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Prediction

Eime
0,z,x ~p(0,z,x)
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Inference

[

time

Warning: The likelihood p(z|0) = [ p(z, z|6)dz isintractable.
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Simulation-based inference



Start with
e asimulator that can generate N samples z; ~ p(z;|0;),
e aprior model p(8),

e observed data Zobs ~ P(Tobs |Otrue )-

Then, estimate the posterior

p(wobs |0)p(0)

p(0|w0b8) - p(mobs)
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Neural ratio estimation (NRE)

The likelihood-to-evidence r(z|0) = p}g?x‘?) = pfg};‘?)e) ratio can be learned, even

if neither the likelihood nor the evidence can be evaluated:

_

z,0 ~ p(z,0)
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... but proceed with caution!

aka model checking, evaluation, and criticism.
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Prior model p(6)

Observational model p(z|6)



"All models are wrong, but some are useful" - George Box
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The observational model p(x|60)

p(z|6) should capture the pertinent structure of the true data generating
process for the inference results to be useful.

A model that does not capture every precise detail of the true data generating
process can still be useful if it captures the details relevant to the particular
analysis goals.

Credits: Michael Betancourt, 2020. 12/30


https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html#14_Model_Adequacy

The observational model can often be made richer by including in it additional
nuisance parameters v that capture known unknowns.

In this case, the likelihood becomes

p(z|6) = / p(2]6,)p(v|6)dv.

Although nuisance parameters can reduce model misspecification, their presence
and marginalization will result in increased uncertainties for the parameters 0 of
interest.

13/30



p 0:00/0:26

Nuisance parameters are used to model known unknowns in a robotic setup (e.g.,
camera position, table position, etc).

Credits: Marlier et al, 2021. 14/30


https://arxiv.org/abs/2109.14275

The prior model p(6)

The prior model p(6’) specifies one's beliefs about the model parameters. It
should reflect domain expertise.
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The consequences of the prior model in the context of the observational model
can be diagnosed with prior predictive checks to evaluate what data sets would
be consistent with the prior.

A prior predictive check generates data S according to the prior predictive
distribution p(x) as

esim - p(@)

msim -~ p(x‘esim)7

or summary statistics 7" (5™ ) thereof.
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Fig. 4: Visualizing the prior predictive distribution. Panels (a) and (b) show realizations
from the prior predictive distribution using priors for the 3°s and 7'’s that are vague and
weakly informative, respectively. The same N1 (0,1) prior is used for o in both cases.
Simulated data are plotted on the y-axis and observed data on the x-azis. Because the
simulations under the vague and weakly informative priors are so different, the y-axis
scales used in panels (a) and (b) also differ dramatically. Panel (¢) emphasizes the
difference in the simulations by showing the red points from (a) and the black points

from (b) plotted using the same y-axis.

Credits: Gabry et al, 2017. 17/30


https://arxiv.org/abs/1709.01449

In the absence of a good prior, neural empirical Bayes can be used to estimate a
prior distribution pg (6) by maximizing the (log) evidence of a set of observations

log py ({zi }iv Zlog/ (x:]0)py(0)do.

Credits: Vandegar et al, 2021. 18/30


https://arxiv.org/abs/2011.05836

Credits: Vandegar et al, 2021.
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Figure 4: Posterior distribution obtained from MCMC
with the exact source distribution and the exact like-
lihood function on SLCP in blue against the posterior
distribution obtained with ¢,(y|x) and gg(x) learned
from L1924 in black (the 68-95-99.7% contours are
shown). Generating source sample x are indicated in

red. The approzimated posterior distribution closely
matches the ground truth.
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https://arxiv.org/abs/2011.05836

Computational faithfulness

p(0lz) = sbi(p(x(0),p(0), z)

We must make sure our approximate
simulation-based inference algorithms
can (at least) actually realize faithful
inferences on the observations we
expect a priori--i.e.those

xsim -~ p(m)
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3GCT

The maximum a posteriori estimate converges towards the nominal value 8* for
anincreasing number of independent and identically distributed observables

i NP($|9*)3

Mode convergence:
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N—o00 0
= lim argmaxp Hr z;|0) =
N—ro0

10-2

dn
Maon dmzoo

Eﬁﬂﬂ

10-3
107

102 0.00 0.05 [}10 0.15 0.20
sub

1w 1t 1t

maoo [Mo]

108

21/30

Credits: Brhemer et al, 2019.


https://iopscience.iop.org/article/10.3847/1538-4357/ab4c41/meta
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A common observation at the root of several other diagnostics is to check for the

self-consistency of the Bayesian joint distribution,

p(8) = / p(6')p(2|6')p(6]z)d¢’ da.

Coverage diagnostic:

e Forz,0 ~ p(x,0),computethel —
credible interval based on p (0|x).

e |f the fraction of samples for which € is
contained within the interval is larger than the
nominal coverage probability 1 — o, then the
approximate posterior p (6|x) has coverage.

Credits: Hermanset al, 2021; Siddharth Mishra-Sharma, 2021.
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https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2110.01620
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https://arxiv.org/abs/2110.06581

Faithfulness diagnostics require the ability to repeatedly compute p (9|a:) which

is immediate for amortized approaches but computationally very heavy for
sequential inference algorithms.
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What if the diagnostic fails?
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Neural ratio estimation can be forced to be more conservative, hence increasing
the reliability of the approximate posteriors and reducing the risk of false

inferences.
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Posterior predictive checks

If a modelis a good fit, then we should be able to use it to generate data that
resemble the data we observe.

Formally, this can be diagnosed with posterior predictive checks that generates
data '™ according to the posterior predictive distribution

p(a*™|z) = / p(2™8)p(6])do,

Sim) thereof.

or summary statistics 7'(x
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Fig. 7: Histograms of statistics skew(yrep) computed from 4000 draws from the posterior
predictive distribution. The dark vertical line is computed from the observed data. These
plots can be produced using ppc_stat in the bayesplot package.

Credits: Gabry et al, 2017.
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https://arxiv.org/abs/1709.01449

Box's loop: build, compute, critique, repeat

DATA
Y
Build model Infer hidden quantities Criticize model
Mixtures and mixed-membership; > Markov chain Monte Carlo; > Performance on o task;
Time series; Generalized linear models; Variotional inference; Prediction on unseen data;
Factor models; Bayesian nonparametrics Laplace approximation Posterior predictive checks

A

Y

Apply model

Predictive systems;
Data exploration;
Data summarization

Revise Model

Science does not end at the inference results. Instead, they should inform the
next revision of the model.

Credits: Blei, 2014. 29/30


https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-022513-115657

Proceed with caution!

Simulation-based inference is a major evolution in the statistical capabilities
for science, enabled by advances in machine learning.

Need to reliably and efficiently assess the adequacy of the full Bayesian
model.

Need to reliably and efficiently evaluate the quality of the posterior
approximations.

Need to efficiently generate simulated data and use it to train ML
components.
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The end.
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