Elliptic Pairs II. Euler Class and Relative Index Theorem

PIERRE SCHAPIRA JEAN-PIERRE SCHNEIDERS
Contents
1 Introduction 61
2 Review on sheaves 63
3 Euler class of elliptic pairs 67
4 The product formula 70
5 The direct image formula 75
6 Inverse image and external product formulas 82
7 Examples 86
7.1 Euler class of IR-constructible sheaves . . . . . . . . . . .. .. .. ... 86
7.2 Euler class of D-modules and E-modules . . . . . .. ... ... .. 87
7.3 Euler class of holonomic modules . . . . . . . . . ... ... ... ... 89
7.4 FEuler class of O-modules . . . . . . . . . . .. .. 90
8 A conjectural link with Chern classes 93

1 Introduction

In [14], we introduced the notion of an elliptic pair (M,F') on a complex manifold
X. Recall that this is the data of a (let us say, right) coherent Dx-module M and
an IR-constructible sheaf F' (more precisely, objects of derived categories), these data
satisfying:

char(M) N SS(F) Cc Tx X, (1.1)

where char(M) is the characteristic variety of M, SS(F') is the micro-support of F,
(defined in [7]), and T%X is the zero-section of the cotangent bundle to X. More
generally, if f: X — Y is a morphism of complex manifolds, we defined the notion of
an f-elliptic pair, replacing in (1.1) char(M) by chary(M), the relative characteristic
variety.

In [14], we give four basic results on elliptic pairs: we prove a finiteness theorem
(coherence of the direct images of F' ® M, assuming (M, F') is an f-elliptic pair with
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proper support), a duality theorem (in the above situation, duality commutes with
direct images), a Kiinneth formula and we prove that microlocalization commutes with
direct images.

In this second paper on elliptic pairs, expanding results announced in [12, 13], we
will attach a cohomology class to (M, F') and prove an index formula. More precisely,
let Ag = char(M), Ay = SS(F), let dx = dimg X and denote by wx the dualizing
complex on X (hence wx ~ Cx[2dx], since X is oriented). Assuming (M, F) is elliptic,
we construct a cohomology class:

peu(M, F) € H/Q\ffﬁ/\l (I X; Cr-x) (~ HRO+A1(T*X;7T_1wX))

that we call the "microlocal Euler class” of (M, F). This class is constructed using a
diagonal procedure, like in the proof of the Lefschetz formula for constructible sheaves
by Kashiwara [6] (see also [7, Chapter IX]), but working here in the framework of
D-modules. Set for short:

peu(M) = peu(M, Cx),
peu(F) = peu(Qx, F).

Then the two main results of this paper may be stated as follows.
1) One has the formula:
peu(M, F) = peu(M) *, peu(F), (1.2)
where the operation *,:
HY (T*X; 7 wx) x Hy (T X570 ' wx) — HR o p (T X7 wx)
is defined by integration along the fibers of the map:
s T X XxT°X — TX, s(2:6,&) = (2:& + &)
(this map is proper, thanks to the ellipticity hypothesis).

2) Assume (M, F') is f-elliptic with proper support. One knows by [14] that f,(F ®
M) is Dy-coherent, and we prove the formula:

peu(f,(F @ M)) = f, peu(M, F), (1.3)
where f,, is the morphism:
HY op (T X7 wx) — H]?ﬂtfH(AOJFAl)(T*Y; 7 lwy)

deduced from the integration morphism Rfiwx — wy, (see [7, Chapter IX, §3]).
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These two theorems will be proved along the same lines as the corresponding results
for constructible sheaves (see [7]). We will use various commutative diagrams in derived
categories to express the compatibility of the functors involved, and as usual in these
matters we do not distinguish between commutative and anti-commutative diagrams.
Hence the results should be understood up to sign.

Using these two formulas, we find in particular that if (M, F') is an elliptic pair with
compact support, then:

X(RT(X; F @ M ®,£X Ox)) = /T*X peu(M) U peu(F) (1.4)
where x(-) denotes the Euler-Poincaré index and U the cup product.

If M is a real analytic compact manifold and X is a complexification of M, then
(M, @) is an elliptic pair if and only if M is elliptic on M in the usual sense. Hence
formula (1.4) is similar to the Atiyah-Singer formula [1].

By formula (1.2), we see that to compute peu(M, F'), it is enough to compute
separately peu(M) and peu(F). It is easily shown that peu(F') is nothing but the
”characteristic cycle” of F' constructed by Kashiwara (loc. cit.). This is a Lagrangian
cycle whose calculation is made at generic points and thus offers no difficulties (see [7,
Chapter IX, §3]). Hence the remaining problem is to understand peu(M). At this step
our results are essentially conjectural. Assume M is endowed with a good filtration and
denote by o,(M) the image of gr(M) in the Grothendieck group of coherent Op«x-
modules supported by A, the characteristic variety of M. In the last section we make
the two following conjectures (1.5) and (1.6) below:

cha(oa(M)) Un*tdx (TX)P =0 for j > 2dx (1.5)

where cha(+) and tdx(TX) denote as usual the local Chern character with support in
A and the Todd class of X, respectively, and [-] is the homogeneous part of degree j
in & HY(T*X; Cr-x),

peu(M) = [cha(oa(M)) U tdx (T X)]?x. (1.6)

As an evidence for these conjectures, we prove that both sides of (1.6) are compatible
to proper direct images, external products and non-characteristic inverse images, and
moreover they coincide in the two extreme cases where M is holonomic or is induced
by a coherent Ox-module.

The Atiyah-Singer theorem, in its K-theoretical version, has recently been general-
ized to the relative case by Boutet de Monvel and Malgrange [3]. Our results provide a
relative index formula in the cohomological setting, and the proof of the above conjec-
tures would give a precise link with the Atiyah-Singer theorem. We hope to come back
to these conjectures in a next future.

2 Review on sheaves

In this section, we fix some notations and recall a few results of [7].
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Let X be a real analytic manifold. One denotes by 7 : TX — X and 7 : T"X —
X the tangent and cotangent bundles to X, respectively. If Y is a submanifold of X, one
denotes by Ty X and 7y X the normal and conormal bundles to Y in X, respectively.
In particular, 7% Xdenotes the zero-section of 7% X, that ones identifies to X. If A is a
subset of T*X, one denotes by A? its image by the antipodal map.

One denotes by 6 : X — X x X the diagonal embedding, and we identify X to
its image A and 7*X to TX(X x X) by the first projection defined on X x X and
T*(X x X) ~T*X x T*X, respectively.

If X and Y are two manifolds, one denotes by ¢; and ¢, the first and second projec-
tion defined on X x Y.

One denotes by D(X) the derived category of the category of sheaves of C-vector
spaces, and by DP(X) the full triangulated subcategory consisting of objects with
bounded cohomology. If Z is a subset of X, one denotes by Cz the sheaf on X which
is constant with stalk € on Z and zero on X \ Z.

One denotes by orx the orientation sheaf on X and by wx the dualizing complex
on X. Hence:

wx ~ ory|[dim X]

where dim X is the real dimension of X. More generally, if f is a morphism from X to
Y, one denotes by wy/y the relative dualizing complex. Hence:

Wx/y X wx & flwg
One denotes by f~', Rf., Rf, f',®, RHom the usual classical operations on sheaves
and we denote by [X] the external product. We shall use the two duality functors:

D\ F = RHom(F,Cx), (2.1)
DxF = RHom(F,wx). (2.2)

If there is no risk of confusion, we write D’ or D instead of D' or Dx.

If F is an object of DP(X), one denotes by SS(F) its micro-support, defined in [7], a
closed conic involutive subset of T*X. Moreover, we shall use the functor u; of Sato’s
microlocalization along M. Recall that for F' in DP(X)

supp pun (F) C Ty X N SS(F).

Now, recall that an object F of D(X) is called weakly IR-constructible (w-IR-construc-
tible, for short) if there is a subanalytic stratification X = | |, X,, such that for all «, all
j, the sheaves HY(F)x, are locally constant. If moreover, for each z € X, each j € Z,
the stalk H’(F), is finite dimensional, one says that F is IR-constructible. One denotes
by D2 _k_.(X) (resp. D% _.(X)) the full triangulated subcategory of DP(X) consisting
of w-IR-constructible (resp. IR-constructible) objects. It follows from the involutivity
of the micro-support that F is w-IR-constructible if and only if SS(F’) is a closed conic
subanalytic Lagrangian subset of T*X.
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Let f: X — Y be a morphism of real analytic manifolds. To f one associates the

maps:
TX — X xy TY —= TV, (2.3)
T°X o XXy T — T°. (2.4)

One says that f is non-characteristic with respect to a closed conic subset A of T*Y if:
HA) NN TR X) € X xy TyY. (2.5)

Let F € D*(X), G € DP(Y). Recall that:

(i) if f is non-characteristic with respect to SS(G), then:

SS(f71G) C'f [ 1SS8(G), (2.6)

(ii)) if f is proper on supp(F'), then:

SS(RE.F) C ff' 7 (SS(F)), (2.7)

(iii) one has:
SS(FXIG) C SS(F) x 8S(G). (2.8)

Finally, let us recall some microlocal constructions of [7, Chapter IX] that we shall use.
Let Ax and Ay be two closed conic subsets of T*X and T*Y, respectively, and
consider the diagram:

t !
x —dx xy T*Y e ey

WXJ dl WJ

Set for short:
fuAx) = [ 77 (M), (2.9)
ff(Ay) = " (Ay). (2.10)

a) Assume f is proper on T%X N Ay, (or equivalently, f. is proper on Ax). Using the
morphism:
Rfmw_lwx — W;lRfwa — W;lwy, (2.11)

we get the morphisms, for all j € Z:

fu HA (T X7 wx) — HY oy (X xy TY 57 wx)

— H‘}H(AX)(T*Y;W_Iwy). (2.12)
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b) Assume f is non-characteristic for Ay (i.e., 'f’ is proper on f-!'(Ay)). Using the
natural morphism (see [7]):

Rf'\m oy — milwy, (2.13)
we get for all j € Z, the morphisms:
o L (TY s twy) — H‘]’;w_l(Ay)(X xy T*Y ;77 f wy)
— H‘}H(Ay)(T*X;W_le). (2.14)

Note that the morphism (2.13) may also be obtained as follows. On a manifold Z, there
is a natural isomorphism: ngwz ~ wp«z/z. Hence we have the chain of morphisms:

Rf\atftwy o Rtf/!fw_le*y/y
= Rtf/!WXxYT*Y/X
— Wrsx/Xx
~ W;(le.
c¢) Using the natural isomorphism:
wx Xlwy ~ wxxy,
we get the morphism:
D HL (T X5 wx) x HY (T ;77 wy)
— H{ D (TP X X Y1 wxgy). (2.15)
d) Let Ag and A; be two closed conic subsets of T*X satisfying:
AGNA CTX. (2.16)
Setting:
x, =06lo
we get a morphism:
w0 HL (T X5 m 7 twx) x HY (T X twx) — HU (TPX n lwy). (2.17)

Note that the morphism #, (which is not the cup-product) may also be defined as the
composite of:

H},(T"X; 7 twx) x Hy, (T"X; 77 wx) (2.18)
- H}{:ixAl(T*X xx T"X;mwy ® wy)

o%

Jjtk *y. —1
7 HA0+A1 (T X77T (.UX)

where 07 is associated to the embedding 7% X x x T*X - T*X x T*X and 6. to the
map "
T'X xx T'X o T'X, (@361,&) > (536 + &),
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3 Euler class of elliptic pairs

From now on, all manifolds and morphisms of manifolds are complex analytic. If X
is a complex manifold, we shall often identify X and X™®, the real analytic underlying
manifold. We shall also identify (7*X)® with 7*X™  as in [7]. We denote by dx the
complex dimension of X. Hence,

dim X® = 2dy.

Since X is oriented, we identify the orientation sheaf orx with the constant sheaf Cx,
and the dualizing complex wx with Cx[2dx].

We denote by Ox the sheaf of holomorphic functions on X, by €2x the sheaf of holo-
morphic dx-forms and by Dy the sheaf of rings of (finite order) holomorphic differential
operators on X. If Y is another complex manifold and if F is a sheaf of Ox yy-modules,
one sets:

Fody) f®q2_1(9y q;le,

and one defines similarly F(4x:0) or Fldx.dv),

We shall follow the notations of [7] for D-modules. In particular, Mod(Dx) denotes
the category of left Dx-modules, D(Dx) its derived category, and DP , (Dx) the full
triangulated subcategory of D(Dx) consisting of complexes with bounded and coherent
cohomology. Replacing Dy by DY, we have similar notations for right Dy-modules. In
fact, if there is no risk of confusion, we shall often make no differences between right
and left D-modules and write Dy instead of DY.

In the sequel, we will often need to work with bimodule structures. Let k be a field.
Recall that if A and B are k-algebras, giving a left (A,B)-bimodule structure on an
abelian group M is equivalent to give M a structure of a left A ®, B-module. Using
this point of view it is easy to extend to bimodules the notions and notations defined
usually for modules. For example, we will denote by Mod(Dx|s ® Dx|s) the category
of left Dx|g-bimodules and by D(Dxs ® Dx|s) the corresponding derived category.

The characteristic variety of an object M of D, (Dx) is denoted by char(M). This
is a closed conic involutive analytic subset of 7*X [10], and we have the formula |7,
Theorem 11.3.3]:

char(M) = SS(M ®7§X Ox). (3.1)

As usual, one denotes by Bz x the simple holonomic left Dx-module associated to a
closed complex submanifold Z of X. We denote by f -1 f,» X the operations of inverse
image, proper direct image, and external product for D—mbdules, and we denote by Dy
the dualizing functor. Recall that if M is a right Dx-module, then

Dx(M) = RHomDX(M,ICX)

where

Kx = Qx[dx] Qo+ Dx
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as a right Dy ® Dx-module. Notice the isomorphism of Dx ® DY-modules:

8Dy ~ BY¥ )y, (3.2)
which induces the isomorphism of DY @ DY-modules:

Slx ~ BAEY.

By this isomorphism, Kx is naturally endowed with a structure of a right 6 Dy x-
module and
(S]ICX — é!Qx[dx].

Let us recall the notion of an elliptic pair introduced in [14].

Definition 3.1 An elliptic pair (M, F) on X is the data of M € DY (DY) and
F € Db, _.(X) satisfying;
char(M)N SS(F) C Ty X.

The same definition holds for left Dy-modules.

Proposition 3.2 Let (M, F') be an elliptic pair on X. Then there are canonical mor-
phisms:

(i) 8RHomp, (FOM,F@M) — (Fo M) (D'F @ DM) @y Oxxx,
(i) FRMEXD'F® DM &g Oxxx — dwx.

Proof: (i) Let DY denote the ring of infinite order holomorphic differential operators.
Sato’s isomorphism:
DY = 805 [dx]

entails the morphism:
§Dx — O [dy]. (3.3)

Set for short:
P=F®M.

Applying the functor ¢;'P ®qL1_1DX - to (3.3), then the functor RHom 1Dy (5P, -),
and using the isomorphism:

&6 RHom (P, P) ~ RHom q2—1DX<q2_17), oP),
we get the morphism:

&RHomp (P, P) — RHom 1y (¢5'P,q'P ®qule O [dy]).
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Then:

RHom, 1p, (a5 'Poar P &Ly, 0% [dx])
~ RHom(q;'F, RHom i, (43" M, 'P &), ORIXdx])
~ RHom(q;'F,PXIDxM ®7€xDx Oxxx)
~ RHom(q;'F,PXIDxM ®£Xxx Oxxx).

The micro-support of P [X] DxM ®7§X . Oxxx is contained in T*X X char(M), hence

it intersects SS(gy ' F) inside the zero-section of T%(X x X). Using [7, Prop. 5.4.14],
we get the isomorphisms:

RHom(qy, ' F,PX]Dx M ®7§XXX Oxxx)
e~ ¢'DF® {77 XDy M ®£Xxx OXXX}
PR <F®M)<D/F®2M)®é){xx Oxxx-

(ii) Set for short:
Ly =(Fo M)R(D'F @ DM) ®p  Oxux (3.4)
Using the Dx « x-linear morphism:
FMXDF®DM — 6Kx,
we get the sequence of morphisms:

Lx — &Kx@p  Oxxx
~  §Qx[dx] @ Oxxx
~ 6 [Qx[dx] ® Dx—xxx Ofap,
~  6fx[dx] @5 Ox

~  wx.

5 Oxxx

O

Using the morphisms defined in the preceding proposition, we can now construct
the microlocal Euler class of the elliptic pair (M, F). Set:

A = char(M) + SS(F)
Then SS(Lx) C A x A* where Ly is defined in (3.4), and

supp(paLx) C A.
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By paraphrasing Kashiwara’s construction of the characteristic cycle of IR-constructible
sheaves, [6], we obtain the sequence of morphisms:

RHomp, (FOM,F@ M) — &Ly
~  Rm.uaLx
~  Rm.RUxpaLx
— Rm.RUApaAdwx

~ Rm.RC)\7m lwy.
Applying H'RT'(X;-), we find the morphism:
Hom, (F@M,F® M) — HUT*X; 7 twy). (3.5)

(Recall that
H[)(T*X, 7'['_le) ~ HJQ\dX (T*X, (DT*X))

Definition 3.3 Let (M, F') be an elliptic pair. The image of idpga¢ by the morphism
(3.5) is the microlocal Euler class of (M, F')

peu(M, F) € HBhar(M)—i—SS(F)(T*X; T wy)
Its restriction to the zero-section of T*X is the Euler class of (M, F)
eu('/\/l? F) € HSupp(M)ﬂsupp(F) <X7 WX)

If M is a left Dx-module, we define the microlocal Euler class of (M, F') as being that
of (2x ®, M, F). We also introduce the following notations. For M € Db, (Dx) and
F e Db (X)), we set:

peu(M) = peu(M, Cx),
peu(F) = peu(Qx, F).
4 The product formula
Let (M,F") be an elliptic pair on the complex manifold X. Set:
Ao = char(M), Ay = SS(F).
Then:

peu(M) € HY (T*X;7 'wx),
peu(F) € Hy (T*X;7 'wx),
peu(M, F) € HY .\ (T"°X;7 'wy).

The operation *, being that defined in §2, the aim of this section is to prove:
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Theorem 4.1 Let (M, F') be an elliptic pair. Then:
pea(M, F) = pen(M) 5, peu(F)

The proof decomposes into several steps. In Proposition 4.2 below, and its proof, X
will denote a real analytic manifold. In this statement and its proof as well as in the
proof of Theorem 5.1, we shall not write the symbol “R” of derived functors, for short;
e.g. Hom(-,-) means RHom(-,-), m, means Rm,, etc.

We denote by X; (i =1, 2, 3, 4) a copy of X and we write

(X X X)x (X xX)=X; x Xax X3 xXy.
For J C {1,2,3,4} and any set Z, we introduce the notation

(Siji H X[XZ—>HX[><Z
e J\{j} led

for the diagonal embedding sending (z¢)ecn (3 to (2¢)ecs With z; = x;. Similarly, we
introduce the notation

(Sijki H X[XZ—>HX[><Z
LeJ\{j,k} Led

for the diagonal embedding sending (x¢)en gk} t0 (2¢)ecs with z; = xp = ;. If there
is no risk of confusion, we simply write ¢ for any of these morphisms.

On a product, we denote by ¢; the projection to X;.

We shall make a frequent use of the morphism of functors

6 — 6 ®wx. (4.1)
Now, we assume to be given:
FeDb (X)), GeD"X), HecD"X xX).

We set:
K =GXIDF
Ao =SS(K), A, =SS(H)
N =Ti(X xX)NA;, i=0,1
We identify TX (X x X) to T*X by the first projection. We shall assume:

Ao NAY C TE (X x X). (4.2)
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Proposition 4.2 The diagrams below commute.

Hom(F,G) @ 6'H Hom(F,G ® 6'H)
~ (1)
K ®6H Hom(F,8'(¢7'G @ H))
~ (2) §(K® Hewy™)
Tl popa K @ T l'a, i H Tl Ag, pia (K © H @ w§™)

First, we state three lemmas whose proofs are easy verifications left to the reader.
Lemma 4.3 The diagram:

Hom(F,G) ® 6'H Hom(F,G ® 6'H)

|

Hom(F,8'(¢7'G © H))

is isomorphic to:
5;31(512(554([( H)\—> 5'1251—31554<K H)

N

812614015 (K X H)
Note that the morphisms
51_315!12 - 5!1251_31
or
51_31(%4 - 5!1451_31
are defined as follows. Consider a cartesian square:

Zl — Z
A1

T,uz O TAQ

ZlQ — ZQ
M1

Then we have the natural morphism:
pa' AL — oAy

defined by:
iy A 2 AN, — AL
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Lemma 4.4 The diagram below commutes:

819013 054 (KK H) @ wi ™! —%—61,61,015 (K X H)
gl Jﬁ
S1a5a(K B H) @ wx

Moreover, assuming (4.2), «, 3 and ~y are isomorphisms.

Note that « is defined through:

-1

-1 ® !
byy Wy = — by

and
819054 = 612014,
and + is defined through:

1

11 Q= 1ol
013095 @ Wy~ — 613054 QO wx.

Lemma 4.5 The diagram below commutes:

813 012034(K X H)

3 (KX H)

|

S1o54(K X H) @ wx

!
14

12

Proof of Proposition 4.2: Diagram (1) obviously commutes. To prove that (2) com-
mutes, we decompose it in the diagram below, after applying Lemma 4.3:

K ®6H 81901 ,01 (K X1 H)
~ 1234K-H ®wx 12K®H®WX Y
(4) ~
Tl Ao ppa K @ m A, ua H Tl agin, fia (K @ H®@ wg™)

In this diagram, the sub-diagram (6) commutes by Lemma 4.5, the sub-diagram (5)
commutes by Lemma 4.4, the sub-diagram (4) commutes by [7, Prop. 4.3.5] and the
sub-diagram (3) obviously commutes. Hence the full diagram commutes. O
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Proof of Theorem 4.1: We shall apply Proposition 4.2 with G = F, H = M
DM ®,£X . Oxxx (hence K = F[XIDF'). Note that we have trace morphisms:

K — (51&)){,

H — 51&)){.

Consider the diagrams:

Hom(F, F) ® Homp (M, M) Homyp (F @ M, F® M)
(7)
Hom(F,F)® 8'H Hom(F,F ® 6'H)
8K ®68'H (8) S(K®@H®@wi™)
Tl Ao pia K @ T I'a, ua H Tl pgon, pin (K @ H®@ W)
(9)
Tl agptadrwx @ ma padiwx Tl ag 1A, o (Owx ® dwx @ wi )
7T*FA07T_1wX ® W*FAlw_le 7T*FA0+A17T_1wX

Diagrams (7) and (10) obviously commute, diagram (8) commutes by Proposition 4.2
and diagram (9) commutes since it is obtained by applying the morphism of functors:

T Laopa () @ Tl pa () — mlagea pa(- © - @ wi™)

obtained from [7, Prop. 4.3.5] to K — 6iwx and H — §wx. To conclude the proof, it
remains to notice that the sequence of morphisms in the second column of the preceding
diagrams (7) and (8) is the same as the morphism

SHom(FO M, FOM) — K@ Howy ' = Lx

obtained in 3.2. Then, applying H°RI'(X;-) to the preceding diagram, we find the
commutative diagram:

Hom(F, F') ® Homp, (M, M) Hom, (F®&M,F®M)

| |

HR (T* X7 wx) @ HY (T*X; 7 'wy) H{ n, (T X5 wx)
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5 The direct image formula

Let f : X — Y be a morphism of complex manifolds, and let (M, F) be an elliptic pair
on X. Under suitable conditions that we shall recall now, it is proved in [14] that the
direct image f,(F ® M) belongs to D2, (Dy). The aim of this section is to prove that
in this situation, the microlocal Euler class of this image is the image by the morphism
(2.12) of that of (M, F).

Let us first recall the definition of char;(M), the relative characteristic variety of
M, (see [11, 14]). If f is smooth, one denotes by Dxy the sub-ring of Dx generated
by the vertical vector fields, one locally chooses My, a coherent D y-submodule of M

which generates it, and one sets:
charf(M) = char(Dx By Mo).

One checks easily that this does not depend on the choice of M. In the general case
(f not necessarily smooth), one decomposes f by its graph as:

f: X—XxY —Y
7 q

and one sets:
char; (M) = "i'i_*char,(ix M).

Let M € DP, (Dx) and let F' € DY __(X). One says that (M, F) is f-elliptic if
R—c

coh
chary(M) N SS(F) C Ty X.

Since chary(M) contains char(M), an f-elliptic pair is elliptic. Let Dy, 4(Dx) denote

the full triangulated subcategory of D", (Dx) generated by the objects M such that
for all j € Z and all compact subset K of X, H/(M) may be endowed with a good
filtration in a neighborhood of K. If (M, F') is f-elliptic and moreover M belongs to
Dy,,q(Dx), one says that (M, F) is a good f-elliptic pair. If moreover f is proper on
supp M Nsupp F', one says that (M, F') has f-proper support. It is proved in [14] that
if (M, F) is a good f-elliptic pair with f-proper support, then f (F' ® M) belongs to

Db 4(Dy). Let Ag = char(M), A; = SS(F). We have the canonical morphism:

good
fut Hyyon, (T°X; 77 wx) — H]?H(AOJFAl)(T*Y;W_Iwy).

Theorem 5.1 Assume (M,F) is an f-elliptic pair with f-proper support. Then:

peu(f,(F @ M)) = fu pea(M, F) = fu(peu(M) *, peu(F)).

Proof: The proof will decompose into several steps. For short, during this proof, we
will not write the symbol “R” or “L” of right or left derived functors. We introduce

the notations:
X=XxX, f=fxf:XxX—YxY.
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We denote by 6x the diagonal embedding X «— X x X, and if there is no risk of
confusion, we write 6 instead of 6x. We also set for short:

Ly = (F®M)X(D'F®DM)®, Ok
Ly = f(Fe@M)RD(f(FeM)) e, Oy

By the results of [14], we have the isomorphisms:

filx =~ H(F@MRDF®DM®e, Dx_y)&, Oy
= il<F®M)il<D/F®QM) ®DY Of’

~ Ly.

Consider the diagram:

fiHomp, (F @ M, F @ M) Homp (f,(F @ M), f(F&M))
(1)
fi8'Ly §'filx §'Ly

~ (2) ~ (3) ~

Tk ' Tag ptay Lx —— mlay piay filx mLay by Ly
(4)

TS 7 T piay Swx — Ly piay fidwx — (5)

~ (6) m LAy piny 0 fiwy ————m A, iny, Owy

tpr—1 -1 -1 -1
Tafm [ DAy wx ——m a7 fiwx T Ay T Wy

It is enough to prove it is commutative. In fact, applying H°RI(Y;-) to it we get the
commutative diagram:

Hom,, (F & M,F & M) Homp, (f,(F ® M), f(F®M))

| |

HR (T*X;7m ' wx) HY (T*Y ;7 wy).

Diagram (2) commutes since

f!(sl —>5'f~"

is the restriction to the zero section of:

fW!tf/_llu’Ax - :U’Ayfl
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(see [7, Prop. 4.3.4]).

Diagram (3) commutes since it is obtained by applying the natural transformation
m.Tay pia, — 6' to the morphism fiLx — Ly

Diagram (4) commutes. In fact, it is obtained by applying the morphism of functors:

Tefm f 7 Tagping — mlay piay f

to Lx — &wx. Diagrams (6) and (7) obviously commute.
Using the base change formula for elliptic pairs of [14] we see that for P = Q =
F ® M the map

Hom 9, "Dy <q2_1i!7)’ Qflil Q Oy-ipy Og};d}g) [dy])
— Hom 1p, (65" f\P, Farlar ' Q @15, OXY [d]))

appearing in Lemma 5.2 and Lemma 5.3 below is an isomorphism. Moreover, the
Kiinneth formula for elliptic pairs [loc. cit.] shows that the canonical map

[F@M)Kf(D'FRDM)Rpy  Oyuy — (F@MXDF@DMe, Oxxx)

is also an isomorphism. Hence, the conjunction of Lemma 5.2 and Lemma 5.3 below,
gives the commutativity of diagram (1). In the same way, Lemma 5.4 below shows that
diagram (5) commutes. 0

Let f : X — Y be a morphism of complex manifolds. We will decompose f = fx f

as
Xxx_D xxy_ L vy
Ox o Oy

Lemma 5.2 Let P and Q belong to D*(Df). Then we have the canonical commuta-
tive diagram:

fi6xHom Dy (P, Q)

- _ _ ,d
f!HOTTL 45 'Dx (q2 LP, q1 1Q ®q1_1Dx Og[()x;(() [dX])

Hom —ip (05" f P, Far(07' Q @15y, OS [y ]))

by Homp, (f,P, f,Q)

Hom 9, "Dy <q2_1i!7)’ Qfli! Q Qy-ipy Og};d}g) [dy])

Proof: The kernel representation of differential operators induces the morphism of
bimodules:
8x/Dx — O [dx].
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From the relative integration map
ﬂlX!QXx)qx[dX] B QXxY|X[dY]7
and the Poincaré-Verdier adjunction formula, we deduce the bimodule morphism:
ORXdx] ®,-1p, 43 Dx—y — AOTE.
Hence, we get the chain of bimodule morphisms:

o0xDx_y — 6x\Dx ®q2—173X ¢ ‘Dx_y

Og?f;(() [dx] ®q2_1DX QQ_le—*Y
— O [dv).

This chain of morphisms gives rise to the commutative diagram:

0x19 ®q2_1Dx q;lDX—Q/ ox1(Q ©p Dx_v)

| |

_ _ _ d
a4y o ®q1_1DX Og?f;(()[dX] ®q2_1DX D) "Dx_y — 4 o ®q1_1DX fiog?x}y/) [dy].

By adjunction of the tensor product, this gives us the commutative diagram:

0x1Q éx\Hom y-1p (Dx—y, Q®p Dx—y)

| |

_ 0,d _ _ 1,~(0,d
671 Q &, 1p, OLY [dx] — Hom 1y 1p (05 Dy, 671 Q@1 O [d]).

Applying the functor Hom 05Dy (g5 'P,-) to this diagram, we get the commutative
diagram:

éx'Homp (P, Q) éx1Hom p-1p, (P ®p, Dx—y, Q&p, Dx—y)

(O7dY)

Mx Homq;1f_1py<q2—1<73 ®p Dx_y),q; ' Q ®y1Dy F1OX%3 [dy])

where we have set for short:
My = Hom ip, (65" P, 07" Q@ 1p OXEX[dx]).

Applying fi, and using the Poincaré-Verdier adjunction formula, we get the commuta-
tive diagram:

fudxHomp (P, Q) — d'Hom p-1p, (P ®p, Dx—y,Q&p, Dx—y)

| |

fuMx Mxy
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where we have set for short:
Mxy = Hom -1, ( _lf P g lO® O(O’dY))
XY a; 'Dy q2 J 7Q1 q; Dx XxY /)

Finally, apply f2; and note that the diagram below is commutative:

fQ!(S]HOmf—1DY (73 ®DX DX—>Y7 Q ®DX DX—»Y) EE— 6Y!H0mDY (i!,P7i! Q)

|

My

|

— — ,d
Homq2—1DY (QQ 1LP7 f2!(q1 lg ®q1_1Dx OE?X§) [dy])).

faMxy

Where we have set for short:

My = Hom q;1py(q2_1L77, ¢ 'f,Q 1Dy OVsy dv)).
O

Lemma 5.3 Let P and Q belong to D*(DS). Then, we have the canonical commuta-
tive diagram:

~ _ _ ,d
fﬂ'loqu—lpx(q2 1737 aQ o ®q1—1DX (’)S?X;(() [dx])

fQRIDP &y Oxxx)

Hom 1, (3 £, P forlar ' Q &, 1p, OF5Y [dv])) [ QR f,DP @p . Oyxy

- - 0,d
HomqulDy(q? 1LP7 % ILQ Qyripy O(ng)[dY])

Proof: Notice that the diagram below is commutative:

FQE DP) G DXy ] —— filHom 15, (4P, QBIKx) @pize DRZ. ]
[QEf\DP  Hom 1y (3" f )P, [[(QEIKx) Dpige 2 Byripy G2 Dx—v])

[,QEHomop, (f,P, [ Kx)

Hom 1p (0" f,P. ORI f Kx)

f,QQf,P HquElDY (q2_1L777LQ K:y)
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Thanks to the isomorphism
63 'Kx @1p, Oxex — OF¥ [dx],
and the canonical morphism
ey a2 Oyxy — Oxxx,

an application of the functor ~®D2 Oy «y to the preceding diagram allows us to conclude.
O

Lemma 5.4 Let P belong to D?(DY). Then, we have the canonical commutative
diagram:

H((PXIDP) @p

oy Oxxx) — fioxwx

<il,PilQ,P) ®Dy><y OYXY 5y;f1wX

Oy \wy

<il73 Q IP) ®Dy><y OYXY

Proof: Recall that the dualizing complex for D-modules
Kx = Qxldx] Qo+ Dx
has a canonical structure of right D$*-module and that
O x ~ 6,Q[dx]
as D5%-modules. Also recall that:

[ Kx = f(Kx @pgz DY)

and that the trace of the duality morphism associated to f is given by the DE?-linear
integration morphism

fKx — Ky.

From the construction of this morphism (see [14]) it is clear that we have the canonical
commutative D5?-linear diagram:

8 f Kox ——— [,6Kx
§Cy 5y
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In this diagram, the first horizontal arrow is deduced from the morphism

[<]2
DX

—

Y e Dx2_,y2’

the first vertical arrow is deduced from the duality trace map and the second vertical
arrow is deduced from the isomorphism

f!é!QX [dx] == &, f Qx[dx]

and the integration map
[ Qx[dx] — Qyldy].

Let us consider the commutative diagram:

H(PRIDP Sp DE.y) — 8f Kx — f0Kx
|
[\PX [, DP

!
[ /PR Homp ([P, [ Kx)—bf Kx

\

LP HOWDY (LP, Ky) —’5!KY e— 5!ICY

By scalar extension, it gives rise to the commutative diagram:
[(PRIDP) —— [, 6iKx

L PX S DP

|
I/PEIDJP

Oy

Note that « is an isomorphism by the Kiinneth formula (see [14]).
Recall that for any holomorphic map f : X — Y and any right Dx-module M,
we have

fM @, Oy = filM @, Ox).

Also recall that the compatibility between the duality morphism for D-modules and the
Poincaré-Verdier duality morphism may be expressed by the commutative diagram

(/,xldx]) ©p, Oy Oyldy] @p Oy
fi(Qx[dx] ®@p  Ox) ~
f!wX Wy .
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With these facts in mind, the conclusion follows easily by applying the functor
- @p Oy to the diagram (5.1). O

As a particular case of Theorem 5.1, we get:

Corollary 5.5 Let M € Dgood(DX) and assume f is proper on supp M. Then:

peu(f M) = fu(peu(M)).
Now apply these results to the map f : X — {pt}. We get:

Corollary 5.6 Let (M, F') be a good elliptic pair with compact support, i.e.:
(i) M € Dbypy(Dx) and F € D_(X),
(ii) char(M)NSS(F) C Tx X,
(iii) supp M Nsupp F' is compact.

Then the complex RT'(X; F @ M ®7§X Ox) has finite dimensional cohomology and its
Euler-Poincaré index is given by the formulas:

(DX F o Moh 0x) = [ en(M,F)

. /X(ueu(./\/l) #u peu(F))|x

= . peu(M) U peu(F).

T*

Proof: The first formula follows from Theorem 5.1, the second one follows from The-
orem 4.1, and the last one from the equality:

L P50 A0 = 0o 5 M)l

which holds for any \; € HY (T*X;7 'wx),j = 0,1 and whose proof is left to the
reader. O

6 Inverse image and external product formulas

Let f : X — Y be a morphism of complex manifolds and let (N, G) be an elliptic pair
on Y. We shall first study its inverse image by f.

Definition 6.1 We shall say that f is non-characteristic for the elliptic pair (N, G) if
f is non characteristic with respect to the set char(N) + SS(G) (see (2.5)).

Proposition 6.2 Assume f is non-characteristic for the elliptic pair (N',G). Then
(f'N, f'G) is an elliptic pair in a neighborhood of f~'(supp N N supp G).
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Proof: The hypothesis implies that f is non-characteristic with respect to N and with
respect to G in a neighborhood of supp N N supp G. In particular, i_lN will be Dx-
coherent on a neighborhood of f~*(supp A N supp G).

Let (z;€) € char(f'N)NSS(fG), and let y = f(x). Since f is non-characteristic
for A" and for G, one knows [5, 7] that there exist (y;ny) € char(N) and (y;m) € SS(G)
such that *f'(z).n; = & for j = 0,1. Hence *f'(x).(no — m) = 0 which implies by the
hypothesis that 79 — 1 = 0, hence ny = 1 = 0 since (N, G) is elliptic. O

In view of the above proposition and Theorem 4.1, in order to calculate the microlo-
cal Euler class of (f~'N, f7'G), it is enough to calculate separately peu(f 'A) and
peu(f1G). As we shall see below, the microlocal Euler class of an IR-constructible
sheaf is nothing but its characteristic cycle, and the functorial properties of this cycle
have been studied in [7], where it is proved in particular that it commutes to inverse
image (and external product). Hence it is enough to calculate the microlocal Euler
class of the inverse image (and external product) of coherent D-modules. Notice that
such a situation did not appear when studying direct image, where the result obtained
when treating simultaneously both M and F' was much stronger than if we would have
assumed f proper on supp M and on supp F.

Let f: X — Y be a morphism of complex manifolds. We shall use the notations
(2.12), (2.13), (2.15) of §2.

Theorem 6.3 Let N € DP | (DP) and assume f is non-characteristic with respect to
N. Then:

peu(f'N) = f*(peu(N)).

Proof: The proof is similar to that of Theorem 5.1, and we shall not give here all
details.
Set f=(f,f): X xX —Y xY, and decompose [ as:

X xX h Y x X f2 Y xY
Ox ) by
Ay~ A F A

Set:

Ly = NEDN @y  Oyxy,
Lx = ['NEDf 'V ®£Xxx Oxxx,
Ay = ChaI'N, A= f;lAy, AX = f’uAy.

Since f is non-characteristic for A/, the natural morphism:
_ _ 0,d 1 0,d
f IRHqu;DY (¢5'N, ngx)‘f)) - RHqu;1DX (g9 li 'V, O§f><§))

is an isomorphism.
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On the other-hand, the natural f; ' Dy-linear morphism:
Rfi(qi "Dy —x ®qule Oxxxldx]) — Oyxx|dy]
defines the morphism:
Rfy(fitar'V ®£—1q1—1@‘/ ¢ 'Dy_x ®qule Oxxxldx]) — ¢'N ®qu_le Oyxxldy],
hence the morphism:
G N ®qL1—17;X Oxxxldx] — fil¢7'NV ®qL1—173Y Oy xx)|dy]

and this morphism is an isomorphism when f is non-characteristic for /. Combining
these two isomorphisms, we get the isomorphism:

fifQ_ILY - Lx

Then, as for Theorem 5.1, the proof is decomposed by proving the commutativity of
the diagrams below. Until the end of the proof, we shall not write the symbols “R” or
“L” of derived functors, for short.

[ Homp (N, N) Home(i_lN,i_lN)

[ Ly ———08'f; 'Ly —————— 8\ fify ' Ly —————— 6k Lx
Tl fr Tay pay Ly —mt f/\Dapa fy ' Ly —=—m.Daypay fify 'Ly ——— mDaxpiay Lx

: |

T fr Ty oy Sy wy = e lapad f " wy = mlay tiax 6x1f ' wy @wxyy = mlax pay Oxiwx

O

The commutativity of the first diagram will follows from Lemma 6.4 and 6.5 below,
and that of the last one from Lemma 6.6 below. Since their proofs follow the same lines
as for the direct image, we shall omit them. The other diagrams obviously commute.

Note that in lemmas 6.4, 6.5, 6.6 below, the reversed arrows will become isomor-
phisms when assuming that M and A belong to D® , (D) and f is non-characteristic.

coh
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Lemma 6.4 Let M and N belong to D*(D{?). Then the diagram below commutes.

f Hom (N, M) ——— 18y Hom ap (05N, a7 M @15, O [dy])

6 f3 " Hom i (05N a7 ' M@y O dy))

~

_ _ _ .d
S5 f1fz " Hom ipy (65N a7 ' M@ 1, O [dy])

1. _ d
S fiHom 1py (65 7N g M@, OV [dy])

Homp (f7'N, 7' M) —>6!XH0mq2_1DX (' f N q M D1y 004 [dx])

Lemma 6.5 Let M and N belong to D*(D{?). Then the diagram below commutes.

FreyHom g (a3 "N ar "M @i OV [dy]) —— fFL& MBI DN @, Oyyy

61y Hom 1, (63 "N a7 ' M @i, OV dy]) ———8'fy " MEIDN @5, Oy xy

~ ~

Sy fify Hom i, (43 N a7 ' M @1, O dy]) — 8 fifs 'MEBDN @p, , Oyxy

S fitom ,ip (03" [N M @i, OV [dv]) < 8% AMEIDS TN @p, Oy xxldy/x]

O Hom g, (3 f TN g [T Mg, O (dx]) — [T MEDS TN @, Oxx

Lemma 6.6 Let N belong to D*(D{F). Then we have the commutative diagram:

i_lNQi_lN @p . Oxxx

fifQ_INQN ®DY><Y OYXY

ST I NEKDN @ Oyyy @ wx/y

Y XY

5X1WX

Sx1f " wy @ wy)y
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Now let M < Db (Dx) and N < D50h<Dy).

coh

Theorem 6.7 One has:
peu( MKIN) = peu(M) X peu(N).
Proof:  We set:
Lx = MXDM ®£Xxx Oxxx,

Ly = NQN®£YXy Oyxy,
Lxxyy = (MXN)X(DMXDN)RE

@)
Dxwyxxxy = XXYXXXY

AX = char(./\/l),Ay = char(N),A = AX X Ay.

Then the diagram below obviously commutes, which completes the proof.

Hom 5, (M, M) Homp (N, N) Homp  (MEN, MEN)
S\ Ly X6y Ly 8'(Lx X1 Ly) §'Lxxy

Ty piay Lx X mLay piay Ly — mlapa(Lx X Ly ) — mlapa Lx <y

Tl Ay piay Owx XI T LAy piay, Owy — T lapabdi(wyxy Kwy ) — m A piabwx xy

~Y ~Y ~Y

—1 —1 —1 ~ ~1
Tl AT wx XA, 7wy — Iz (wx Kwy ) == m A7 wxxy

7 Examples

7.1 Euler class of IR-constructible sheaves

Let F be an object of D% _.(X), X being still a complex manifold. We shall prove that
peu(F) is nothing but CC(F), the characteristic cycle of F' constructed by Kashiwara
in [6], (see also [7, Chapter IX]). Recall that CC(F') is obtained as the image of idp €
Hom(F, F) in HY(T*X; 7 'wx), (where A = SS(F)), by the sequence of morphisms:

RHom(F,F) «= §(FXDF)
«~— Rm.RUp\pua(FXIDF)
— R?T*RFA,U,A(SMX

~ Rm RO\ lwy.
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Proposition 7.1 Let F' € D (X). Then:
peu(F) = CC(F)
Proof:  We start with the commutative diagram:

(S](DX — (S]RHO?TLD (Qx,Qx)

!

Cx Xwx —= QXQQX®£X><X Oxxx

Tensoring by ¢; *F, then applying RHom(gy ' F,-), we get the commutative diagram:

ORHom(F, F) —= s RHomp, (F ® Qx, F @ Qx)

|

FXIDF = FROxKDF®DUx @y  Oxxx

Set
H=F®QxXDF®DQx ®£Xxx Oxxx

We have a commutative diagram:

FXIDF — H

| |

(Swa = 51&)){.

Hence we have a commutative diagram, in which A = SS(F):

RHom(F,F) - RHomp (F®Qx, F®Qx)
8'FXIDF s 8'H
RW*RFAMI(NF DF) —= RW*Ri:,U,AH
R RUppuabiwx = RT('*RILA(SMUX
RT('*RF£7T_IMX = RW*RI}W_ILJX.
The result follows by applying the functor HORI'(X;-). O

7.2 Euler class of D-modules and £-modules

Let us first recall the construction of the microlocal Euler class of a coherent Dx-module,
which of course, is a little easier than that of an elliptic pair.
Let M € Db, (Dx), and let A = char(M). The isomorphism of (Dx, Dx )-bimodules

coh

~ r0,dx)
Dy ~ BA|XXxX
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gives rise to the chain of morphisms:

RMomp, (M. M) =~ RMom iy (45" M, ¢ M &1 BUR))
~ (MXDM) ®£mx Bajx xx[—dx]
— Rm R\ pa(M X DM ®£Xxx Oxxx)
— Rm.RUApaAdwx

~ Rn,RT 7 twy.
This defines the morphism:
Homp, (M,M) — HY(T*X ;7  wy)

and since this morphism is obviously the same as that constructed for elliptic pairs in
§3, peu(M) is the image of idy.

Let Ex denote the sheaf on 7* X of finite order microdifferential operators of [10] (see
also [11] for a detailed exposition). We shall adapt our construction of the microlocal
Euler class to the case of coherent £x-modules.

One denotes by Cajxxx the simple holonomic £xx-module associated to the di-
agonal embedding A — X x X, the "microlocalization” of the Dx-module Ba|xxx
encountered above. Isomorphism (3.2) entails the isomorphism of (€x, Ex)-bimodules:

0,d
Ex ~ Cy. (7.1)

Consider a coherent right £x-module A defined on an open subset U of T*X (or more

generally an object of the derived category D2, (£ |r)). One can adapt to this situation

the construction of the microlocal Euler class of elliptic pairs. Set
DN = RHomgx(N, Ex o, 7 1Qx[dx])

and let A = supp N. Morphism (7.1) gives rise to the chain of morphisms:

12

RHom ; (N, N) RHom q2—15X<QQ_1N7 N Oprtex C(Aog();)X)
~ NEDN &  Capxxx[—dx]
«— RI\(N XIDN ®5LXXx Cajxxx|[—dx])

— RFA<C(AQ|C§?>ZX ®p.

Exxx CA|X><X)

12

RIZ7lwy.
Applying the functor HRT'(U;-), we obtain the morphism:
Hom, (N, N) — HR(U; 7 wx). (7.2)

Definition 7.2 Let N € D>, (€|y). The image of idy by the morphism (7.2) is

coh

called the microlocal Euler class of A and is denoted peu(N).
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This definition is clearly compatible to that we have made for D-modules, which
implies that if U is open in T*X and if M belongs to D", (D), then:

coh
pen(Ex @ip, m Mly) = peu(M)|u. (7.3)

Remark 7.3 Let £ denote the sheaf of microlocal operators constructed in [10]. Re-
call that it is defined as:

EX = na O [dx]. (7.4)

If N e D2, (EP]r), we set

coh
NP =N®, %
Then replacing Cajxxx by Cg{lXX « in the above construction, one sees it would be
possible to define directly the microlocal Euler class of N'® for N perfect. Using the

isomorphism

C(de)

L ~ (2dx) L R
AlXxX ®5XXX CAIXxX - CA|X><X ®

Exxx CA|X><X7

one gets that peu(N) = peu(N™®). In particular, peu(N') depends only on N'®.

7.3 Euler class of holonomic modules

Let N be a holonomic £x-module defined on an open subset U of T*X, and let A
denotes its support (i.e., its characteristic variety). Then A is a closed complex analytic
Lagrangian subset of U, conic for the action of €* on T*X and there is a complex conic
smooth submanifold Ay C A which is open and dense in A. Let Ay = |, Aq, the A,’s
being locally closed smooth and connected.

On each A,, the Ex-module N has a well-defined multiplicity m,, defined by Kashi-
wara in [5]. Moreover, each A, is closed in

U= U\ (AN Ad)

and defines a Lagrangian cycle [A,] in U’. Since U \ U’ has real codimension at least
two in U, the sum >, m,[A,] defines a Lagrangian cycle on U supported by A. Let us
denote it by CC(N). Then:

CC(N) € HY(U; 7 twx).
Proposition 7.4 Let N be a holonomic Ex-module. Then:
peu(N) = CC(N).

Proof: Since both terms of the formula are Lagrangian cycles, it is enough to prove the
result at generic points of A. Hence we may assume A =T, X NU, where Z is a closed
complex submanifold of X. Since peu(N') depends only on N'® (see Remark 7.3), we
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may assume that A is a finite direct sum of sheaves Czx ®p, §2x on U. Hence, it
remains to prove the formula:

peu(Bzix) = [T7X] (7.5)

This equality is a corollary of our preceding results. In fact, consider the embedding
i © Z — X and the projection a : Z — {pt}. Then Bzx = i.(Oz), and Oy =
a '(Cypyy). Since the Lagrangian cycle [T5X] is the direct image by the map ¢ of the
inverse image by a of the Lagrangian cycle € on the manifold {pt}, the result follows
from Theorems 5.1 and 6.3. O

Corollary 7.5 Let M be a holonomic Dx-module. Then
peu(M) = peu(M ®£X Ox).

In other words, the microlocal Euler class of a holonomic Dy-module is the same as
that of the complex of its holomorphic solutions. (Recall that this last complex is
constructible by [4].)

Proof: The result follows from Proposition 3.2 and the equality
CC(M)=CC(M ®7§X Ox)

proved in [5], but it can also be obtained directly, by considering the commutative
diagram below.

RHom p, (M, M) RHom p, (M ®,£X Ox, M ®,£X Ox)

§'(MX DM @5

== Dxxx

Oxxx) —=—06((Mey Ox)X (DM@, Ox))

Qxdx] ®£X Ox = wx

7.4 FEuler class of O-modules

Consider a coherent Ox-module F. To it, one can associate the right coherent Dx-
module F R0 D~ . We shall show that the Euler class of this Dx-module is the natural

image of a cohomology class which belongs to H. dx

cop7(X;Qx). For that purpose, let us

introduce the following notations.
Let F and G be two Ox-modules. We set:

DOf = RHOmOX<f79X[dX])7
ng = OXXX ®OXOX (fg)
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Now assume F is Ox-coherent and consider the chain of morphisms:
RHom ,, (F,F) — 6(F K oDoF) — F @} DoF — Qx|dx].
This defines:

Hom o (F,F) — HiX, (X Qx). (7.6)

supp F

Definition 7.6 Let F be a coherent Ox-module and let S denote its support. The
image of idz in Hi¥(X;Qx) by the morphism (7.6) is called the holomorphic Euler
class of F and denoted by eup(F).

The natural morphism Qx[dx] — wx defines the morphism:
o HX(X;Qx) — HYX;wx). (7.7)

Proposition 7.7 Let F be a coherent Ox-module. Then eu(F ®,, Dx) is the image
of eup(F) by the morphism (7.7).

Proof:  We start with the commutative diagram:

51(9}( 5!DX

| |

Ox XloDoOx —— (Dx X] DDx) ®£XDX Oxxx.

Applying the functor ¢; ' F ®,-10, *» then the functor RHom 0x (gz'F, ), we get the
1
commutative diagram:

8 RHom ¢, (F,F) 8 RHom p,_(F &, Dx,F ®p_ Dx)

| |

FXoDoF (F ®p, Dx) X D(F &, Dx) ®7§XX Oxxx.

Set

X X

Then
H =~ (F ®, Dx)XD(F ®, Dx)ep

On the other hand, we have the commutative diagram:

x[XIDx Oxxx-

S \FXloDoF —— 6 'H

|

Qx|[dx]

wx.
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Hence, we get the commutative diagram:

RHom, (F,F) RHomp, (F &y, Dx,F @y, Dx)

| |

8 (FXloDo, F) 5’JH
Qx [dX] wx
which completes the proof. O

Remark 7.8 The holomorphic Euler class of a coherent Ox-module is known for long,
and O’Brian, Toledo and Tong [9] have proved that this class can be obtained as the
term of degree dx of the product of the Chern character of F by the Todd class of X.
See §7 below for further comments on this point.

Remark 7.9 One should not confuse the holomorphic Euler class eup, (-) and the
Euler class eu(-). For example, a(eup, (Ox)) = eu(Dx) and eu(Ox) = eu(Cx). If one
chooses X = P(C), it follows from Theorem 5.1 that:

/X cu(Ox) = 2, (7.8)

/X cuo, (Ox) = 1. (7.9)

This example also shows that the diagram below is not commutative.

Cx Ox
I
Wy Qx[dx]

Here, the first and second vertical arrows are defined by
Ty — Cx Xwy,

and
00x — OxXloDoOyx,

respectively, as in the proofs of Propositions 3.2 and 3.8.

Remark 7.10 Let F be a coherent Ox-module and denote by S its support. Then
char(F ®, Dx) =n""5, hence:

peu(F @, Dx)=m"eu(F &, Dx),
where 7* is the isomorphism:

Hg(X;wx) = Hpog(T° X wy).
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8 A conjectural link with Chern classes

Let X be a complex manifold, Z a complex analytic subset and denote by K2"(X) the
Grothendieck group of the full subcategory of DP

on(Ox) consisting of objects supported
by Z. In this section we shall assume to be constructed a local Chern character:

chy : K§'(X) — & H7 (X; Cx)
J
such that if we define the local Euler character by the formula:
euy(F) = chz(F)Utdx(TX)

(where U is the cup product and tdx(-) is the Todd class), then the local Chern character
is compatible to external product and inverse image and the local Euler character is
compatible to external product and proper direct image, this last point being what
we shall refer as the Grothendieck-Riemann-Roch theorem. Such a construction does
exists in the algebraic case (see [2]). In the analytic case, one can construct chy(+) after
shrinking X (see [3]). More precisely, let X’ be an open relatively compact subset of
X. Then one defines the natural morphism:

p: K3"(X) — K5"(X')

by realification. If F is a bounded complex of coherent Ox-modules, we associate to it
the complex F® := Ayr ®p, F, where Axmr denotes the sheaf of real analytic functions
on the real analytic manifold X® underlying X. Applying Cartan’s theorem "A” (on
the closure of X') we see that F™ defines an element of K”(X’). Unfortunately, the
Grothendieck-Riemann-Roch theorem (with supports) has, to our knowledge, never
been written in this case. Hence the results of this section should be considered as
conjectural, or should be stated with suitable modifications (e.g. assuming we work in
the algebraic category).

Now consider a left coherent Dx-module M endowed with a good filtration and
whose characteristic variety is contained in a closed conic analytic subset A of T*X.
Let gr(M) denote the associated graded module and set:

gr(M) = Opex @r-1gypy) T gr(M).

Note that the element oy (M) of K§*(T*X) defined by gr(M) locally depends only on
M., not on the choice of the good filtration [5].
Let f: X — Y be a morphism of complex manifolds. We shall use the notations
introduced in §2, in particular in (2.9), (2.12), (2.13) and (2.15).
First consider a closed conic subset Ay of T*Y | and assume f is non-characteristic
with respect to Ay (i.e. *f’ is proper on f'(Ay)). Then the morphisms:
fr i K (TYY) — K¢, (X xy T7Y),

frtAx
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and

bf K;;lAY (X xy T*Y) — K?S(Ay)(T*X)
are well-defined and if AV is a left coherent Dy-module whose characteristic variety is
contained in Ay, it follows from Kashiwara [5] that:

tfif;o-/\y (N) = O-f“(AY)<i_1N)' (81)
Similarly if f is proper on Ay NT5%X (i.e. f, is proper on *f'~1(Ay)), then:
KR (TTX) — K (X xy T7Y)

and
Frw t Ko (X xy TX) — K37 (T7Y)

are well-defined, and it is shown in Laumon [8] that if M is a right good Dx-module
whose characteristic variety is contained in Ay, then:

fw*tf/*O-AX (M) = Ufu(AX)<i!M)' (82)
Finally one shows easily that:
UAX<M)UAY<N) = UAXXAY<MN)' (83)

Using the Riemann-Roch-Grothendieck Theorem at the level of cotangent bundles,
Laumon (loc.cit.) has deduced from (8.2) a formula which computes the Chern charac-
ters of o, () (f, M) from that of op, (M). In order to get a class which behaves well
both under direct and inverse images, we introduce the following:

Definition 8.1 Let M (resp. N) be a right (resp. left) coherent Dx-module endowed
with a good filtration and whose characteristic variety is contained in a closed conic
analytic subset A of T*X. We define the microlocal Chern character of M and A along
A as:

pcha(M) = chpa(oa(M)) Un*tdx(TX),
pcha(N) = cha(oa(N)) Un"tdx (T*X).

We denote by pch) (M) the component of pcha(M) in H}(T*X; Cr-x), and similarly
for \V.

This definition is motivated by the two following statements.

Proposition 8.2 The microlocal Chern character of the right Dx-module M ®o, Qx
is the microlocal Chern character of the left Dx-module M. In other words, if M is a
left Dx-module:

pcha(M ®o, Qx) = pcha(M).
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Proof: Recall that if E is a complex vector bundle of rank d, then denoting by ¢ ()
the first Chern class:

tdx(E*) = e EIUtdx(E),
ch(AE) = ea®),

Choosing F = TX, we get:
tdx<T*X) = Ch(Qx) U tdx<TX),
hence:

cha(oa(M @, Qx))Un*tdx(TX) = cha(oa(M)) U ch(Qx) Ur*tdx (T X)
= cha(oa(M)) U tdx (T*X).

O

Theorem 8.3 Let M (resp. N') be a coherent Dx-module (resp. Dy-module) endowed
with a good filtration, and let Ax (resp. Ay ) denote its characteristic variety.

(i) Assume f in non-characteristic for N'. Then:
F*(uchay (N)) = pchuay) (f7N).
(ii) Assume f is proper on supp M. Then:
fulpcha (M) = pchy, (a)(f M)
(iii) One has:
pich (M) X pehay, (N) = pchayxay, (MEIN).

Notice that in the above statements (i) and (ii), M or A can either be a right or a
left D-module (of course, in (iii) they need to be of the same type). This follows from
Proposition 8.2 since

f(M &, Qx) = (M) o, v,

and similarly for inverse images.

Proof: 1In the course of the proof we shall sometimes use the following notations: if W
is a manifold, we set for short

td(W) = tdw (TW).
Then recall that if p: £ — W is a complex vector bundle on W, one has:

td(E) = tdp(TE) = p*tdw (E) U p*td(W),
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which follows from the exact sequence of vector bundles on W:
0—p'E—TE —p 'TW — 0.

Also recall the diagram associated to f:

tpr
"X / X xy T*Y LT*Y

WXJ A WJ

(i) We may assume N is a left Dy-module. Using (8.1) and the Riemann-Roch-Grothen-
dieck theorem applied to the map *f’, we obtain:
chnag)pran) ([N ULA(TX) = chpuag[' 1 froa, (N)] U td(T"X)
= Slfrchayon, (N) UEd(X Xy T7Y)].

Hence:

Chfu(AY)O'fu(Ay)(i_lN) Unxtdx(T*X) Unitdx(TX)
= 'f\[frchayon, (N) U tdx (TX) U™ ftdy (T*Y)]
L chay ony (N) U mitdy (THY)] U nictdx (T X)

and the result follows since tdx (7'X) has an inverse.
(ii) We may assume M is a right Dy-module. Using (8.2) and the Riemann-Roch-
Grothendieck theorem, we get:

Chfu(/\x)afu (L(M) U td(T*Y)) = Cth(AX) [fmtf/*O'AX (M)] U td(T*Y)
= fwl[tf/*ch/\x OAx (M) U td(X Xy T*Y)]

Hence:

chy,(ax)T s, (ax) (f M) Uy tdy (T7Y) U mytdy (TY)
= [l f*chayon, (M) U tdx (TX) Un*f*tdy (T*Y)]
= [l lchayon, (M) UTktdx (TX)] U mytdy (T*Y)

and the result follows since tdy (T*Y') is invertible.
(iii) follows from (8.3) and the fact that ch(-) commutes to external product. O

As a corollary we get that if M and N are two Dy-modules with characteristic variety
contained in Ag and A; respectively, and if Ay N Ay C Tx X, then:

,U’Ch(/\o-i-/\ﬂ(M ®£x N) = :U’Ch/\o (M) *p :U’Ch/h (N)
In view of Theorem 8.3, the microlocal Chern character has the same functorial prop-

erties as the microlocal Fuler class.
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Let us come back to the situation of Definition 8.1 and set:
cp = codimg A.

It is clear that: A
pchh (M) =0 for j < 2ca.

Proposition 8.4 The component of degree 2cy of the microlocal Chern character of
M, that is, uch3™ (M), is the characteristic cycle of M along A. In particular if M is
holonomic:

peh ™ (M) = peu(M).
Proof:  Since pch (M) is zero for j < 2ca,we have
pehy™ (M) = [eha(oa(gr(M)))]*,

and it is well-known that the term on the right-hand side is the analytic cycle on A of
the Op«x-coherent module gr(M), that is, the characteristic cycle of M. O

Now we make the following conjectures:

Conjecture 8.5 (i) pch) (M) =0 for j ¢ [2cy, 2dx],
(i) pech3 (M) = pen(M).

By Proposition 8.4, Conjecture 8.5 (ii) is true for holonomic Dx-modules. Moreover
it follows from Remark 7.10 and the work of O’Brian-Toledo-Tong [9] that Conjec-
ture 8.5 is true for induced Dy-modules, i.e., for modules of the type F &, Dx, F
being O x-coherent.

Example 8.6 Let M be a compact n-dimensional real analytic manifold, X a com-
plexification of M, M a right coherent Dx-module, elliptic on M. By Corollary 5.6,
we have:

X(RT(M; M ®7§X Ox)) = /T*X peu(M) U peu(Chy).

Denote by o) the zero-section embedding M — T3, X and by j the embedding T, X —
T*X. Since T3, X N char(M) is contained in M, we get:

. peu(M) U peu(Cyy) = / Xj* peu(M) = /M oy peu(M).

T* iy

Now assume Conjecture 8.5 (ii) is true. We get, with A = char(M):
WRTMEM @5 0x)) = [ o3 eh(oa(M)) Untdx (TX)]
= [ oul eh(oa(M)] U tdar (T M),

This is the classical Atiyah-Singer index formula.
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