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Summary. The theoretical developments and the numerical applications of a time-dependent
damage law is presented. This law is deduced from considerations at the micro-scale where
non-planar growth of micro-cracks, following a subcritical propagation criterion, is assumed.
The passage from micro-scale to macro-scale is done through an asymptotic homogenization
approach. The model is built in two steps. First, the effective coefficients are calculated at the
micro-scale in finite periodical cells, with respect to the micro-cracks length and their orientation.
Then, a subcritical damage law is developed in order to establish the evolution of damage.
As shown by numerical simulations, the developed model enables to reproduce the long-term
behavior encountering relaxation and creep effects.

1 INTRODUCTION

In many engineering applications, the damage evolution of materials must be accurately
considered. The modeling of the nucleation and the growth of micro-cracks in solids due to
various mechanical loadings is of particular interest in order to assess the stress-strain behaviour
of damaged materials. As long as microcracks propagate, the overall stiffness of materials may
drastically decrease and provoke failure when coalescence of adjacent micro-cracks occurs.

At micro-scale, materials contain micro-cracks that strongly affect the macroscopic mechan-
ical behavior of the materials. In many materials, the micro-crack distribution may be locally
approximated by a periodic one. This periodic structure is characterized by an internal length,
that is the distance between two adjacent micro-cracks. In order to find mechanically equivalent
homogeneous material at the macro-scale, having relatively similar properties than the hetero-
geneous medium, the macroscopic description can be obtained by homogenization procedures
[1, 2]. The behavior of the macroscopic structure is deduced from the properties of the material
at the micro-scale (Fig. 1a). The stiffness of the solid is governed by homogenized coefficients
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Figure 1: (a) Fissured medium with locally periodic microstructure. (b) Unit cell with rescaled crack
of length d. 2a: length of the micro-crack, ε: distance between two micro-cracks (internal length), θ:
orientation of the micro-crack with respect to this (x1 , x2) system.

that depend on the elastic properties of the solid matrix, the length and the orientation of
micro-cracks.

Moreover, the evolution of damage in many materials is often time-dependent. An important
source of time-dependency is the subcritical propagation of micro-cracks. A subcritical criterion
is a criterion considering time-dependent crack propagation for energy lower than the critical
limit of fracture [3]. The rate of crack propagation may be expressed with respect to stress
intensity factor at the crack tips, under tensile mode, with a power law [4]. This paper joins
the concepts of asymptotic homogenization and subcritical crack propagation to deduce a time-
dependent damage model.

2 MATHEMATICAL FORMULATION

Consider a two-dimensional isotropic elastic medium containing a locally periodic distribution
of micro-cracks. Each crack is straight with a length 2a and an orientation of angle θ with respect
to the x1 direction (abscissa of the referential system considered at the macro-scale). The length
2a and the orientation θ are assumed to vary smoothly almost everywhere in the elastic body.
The damage variable d, varying between 0 (for virgin material) and 1/[max(| cos(θ)|; | sin(θ)|)]
(for fully damaged material), is the ratio between the crack length 2a and the distance between
two micro-cracks ε that also represents the size of the periodicity cell (Fig. 1):

d =
2a

ε
(1)

On the crack faces, traction free opening or frictionless contact conditions are assumed. The
way in which the switch from one state to the other is controlled will be described later, in terms
of the homogenized solution (Eq. 8).

2.1 Asymptotic homogenization

The locally periodic microstructure is constructed from a unit cell Y = [−0.5, 0.5]×[−0.5, 0.5]
expressed in a (y1, y2) orthogonal axis system centered in the middle of the crack, corresponding
to the center of the cell. The crack is rotated with an angle θ with respect to y1 axis. Then
this unit cell is rescaled by the parameter ε so that the period of the material is εY . The two
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distinct scales are represented by the variable x, which is referred to as macroscopic variable
and the variable y = x/ε, referred to as microscopic variable [5].

Following the method of asymptotic homogenization (e.g. [1]), we look for expansions of uε

and σε in the form

uε(x, t) = u(0)(x,y, t) + εu(1)(x,y, t) + ε2u(2)(x,y, t) + . . . (2)

σε(x, t) =
1

ε
σ(−1)(x,y, t) + σ(0)(x,y, t) + εσ(1)(x,y, t) + . . . (3)

where u(i)(x,y, t),σ(i)(x,y, t), x ∈ Bs, y ∈ Y are smooth functions and Y-periodic in y.
Based on previous works (e.g. [5, 6, 7]), we can show that the substitution of Eqs. (2) and

(3) in the equilibrium equations gives the following relationships for the overall response of the
material

∂

∂xj
Σ
(0)
ij = 0. (4)

where
Σ
(0)
ij = Cijklexkl(u

(0)) (5)

C±
ijkl(d, θ) =

1

|Y |

∫
Ys

(aijkl + aijmneymn(ξ
kl
± )) dy (6)

are the macroscopic stress and the homogenized coefficients, respectively. Eq. (4) is the ho-
mogenized equation of equilibrium. In each regime (opening or closure), we can prove that the
microscopic correction u(1) is

u
(1)
± = ξpq± expq(u

(0)) (7)

where ξpq± are elementary solutions of u(1) for particular expq(u
(0)) = δpq. The distinction ±

corresponds to opening (+) or contact (-) conditions of the crack lips. The difference between
these microscopic states of contact and opening are obtained from the orientation of the force
vector with respect to crack line. These two states induce a separation of the space R of
macroscopic deformations ex11, ex12, ex22 into two subregions R± defined by

R± =
{
ex| Niaijklexkl(u

(0))Nj ≷ 0
}

(8)

The homogenized coefficients Cijkl depend on the state of damage of the material (d and θ)
and on the mechanical properties of the solid matrix (E and ν). From the integral (6) and for
a given couple (E, ν), the coefficients can be initially computed for a large number of d⋆ ∈ [0, 1]
(d⋆ = d/max(| cos(θ)|; | sin(θ)|) being the normalized damage variable) and θ ∈ [0◦, 180◦] and
for both opening and closure states from the strain field eymn(ξ

kl) obtained by finite element
computation on the unit cell. After interpolation, polynomial expressions of Cijkl(d, θ) can be
obtained [7, 8].
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Figure 2: Kinked crack. (a) The out-of-plane crack growth propagates in the direction that maximize the
energy release rate. ϕmax is the angle between the crack line and the crack extension. (b) The kinked
crack (solid line) and its equivalent replacement crack (dashed line).

2.2 Subcritical growth of micro-crack

The evolution of the micro-crack length (i.e. the propagation of the crack) is described
through a subcritical criterion adapted from the Charles’ law [4]:

dl

dt
= v0

(
K⋆

I

K0

)n

(9)

where v0 is a referential velocity of crack propagation and n is the subcritical growth coefficient.
K⋆

I is the stress intensity factor for the tensile mode of rupture (Mode I) of the kinked crack (Fig.
2a). K0, v0 and n are material parameters. K⋆

I depends on the stress (or strain) conditions,
the internal length ε and the geometry of the micro-cracks. The determination of the stress
intensity factors at the crack tips is made through the computation of path-independent J-, L-
and M- integrals [9] for straight trajectory of micro-cracks and from the polynoms of Leblond
[10] for the kinked cracks (see [11] for more completeness).

The crack is assumed to propagate in the direction that maximizes the energy release rate.
This criterion produces a kinking angle between the existing crack and the incrementally prop-
agated crack (Fig. 2a). This kinking angle can be expressed with the following function [12]:

ϕmax = sgn(KII)[0.70966λ
3 − 0.097725sin2(3.9174λ)

−13.1588tanh(0.15199λ)] (10)

where λ is a mode mixity factor that combine the stress intensity factors of mode I, KI , and
mode II, KII , of the straight crack :

λ =
|KII |

KI +KII
(11)

3 EQUIVALENT CRACK

The determination of the direction (ϕmax, Eq. 10) and the length (dl, Eq. 9) of the out-
of plane crack extension is not enough to compute the whole trajectory of the crack tips. At
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E ν K0 v0 n ε d0 θ0

[Pa] [−] [MPa.m1/2] [m/s] [−] [−] [−] [◦]

2.109 0.3 0.6 1.10−3 20 1.10−4 0.28 45

Table 1: Material parameters used in the simulations.

each time step, the kinked crack must be replaced by an equivalent straight crack. We adopt
an equivalent crack obtained by joining the tips of the real branched crack (Fig. 2b). The
equivalent crack is determined by means of geometrical relationships in the form of differential
equations, assuming small time increments and using the up-scaling relation (1):

dd

dt
=

2

ε
cos(ϕmax)

dl

dt
(12)

dθ

dt
= d

ε

2
sin(ϕmax)

dl

dt
(13)

These two last equations show that the geometry of the equivalent micro-crack, in term of
length and orientation, depends on the damage variable d, the propagation rate ( dldt) and the
orientation (ϕmax) of the kinked crack. Those values depend on the macroscopic variables d, θ
and ex which demonstrates that the developed model is a macroscopic damage model starting
from considerations at the microscopic scale.

4 NUMERICAL EXAMPLES

The time-dependent behavior of materials can be underlined by means of quasi-static loading
tests, creep tests or relaxation tests that point out the same time-dependent properties under
different stress and strain conditions. The set of materials parameters, that have been used in
the simulations are reported in Table 1. All the simulations presented in the following have been
made considering biaxial loading. Plane-strain condition is considered in the third direction.

4.1 Loading at constant strain rate

Figures 3 and 4 illustrate the response of a material submitted to an uniaxial tension loading
at constant vertical strain rate (the horizontal direction is free of stress). Figure 3 shows that
the developed model is able to reproduce the effect of strain rate on the obtained failure stress.
Under low strain rate, the effect of time becomes predominant and the failure appears for a lower
strain level than in the case of faster loading. The micro-cracks are not growing in their own
plane but a kinked angle is forming in order to propagate in the direction that maximizes the
energy release rate (Eq. 10). As the damage increases, the equivalent crack is rotating and the
rigidity decreases until coalescence of micro-cracks producing failure of the material. At the end
of the loading, the equivalent cracks tend to be perpendicular to the direction of the principal
tensile strain (Figure 4).
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Figure 3: Axial tension tests at various constant strain rate ėx22. The strength increases when the strain
rate increases.
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Figure 4: Axial tension test at a constant strain rate ėx22 = 1.10−8s−1. Evolution of the micro-crack in
the periodic cell.

4.2 Relaxation tests

Applying a constant axial strain, the relaxation test aims at investigating the time-dependent
response of materials. Under a constant loading, the subcritical micro-crack growth produces
a progressive decrease of the rigidity as long as the damage state increases. As a consequence,
the stresses are gradually relaxing upon failure. Under a biaxial combined tensile/compressive
constant strain field (ex22 = −0.035 (compression) and ex11 = 0.035 (tension)), Figure 5 shows
the evolution of horizontal and vertical stresses with time. In parallel is shown the evolution
with time of the ratio between horizontal and vertical stress. As long as the crack propagate,
the direction of the equivalent crack tends toward vertical. As a consequence, the crack lips
being under opening condition, the horizontal rigidity becomes much lower than vertical one.
So, the ratio between horizontal and vertical stresses evolves in accordance with the relative
lost of horizontal rigidity with respect to vertical one. That is a characteristic of the evolving
anisotropic damage law.
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Figure 5: Relaxation test under biaxial conditions. ex22 = −0.035 (compression) and ex11 = 0.035
(tension). Evolution with time of (a) the horizontal and vertical stresses and of (b) the ratio of anisotropy,
defined as the absolute value of the stress ratio.
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Figure 6: Creep test under biaxial conditions. Σ22 = −50MPa (compression) and Σ11 = 50MPa
(tension). Evolution of the horizontal and vertical strain with time.

4.3 Creep tests

Figure 6 depicts the creep strain predicted by the model under a biaxial combined ten-
sile/compressive constant stress field (Σ22 = −50MPa (compression) and Σ11 = 50MPa (ten-
sion)). After an instantaneous strain response corresponding to the short-term behaviour of the
material, the time effect makes damage variable increase and micro-cracks rotate. During the
first part of the test, the damage evolution is slow. However, the rate of damage is amplifying
with time.

5 CONCLUSIONS

The subcritical growth of micro-cracks is responsible of the time-dependent behaviour of many
materials. The subcritical criterion has been applied at the micro-scale on a periodic cracked cell
and up-scaled by an asymptotic homogenization procedure. So doing, a time-dependent macro-
scopic damage model has been deduced and the stress-strain response of materials, depending
on time, has been computed in a macroscopic point.
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As long as the micro-cracks grow, due to the combined effect of time and high stresses at the
crack tips, the internal damage increases and the global rigidity of the material decreases. The
kinked crack obtained at each step of calculation has been replaced by an equivalent straight
crack defined by its length and its orientation. So doing, the homogenized elastic properties
of the damaged unit cell can be determined and introduced in the macroscopic stress-strain
relationship of the material.

Numerical simulations of loading at constant strain rate, relaxation or creep tests have shown
the ability of the developed model to reproduce this time-dependent damage response.
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