is
a Dirac distribution. Formally, they solve the optimization

problem

min
ze,Fa

||Fa|| s.t. ∀(x, y) ∈ D,∀t,dyt
dt

= (Fe + Fa)(yt)

with y0 := x, (2)

where || · || is a norm operator on the function space,
Fa : Yt×Za → Yt is a learned function, Fe : Yt×Ze → Yt
defines the expert model and D is a dataset of initial states
x := y0 and sequences y ∈ Y := (Yt)k, where k is the num-
ber of observed timesteps. APHYNITY solves this problem
with Lagrangian optimization and Neural ODEs (Chen et al.,
2018) to compute derivatives. In the context of ODEs, the
random variable X is the initial state of the system at t0 and
Y is the observed sequence of k states between t0 and t1.

This formulation only considers learning a missing dynamic
for one realization of the system described by Figure 2, for
a single za and ze. However, we are interested in learn-
ing a hybrid model that works for the full set of systems
described by Figure 2. As suggested in Yin et al. (2021),
we use an encoder network gψ(·, ·) : X × Y → Za × Ze
that corresponds to a Dirac distribution located at gψ as
the approximate posterior qψ(za, ze|x, y). The interaction
model is a product of Dirac distributions whose locations
correspond to the solution of the ODE

dyt
dt

= Fe(yt, ze) + Fa(yt, za; θ), y0 := x. (3)

Hence the corresponding approximate Bayes predictor re-
places the parameters (za, ze) in (3) with the prediction of
gψ and predicts a product of Dirac distributions.

Hybrid-VAE (HVAE). In contrast to APHYNITY, the
model proposed by Takeishi & Kalousis (2021) is not lim-
ited to additive interactions between the expert model and
the ML model, nor to ODEs. Instead, their goal is to learn
the generative model described by Figure 2. They achieve
this with a variational auto-encoder (VAE) where the de-
coder specifically follows Figure 2. Similarly to the amor-
tized APHYNITY model, the encoder gψ(x, y) predicts
a posterior distribution over za and ze, and the model is
trained with the classical Evidence Lower Bound on the
likelihood (ELBO). Takeishi & Kalousis (2021) observe that
relying only on an architectural inductive bias and maximum
likelihood training is not enough to ground the generative
model to the expert equations. They propose to add three
regularizers RPPC , RDA,1, and RDA,2 that encourage the
generative model to rely on the expert model. The final
objective is

max
θ,ψ

ED [ELBO((x, y);ψ, θ)] + αRPPC + βRDA,1

+ γRDA,2. (4)

The first regularizer, RPPC , encourages the marginal distri-
bution of samples generated by the complete model to be
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close to the marginal distribution that would be only gen-
erated by the physical model. The two other regularizers
specifically require the encoder network for ze to be made of
two sub-networks. The first network filters the observations
to keep only what can be generated by the expert model
alone, and the second should map the filtered observations
to the posterior distribution over ze. RDA,1 penalizes the
objective if the observations generated by the expert model
are not close to the filtered observations. Finally, RDA,2
relies on data augmentation with the expert model to enforce
that the second sub-network correctly identifies the expert
variables ze when the observations are correctly filtered. We
refer the reader to Takeishi & Kalousis (2021) for more de-
tails on HVAE. For HVAE, the approximate predictor takes
the form described by (1) where p(za, ze|(xo, yo)) is approx-
imated by the encoder qψ(za, ze|x, y) and p(y|x, ze, za) by
the learned hybrid generative model.

3. Robust hybrid learning
We now formalize our definition of out of distribu-
tion (OOD) and robustness. In general, a test scenario is
OOD if the joint test distribution p̃(x, y) is different from
the training distribution p(x, y), that is d(p̃, p) > 0 for any
properly defined divergence or distance d. In the following,
we reduce our discussion to a sub-class of distribution shifts
for which the marginal train and test distributions over ze
may be different, d(p(ze), p̃(ze)) > 0, but the marginals of
za and x are constant. As a consequence, the joint distri-
bution of (x, y) pairs is also shifted. Formally, the training
and test distributions are respectively defined as

p(x, y) := Ep(ze)p(za)p(ye|ze,x) [p(x)p(y|za, x, ye)] ,
p̃(x, y) := Ep̃(ze)p(za)p(ye|ze,x) [p(x)p(y|za, x, ye)] .

In this context, we demonstrate, theoretically and empir-
ically, that classical hybrid models fail. To address this
failure, we introduce augmented hybrid models and show
that, under some assumptions, they achieve optimal perfor-
mance on both the train and test distributions.

Our goal is to learn a predictive model

pθ,ψ(y|x, (xo, yo)) = Eqψ(za,ze|xo,yo)
p(ye|ze,x)

[pθ(y|ye, x, za)]

that is exact on both the train and test domains when they
follow the aforementioned training and testing distribu-
tion shifts. We say that a learned predictive model p̂(a|b)
is E-exact, or exact on the sample space E , if p̂(a|b) =
p(a|b) ∀(a, b) ∈ E . Here we qualify a predictive model
as robust to a test scenario if its exactness on the training
domain is sufficient to ensure exactness on the test domain.

We now define an augmented distribution
+

p(ze) over the

expert variables whose support
+

Ze includes the joint sup-
port Ze ∪ Z̃e between the train and test distribution of the

physical parameters. As depicted in Figure 3, we denote the
corresponding support over the observation space X × Y
as

+

Ω,Ω, and Ω̃, respectively. In this context, and with A1,
we may demonstrate that even under perfect learning, clas-
sical hybrid learning algorithms do not produce an Ω̃-exact
predictor while our augmentation strategy does.

Assumption 1 (A1): Hybrid modelling learns an interac-

tion model pθ(y|ye, x, za) that is
+

Ω-exact.

Although strong, A1 is consistent with the recent literature
on hybrid modelling, which assumes that p(ye|x, ze) is an
accurate description of the system, thereby pθ(y|ye, x, za)
should not be overly complex. As an example, we con-
sider an additive interaction model in our experiments for
which extrapolation to unseen ye holds if this assumption
is correct. That said, we still notice that the exactness of
the interaction model pθ on

+

Ω is insufficient to prove that

the predictive model pθ,ψ is
+

Ω-exact. Indeed, the encoder
qψ is only trained on the training data and cannot rely on a
strong inductive bias in contrast to pθ. Thus, even if the en-
coder is exact on the training distribution, the corresponding
predictive model does not achieve exactness outside Ω.

3.1. Expert augmentation

We propose a data augmentation strategy to improve the
robustness of hybrid models to unseen test scenarios. Once
trained, the hybrid model is composed of an encoder qψ
and an interaction model pθ that are respectively Ω- and
+

Ω-exact. We may create a new training distribution with a

support over
+

Ω by sampling physical parameters ze from a

distribution that covers
+

Ze. We can then train the encoder
qψ on

+

Ω, under perfect training the corresponding predictive

model pθ,ψ(y|x, (xo, yo)) is
+

Ω-exact, hence exact on both
train and test domains.

Our learning strategy is grounded in existing hybrid mod-
elling algorithms. Here, we focus on APHYNITY and
HVAE, but our approach is applicable to other HyL algo-
rithms. We first train an encoder qψ and a decoder pθ with
a HyL algorithm. Together with experts we then decide

on a realistic distribution
+

p(ze) and create a new dataset
+

D
by sampling from the hybrid generative model defined by
Figure 2 and the interaction model pθ. A notable difference

between the augmented training set
+

D and the original train-
ing set D is that the former contains ground truth values
for the expert’s variables ze. As we assume that the interac-

tion model is
+

Ω-exact, we freeze it and only fine-tune the

encoder qψ on
+

D. We use a combination of the loss function
` of the original HyL algorithm (e.g., (4) for HVAE, and the
Lagrangian of (2) for APHYNITY) and a supervision on
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Ze
Z̃e

+

Ze
+

ΩΩ̃

Ω Za

∗
Za

p(ze|x, y) ≈ qψ(ze|x, y)︸ ︷︷ ︸

︷ ︸︸ ︷
p(x, y|ze) = Ep(za)p(ye|ze, x)[p(x)p(y|za, x, ye)]

≈ Ep(za)p(ye|ze, x)[p(x)pθ(y|za, x, ye)]
Figure 3. Visualization of the distribution shifts considered in this work. The train support Ω of (x, y) results from (za, ze) ∈ Ze ×Za.

The test supports (in red) are denoted with a tilde symbols as Z̃e for ze and Ω̃ for (x, y). The augmented support
+

Ω (in green) includes both

train and test scenarios and corresponds to (za, ze) ∈
+

Ze ×Za. The outer violet domain that includes
+

Ω depicts one of our experiment

in which the domain of za is also shifted. Hybrid modelling algorithms alone may learn a mapping pθ :
+

Ze →
+

Ω but augmentation is

necessary to learn the inverse mapping qψ :
+

Ω→
+

Ze.

the latent variable objective to learn a decoder that solves

ψ = arg min
ψ

E+

D
[`(x, y; θ, ψ)− log qψ(ze|x, y)] .

In our experiments we chose a Gaussian model for the poste-
rior, which is equivalent to a mean square error (MSE) loss
on the physical parameters. We provide a detailed descrip-
tion of the expert augmentation scheme in Appendix A.

As a side note, we would like to emphasize the difference
between the data augmentation proposed in this paper and
the one from Takeishi & Kalousis (2021). While HVAE
also requires to sample new physical parameters ze, it is
only to ensure that a sub-part of the encoder is able to infer
correctly ze given ye. This augmentation does not contribute
to robustness distribution shifts on y in contrast to ours.

4. Experiments
4.1. Problem description

We assess the benefits of expert augmentation on three con-
trolled problems described and simulated by the ODE

dyt
dt

= Fe(yt; ze) + Fa(yt; za), (5)

where Fe : Yt × Ze → Yt is the expert model and Fa :
Yt × Za → Yt complements it. In our notation X is the
initial state y0 and the response Y is the sequence of states
y1:t1 := [yi∆t]

t1/∆t
i=1 . For all experiments we train the models

to maximize pθ,ψ(y = y1:t1 |x = y0) on the training data.
We validate and test the models on the predictive distribution
p(y = y1:t2 |x = y0, xo = y0, yo = y1:t1), where t2 > t1
assesses the generalization over time. A brief description of
the different problems is provided below.

The damped pendulum is often used as an example in
the hybrid modelling literature (Yin et al., 2021; Takeishi

& Kalousis, 2021). The system’s state at time t is yt =[
θt θ̇t

]T
, where θt is the angle of the pendulum at time

t and θ̇t its angular speed. The evolution of the state over
time is described by (5), where ze := ω, za = α and

Fe :=
[
θ̇ −ω2

0 sin θ
]T

and Fa :=
[
0 −αθ̇

]T
. (6)

The corresponding systems are defined by the damping fac-
tor α and ω0, the fundamental frequency of the pendulum.

The RLC series circuits are electrical circuits made of 3
electrical components that may model a large range of trans-
fer functions. These models are often used in biology (e.g.,
the Hodgkin-Huxley class of models (Hodgkin & Huxley,
1952), in photoplethysmography (Crabtree & Smith, 2003))
and in electrical engineering to model the dynamics of vari-
ous systems. The system’s state at time t is yt =

[
Ut It

]T
,

where Ut is the voltage around the capacitance and It the
current in the circuit. The evolution of the state over time is
described by (5), where ze := {L,C}, za = {R} and

Fe :=

[
It
C

1
L (V (t)− Ut)

]
and Fa :=

[
0
−RC It

]
. (7)

The dynamics described by the RLC circuit is more diverse
than for the pendulum and the system can be hard to identify.
This system is characterised by the resistanceR, capacitance
C, and inductance L, provided V (t) is known.

The 2D reaction diffusion was used by Yin et al. (2021)
to assess the quality of APHYNITY. It is a 2D FitzHugh-
Nagumo on a 32 × 32 grid. The system’s state at time t
is a 2× 32× 32 tensor yt =

[
ut vt

]T
. The evolution of

the state over time is described by (5), where ze := {a, b},
za = {k} and

Fe :=

[
a∆ut
b∆vt

]
and Fa :=

[
Ru(ut, vt; k)
Rv(ut, vt)

]
, (8)
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Figure 4. The average log-MSEs over 10 runs for three synthetic problems on the validation and test sets. We compare HVAE (in red) and
APHYNITY (in green), in light colours, to their expert augmented versions HVAE+ and APHYNITY+, in darker colours. On the test
sets, AHMs outperform the original models, and by a large margin on the pendulum and diffusion problems. Moreover, augmentation
conserves the relatively good performance on the validation set (IID w.r.t. the training set).

where ∆ is the Laplace operator, the local reaction terms are
Ru(u, v; k) = u− u3 − k− v and Rv(u, v) = u− v. This
model is interesting to study as it considers a state space
for which neural architectures may have a real advantage
compared to other ML models.

In the following experiments we analyze the effect of our
data augmentation strategy on APHYNITY and HVAE. All
models explicitly use the assumption that the interaction
model follows the structure of (5). For each problem the
validation and test sets are respectively IID and OOD with
respect to the training distribution. The best models are
always selected based on validation performance, that is
with samples from Ω. We provide additional details on
the different expert models, dataset creation, and neural
networks architectures in Appendix B.

4.2. Results

Performance gain from augmentation. This experiment
demonstrates that HVAE and APHYNITY are not robust
to OOD test scenarios in opposition to the corresponding
AHMs, as shown in Figure 1 for the 2D diffusion problem
and in Appendix C for the two other problems. We empha-
size that our intention is not to declare a winner between
HVAE and APHYNITY. Indeed, both algorithms have al-
ready demonstrated superior performance than black box
ML models. Hence, we only report a very simple baseline
that is the mean value of the signals. We want to compare
performance in OOD settings and empirically validate the
benefit of AHMs. We compare the predictive performance
in Figure 4 (see Table 2 for the raw numbers). Although
classical hybrid learning strategies do very well on the IID
validation set, they exhibit poor generalization on OOD test
sets for all three problems. We also observe some disparity
between APHYNITY and HVAE. In addition to different
learning strategies, this is probably due to differences in the
networks’ architectures as they were respectively inspired
from the corresponding pendulum experiment in each paper.
However, even if one method may outperform the other for
some problems, they both benefit from our augmentation

Dataset APH. HVAE APH.+ HVAE+

Pendulum Valid. 6±2 3±1 6±2 2±1

Test 66±9 117±10 10±4 11±2

RLC Valid. 6±3 38±2 7±5 28±1

Test 17±3 25±2 5±2 12±1

Diffusion Valid. 2±0 2±0 2±0 2±0

Test 27±2 32±10 3±1 2±0

Table 1. Comparison of mean relative precision (in %, ± indicates
one standard deviation) over 10 runs of predicted physical parame-
ters of different hybrid modelling strategies in validation and OOD
test settings. Augmented versions are denoted with a +. While the
accuracy of APHYNITY and HVAE is good on the validation set,
it collapses on the OOD test set. On the opposite, the augmented
versions perform well on both validation and test sets.

strategy (APHYNITY+, HVAE+). Overall, the effect of
augmentation goes up to dividing the test error by a factor
of e4.6 ≈ 100 in some cases.

Stability for non-exact models. The empirical results
from Figure 4 are very important as they show that even

when the decoder is not Ω-exact (and hence not
+

Ω-exact),
augmentation is still useful. In particular, Table 1 shows
that the encoder does not predict the physical parameters
perfectly. This indicates that the encoder is not Ω-exact
and neither should be the decoder. This table shows the
relative error on the physical parameters computed as∑k
i=1

1
k

∣∣∣ zie−µiθzie

∣∣∣, where µiθ is the estimated most likely

value of the ith component of the physical parameters. We
first notice that APHYNITY and HVAE perform differently
and their performance depends on the specific problem.
While APHYNITY accurately estimates the physical param-
eters on the IID validation set for the 3 problems, HVAE’s
performance are mixed on the RLC problem as it makes
prediction that are 38% away from the nominal parameter
value on average whereas APHYNITY reduces this error to
6%. Interestingly, we observe that the proposed augmenta-
tion strategies improve the encoder such that it accurately
estimates the physical parameters also on the OOD test set
even for HVAE on the RLC problem. This confirms that
the augmentation strategy is helpful even when the hybrid
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Figure 5. The average log-MSEs over 10 runs for the damped pen-
dulum and 2D reaction diffusion problems on a test distribution
for which za, in addition to ze, is also shifted. AHM achieves
better peformance than stand HyL algorithms even when the test
distribution support za differs from the training.

model is not Ω-exact. As a conclusion, augmented hybrid
learning outperforms classical hybrid learning both on the
predictive accuracy and at inferring the expert variables.

Effect of out of expertise shift. This experiment shows
that our augmentation strategy may remain beneficial even
when the train and test supports of za are not identical.
This scenario corresponds to samples (x, y) generated by
(za, ze) ∈ (

∗
Za \ Za) × Z̃e depicted by the violet do-

mains in Figure 3. In Figure 5 we observe the log-MSE
of augmented and non-augmented hybrid models trained
for (za, ze) ∈ Za ×Ze on test data that are generated with
(za, ze) ∈ Z̃a × Z̃e. For the pendulum, the support over
za = α is [0, 0.3] in train and [0.3, 0.6] in test; For the 2D
reaction diffusion, za = k is [0.003, 0.005] in train and
[0.005, 0.008] in test. We observe that augmented models
outperform the original models by a large margin. These
results suggest that augmentation could be very valuable
in practice, even when the distribution shift is also caused
by non expert variables. However, if the shift on za be-
comes the dominant effect, augmented models also eventu-
ally becomes vulnerable to shifts on ze as demonstrated by
supplementary experiments in Appendix B.

5. Related work
5.1. Hybrid modelling

Hybrid Learning (HyL), or gray box modelling as called in
its early days in the 90’s (Psichogios & Ungar, 1992; Rico-
Martinez et al., 1994; Thompson & Kramer, 1994; Rivera-
Sampayo & Vélez-Reyes, 2001; Braun & Chaturvedi, 2002),
has been an appropriate method to learn models that are both
expressive and interpretable, while also allowing them to
be learnt on fewer data. The interest for HyL (Mehta et al.,
2020; Lei & Mirams, 2021; Reichstein et al., 2019; Saha
et al., 2020; Guen & Thome, 2020; Levine & Stuart, 2021;

Espeholt et al., 2021) has greatly renewed since the outbreak
of recent neural network architectures that simplify the com-
bination of physical equations within ML models. As an
example, Neural ODE (Chen et al., 2018) and convolutional
neural networks (LeCun et al., 1995, CNN) are privileged
architectures to work with dynamical systems described by
ODEs or PDEs. While most of the HyL’s literature focus on
the predictive performance of hybrid models, recent work
have also showed that HyL may help to infer the physical
parameter accurately (Yin et al., 2021; Takeishi & Kalousis,
2021). This is aligned with Zyla et al. (2020) (see Section
40.2.2.2) which observe that inference on incomplete mod-
els results in a systematic bias. Similar to HyL, they extend
the model with nuisance parameters in order to improve its
fidelity, and to reduce the systematic bias.

In this work, we decided to study Yin et al. (2021) and
Takeishi & Kalousis (2021) for two reasons that distinguish
them from the rest of the HyL literature. First, these are
notable examples of HyL algorithms that can be applied to
a broad class of problems in contrast to papers that focus on
specific applications (Lei & Mirams, 2021; Reichstein et al.,
2019). Second, those methods also learn a reliable inference
model for the physical parameters, suggesting that the expert
model is used properly in the generative model, which is
a key assumption for our augmentation. While Takeishi &
Kalousis (2021) claim to achieve robustness with HyL, we
argue that this statement is incomplete as HVAE fails in
OOD settings. In particular, their approach is only able to
generalize with respect to unseen time or initial state if the
model correctly identifies the latent variables za, ze.

5.2. Combining hybrid modelling and data
augmentation

Close to our idea is the one proposed in Shrivastava et al.
(2017) where they train a GAN model that improves the
realism of a simulated image while conserving its semantic
content (e.g. eyes colour) as modeled by the simulation
parameters. The generated data with their annotations may
then be used for a downstream task, such as inferring the
properties of real images that corresponds to simulation
parameters. The GAN objective from Shrivastava et al.
(2017) requires that the two distributions induced by the
semantic content of real and simulated data are identical.
On the opposite, we consider training data that corresponds
to expert parameters with limited diversity, and overcome
this scarcity with expert augmentation. Another line of
work similar to ours is Sim2Real, which considers the task
of transferring a model trained on simulated data to real
world (Doersch & Zisserman, 2019; Sadeghi et al., 2018;
2017). Robust HyL, as a way to enhance simulations, could
be used for Sim2Real.
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5.3. Robust ML and Invariant Learning

Various statistical methods have been introduced to en-
sure models generalize under distribution shift. Domain-
adversarial objectives aimed at learning (conditionally) in-
variant predictors (Ganin et al., 2016; Zhang et al., 2017; Li
et al., 2018), GroupDRO (Sagawa et al., 2019) optimizing
for worst-case loss over multiple domains and IRM (Ar-
jovsky et al., 2019) as well as sub-group calibration (Wald
et al., 2021) aiming to satisfy calibration or sufficiency con-
straints to learn features invariant across domains. Exten-
sions, able to infer domain labels from training data have
been proposed as well (Lahoti et al., 2020; Creager et al.,
2021), partially inspired by fairness objectives (Hébert-
Johnson et al., 2018; Kim et al., 2019). In contrast to AHM,
all of these methods rely on the variation of interest being
present in the training data.

6. Discussion
We now examine the assumptions we made to derive our
augmentation strategy and discuss potential limitations.

Erroneous interaction model. The exactness of the hy-
brid component pθ(y|x, ye, za) is a critical assumption un-
derlying our expert-based augmentation strategy. Unfortu-
nately, this component is learned from training data only,
hence we cannot prove its exactness on the test domain,
which corresponds to a different domain Ye. However, we
argue that soft assumptions on the class of interaction model
may alleviate this problem. As an example, when we con-
sider an additive hybrid model, as in APHYNITY (Yin et al.,
2021), and embed this hypothesis into the interaction model,
generalization to unseen ye follows. When this assump-
tion is too strong, we could still expect generalization of
pθ(y|x, ye, za) because HyL drives y samples from pθ to be
close to ye. It implies that the corresponding function ap-
proximator is smooth, which helps generalization to unseen
scenarios. This contrasts with the encoder qψ for which a a
good inductive bias usually is not available.

Diagnostic. While crucial, we cannot guarantee the ex-
actness of the decoder pθ in general because we only eval-
uate the encoder and the decoder jointly on data points
(x, y, xo, yo). However, in some cases we can detect model
misspecification by observing that the predictive model
pθ,ψ(y|x, xo, yo) is imperfect. Making this observation is
not always simple as it requires prior knowledge on the
expected accuracy of an exact model. However, when the
system is deterministically identifiable, we may argue that
the accuracy should be only limited by the intrinsic noise
between x and y given za and ze.

Relaxing exactness. Even with a strong inductive bias on
the decoder, achieving exactness is hopeless in practical
settings. However, our experiments demonstrate that expert-
augmentation works in practice. We can explain this by
taking a look at Figure 3. If the generative model that
maps x and (za, ze) is incorrect, the mapping from Za and

Ze could be slightly off from
+

Ω. However, this does not

preclude the set of augmented samples to be closer to
+

Ω

than Ω and to induce a better predictive model on
+

Ω than
the original model trained only on Ω.

Limitations We considered expert models that are param-
eterized by a small number of parameters, which can be
covered densely via sampling. Covering densely a higher
dimensional parameter space with the augmentation strat-
egy becomes quickly impossible, hence a smarter sampling
strategy would be required, such as worst-case sampling.
Another difficulty is to choose a plausible range of param-
eters that contains both the train and the test support, this
will often require a human expert in the loop. Finally, we
assume that the train distribution of za should be represen-
tative of the test distribution, we empirically observed that a
softer version of this assumption could be enough. However,
performance will eventually decline as the support of the
test distribution for za is far from the training domain.

7. Conclusion
In this work, we describe HyL with a probabilistic model
in which one component of the latent process, denoted the
expert model, is known. In this context, we establish that
state-of-the-art HyL algorithms are vulnerable to distribu-
tion shifts even when the expert model is well defined for
such configurations. Grounded in this formalisation, we
derive that expert augmentations induce robustness to OOD
settings. We discuss how our assumptions can transfer to
real-world settings and describe how to diagnose potential
shortcomings. Finally, empirical evidence asserts that ex-
pert augmentations may be beneficial even when one of our
assumptions on the class of distribution shift is violated.

Our augmentation is applicable to a large class of hybrid
models, hence it should benefit from future progress in HyL.
Thus, we believe research in HyL and formally defining
its targeted objectives is an important direction for further
improving the robustness of hybrid models. As an example,
the minimal description length principle (Grünwald, 2007)
could be a great resource to investigate the balance between
the model’s capacity and robustness. Finally, robust ML
models must eventually translate to real-world applications,
hence a next step would be to apply AHMs to real-wold
data. Paving the way to future research combining AHM
with robust ML methods.
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A. Additional description of expert augmentation
We provide the procedure to do expert augmentation for robust HyL as the sequence of steps below.

1. Train both the encoder qψ(za, ze|x, y) and the interaction model pθ(y|xo, za, ye) with a HyL algorithm, by minimizing
the corresponding loss L(ψ, θ) = ED [`(x, y; θ, ψ)] on the training set D;

2. Decide on an augmented distribution
+

p(ze) for ze that contains both train and test scenarios;

3. Reproduce the following steps to generate a dataset
+

D of observations and expert variables (x, y, ze) ∼
Ep(za)p(ye|ze,x,y) [p(ze)p(x)pθ(y|ye, za, x)]:

(a) Sample (xo, yo) from the data;
(b) Sample za from the posterior qψ(za|xo, yo);

(c) Sample ze from
+

p(ze);
(d) Push forward x, za and ze in the generative model as ye ∼ p(ye|xo, ze) and y ∼ pθ(y|xo, za, ye);

(e) Add the triplet (xo, y, ze) to the augmented training set
+

D.

4. Freeze the interaction model, and fine-tune the encoder qψ(za, ze|x, y) on the augmented dataset
+

D by minimizing
+

L(ψ, θ) = E+

D
[`(x, y; θ, ψ)− log qψ(ze|x, y)].

B. Additional details on experiments
B.1. Damped pendulum

Datasets. We use Neural Ordinary Differential Equations (NODE) (Chen et al., 2018) to solve the ODE ruling the
damped pendulum. Each sample is simulated for t0 = 0s, t1 = 5s, and t2 = 20s, with a time resolution equal to
0.1 second. The models are trained with only the realizations between t0 and t1. At test and validation time, the pair
(xo, yo) = (y0, [yi∆t]

t1/∆t
i=1 ), x = yt1 and the model predicts y = [yi∆t]

t2/∆t
i=t2/∆t+1. The initial angular speed is always 0 and

θ0 ∼ U(−π2 ,
π
2 ).

The training set is made of 1000 samples and the validation set of 100 samples. They are both generated by sampling
uniformly za := α from Za := [0, 0.6] and ze := ω0 from Ze := [1.5, 3.1]. The shifted test set contains 100 samples
generated by sampling uniformly za in Za and ze in Z̃e := [0.5, 1.5].

APHYNITY. Our model is composed of a 1-layer RNN with 128 units that encodes the input signal y0:t1 as h(y0:t1) ∈
R128. An MLP with 3 layers of 150 units and ReLU activations maps h to R+ to predict ω0. The function fa : R128 × R2

is an MLP with 3 layers of 50 units and ReLU activations (no activation for the last layer). The models are trained
for 50 epochs with Adam with no weight decay and a learning rate equal to 0.0005. For the Lagrangian optimization
we use Niter = 5, λ0 = 10, τ2 = 5 (see (Yin et al., 2021). The augmented data are generated by sampling uniformly

ze ∈
+

Ze := [0.5, 3.5] and za from the marginal predictive prediction of the model, that is we use the training dataset to infer
values of za and use these as samples. The batch size is 100.

HVAE. We use the notations from Takeishi & Kalousis (2021) to describe the architecture of the VAE. The network
gp,1 : R2 × Rda , where da = 1 is the size of the latent space for the interaction model, is supposed to filter the observations
so that they can be generated by the expert model. It has 2 hidden layers with 128 units, gp,2 is an MLP with the
following hidden layers [128, 128, 256, 64, 32] and takes the full sequence of filtered states and predicts the mean and
variance of a normal distribution that parameterize the posterior pθ(ze|x, y, za). Another network, ga takes the sequence of
observations and predict the posterior distribution of za as a normal distribution. This network has the following hidden
layers [256, 256, 128, 32]. All networks have SeLU activations. In general the decoder of HVAE can be anything that
combines the expert model in order to produce samples in the observation space, as we made the hypothesis that the ODE is
just missing an additive term, the decoder is a NODE where the function is the sum of fe and fa a two hidden layers MLP
with 64 units and SeLU activation (except for the last layer that has no activation). The likelihood model is also Gaussian
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with the mean being predicted by the NODE and the variance learned but shared for all observations. For additional details
on our architecture and implementation details we encourage the interested reader to check our code.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005, weight decay
equal to 0.000001 and batch size 200. The other parameters are set to γ = 1, α = 0.01 and β = 0.01. The HVAE also
relies on some augmentation during training and in order to compare fairly our model to theirs we use the same distribution
for our augmentation and theirs that is za ∼ N (0, I) and ze ∼ U(0.5, 3.5).

B.2. RLC series

Datasets. Similar to the damped pendulum, we use NODE to solve the ODE ruling the RLC circuit. Each sample is
simulated for t0 = 0s, t1 = 5s, and t2 = 20s, with a time resolution equal to 0.1 second. The models are trained with only
the realizations between t0 and t1. At test and validation time, the pair (xo, yo) = (y0, [yi∆t]

t1/∆t
i=1 ), x = yt1 and the model

predicts y = [yi∆t]
t2/∆t
i=t2/∆t+1. In all experiments, the initial value for U0 ∼ N (0, 1) and I0 = 0, the voltage source delivers

a AC + DC tension V (t) = 2.5 sin(4πt) + 1.

The training set is made of 2000 samples and the validation set of 100 samples. They are both generated by sampling
uniformly za := R from Za := [1, 3] and ze := [L,C] from Ze := [1, 3] × [0.5, 1.5]. The shifted test set contains 100
samples and is generated by sampling uniformly za in Za and ze in Z̃e := [3, 5]× [1., 2.5].

APHYNITY. Our model is composed of a 1-layer RNN with 128 units that encodes the input signal y0:t1 as h(y0:t1) ∈
R128. An MLP with 3 layers of 200 units and ReLU activations maps h to R2

+ that predicts L and C. The function
fa : R128 × R2 is an MLP with 3 layers of 150 units and ReLU activations (no activation for the last layer). The models are
trained for 50 epochs with Adam with no weight decay and a learning rate equal to 0.0005. For the Lagrangian optimization
we use Niter = 5, λ0 = 10, τ2 = 5 (see (Yin et al., 2021)). The augmented data are generated by sampling uniformly

ze ∈
+

Ze := [1, 5]× [0.5, 2.5] and za from the marginal predictive prediction of the model, that is we use the training dataset
to infer values of za and use these as samples. The batch size is 100.

HVAE. We use the same networks’ architectures than for the damped pendulum experiment. Except that gp,1 is has 3
hidden layers with 100 units.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005, weight decay
equal to 0.000001 and batch size 100. The other parameters are set to γ = 1, α = 0.01 and β = 0.01. The HVAE also
relies on some augmentation during training and in order to compare fairly our model to theirs we use the same distribution
for our augmentation and theirs that is za ∼ N (0, I) and ze ∼ U(1, 5)× U(0.5, 2.5).

B.3. 2D reaction diffusion

Datasets. Similar to the damped pendulum, we use NODE to solve the PDE ruling the reaction diffusion. We closely
follow the experimental setting described in Yin et al. (2021) and approximate the Laplace operator with a 3× 3 discrete
version of the operator. Each sample is simulated for t0 = 0s, t1 = 1s, and t2 = 5s, with a time resolution equal to
0.1 second. The models are trained with only the realizations between t0 and t1. At test and validation time, the pair
(xo, yo) = (y0, [yi∆t]

t1/∆t
i=1 ), x = yt1 and the model predicts y = [yi∆t]

t2/∆t
i=t2/∆t+1. The initial state is sampled from a uniform

distribution in [0, 1].

The training set is made of 2000 samples and the validation set of 100 samples. They are both generated by sampling
uniformly za := k from Za := [0.003, 0.005] and ze := [a, b] from Ze := [0.001, 0.002]× [0.003, 0.007]. The shifted test
set contains 100 samples and is generated by sampling uniformly za in Za and ze in Z̃e := [0.002, 0.004]× [0.001, 0.1].

APHYNITY. Our model is composed of a deep CNN that encodes the input sequence of 10 images. The exact architecture
can be found in the code. The dimension of za is equal to 10. Similarly to Yin et al. (2021) the function fa is a 3-layers
CNN with ReLU activations. The models are trained for 500 epochs with Adam with no weight decay and a learning rate
equal to 0.0005. For the Lagrangian optimization we use Niter = 1, λ0 = 10, τ2 = 5.. The augmented data are generated

by sampling uniformly ze ∈
+

Ze := [0.001, 0.004] × [0.001, 0.01] and za from the marginal predictive prediction of the
model, that is we use the training dataset to infer values of za and use these as samples. The batch size is 100.
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Figure 6. Comparison of the predictions made by APHYNITY and APHYNITY+ on the damped pendulum problem for 3 diverse test
examples. It is important to mention that the support of the test distribution is disjoint from the training support. We clearly observe the
beneficial effect of augmentation which lead to more accurate predictions.

B.3.1. HVAE

We use the notations from Takeishi & Kalousis (2021) to describe the architecture of the VAE. The network gp,1 :
R2×32×32 × Rda is a conditional U-net, where da = 10 is the size of the latent space for the interaction model, is supposed
to filter the observation so that they can be generated by the expert model. The networks gp,1 and ga share a common
backbone CNN and are, in addition, respectively parameterized by 2 3-layers MLPs. All networks have ReLU activations. In
general the decoder of HVAE can be anything that combines the expert model in order to produce samples in the observation
space, as we made the hypothesis that the ODE is just missing an additive term, the decoder is a NODE where the function
is the sum of fe and fa a 3-layers CNN. The likelihood model is also Gaussian with the mean being predicted by the NODE
and the variance learned but shared for all observations. For additional details on our architecture and implementation details
we encourage the interested reader to check our code.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005, weight decay
equal to 0.00001 and batch size 100. The other parameters are set to γ = 1, α = 0.01 and β = 0.01. The HVAE also relies
on some augmentation during training and in order to compare fairly our model to theirs we use the same distribution for
our augmentation and theirs that is za ∼ N (0, I) and ze ∼ U(0.001, 0.004)× U(0.001, 0.01).

C. Supplementary results
We now provide additional results for AHM versus standard HyL models.

C.1. Log-mses on the 3 synthetic problems

Dataset APH. HVAE APH.+ HVAE+

Pendulum Val. −2.7±0.3 −2.9±0.5 −3.4±0.3 −2.9±0.6

Test −0.9±0.2 −1.2±0.2 −3.3±0.3 −3.1±0.3

RLC Val. −6.3±0.2 −4.3±0.1 −6.8±0.2 −3.8±1.5

Test −2.5±0.1 −2.2±0.1 −3.0±0.3 −2.1±0.3

Diffusion Val. −2.9±0.3 −3.4±0.2 −2.7±0.3 −3.3±0.3

Test 1.0±0.4 0.9±0.8 −2.9±0.2 −3.5±0.1

Table 2. Comparison of the log-mse of different hybrid modelling strategies in validation and OOD test settings. Except on RLC,
AHMs always outperform the corresponding HyL models on the test sets. Good performance on the validation set are conserved with
augmentation.

C.2. Distribution shift visualization

Similar to Figure 1, Figure 6 and Figure 7 showcase the behaviour of APHYNITY and APHYNITY+ for OOD test samples.
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Figure 7. Comparison of the predictions made by APHYNITY and APHYNITY+ on the RLC series problem for 3 diverse test examples.
It is important to mention that the support of the test distribution is disjoint from the training support. We can perceive the beneficial effect
of augmentation which lead to more accurate predictions in some cases. However both models are inaccurate. This indicates that the
RLC series parameters are not easily identifiable, hence the generative model is not exact and augmentation is not as useful as for the
diffusion and the pendulum.

Figure 8. Damped pendulum. Effect of a distribution shift on the latent variable za of the interaction model. When the shift of za is
reasonable (less than 1), the augmented models outperforms standard HyL even when the shift is only on za.

C.3. On the effect of out of expertise shift

The additional results in Figure 8, Figure 9 and Figure 10 demonstrate that our augmentations is mostly always beneficial.
Although the benefit of augmentation decreases with the gap between the support of the distributions of za and train and test
times, it still performs either better or on par with non-augmented HyL models.
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Figure 9. RLC series. Effect of a distribution shift on the latent variable za of the interaction model. We observe that augmentation is
always beneficial, even when the shift is only on za. As the dynamics of the RLC series systems depends on the values of all 3 parameters
R,L,C, we observe that some distribution shift can even lead to improved performance for the augmented models as for APHYNITY+
when R ∈ [3, 4]

Figure 10. 2D diffusion reaction. Effect of a distribution shift on the latent variable za of the interaction model. When the shift of za is
reasonable (k < 0.008), the augmented models outperforms standard HyL even when the shift is only on za.


