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ABSTRACT: Modeling the dynamic damage response of rocks requires taking into 
account the mechanics of micro-cracks and their overall response to applied loading. This 
paper presents a new micro-mechanical damage model accounting for inertial effects. The 
two-scale damage model is fully deduced from small-scale descriptions of dynamic micro-
crack propagation, without macroscopic assumptions. The passage from the micro-scale to 
the macro-scale is done through an asymptotic homogenization approach. An appropriate 
micromechanical energy analysis is proposed leading to a dynamic damage evolution law. 
Numerical simulations are presented in order to illustrate the ability of the model to describe 
known behaviors upon high strain rate, like size dependency of the structural response or 
strain-rate sensitivity.

1 iNTRODuCTiON

The failure behavior of quasi-brittle materials such as rocks is known to be sensitive to internal 
fractures, which are commonly characterized as damage. When rocks are subjected to high and 
rapid changes of stresses (due to dynamic loading as earthquakes or underground explosions), 
the damage process is governed by dynamic behaviour of fractures. One of the ways to address 
this issue is the analysis of micro-structural damage process. The macroscopic damage evolu-
tion is due to micro-crack propagation. At that scale, the damage mechanism occurs in mode i 
(tensile), even if the macroscopic loading is in compression (Brace and Bombalakis 1963).

in the present paper, we propose a new approach for dynamic damage propagation. Con-
sidering the micro-crack dynamic propagation, the dynamic model of damage is deduced 
through the mathematical homogenization method based on asymptotic developments and 
locally periodic distribution of micro-cracks (Sanchez-Palencia 1980) including the effect of 
the size of the microstructure and the loading rate on the behavior of the materials.

A two-scale approach for damage was deduced in Dascalu et al. (2008) for brittle damage. 
More general formulations of this model, including non-brittle behaviors or more complex 
crack evolutions, were given in Dascalu (2009), François and Dascalu (2010) and Dascalu et 
al. (2010). The present development extends these results to the case of dynamic evolution of 
damage and inertial effects.

2 TWO-SCAle PROBleM

in this paper, we consider the dynamic evolution of the elastic solid containing a large number 
of micro-cracks. We suppose that the micro-crack distribution is locally periodic  (see  Fig. 1a), 
with ε the size of a periodicity cell or, equivalently, the distance between the centers of neigh-
bouring micro-cracks and by l the micro-crack length. The length l is assumed to have small 
spatial variations such that, locally, the distribution of micro-cracks may be considered as 
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periodic. each crack is assumed to be horizontal (parallel to the x1-axis) and straight. We 
define the damage variable, included between 0 (for undamaged material) and 1 (for complete 
damaged material), as the ratio between the micro-crack length l and the period size ε:
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2.1 Elastodynamics equations

We consider the elastodynamics equations for the initial heterogeneous medium that we 
assume to be a two-dimensional isotropic elastic medium containing a locally periodic array 
of micro-cracks. let BS = B/C be the solid part of B, with C the union of all micro-cracks 
inside B. The momentum balance equation is:
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including the linear elasticity constitutive relation:
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where aijkl is the elasticity tensor, σ ε
ij  is the stress field and uε the displacement field from which 

the strain tensor is calculated in the small deformations hypothesis:
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Traction free conditions are assumed on the crack faces:

 σ εN = 0 (5)

where N is a unit normal vector on the crack faces.

2.2 Asymptotic developments

The locally periodic microstructure is constructed from a reference unit cell Y (Fig. 1b) 
referred to microscopic coordinates (y1, y2). Rescaled with the small parameter ε, the unit cell 

Figure 1. (a) Micro-fissured medium with locally periodic microstructure, ε is the size of a period and 
l is the local micro-crack length. (b) unit cell with rescaled crack of length d.



371

becomes the physical period of the material εY as in Figure 2. We assume the microstruc-
tural period ε to be small enough with respect to the characteristic dimensions of the whole 
body and the wavelength of the elasto-dynamic field. We consider distinct variables at dif-
ferent scales: the macroscopic variable x and the microscopic variable y = x/ε. For a variable 
depending on both x and y the total spatial derivative takes the form
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The unit cell Y contains the scaled crack CY and its solid part YS = Y/CY. Following the 
method of asymptotic homogenization (e.g. Sanchez-Palencia 1980), we look for two-scale 
expansions of uε and σε in the form:

 u x t u x y t u x y t u x y tε ε ε, , , , , , ,( ) = ( ) + ( ) + ( ) +( ) ( ) ( )0 1 2 2 … (7)
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where = u(i) (x,y,t) and σ(i) (x,y,t), x ∈ B, y ∈ Y are smooth functions an Y—periodic in y.

2.3 Homogenization analysis

Substituting the asymptotic development of uε and σε (eq. 7 and 8) in the elasto-dynamic 
equations (2, 3, 4) and taking into account the relation (6), one can obtain the followings 
expressions
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that have to be solved for each i.
(i) eq (9) for i = −1 and eq (10) for i = 0 give:
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Figure 2. Rescaling of the unit cell to the microstructural period of the material.
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For given u(0), taking into account eqs (11–12) one obtains the boundary value problem 
for the corrector u(1):
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with periodicity conditions on the external boundary of the cell. The microscopic corrector 
u(1) depends linearly on the macroscopic deformations
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Here the characteristic functions ξpq(y) are elementary solutions of eqs (13–14) for the 
particular macroscopic deformation exkl(u(0)). The equilibrium equation (11) shows that iner-
tial effects are not directly present at the microscopic level.

(ii) eq (9) for I = 0 and eq (10) for I = 1 give
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By applying the mean value operator ⋅ = ⋅∫1/ | |Y dyYS
 (where |Y| is the area of Y) to eq (16) 

and remembering that u(0) is y-independent, one can obtain:
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as describing the overall dynamic behavior of an elastic body with a given distribution of 
(non-evolving) micro-cracks. We define the macroscopic stress
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Figure 3. Homogenized coefficients for horizontal crack orientation for elastic parameters e = 2 GPa 
and ν = 0.3.
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where
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are the homogenized coefficients.
These coefficients Cijkl can be computed by solving the unit cell problems (13) and (14) for 

several d and interpolating between the obtained values (Fig. 3). Those unit cell problems 
have been computed by the FeAP finite element code.

3 eNeRGY ReleASe RATeS AND DYNAMiC DAMAGe evOluTiON

We consider in this section the problem of evolving micro-cracks and we extend our homog-
enization method in order to obtain macroscopic evolution laws for damage.

The dynamic energy release rate can be expressed at the tip of a micro-crack as follows

 
G U T n

u
dx

dsd
r Yr ij

iε ε
ε

σ= +( ) − ∂




= ∫lim 0 1
1Γ

 (21)

where

 
U a e u a e umnkl xkl mnkl xmn= ( ) ( )1

2
ε ε  (22)

 
T

u
t

u
t

= ∂
∂

∂
∂

1
2

ρ
ε ε

 (23)

are respectively the energy of  deformation and the density of  kinetic energy (Freund 
1998).

Here Γr is a circle of an infinitesimal radius r surrounding the crack tip and n is the unit 
normal vector on Γr (see Fig. 2).

The physical energy release rate in dynamics is expressed as function of the stress intensity 
factors as follows (Freund 1998):

 
G v

E
A k Kdε ε= − ( ) ( ) ( )1 2 2 2 l l I  (24)

For crack propagation in mode i, Freund (1998) established the relation
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where CR is the Rayleigh wave speed.
including the asymptotic development (7, 8) into relation (21), and comparing the obtained 

results with the physical energy release rate in dynamics (24), we establish the dynamic dam-
age evolution law (see Keita et al. (2013) for more details):
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4 lOCAl MACROSCOPiC ReSPONSe

4.1 Parametric study

For each step of calculation, the problem is strain controlled and the corresponding stress is 
obtained by combination of equations (26), (20) and (19). The response of the model was 
simulated under a horizontal tension rate of 1.10−3 s−1 while the vertical deformation is con-
strained. The parameters used in the simulations are reported in Table 1. Figure 4 illustrates 
the influence of the microstructure size on the material behaviour. As long as the microstruc-
tural size ε decreases, the material resistance increases. Figure 5 exhibits the ductility induced 
when the rate of straining ė increases. in dynamic conditions, under high load rate, the inertia 
effect becomes more important and crack propagation is slower than the loading rate which 
makes the behavior more ductile.

4.2 Model validation

To validate our model efficiency we compare the model strain-rate sensitivity of tensile 
strength curve of Al23 alumina to the strain-rate sensitivity of tensile strength curve form 
GePi test (erzar and Buzaud 2012). For the microstructural size of ε = 3.10−3 m and the ini-
tial damage value d0 = 0.3 (the other parameters being similar to Table 3), our dynamic dam-
age model gives a good agreement with the experimental results (Fig. 6) showing an increase 
of strength along with a faster loading.

Table 1. Material parameters and loading conditions used in the simulations.

Materials parameters
loading 
conditions

e [Pa] ν [−] ε [m] Gc [jm−2] CR [m/s] ρ [kg/m3] d0 [−] ė11 [s−1] ė22 [s−1]

2. 1011 0.3 1.10−3 164 486 3800 0.2 0 1.103

Figure 4. effect of the internal length ε on numerical results of a horizontal tension test at constant 
strain rate. evolution of (a) Stress (b) Damage variable with strain.

Figure 5. effect of the strain rate of loading ė on the behavior of materials subject to a horizontal ten-
sion test at constant strain rate. evolution of (a) Stress (b) Damage variable with strain.
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5 CONCluSiON

The dynamic micro-crack propagation criterion has been applied at the micro-scale and up-
scaled by the asymptotic homogenization procedure. Dynamic macroscopic damage model 
has been deduced and the stress-strain response of materials, depending on time, has been 
obtained in a macroscopic point. The dynamic damage law contains a microstructural length 
allowing for the prediction of size effects, and Rayleigh wave speed parameter that meas-
ures the speed of dynamic crack growth. efficiency of the model is demonstrated by com-
paring the strain-rate sensitivity of tensile strength, obtained experimentally from spalling 
test with the prediction of the model.
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