Dendric preserving morphisms

France Gheeraert

April, 2022

France Gheeraert

Dendric preserving morphisms

Introduction

First observations Sizes of the alphabets Final results First definitions Dendric words Morphisms

Introduction

First definitions Dendric words Morphisms

Words

• An *alphabet* (A, B) is a finite set of *letters* (a, b, l, ...).

First definitions Dendric words Morphisms

Words

- An *alphabet* $(\mathcal{A}, \mathcal{B})$ is a finite set of *letters* $(a, b, \ell, ...)$.
- A (finite) word (w, u, ...) is a finite sequence of letters. The set of finite words on A is denoted A*. The length of a word w (i.e. number of letters) is denoted |w|. The empty word is denoted ε.

First definitions Dendric words Morphisms

Words

- An alphabet $(\mathcal{A}, \mathcal{B})$ is a finite set of letters $(a, b, \ell, ...)$.
- A (finite) word (w, u, ...) is a finite sequence of letters. The set of finite words on A is denoted A*. The length of a word w (i.e. number of letters) is denoted |w|. The empty word is denoted ε.
- A *bi-infinite word* (x, y, ...) is an element of $\mathcal{A}^{\mathbb{Z}}$.

First definitions Dendric words Morphisms

Factors

• A factor of a word is a finite consecutive sub-sequence.

First definitions Dendric words Morphisms

Factors

- A *factor* of a word is a finite consecutive sub-sequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.

First definitions Dendric words Morphisms

Factors

- A *factor* of a word is a finite consecutive sub-sequence.
- The *language* of x, denoted $\mathcal{L}(x)$, is the set of factors of x.
- If w = uv, then u is a *prefix* of w and v is a *suffix* of w.

First definitions Dendric words Morphisms

Left and right extensions

$$\begin{split} LE_x(w) &= \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(x) \}, \quad RE_x(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L}(x) \}, \\ E_x(w) &= \{ (a,b) \in LE_x(w) \times RE_x(w) \mid awb \in \mathcal{L}(x) \} \end{split}$$

First definitions Dendric words Morphisms

Left and right extensions

$$\begin{split} LE_x(w) &= \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(x) \}, \quad RE_x(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L}(x) \}, \\ E_x(w) &= \{ (a,b) \in LE_x(w) \times RE_x(w) \mid awb \in \mathcal{L}(x) \} \end{split}$$

Definition

The extension graph of $w \in \mathcal{L}(x)$ is the bipartite graph $\mathcal{E}_x(w)$ with vertices $LE_x(w) \sqcup RE_x(w)$ and edges $E_x(w)$.

Final results

Sizes of the alphabets

First definitions Dendric words Morphisms

 $^{\omega}(010).(010)^{\omega}$

Final results

Sizes of the alphabets

First definitions Dendric words Morphisms

Example:

 $^{\omega}(010).(010)^{\omega}$

$\mathcal{E}(\varepsilon)$

France Gheeraert

Final results

Sizes of the alphabets

First definitions Dendric words Morphisms

Example:

Final results

Sizes of the alphabets

First definitions Dendric words Morphisms

Example:

$^{\omega}$ (010).(010) $^{\omega}$

France Gheeraert

Final results

Sizes of the alphabets

First definitions Dendric words Morphisms

Example:

Introduction First observations Sizes of the alphabets

Final results

First definitions Dendric words Morphisms

Example:

Final results

Sizes of the alphabets

First definitions Dendric words Morphisms

Example:

France Gheeraert

First definitions Dendric words Morphisms

Example:

Definition

A word $w \in \mathcal{L}(x)$ is *dendric* (in x) if $\mathcal{E}_x(w)$ is a tree. A bi-infinite word x is *dendric* if all the words of $\mathcal{L}(x)$ are dendric.

First definitions Dendric words Morphisms

Factor complexity

The factor complexity of $x \in \mathcal{A}^{\mathbb{Z}}$ is the function

 $p_{x}(n):\mathbb{N}\to\mathbb{N},\quad n\mapsto\#\mathcal{L}(x)\cap\mathcal{A}^{n}.$

First definitions Dendric words Morphisms

Factor complexity

The factor complexity of $x \in \mathcal{A}^{\mathbb{Z}}$ is the function

$$p_x(n): \mathbb{N} \to \mathbb{N}, \quad n \mapsto \#\mathcal{L}(x) \cap \mathcal{A}^n.$$

Proposition

If $x \in \mathcal{A}^{\mathbb{Z}}$ is dendric, then

$$p_{x}(n)=(\#\mathcal{A}-1)n+1.$$

First definitions Dendric words Morphisms

Definition

Definition

A morphism $(\sigma, \alpha, \tau, \dots)$ is a monoid morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$, i.e. for any $u, v \in \mathcal{A}^*$,

 $\sigma(uv) = \sigma(u)\sigma(v).$

First definitions Dendric words Morphisms

Definition

Definition

A morphism $(\sigma, \alpha, \tau, ...)$ is a monoid morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$, i.e. for any $u, v \in \mathcal{A}^*$,

 $\sigma(uv) = \sigma(u)\sigma(v).$

$$\sigma: \{0, 1, 2\}^* \to \{0, 1\}^*, \quad egin{cases} 0 \mapsto 001 \ 1 \mapsto 10 \ 2 \mapsto 0 \end{cases}$$

First definitions Dendric words Morphisms

Definition

Definition

A morphism $(\sigma, \alpha, \tau, ...)$ is a monoid morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$, i.e. for any $u, v \in \mathcal{A}^*$,

 $\sigma(uv) = \sigma(u)\sigma(v).$

$$\sigma: \{0,1,2\}^* o \{0,1\}^*, egin{array}{ccc} 0 \mapsto 001 \ 1 \mapsto 10 \ 2 \mapsto 0 \ \end{array} \sigma(021) = 001 \ 0 \ 10 \ \sigma(arepsilon) = arepsilon \end{array}$$

First definitions Dendric words Morphisms

Definition

Definition

A morphism $(\sigma, \alpha, \tau, ...)$ is a monoid morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$, i.e. for any $u, v \in \mathcal{A}^*$,

 $\sigma(uv) = \sigma(u)\sigma(v).$

$$\sigma: \{0,1,2\}^* o \{0,1\}^*, egin{array}{ccc} 0 \mapsto 001 \ 1 \mapsto 10 \ 2 \mapsto 0 \ \end{array} \sigma(021) = 001 \ 0 \ 10 \ \sigma(arepsilon) = arepsilon \end{array}$$

Assumptions: the image **alphabet is minimal** and the morphism is **non erasing**

First definitions Dendric words Morphisms

Image of a bi-infinite word

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

First definitions Dendric words Morphisms

Image of a bi-infinite word

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

Question:

What are the morphisms such that $\sigma(x)$ is dendric if x is dendric?

First definitions Dendric words Morphisms

Image of a bi-infinite word

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

Question:

What are the morphisms such that $\sigma(x)$ is dendric if x is dendric?

Definition

A morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is *dendric preserving* if $\sigma(x)$ is dendric for all dendric $x \in \mathcal{A}^{\mathbb{Z}}$.

Trivial cases Examples of dendric preserving morphisms

First observations

Trivial cases Examples of dendric preserving morphisms

Unary alphabets

Trivial cases Examples of dendric preserving morphisms

Unary alphabets

• If
$$\mathcal{B} = \{a\}$$
, then $\sigma(x) = {}^{\omega}a.a^{\omega}$

Trivial cases Examples of dendric preserving morphisms

Unary alphabets

• If
$$\mathcal{B} = \{a\}$$
, then $\sigma(x) = {}^{\omega}a.a^{\omega}$
 \longrightarrow always dendric

Trivial cases Examples of dendric preserving morphisms

Unary alphabets

• If
$$\mathcal{B} = \{a\}$$
, then $\sigma(x) = {}^{\omega}a.a^{\omega}$
 \longrightarrow always dendric

• If
$$\mathcal{A} = \{a\}$$
 and $\sigma(a) = v$, then $\sigma(x) = {}^{\omega}v.v^{\omega}$

Trivial cases Examples of dendric preserving morphisms

Unary alphabets

• If
$$\mathcal{B} = \{a\}$$
, then $\sigma(x) = {}^{\omega}a.a^{\omega}$
 \longrightarrow always dendric

• If
$$\mathcal{A} = \{a\}$$
 and $\sigma(a) = v$, then $\sigma(x) = {}^{\omega}v.v^{\omega}$
 \longrightarrow dendric iff $\#\mathcal{B} = 1$

Trivial cases Examples of dendric preserving morphisms

Unary alphabets

Let $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ be a morphism and $x \in \mathcal{A}^{\mathbb{Z}}$.

• If
$$\mathcal{B} = \{a\}$$
, then $\sigma(x) = {}^{\omega}a.a^{\omega}$
 \longrightarrow always dendric
• If $A = \{a\}$ and $\sigma(a) = w$ then $\sigma(w) = {}^{\omega}w$

• If
$$\mathcal{A} = \{a\}$$
 and $\sigma(a) = v$, then $\sigma(x) = {}^{\omega}v.v^{\omega}$
 \longrightarrow dendric iff $\#\mathcal{B} = 1$

From now on, we assume that the alphabets are of size at least 2

Trivial cases Examples of dendric preserving morphisms

"Codings"

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ defines a bijection between \mathcal{A} and \mathcal{B} , then σ is dendric preserving.

Introduction First observations Trivial cases Sizes of the alphabets Examples of dendric preserving morphisms Final results

"Codings"

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ defines a bijection between \mathcal{A} and \mathcal{B} , then σ is dendric preserving.

$$\sigma: \{a, b, c\}^* \to \{b, 0, 1\}^*, \quad \begin{cases} a \mapsto b \\ b \mapsto 0 \\ c \mapsto 1 \end{cases}$$
Introduction First observations Trivial cases Sizes of the alphabets Examples of dendric preserving morphisms Final results

"Codings"

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ defines a bijection between \mathcal{A} and \mathcal{B} , then σ is dendric preserving.

$$\sigma: \{a, b, c\}^* \to \{b, 0, 1\}^*, \quad \begin{cases} a \mapsto b \\ b \mapsto 0 \\ c \mapsto 1 \end{cases}$$

$$\mathcal{E}_{x}(ba)$$

Introduction First observations Trivial cases Sizes of the alphabets Examples of dendric preserving morphisms Final results

"Codings"

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ defines a bijection between \mathcal{A} and \mathcal{B} , then σ is dendric preserving.

$$\sigma: \{a, b, c\}^* \to \{b, 0, 1\}^*, \quad \begin{cases} a \mapsto b \\ b \mapsto 0 \\ c \mapsto 1 \end{cases}$$

 $\mathcal{E}_x(ba)$

 $\mathcal{E}_{\sigma(x)}(0b)$

.

Trivial cases Examples of dendric preserving morphisms

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$\alpha_{\ell}^{L}: \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \ell \mathsf{a} & \text{if } \mathsf{a} \neq \ell \end{cases} \qquad \alpha_{\ell}^{R}: \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \mathsf{a}\ell & \text{if } \mathsf{a} \neq \ell \end{cases}$$

for any letter ℓ .

Trivial cases Examples of dendric preserving morphisms

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$\alpha_{\ell}^{L} : \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \ell \mathsf{a} & \text{if } \mathsf{a} \neq \ell \end{cases} \qquad \alpha_{\ell}^{R} : \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \mathsf{a}\ell & \text{if } \mathsf{a} \neq \ell \end{cases}$$

for any letter ℓ .

Proposition

If σ is an Arnoux-Rauzy morphism, then x is dendric iff $\sigma(x)$ is dendric.

Trivial cases Examples of dendric preserving morphisms

Arnoux-Rauzy morphisms

The Arnoux-Rauzy morphisms are defined by

$$\alpha_{\ell}^{L}: \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \ell \mathsf{a} & \text{if } \mathsf{a} \neq \ell \end{cases} \qquad \alpha_{\ell}^{R}: \begin{cases} \ell \mapsto \ell \\ \mathsf{a} \mapsto \mathsf{a}\ell & \text{if } \mathsf{a} \neq \ell \end{cases}$$

for any letter ℓ .

Proposition

If σ is an Arnoux-Rauzy morphism, then x is dendric iff $\sigma(x)$ is dendric.

In particular, for any morphism τ , τ is dendric preserving iff $\sigma \circ \tau$ is dendric preserving.

Trivial cases Examples of dendric preserving morphisms

Stability under composition

Proposition

If σ and τ are dendric preserving, then $\sigma \circ \tau$ is dendric preserving.

Trivial cases Examples of dendric preserving morphisms

Stability under composition

Proposition

If σ and τ are dendric preserving, then $\sigma \circ \tau$ is dendric preserving.

The morphisms

$$\alpha_{\ell_n}^{s_n} \circ \cdots \circ \alpha_{\ell_1}^{s_1} \circ \pi$$

(where $\pi : A \to B$ is a bijection and, for all $i \leq n$, $s_i \in \{L, R\}$ and $\ell_i \in B$) are dendric preserving.

Trivial cases Examples of dendric preserving morphisms

Stability under composition

Proposition

If σ and τ are dendric preserving, then $\sigma \circ \tau$ is dendric preserving.

The morphisms

$$\alpha_{\ell_n}^{s_n} \circ \cdots \circ \alpha_{\ell_1}^{s_1} \circ \pi$$

(where $\pi : A \to B$ is a bijection and, for all $i \leq n$, $s_i \in \{L, R\}$ and $\ell_i \in B$) are dendric preserving.

Question: Are there other dendric preserving morphisms?

Upper bound Lower bound

Sizes of the alphabets

Upper bound Lower bound

Idea for the upper bound

Proposition (Reminder) If $x \in A^{\mathbb{Z}}$ is dendric, then

 $p_{\mathsf{X}}(n) = (\#\mathcal{A}-1)n+1.$

Upper bound Lower bound

Idea for the upper bound

Proposition (Reminder)

If $x \in \mathcal{A}^{\mathbb{Z}}$ is dendric, then

$$p_{\mathsf{X}}(n) = (\#\mathcal{A}-1)n+1.$$

And if $\sigma(x)$ is dendric, then

$$p_{\sigma(x)}(n) = (\#\mathcal{B}-1)n + 1.$$

Upper bound Lower bound

Idea for the upper bound

Proposition (Reminder)

If $x \in \mathcal{A}^{\mathbb{Z}}$ is dendric, then

$$p_{\mathsf{X}}(n) = (\#\mathcal{A}-1)n+1.$$

And if $\sigma(x)$ is dendric, then

$$p_{\sigma(x)}(n) = (\#\mathcal{B}-1)n + 1.$$

<u>Goal</u>: Bound $p_{\sigma(x)}$ by a linear function

France Gheeraert

Upper bound Lower bound

$$\sigma: \begin{cases} 0 \mapsto 001 \\ 1 \mapsto 10 \\ 2 \mapsto 0 \end{cases}$$

 $x: \dots 2.001210\dots$ $\sigma(x): \dots 0.001\ 001\ 10\ 0\ 10\ 001\dots$

Upper bound Lower bound

$$\sigma: \begin{cases} 0 \mapsto 001 \\ 1 \mapsto 10 \\ 2 \mapsto 0 \end{cases}$$

 $x: \dots 2.001210\dots$ $\sigma(x): \dots 0.001\ 001\ 10\ 0\ 10\ 001\dots$

Upper bound Lower bound

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

• $\sigma(00)$ after 0 letter

Upper bound Lower bound

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

• $\sigma(00)$ after 0 letter

Upper bound Lower bound

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x): \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

- $\sigma(00)$ after 0 letter
- $\sigma(121)$ after 1 letter

Upper bound Lower bound

$$\sigma:\begin{cases} 0 \mapsto 001 & x : \dots 2.001210 \dots \\ 1 \mapsto 10 & \\ 2 \mapsto 0 & \sigma(x) : \dots 0.001 \ 001 \ 10 \ 0 \ 10 \ 001 \dots \end{cases}$$

0010 appears in

- $\sigma(00)$ after 0 letter
- $\sigma(121)$ after 1 letter

Upper bound Lower bound

Coverings

Definition

A covering of $u \in \mathcal{B}^n$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{N}$ where $u = \sigma(w)_{[k+1,k+n]}$ and w is minimal, i.e.

$$k+1 \leq |\sigma(w_1)|$$
 and $k+n \geq \left|\sigma(w_{[1,|w|[})\right|+1)$

The set of coverings of words of length *n* is denoted $C_{x,\sigma}(n)$.

Upper bound Lower bound

Coverings

Definition

A covering of $u \in \mathcal{B}^n$ is a pair $(w, k) \in \mathcal{L}(x) \times \mathbb{N}$ where $u = \sigma(w)_{[k+1,k+n]}$ and w is minimal, i.e.

$$k+1 \leq |\sigma(w_1)|$$
 and $k+n \geq \left|\sigma(w_{[1,|w|[})
ight|+1)$

The set of coverings of words of length *n* is denoted $C_{x,\sigma}(n)$.

Proposition

We have

$$p_{\sigma(x)}(n) \leq \#C_{x,\sigma}(n).$$

Upper bound Lower bound

Number of coverings

Proposition

If $x \subseteq \mathcal{A}^{\mathbb{Z}}$ is dendric, then, for all $n \geq 1$,

$$\#\mathcal{C}_{x,\sigma}(n) = \sum_{a\in\mathcal{A}} |\sigma(a)| + (\#\mathcal{A}-1)(n-1).$$

Upper bound Lower bound

Number of coverings

Proposition

If $x \subseteq \mathcal{A}^{\mathbb{Z}}$ is dendric, then, for all $n \geq 1$,

$$\#\mathcal{C}_{\mathsf{x},\sigma}(\mathsf{n}) = \sum_{\mathsf{a}\in\mathcal{A}} |\sigma(\mathsf{a})| + (\#\mathcal{A}-1)(\mathsf{n}-1).$$

Corollary

If
$$x \subseteq \mathcal{A}^{\mathbb{Z}}$$
 and $\sigma(x) \subseteq \mathcal{B}^{\mathbb{Z}}$ are dendric, then $\#\mathcal{B} \leq \#\mathcal{A}$.

Upper bound Lower bound

Context

Definition

A morphism $\sigma : \mathcal{A}^* \to \mathcal{A}^*$ is strongly left proper if there exists $\ell \in \mathcal{A}$ such that, for all $a \in \mathcal{A}$,

 $\sigma(a) \in \ell(\mathcal{A} \setminus \{\ell\})^*.$

Context

Definition

A morphism $\sigma : \mathcal{A}^* \to \mathcal{A}^*$ is strongly left proper if there exists $\ell \in \mathcal{A}$ such that, for all $a \in \mathcal{A}$,

 $\sigma(a) \in \ell(\mathcal{A} \setminus \{\ell\})^*.$

Proposition

Let σ be a strongly left proper (for ℓ) and dendric preserving morphism. If p is the longest common prefix of all $\sigma(a)$, $a \in A$, then for each letter b, there exists exactly one letter a such that pb is a prefix of $\sigma(a)\ell$.

Context

Definition

A morphism $\sigma : \mathcal{A}^* \to \mathcal{A}^*$ is strongly left proper if there exists $\ell \in \mathcal{A}$ such that, for all $a \in \mathcal{A}$,

 $\sigma(a) \in \ell(\mathcal{A} \setminus \{\ell\})^*.$

Proposition

Let σ be a strongly left proper (for ℓ) and dendric preserving morphism. If p is the longest common prefix of all $\sigma(a)$, $a \in A$, then for each letter b, there exists exactly one letter a such that pb is a prefix of $\sigma(a)\ell$.

We have a similar result with the suffixes.

France Gheeraert

Upper bound Lower bound

Common prefix

Proposition

The following are equivalent:

- p is a prefix of $\sigma(a)^{\omega}$ for all $a \in \mathcal{A}$;
- 2 p is a prefix of $\sigma(w)p$ for all $w \in \mathcal{A}^*$;
- **(a)** p is a prefix of $\sigma(w)$ for all long enough $w \in \mathcal{A}^*$.

Upper bound Lower bound

Common prefix

Proposition

The following are equivalent:

- p is a prefix of $\sigma(a)^{\omega}$ for all $a \in \mathcal{A}$;
- 2 p is a prefix of $\sigma(w)p$ for all $w \in \mathcal{A}^*$;
- **③** p is a prefix of $\sigma(w)$ for all long enough $w \in \mathcal{A}^*$.

Definition

If it is finite, p_σ is the longest word satisfying the previous properties.

Upper bound Lower bound

Common prefix

Proposition

The following are equivalent:

- p is a prefix of $\sigma(a)^{\omega}$ for all $a \in \mathcal{A}$;
- 2 p is a prefix of $\sigma(w)p$ for all $w \in \mathcal{A}^*$;
- **③** p is a prefix of $\sigma(w)$ for all long enough $w \in \mathcal{A}^*$.

Definition

If it is finite, p_{σ} is the longest word satisfying the previous properties.

We also define s_{σ} with suffixes instead of prefixes.

Upper bound Lower bound

Proposition

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is dendric preserving, then for each $b \in \mathcal{B}$, there exists at most one $a \in \mathcal{A}$ such that $p_{\sigma}b$ is a prefix of $\sigma(a)p_{\sigma}$.

Upper bound Lower bound

Proposition

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is dendric preserving, then for each $b \in \mathcal{B}$, there exists at most one $a \in \mathcal{A}$ such that $p_{\sigma}b$ is a prefix of $\sigma(a)p_{\sigma}$. Similarly, for each $b \in \mathcal{B}$, there exists at most one $a \in \mathcal{A}$ such that bs_{σ} is a suffix of $s_{\sigma}\sigma(a)$.

Upper bound Lower bound

Proposition

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is dendric preserving, then for each $b \in \mathcal{B}$, there exists at most one $a \in \mathcal{A}$ such that $p_{\sigma}b$ is a prefix of $\sigma(a)p_{\sigma}$. Similarly, for each $b \in \mathcal{B}$, there exists at most one $a \in \mathcal{A}$ such that bs_{σ} is a suffix of $s_{\sigma}\sigma(a)$.

Corollary

If $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ is dendric preserving, then $\#\mathcal{A} \leq \#\mathcal{B}$.

Final results

Initial case

Lemma

If σ is dendric preserving and $s_{\sigma}p_{\sigma} = \varepsilon$, then σ is a "coding".

Initial case

Lemma

If σ is dendric preserving and $s_{\sigma}p_{\sigma} = \varepsilon$, then σ is a "coding".

Proof:

It suffices to prove that the images of the letters are of length 1.

Induction

Lemma

If σ is dendric preserving morphism and $|s_{\sigma}p_{\sigma}| = n > 0$, then

9
$$(s_{\sigma}p_{\sigma})_1 = (s_{\sigma}p_{\sigma})_n =: \ell$$
 and it is such that, for any dendric x ,

$$E_{\sigma(x)}(\varepsilon) = (\ell \times \mathcal{B}) \cup (\mathcal{B} \times \ell);$$

Induction

Lemma

If σ is dendric preserving morphism and $|s_{\sigma}p_{\sigma}| = n > 0$, then

9 $(s_{\sigma}p_{\sigma})_1 = (s_{\sigma}p_{\sigma})_n =: \ell$ and it is such that, for any dendric x,

$$E_{\sigma(x)}(\varepsilon) = (\ell \times \mathcal{B}) \cup (\mathcal{B} \times \ell);$$

2 there exists a morphism τ such that $\sigma \in \{\alpha_{\ell}^{L} \circ \tau, \alpha_{\ell}^{R} \circ \tau\}$.
Introduction First observations Sizes of the alphabets Final results

Proposition

A morphism is dendric preserving iff it can be decomposed into

$$\alpha_{\ell_n}^{s_n} \circ \cdots \circ \alpha_{\ell_1}^{s_1} \circ \pi$$

(where $\pi : A \to B$ is a bijection and, for all $i \leq n$, $s_i \in \{L, R\}$ and $\ell_i \in B$).

Introduction First observations Sizes of the alphabets Final results

Thank you for your attention!