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In this work, a variation of the problem originally solved by Verstraete, Audenaert, and De Moor
[Phys. Rev. A 64, 012316 (2001)] on what is the maximum entanglement that can be created in
a two-qubit system by a global unitary transformation is considered and solved when permutation
invariance in the state is imposed. The additional constraint of permutation symmetry appears
naturally in the context of bosonic systems or spin states. We also characterise symmetric two-qubit
states that remain separable after any global unitary transformation, called symmetric absolutely
separable states (SAS), or absolutely classical for spin states. This allows us to determine the
maximal radius of a ball of SAS states around the maximally mixed state in the symmetric sector,
and the minimal radius of a ball that includes the set of SAS states. For three-qubit systems, a
necessary condition for absolute separability of symmetric states is given, which leads us to upper

bounds on the ball radii similar to those studied for the two-qubit system.

I. INTRODUCTION AND PROBLEM
STATEMENT

Entanglement is both a fundamental concept of quan-
tum theory and a central resource of quantum technology
applications, ranging from quantum communication and
cryptography, quantum sensing and metrology, quantum
simulation to quantum computing [1-6]. In a multipar-
tite quantum system, entanglement can be created by ap-
plying an appropriate unitary transformation on a pure
product state. This transformation cannot be local, as
local unitary operations cannot change the entanglement
content of a state. Global unitary transformations, on
the other hand, have the potential to increase the entan-
glement among the parties [7, 8]. They can be imple-
mented from the unitary time evolution under a Hamil-
tonian describing e.g. interactions among the subsystems
or between the subsystems and external driving fields or
a tailored experimental device [9, 10]. As quantum me-
chanics is time reversible, this entanglement can also be
removed by applying the inverse unitary transformation.

Although it is at the heart of many protocols leading
to a quantum advantage, entanglement remains one of
the most delicate quantum properties to preserve from
unwanted interactions with the environment. When a
system interacts with its surrounding, its state must
be described by a density operator p € B(H), where
B(H) is the set of the bounded linear operators acting
on the Hilbert space of the quantum states . System-
environment interactions generally tend to deteriorate
the coherence and decrease the entanglement content of
a state. After a sufficiently long decoherence time, an ini-
tially entangled state may lose all its entanglement and
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become a mixed separable state psep. This can even reach
a point where no global unitary transformation applied
on psep is capable of creating entanglement. The state
is then said to be Absolutely Separable (AS) [11]. For
a given system, it is obviously of interest to know which
states are absolutely separable, as these states are of lit-
tle or no use for applications that require entanglement.
More generally, it is important to know what is the maxi-
mum amount of entanglement that can be obtained from
a mixed state by the sole application of unitary trans-
formations. To answer this question, it is first necessary
to choose a measure of entanglement [6], i.e., a scalar
function E(p) of quantum states that satisfies a series of
conditions [6] such as E(p) = 0 if and only if p is separa-
ble. In this work, we will only deal with quantum states
which can be represented by a two-qubit or a qubit-qutrit
system — cases for which the Positive Partial Transpose
(PPT) criterion is a necessary and sufficient condition for
entanglement [12] — and use as a measure of entanglement
the negativity, defined by

N(p) =2max (0, —Anin), (1)

where A, is the minimal eigenvalue of the partial trans-
pose of p with respect to a subsystem A consisting of one
or two qubits, p’4. Equipped with this entanglement
measure, the aim is then to find, for any fixed state p,
the optimal negativity maxy N (UpUT) where the optimi-
sation is performed over all possible unitary operations
UonH.

The emblematic case of a bipartite quantum system
composed of two qubits, with Hilbert space H ~ C?> ®
C? ~ C*, was solved in a seminal paper by Verstraete,
Audenaert, and De Moor [13]. The goal in this case is
to find which global unitary operation U € SU(4) maxi-
mizes the entanglement of UpUT, i.e. which state in the
SU(4)-orbit of p is maximally entangled. The authors
of [13] showed that for a state p with eigenvalues sorted
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in nonascending order A\ > Ao > A3 > A4, the largest
negativity that can be reached is given by

UpUT) =
v&8 NPT

max (0, \/(/\1 VA C VIS VI VA T R P )\4) .

(2)

A direct consequence of this result is that a state p is
AS if and only if its spectrum is such that the right-hand
side of Eq. (2) is zero, which occurs when

(A1 — A3)2 =404 0. (3)

In particular, a two-qubit state p cannot be AS if it has
more than one zero eigenvalues, as then Eq. (3) cannot
be fulfilled. For exactly one zero eigenvalue (A\y = 0), the
state is AS if (A1 — A3)? < 0, which is only possible when
Al=XA=A3=1/3.

Other aspects concerning the set of AS states for bi-
partite systems have been discussed in the literature.
To mention a few, it has been shown in [14] that AS
states form a convex and compact set, and that one
can construct operators to witness absolute separability.
Recently, quantum maps that output absolutely separa-
ble states have been analysed in Ref. [8]. Similar ques-
tions about absolute versions of quantum properties over
(global) unitary orbits have also been studied, such as
for locality [15], unsteerability [16], non-negative condi-
tional entropy [17], or quantum discord, see Ref. [18] for
an overview.

In some cases, physical constraints impose a restric-
tion on the set of unitary transformations that can be
applied to a state [19, 20]. For instance, in systems of
identical and indistinguishable bosons, such as photons,
an N-qubit state has to be invariant under permutations.
The set of physical states is thus reduced to the symmet-
ric subspace VVNC? = (CH)VN < @NC? = (CH®N of
dimension N + 1, and hence the global unitary trans-
formations are limited to SU(N + 1) operations. The
questions posed above also arise naturally in this con-
text, such as what is the maximum amount of entangle-
ment in the SU(N +1)-orbit of a symmetric mixed state.
Even for the simplest case of two qubits, this question
has not been answered. The main objective of this paper
is to fill this gap. Our results allow us to characterize
the set of separable symmetric two-qubit states that re-
main separable after arbitrary SU(3) transformations in
the symmetric sector, which we call symmetric absolutely
separable (SAS) states. The same characterization of the
SAS two-qubit states is obtained in [21] using a different
technique. The questions mentioned above can be stud-
ied for the three-qubit system by applying the sufficient
and necessary PPT criterion of the qubit-qutrit system.

In the language of spin states, the SAS states are the
equivalents of the Absolutely Classical (AC) spin states
introduced in Ref. [22], see Sec. II for more details on the
correspondence. Following notations similar to those of
Ref. [8], we will denote by Agym the set of SAS states. As
symmetric two-qubit states are of rank 3 at most (they

have no component on the antisymmetric state), they
cannot be AS with respect to their full SU(4)-orbit, ex-
cept for the maximally mixed state in the symmetric sub-
space which we have shown previously is AS (as a special
case of a state with eigenvalues Ay = Ay = A3 = 1/3).
In contrast, we will see that the picture is much richer
with the additional constraint of permutation symmetry,
leaving room for a continuous two-dimensional set of SAS
states. Indeed, balls full of SAS states exist around the
maximally mixed state in the symmetric subspace [22].
These balls can be considered as the analogue of the balls
of AS states around the maximally mixed state in the full
Hilbert space, see e.g. Refs. [11, 23].

The present work is organised as follows: Sec. II re-
views the definition of separability, classicality of spin
states, and their absolute versions over global unitary
operations. In Sec. III, we obtain the unitary transforma-
tion that maximizes the entanglement of any two-qubit
symmetric mixed state, and present partial results for the
case of three qubits. We then determine in Sec. IV the
maximal radius of balls contained in Agym, and the mini-
mal ball that includes Agym, both around the maximally
mixed state in the symmetric sector, before concluding
with Sec. V.

II. SEPARABILITY AND CLASSICALITY
A. Separable states of multiqubit systems

The Hilbert space H; of a single qubit system is
spanned by two basis vectors |+) and |—). The full
Hilbert space of an N-qubit system ®@VNH; = ’H,?N is
of dimension 2%V and is spanned by the product states
[t1) @ -+ @ |n) with |g) € {|+),]—)} for all &k =
1,...,N. The convex hull of the product states defines
the set of separable states S C B(HEN). Any state p
that is not separable, i.e. p ¢ S, is said to be entan-
gled. All separable states pscp € S have zero negativity,
N(psep) = 0. For N = 2 qubits, we also have that p
is entangled only when N(p) # 0. The measure of en-
tanglement of a state cannot, by definition, be modified
by local unitary operations [6]. On the other hand, the
entanglement of a state p may change under a global
unitary operation U € SU(2"). However, there are spe-
cial states that remain separable for all U € SU(2V)
and these are called absolutely separable (AS) states [11].
They can be defined as the states p € B(HPY) for which

E{UpUT) =0 (4)

max
UeSU(2N)

for some measure of entanglement F.



B. Separable states in the symmetric sector and
classical spin states

A multiqubit system is equivalent to a system of N
spin-1/2, where each of the spin Hilbert spaces are
spanned by the eigenvectors of the angular momentum
operator S, the |1/2,+1/2) states that we can identify
with the |£) qubit states.

The symmetric sector VNH; = HYN of HPY is

spanned by the symmetric Dicke states |DJ(\’,C)> for k =
0,...N, defined as [24]

DY =K n([t)e... 0o ®...1-), ()

where the sum runs over all the permutations 7 of the
qubits and K > 0 is a normalization constant. In the spin
picture, the |D§\l,€)> states are equivalent to the eigenvec-
tors |s,m) of the collective S5 operator, with s = N/2
and m = (N — 2k)/2 [24]. Consequently, HY" is isomor-
phic to the Hilbert space H(®) of a spin s system, both
being of dimension N +1 = 2s+ 1. Global unitary trans-
formations restricted in Hy” correspond to SU(N + 1)
transformations in H(*).

The restriction of product states to the symmetric sub-
space leads to N-qubit states of the form [i)) = |¢)®N
with |¢) = a|+)+8|—) a normalized single qubit state. In
the spin picture, this corresponds to spin-coherent (SC)
states [25, 26]. The convex hull of SC states defines the
set of classical spin-states C [27, 28]. A spin-s state p(*) is
called absolutely classical (AC) when the SU(2s+1)-orbit
of pt*) € B(H(®)) is contained in C [22]. The complement
of the set of classical states has also been studied in the
literature [27-31] and a measure of non-classicality called
quantumness has been defined in [29] as the distance be-
tween a state p(*) and C [30].

Here, we introduce the notion of symmetric absolutely
separable (SAS) states (called absolutely symmetric sep-
arable states in Ref. [21]), the set of which will be denoted
by Asym- A symmetric state pg € B(HY") will be called
SAS if its SU(N + 1)-orbit

(UspsU : Us € SUN +1)} (6)

contains only separable symmetric states. Equivalently,
ps is SAS if
E(UspsUL) =0 (7)

max
UseSU(N+1)

for some measure of entanglement E. The equivalence
between the set of SAS states and the set of AC states
(as proved by Theorem 1 of [32]) means that they can
both be labeled by Asym, and both sets will satisfy the
results deduced in the subsequent sections. From now
on, we only use the terminology of SAS states in the
symmetric sector HYN for simplicity.

C. SAS states for 2 x m bipartite systems

To highlight the difference between SAS and AS states,
we can use a general result of Johnston [33] which says
that a 2 x m bipartite state p with spectrum Ay > Ay >
<o 2 Aoy = 0 is AS if and only if

A < Aom1 + 2y Azm—2dom. (®)

An implication of this result is that no symmetric state
of N qubits can be AS for N > 2. Indeed, let p be an
N-qubit state viewed as a 2 x 2V~ bipartite state. Then
14 is AS if and Only if )\1 § AQN_l + 2\/)\2N_2>\2N. But
for symmetric states, which have support only on the
symmetric subspace, A\ = 0V k > N + 1, which leads
to the condition A1 < 0 that can never be fulfilled since
A1 > 0 is the largest eigenvalue of p. Although symmetric
multiqubit states of more than two qubits cannot be AS,
they can be SAS as we show below.

ITII. MAIN RESULTS
A. Two qubits

The central question presented in the introduction can
now be reformulated as follows: For a symmetric two-
qubit mixed state pg, what is the maximum entangle-
ment that can be obtained by a global unitary trans-
formation Ug € SU(3) that leaves the symmetric sector
invariant ?

The answer to this question and the main result of this
paper is stated by the following theorem:

Theorem 1 Let pg be a symmetric two-qubit state with
spectrum T, = T = 73. It holds that

Y _
Usglgg(3)N (USPSUS) -

max (0, T2+ (12 )’ =7 —T3> ;

where the mazimal negativity is reached by the state ps =
UspsUg given up to local unitary transformations by

9)

~ 0 0 1 1 2 2
ps = s D) (DY | + 71| DY) (D] + 72| D >><D§(>| 3
10

The following Corollary then follows immediately from
Theorem 1:

Corollary 1 Let pg be a symmetric two-qubit state with
spectrum Ty = T2 = T3. Then ps € Agym if and only if
its eigenvalue spectrum fulfills

NE Y (1)

Proof. The symmetric two-qubit state pg is SAS if
the right-hand side of (9) is zero which, using the
normalization condition 7 + 72 + 73 = 1, is equivalent to
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FIG. 1. Density plot of the maximum negativity (9) attained
in the SU(3)-orbit of a symmetric two-qubit state ps over the
simplex of its eigenvalues (73, 72). The dashed curve shows the
boundary of the set Asym of SAS states given by Corollary 1,
with end points being represented by orange and green dots
respectively. The right corner of the simplex corresponds to
the maximally mixed symmetric state, po = 13/3 € B(HY?),
and the lower corner to a pure state.

the above inequality. [J

In Fig. 1, we show a density plot of the maximal neg-
ativity given by Eq. (9) for all states ps € B(HY?) in
terms of its two smallest eigenvalues 79 and 73. The 2-
dimensional white region constitutes the set Agym and
its bounds are given by two inequalities associated with
the eigenvalues sorting, 72 > 73 and 275 + 73 < 1 (solid
lines), and Eq. (11) (dashed line). In particular, the solid
lines correspond to the states with two coincident spec-
trum eigenvalues, 72 = 73 or 7| = Ty, respectively. The
end points of the bound defined by Eq. (11) correspond
to the states with spectrum (71,72, 73) = (4/9,4/9,1/9)
(orange dot) and (1/2,1/4,1/4) (green dot). Lastly, let
us also remark that when ps € B(HY?) has one zero
eigenvalue 73 = 0, the condition (11) cannot be met and
then pg ¢ Asym, as can be seen in Fig. 1.

Numerics shows that the maximal concurrence in
the SU(3)-orbit of a symmetric two-qubit state is also
reached for the state (10). A direct calculation shows
that the concurrence of (10) is

C(ps) = max (07 - 2\/7?73). (12)

We end this subsection with the proof of Theorem 1,
which follows a reasoning similar to that of Ref. [13].

Proof of Theorem 1. The minimal eigenvalue A, of the
partial transpose of pg with respect to one qubit, pg“, is
equivalent to [13, 21]

Amin = min Tr [ps () (¥])™] . (13)
[Y)eHT

The general two-qubit state |1)) can be written as a linear
superposition of a symmetric state and an antisymmetric
state, |1s) € HY? and |14) € H{ 2,

1) = cosar|hs) + e sina|iha), (14)
where o € [0,7/2] and § € [0,27). On the one hand,
|ths) can be written via the Schmidt decomposition as

[ths) = cos B |n1) @ |n1) +sin B ng) @ |ng), (15)

where I' = {|n;)}?_, is an orthogonal basis of #; and
B € 10,7/2] [34]. On the other hand, |¢)4) can be written
for any orthogonal basis of H1, in particular I', as

1
la) = 7 (In1) @ [n2) = Ing) ©@[n1)) . (16)

Hence, |9) (1] is the sum of four terms

[ (0] = cos® o [hg) (¥s| + sin® o [h4) (10 4] (17)
+cosasina (e s (al + € [ha)(vs]) -

The condition for a state pg to be symmetric is that it has
support only on the symmetric sector of B(H?), which
can be written as ps = PspsPs with Pg the projection
operator onto Hy2. For convenience, we now introduce
the symmetrized state |ni,ns) resulting from the action
of Pg on the product state |n1) ® |na),

|7’L1, 7’L2>

V2
Replacing pg in Eq. (13) by PspsPs and using the cyclic
property of the trace, we get

Amin = min_ Tr [psPs(|¢)(¥[)™* Ps] = min Tr [ps X] ,
lp)eHP? X

Ps|ni) @ [ng) = % (In1) @ [n2) + [n2) ® |n1)) =

where the operator X = Pg(|¢){(¢|)T4 Ps can be devel-
oped as

X =cos’aX; +sin’a Xy 4+ cosasinasind Lz (18)

where the »; operators are represented in the orthonor-
mal basis I = {|n1)®2, |n1, na), |n2)®?} by the matrices

cos? 0 0
¥ = 0 cosfBsinf 0 , (19)
0 0 sin’ 3
1 0 0 -1
== 010 |, (20)
-10 0
0 cos 3 0
Y3=1| —cosf 0 sinfg | . (21)

0 —sing 0



The basis IV can be transformed to the symmetric
Dicke basis {|DY”)}2_, by a diagonal SU(2) x SU(2)-
transformation V = V ® V such that Vt|n;) = |+) and
Vilng) = |=). Hence, Ps(|v)(1)])T4 Py for a general state
|1} is parametrized by the (¢, 8,0) variables and a diag-
onal SU(2) x SU(2)-transformation V

Ps([) ()™ Ps =VIXV, (22)

where the matrix X written in the symmetric Dicke basis
has the form (18). The smallest value of Ay, over the
SU(3)-orbit of pg is equal to

in Amin = min Tr[UpsU'VIXV]. (23
o By Amin =, Juin, T [Ups Jo @)
Without loss of generality, the U and V unitary trans-
formations can be combined to W = VU because the di-
agonal SU(2) x SU(2) transformation V is in the SU(3)
group [35]. The minimization problem then reduces to

min ~ Tr [psWIXW] . (24)
We SU(3)
B,y

The Birkhoff’s theorem (Theorem 8.7.2 of [36]) estab-
lishes that the minimum over all W € SU(3) is attained
when W is the product of matrices diagonalizing ps and
X in the same basis, and a matrix W (7) representing a
permutation m € S3 where Sz is the permutation group
of three elements. Without loss of generality, we consider
ps and X to be represented by the diagonal matrices pqy
and X, in the Dicke basis. Thus, (24) is given by

3
min Tr [pW' (7)) X4W(7)] = min ZTw(k)&m
TE S3 TES3 =1

a,B,y a, B,y

where £ are the eigenvalues of X. The eigenvalues &
cannot generally be expressed in a compact way. How-
ever, the function to minimize in the last equation must
have its derivative with respect to ¢ equal to zero at
W, a, 3,6 where the minimum is attained, which implies
that

Tr [psWTE3W] cosasinacosd = 0. (25)

The latter equation is satisfied either by one of the fol-
lowing solutions: (A) 6 = 7/2,37/2, or (B) a =0,7/2,
or (C) when Tr[psWTS3W] = 0. First, the eigenvalues
for the solution (A) are the same for both values of ¢ and
equal to

&1 ] 1+ V1 —22

S| =3 z ) (26)
&3 1—+v1-—22
with z = —sin® a + cos® asin(26). On the other hand,

while the solution (B) keeps only X7 or ¥ in X [see
Eq. (18)], the solution (C) restricts the available set of the

W matrices to Rg = {W € SU(3)|Tr [psWTE3W] = 0}
with X3 = 33(8). Then, Eq. (24) for the solution (C) is
reduced and lower bounded by

min Tr [pSW/TXW’]
W'eRg
a,Byy

= min Tr [psW'(cos® aZy + sin® aXy)W']

w'e Rg
a,By

> min

We SU(3)
o, By

Tr [pSWT (cos? aXy +sin® a¥s)W] . (27)

Thus, the solution (B) and the upper bound of (C) can
be studied simultaneously by omitting 3 in the mini-
mization problem, leaving X = cos? a¥; +sin® aX, with
eigenvalues equal to

&1 L+y — 201 +yi —2y3)
&= [ 1+u+ V20 +y7 —243) (28)

&3 11—y + 2y

where y; = cos(2a) and yo = cos® asin(23). For both
sets of eigenvalues (26) and (28), we must now find the
critical points of (25) with respect to the variables «
and 8. We enlist in Appendix A all the critical points
obtained for the cases mentioned above. By comparing
the values obtained for (25) with all the possible per-
mutations 7, we deduce that the minimum A,.;, in the
SU(3)-orbit of pg is reached for the solution (A) with

T1

z = —sin® a+cos? asin(28) = — = (29)
T + (12 — 73)2
and with 7 such that
Amin =738 + 116+ 7283
:;(TQ—%Q— 7'12+(72—7'3)2>. (30)

It is this value of A, which gives the expression (9)
for the negativity M(pg). In particular, for & = 0 and
sin(28) = —71/\/7E + (12 — 73)2, the X matrix is already
diagonal in the symmetric Dicke basis and reads

X = & DYDY + &| DSV (DS | + &5 DEP) (D).

In order to attain (30), ps must then be equal to (10),
up to a local unitary transformation. [

Let us remark that the minimization in (13) is per-
formed over all states |¢) € HP?, and we found that the
states |¢) that minimize A, over the SU(3)-orbit of
p are of the form (14), with 6 = /2, 37/2 and (o, f)
such that Eq. (29) is satisfied. This implies that there
exists a 1-dimensional set of states 1)) € HP? that min-
imize Apin of pg. In particular, for a = 0, the state [¢))
belongs to the symmetric sector 2. The problem of
finding the minimal eigenvalue of pg“‘ when the state |))



is restricted in the symmetric sector |1)) € Hy? was stud-
ied recently in [21], where they also reported the same
characterization of SAS states as given in our Corollary
1.

B. Three qubits

In the case of symmetric three-qubit states pg €
B(HY?), the determination of the maximally entangled
state in the SU (4)-orbit of an arbitrary state pg can again
be formulated as an optimization problem with the neg-
ativity as objective function because the PPT criterion
is both a necessary and sufficient condition for entan-
glement in the qubit-qutrit system [12], for which H3
is a subspace. However, optimisation seems to be much
more difficult in this case and remains an open problem
at this stage. Nevertheless, it is possible to obtain nec-
essary conditions for the absolute separability of a state
(with respect to SU(4) transformations and not global
unitaries in the full Hilbert space). We start with the
following observation.

Observation 1 A symmetric three-qubit state pg cannot
be SAS if its spectrum T1 = To = T3 = T4 salisfies

To<1l—m3—14—+31314 A

Proof. First, any symmetric state pg with spectrum 7 >
To = T3 > T4 can be brought by a unitary transformation
to the state

73> 0. (31)

3 3 2 2
ps =74 |DPWDSY| + 7 | DY) (DS
1 0 0
+73 |DSVWDY| + 7 | DYDY

The partial transpose of pls with respect to any of the
bipartitions has as its lowest eigenvalue

1

5 <3T4+273 — p(7277'377'4)) ) (33)

AInin =

with
(2,73, 74) =8 — 1674 + 1777 — 1673
+ Ay + 1278 — 167 (34)
+ 16 7479 + 16 7379 + 87’22.

It is then easy to verify that the lowest eigenvalue (33)
is negative, hence the state pl is entangled by the PPT
criterion if and only if the condition (31) is met. In this
case, pg is not absolutely separable because it is unitarily
equivalent to the entangled state pg. O

The condition (31) is the strictest condition that can be
obtained by applying the PPT criterion to a mixture of
symmetric Dicke states of the form (32) and considering
all possible permutations of the eigenvalues as weights of
the mixture. It places strong constraints on the spectrum
of a state for it to be potentially AS. However, this is only
a sufficient condition for a state not to be AS, as one can

find states that do not satisfy (31) but are nevertheless
not AS. We provide here an example of such state. Con-
sider the state p% = ng’SU; obtained by application of

the unitary operator expressed in the basis {|D§k)> 20

by the matrix

1 1 1 1
1[1-1 1-1

US_§ 1 -1 -1 1 (35)
1 1 -1 -1

on the state pl given by Eq. (32) with 7 = 0.362191,
Ty = 0.213809, 73 = 0.213 and 74 = 0.211. The state p
has a negative partial transpose but violates condition
(31) because we have 7o — (1 — T3 — T4 — \/37374) ~
0.005 > 0.

IV. IMPROVED BOUNDS ON THE PURITY OF
SAS STATES

In this section, we deduce from the previous results
bounds of the radius of the maximal ball contained in
Agym and the minimal ball that includes Agym, both cen-
tred on the maximally mixed symmetric state pp oc 1.
These balls have been studied recently in [37, 38] in the
full-Hilbert space for qubit-qudit systems. We first de-
fine the distance r between a state pg and pg through the
decomposition

ps = po+rps (36)

where pg is such that Tr[ps] = 0 and Tr[p%] = 1 [27]. A
simple calculation shows that, for a spin s, the distance
r is related to the purity of pg by

re T - 5y (37)

The range for r is [0, A/ %f’rl } , where the upper and lower

limits are reached when pg is equal to pg or any pure
state, respectively. As in the non-symmetric case, there
are balls centred on pg containing only SAS states. In
other words, there exists a maximum radius rgas such
that any ball centred on py with radius r < rgag con-
tains only SAS states. A lower bound for rgag has been
determined in Ref. [22] in the context of the absolute clas-
sicality of spin-s states (in correspondence with 2s-qubit
symmetric states). It is given by

B = — SNCY
V(s +2) [(4s +1)(E) — (s +1)]

For two qubits, we can calculate the exact value of
rgas using the results of the previous section. First, we
calculate the radius r of the states (10) that maximize
the negativity in each SU(3)-orbit and get, using the
normalization condition 71 + 75 + 73 = 1,

2
’1“2:§+2(7'22+T32+7’2T3—T2—7'3>. (39)
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FIG. 2. Density plot of the maximal negativity (9) over the
simplex of symmetric two-qubit states ps parametrized with
(73,7). The dashed line shows the border with the set of SAS
states [see Eq. (40)].

The last equation allows us to express 7o in terms of
r and 73, and thus the maximum negativity over each
SU(3)-orbit of ps, Eq. (9), as a function of 73 and r. In
Fig. 2, we show a density plot of this maximum nega-
tivity, where the variables 73 and r are subject to the
constraints 1/2/3 (1 — 373) > r > (1 — 373)/v/6 depicted
by straight lines. The set Agym (white region) delimited
by the dashed curve corresponds to the inequality

rg\/g[us(m\/?g)], T3 € [;ﬂ (40)

The end points of the dashed curve, shown by the orange
and green dots, have coordinates (13, r) given by

() = () o

respectively, and they correspond to the same states as
those shown in Fig. 1. As a result, all states with r <
1/(2V/6) are necessarily SAS, from which we deduce that
rsas = 1/(2v/6). This value is strictly larger than that
provided by Eq. (38), equal to 1/(2v/42) for s = N/2 =
1. Another interesting observation is that there exists a
ball with minimal radius Rgag that includes Agym. From
Fig. 1, it is easy to see that this radius is the r coordinate
of the orange dot or Rsas = 2/(3v/6). Therefore, any
state pg at a distance from pg larger than Rgas cannot
be SAS.

For N = 3, the three-dimensional simplex associated
with the spectrum eigenvalues (72,73, 74) of a symmetric

not-SAS

B(M?)

FIG. 3.  Sketch of the set of states ps € B(Hy®) which
satisfy Obs. 1, represented by the outer (blue) region. While
the outer region is composed only of non-SAS states, the set
Asym is contained in the inner (gray) region. The balls of
radii R and r define the upper bounds of Rsas and rgas,
respectively.

three-qubit mixed state, sorted in non-ascending order
TN > T =273 2 T4 and with 74 = 1 — 71 — 73 — 7y, is
divided into two regions by the conditions of Obs. 1, Eq.
(31), as shown in Fig. 3. While the outer (blue) region
consists only of not-SAS states, the inner (gray) region
includes po = (1/4)14 and Agym. Hence, the minimal
(maximal) distance r from pg to the boundary between
the regions gives an upper bound for rgas (Rsas). The
distance r of a state that satisfies the equality of Eq. (31)
can be written in terms of the (73, 74) variables as

1\? 1\? 1\?
2 e —_ _— = _
re = (7‘3 4> + (7’4 4) + (\/37’374 4)
3\ 2
+ (Tg + 74+ V3734 — 4> , (42)
and the minimal distance is given by

_V9_5\/§ f _
7‘—27\/6, or (13,74) =

3+v3 3+V3
2 ' 24 |-

Then, rgas has the following bounds

1 < rere < 9—5V3
10 ,—11\SAS 72\/6 )

where the lower bound comes from Eq. (38). On the other
hand, the maximum distance R as given by Eq. (42) is
obtained when 7 = 7 = 73, or

V3
10’

(43)

3 1
= fi =(—=,—]. 44
R or (73,T4) (10’ 10) (44)
Therefore, since Obs. 1 is only a sufficient condition,
Rgas < \/3/ 10. Numerical calculations, however, seem
to show that this is in fact a tight bound [39].



V. CONCLUSIONS

The problem we have studied and solved in this work
is a variation of the original problem considered by Ver-
straete, Audenaert, and De Moor [13] on maximally en-
tangled two-qubit states, when permutation symmetry
is imposed. Our main result is the determination of
the symmetric state with the maximal negativity in the
SU(3)-orbit of any mixed symmetric state of two qubits
(Theorem 1). As a direct application of our results, we
have provided a full characterization of the SAS states
based on their spectrum, and the maximal (minimal) ra-
dius of a ball contained in (containing) the SAS states.
Bounds for the radii of the corresponding balls in the
three-qubit system are also obtained, where we use a
necessary condition deduced in Observation 1 for abso-
lute separability of symmetric states under global unitary

operations in the symmetric subspace. As the PPT en-
tanglement criterion for three-qubit symmetric states is
both necessary and sufficient, it should be possible to im-
prove these results to achieve a complete characterization
of the maximally entangled symmetric three-qubit state
in each SU(4)-orbit. We also believe that a proof of the
optimality of the state (10) for other measures of entan-
glement such as the concurrence (see Eq. (12) and the
text above), which is supported by our numerical data,
should be within reach with the same techniques used
here.
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Appendix A: Critical points of A

Case 1: § = 7/2,3w/2. The X matrix has the same
eigenvalues for both values of §, given by Eq. (26). Set-
ting t; = 7r(j), the critical points of (25) and its A-value
are the following:

i) ta > ts
tq
T B —b)e
2 — U3
' (A1)
1
A:5 <t2+t3— t§+(t2—t3)2>.

11) tz < t32

tq

VEF (ty — t3)2
1
A:§ (t2+t3+,/t$+(t2—t3)2>.

i) o =7/2, A= (ty + 13— t1) /2.

(A2)

iv)a=0and 8 =7/4, A=1/2.

Case 2: X without ¥3. The eigenvalues of X are in
this case given by (28). In addition to identical solutions
to the previous case, other solutions appear which we list
below:

1) tl 21‘521
bttt —ts
N= Ao snG,
t3
= A3
Y2 /71—82‘:1752’ ( )
1
A:Z(l—\/l—Stltg).
11) tl <t22
by —t—ty
N= A 8L,
t3
B — A4
Y2 1—8t1t27 ( )
1
A:Z(1+\/1—8t1t2).
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