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Many imputation techniques have been introduced to handle missing data. However, a large scale comparison of these techniques seems to be missing

and it is relatively unknown how the different imputation techniques perform when outliers are present in the data. Therefore, our goals are to:

1 compare their performance under different settings; 2 investigate their robustness when outliers are added.

Experimental setup

Data creation

•According to a Gaussian distribution

• Independent or dependent variables
• In multiple dimensions (2/3/20)

Introducing missing values

Missing values are created using multivariate amputation [1].
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Introducing outliers

Outliers are generated by modifying either the Square Prediction Error

(SPE), the Hotteling’s T 2 statistic, or both [2].
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Imputation techniques

•Mean

•Expectation maximisation (EM)

•Linear regression (LR)

•Robust linear regression (RLR)

•Random forest (RF)

•K nearest neighbours (KNN)

Evaluation
Simulation 1: Without outliers

•Computational time

•Root mean squared error

RMSE =

√√√√1

n

∑
(i,j)∈I

(xi,j − x̂i,j)2

I is the set of indices of the missing values, n = #I is the number of missing values, xi,j is the original

value in the complete data set at position (i, j) and x̂i,j is the imputed value at position (i, j)

• Impact on statistics in 2/3D (mean, median, standard deviation, IQR, correlation)

Simulation 2: With outliers

•Difference in RMSE between the imputation with and without outliers

Simulation procedure

1 Generate a complete data set → data1

2 Ampute the complete data set by deleting a selection of values

3 Impute the missing values to obtain a full data set → data2

4 Introduce outliers in data1 and ampute this data set

5 Impute the missing values to obtain a full data set → data3

6 Two comparisons: data1 ↔ data2 and data1 ↔ data3

Simulation 1: Without outliers
Results
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Conclusions in 2D

•Decrease in central tendency

•Decrease in dispersion

• Increase in correlation for linear

methods (LR, RLR)

Conclusions in 20D

•Smallest RMSE: LR, RLR, RF

•Fastest methods: Mean, EM

•Slowest method: RLR

⋆Similar results hold for other dimensions and all 3 missingness patterns

⋆ Independent variables: mean method also has small RMSE

Simulation 2: With outliers
Results
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Conclusions

•Most robust methods: RLR, RF and KNN

•Robustness does not change when the % of missing values/outliers varies

⋆Similar results hold for other dimensions and all 3 missingness patterns

Ongoing work

• Investigate the evolution of the mean vector and the covariance matrix

after imputation with outliers (in 20D)

•Create linear or PCA models on both imputed data sets, i.e., with or

without outliers, and compare the coefficients

•Compare imputations with and without outliers through binary classifica-

tion
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