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θ, z,x ∼ p(θ, z,x)
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Warning: The likelihood  is intractable.p(x∣θ) = p(x, z∣θ)dz∫
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Simulation-based inference
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Start with

a simulator that can generate  samples ,

a prior model ,

observed data .

Then, estimate the posterior

N x ∼ p(x ∣θ )i i i

p(θ)

x ∼ p(x ∣θ )obs obs true

p(θ∣x ) =obs
p(x )obs

p(x ∣θ)p(θ)obs
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https://doi.org/10.1073/pnas.1912789117
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https://doi.org/10.1073/pnas.1912789117


―
Credits: Cranmer, Brehmer and Louppe, 2020. 7 / 30

https://doi.org/10.1073/pnas.1912789117


Neural ratio estimation (NRE)

The likelihood-to-evidence  ratio can be learned, even

if neither the likelihood nor the evidence can be evaluated:

r(x∣θ) = =
p(x)
p(x∣θ)

p(x)p(θ)
p(x,θ)

x, θ ∼ p(x, θ)

x, θ ∼ p(x)p(θ)

(x∣θ)r̂
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p(θ∣x) = ≈ (x∣θ)p(θ)
p(x)

p(x∣θ)p(θ)
r̂
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... but proceed with caution!
aka model checking, evaluation, and criticism.
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Prior model  

Observational model 

p(θ)

p(x∣θ)
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"All models are wrong, but some are useful" - George Box
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The observational model 

 should capture the pertinent structure of the true data generating

process for the inference results to be useful.

A model that does not capture every precise detail of the true data generating
process can still be useful if it captures the details relevant to the particular
analysis goals.

p(x∣θ)

p(x∣θ)

―
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https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html#14_Model_Adequacy


The observational model can often be made richer by including in it additional
nuisance parameters  that capture known unknowns.

In this case, the likelihood becomes

Although nuisance parameters can reduce model misspeci�cation, their presence
and marginalization will result in increased uncertainties for the parameters  of

interest.

ν

p(x∣θ) = p(x∣θ, ν)p(ν∣θ)dν.∫

θ
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Nuisance parameters are used to model known unknowns in a robotic setup (e.g.,
camera position, table position, etc).

0:00 / 0:26

―
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https://arxiv.org/abs/2109.14275


The prior model 

The prior model  speci�es one's beliefs about the model parameters. It

should re�ect domain expertise.

p(θ)

p(θ)
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The consequences of the prior model in the context of the observational model
can be diagnosed with prior predictive checks to evaluate what data sets would
be consistent with the prior.

A prior predictive check generates data  according to the prior predictive

distribution  as

or summary statistics  thereof.

xsim

p(x)

θ ∼ p(θ)sim

x ∼ p(x∣θ ),sim sim

T (x )sim
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―
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https://arxiv.org/abs/1709.01449


In the absence of a good prior, neural empirical Bayes can be used to estimate a
prior distribution  by maximizing the (log) evidence of a set of observationsp (θ)ϕ

log p ({x } ) = log p(x ∣θ)p (θ)dθ.ϕ i i=1
N

i=1

∑
N

∫ i ϕ

―
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https://arxiv.org/abs/2011.05836
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https://arxiv.org/abs/2011.05836


Computational faithfulness

We must make sure our approximate
simulation-based inference algorithms
can (at least) actually realize faithful
inferences on the observations we
expect a priori -- i.e. those 

.

(θ∣x) = sbi(p(x∣θ), p(θ),x)p̂

x ∼ p(x)sim
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Mode convergence:

The maximum a posteriori estimate converges towards the nominal value  for

an increasing number of independent and identically distributed observables 

:

θ∗

x ∼ p(x∣θ )i
∗

=

arg p(θ∣{x } )
N→∞
lim

θ
max i i=1

N

arg p(θ) r(x ∣θ) = θ
N→∞
lim

θ
max

xi

∏ i
∗

―
Credits: Brhemer et al, 2019. 21 / 30

https://iopscience.iop.org/article/10.3847/1538-4357/ab4c41/meta


Coverage diagnostic:

For , compute the 

credible interval based on .

If the fraction of samples for which  is

contained within the interval is larger than the
nominal coverage probability , then the

approximate posterior  has coverage.

A common observation at the root of several other diagnostics is to check for the
self-consistency of the Bayesian joint distribution,

p(θ) = p(θ )p(x∣θ )p(θ∣x)dθ dx.∫ ′ ′ ′

x, θ ∼ p(x, θ) 1 − α

(θ∣x)p̂

θ

1 − α

(θ∣x)p̂

―
Credits: Hermans et al, 2021; Siddharth Mishra-Sharma, 2021. 22 / 30

https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2110.01620
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https://arxiv.org/abs/2110.06581


Faithfulness diagnostics require the ability to repeatedly compute , which

is immediate for amortized approaches but computationally very heavy for
sequential inference algorithms.

(θ∣x)p̂

24 / 30



What if the diagnostic fails?
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Neural ratio estimation can be forced to be more conservative, hence increasing
the reliability of the approximate posteriors and reducing the risk of false
inferences.
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Posterior predictive checks

If a model is a good �t, then we should be able to use it to generate data that
resemble the data we observe.

Formally, this can be diagnosed with posterior predictive checks that generates
data  according to the posterior predictive distribution

or summary statistics  thereof.

xsim

p(x ∣x) = p(x ∣θ)p(θ∣x)dθ,sim ∫ sim

T (x )sim
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―
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https://arxiv.org/abs/1709.01449


Box's loop: build, compute, critique, repeat

Science does not end at the inference results. Instead, they should inform the
next revision of the model.

―
Credits: Blei, 2014. 29 / 30

https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-022513-115657


Proceed with caution!

Simulation-based inference is a major evolution in the statistical capabilities
for science, enabled by advances in machine learning.

Need to reliably and ef�ciently assess the adequacy of the full Bayesian
model.

Need to reliably and ef�ciently evaluate the quality of the posterior
approximations.

Need to ef�ciently generate simulated data and use it to train ML
components.
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The end.
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