
1 INTRODUCTION 

Heterogeneous geomaterials possess complex microstructures. The main difficulties 

encountered in multi-scale modeling of geomaterials, at small scale, are related to the 

complexity of the geometry, the natural disorder and the variety of contributing multi-

physical phenomena. The computational homogenisation of such microstructures requires 

specific tools to take this complexity into account, both from the point of view of the 

availability of representative volume elements, and from the point of view of the 

discretization technique. In this work, those two specific aspects are addressed through the 

development of generic tools for the generation of controlled microstructure, based on a 

topology-independent geometrical representation (level set) (Sethian, 1999) and a 

heterogeneity independent discretization methodology, consisting in a level set-based 

extended finite element description (XFEM) (Sukumar et al., 2001, Moes et al., 2003). A 

fine-scale plastic constitutive law is used to model the progressive mechanical degradation 

under mechanical loading. The scale transition to obtain the macroscopic stress-strain 
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ABSTRACT: The numerical characterization of the geomechanical behaviour of 

geomaterials (soils, rocks or concrete) at small scale requires the consideration of the 

complex 3D geometries of their microstructures. It implies (i) difficulties to generate complex 

3D Representative Volume Elements (RVEs), and (ii) major problems to discretize properly 

such RVEs to solve mechanical problems. We present here an integrated framework allowing 

morphological studies thanks to an efficient RVE generator coupled with an XFEM setting 

for three-dimensional mechanical simulations. Based on level set functions and “controlled” 

Random Sequential Packing algorithms, a dedicated tool for the generation of RVEs has been 

developed. The efficiency of the method is maximized by constraining the sequential addition 

process with a global level set function. The obtained RVEs respect the microstructural 

characteristics of the materials (grain size distribution, proportions of phases…). This 

microstructure generation tool is illustrated by the generation of 3D RVEs corresponding to 

various heterogeneous geomaterials. The microstructure is then discretized using a regular 

mesh using level set-based extended finite element (XFEM) approaches, which allow 

uncoupling the meshing operations from the presence of the (complex) fine scale material 

interfaces. Finally, fine scale constitutive laws, including plasticity, are used in 

computational homogenisation procedures to model the progressive mechanical degradation 

of the material under stress. This is illustrated by the numerical simulation of the mechanical 

behaviour of a clayey sand and a rock-type material.
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relationship from the computation at micro-scale is obtained through a periodic 

homogenization scheme (Kouznetsova et al., 2001, 2002, Massart and Selvadurai, 2012). 

2 PERIODIC HOMOGENEIZATION 

Scale transition techniques are used to obtain the average (macroscopic) material 

properties of a homogeneous equivalent material based on microstructural descriptions 

including fine-scale heterogeneities and the constitutive laws of each phase. Consequently, 

the experimental parameter identification is transferred to lower scales on which 

phenomenologically simpler laws can be used.  

The averaged mechanical properties of a heterogeneous material can be deduced by 

loading a Representative Volume Element (RVE) containing the main microstructural 

features of the material, and solving the corresponding equilibrium problem. When a 

macroscopic strain E  is applied to a RVE, the displacement of a point inside the RVE is 

given by 

( ) . ( )fu x E x u x= +( ) ( )u( ) ( ) (1) 

where xx  is the position vector within the RVE and fuu  is a fluctuation field caused by the 

heterogeneity of the material. Assuming that the macroscopic strain is the volume average of 

the fine-scale strain field e  resulting from the above equation, and accounting for a periodic 

fluctuation, the Hill-Mandel condition (energy equivalence between the fine-scale and 

macroscopic descriptions) 
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implies that the macroscopic stress tensor is obtained as the volume average of the 

microstructural stress tensor. Considering the periodicity of the fluctuation field, the 

macroscopic stress tensor can next be identified based on the cell tying forces at nodes 

controlling the macroscopic loading as 
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where the summation spans the nodes controlling the RVE loading, ( )af ( )( )( )f  and ( )ax ( )( )( )x  are, 

respectively, the nodal force and the nodal displacement of the node ( )a . The periodicity of 

the microfluctuation field can be enforced by homogeneous linear connections between 

corresponding faces. In a three-dimensional body, four controlling points (denoted 1 to 4 in 

Fig. 1) are used to apply the macroscopic stress or deformation modes of the boundary of the 

RVE, provided identical meshes are used on the opposite faces of the RVE. 

The RVE equilibrium problem under the macroscopic stress loading is then solved by 

imposing forces ( )af ( )( )( )f  at the controlling points, which represent the action of the neighboring 

continuum on the RVE. The displacements of the controlling points, energetically conjugated 

to the imposed controlling forces, can be used to extract the macroscopic strain. A full 

description of the homogenization scheme can be found in Massart and Selvadurai (2012). 
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Fig 1. Control points for macroscopic quantities control on a RVE for upscaling principles 

3 MICROSTRUCTURE GENERATION 

The numerical modeling of the geomaterial behaviour at micro-scale requires, first, a 

proper representation of the microscopic morphology (at the particle scale). Two alternatives 

can be adopted to consider a representative microstructure: (i) the extraction of a real 

microstructure from the image analysis of full-field experimental methods of material 

observations (e.g. Computed X-Ray Tomography) (Hashemi et al., 2013) or (ii) the computed 

generation of microstructure respecting some constraints (e.g. prescribed volume fractions 

and/or grain size distributions) (Sonon et al., 2012). The main advantage of the second 

method is that representative microstructures can be randomly generated providing a large 

number of possible morphologies for a same set of constraints. Also, it does not require 

sophisticated techniques of sample observations. 

In the present work, a specific methodology for the computed generation of 

microstructures has been developed. The RVE generator tool is mainly designed for granular 

media, possibly cemented, bridged or coated by a matrix material as well as polycrystalline 

media. It is based on distance fields and level set functions as presented in Sonon et al. (2012) 

for 2D RVEs, and extended in Sonon et al. (2013) for 3D simulations. 

Three tools are combined to build an RVE starting from a random distribution of 

inclusions (inclusion packing, Section 3.1) that can be morphed (inclusion morphing, Section 

3.2) to achieve specific features, and completed with a specific binding phase 

(Coating/bridging paste, Section 3.3). 

3.1 Inclusion packing 

The inclusion packing is the first step of the RVE generation method that gives the basis 

for the microstructural spatial arrangement. It allows incorporating prescribed volume 

fractions and grain size distributions as input parameters. The geometry used for the shape of 

inclusions is arbitrary and can be randomly generated through a parameterization or explicitly 

defined from existing data (e.g. in order to use data from Computed X-Ray Tomography). 

The problem of filling a container with a given volume fraction of inclusions while 

respecting prescribed size distributions and grain shapes is achieved here using a Random 

Sequential Addition (RSA) of inclusions (Cooper, 1988), improved by the use of distance 

fields. The method is called LS-RSA (for Level-Set controlled Random Sequential Addition, 

Sonon et al. (2012)). With this original method, the efficiency of the sequential addition of 

inclusion is drastically improved using distance fields. Instead of a purely random trial 

position, a set of discrete positions satisfying a priori the non-overlapping and neighboring 

distance conditions is used to select new inclusion locations. Consequently, trial positions are 
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never rejected, as it is often the case for the classical RSA algorithm (mainly when dense 

packing must be reached). 

The available zone for the addition of the next inclusion is built using the nearest neighbor 

distance function ( )
1LS x )x  (see Fig. 2a) which is maintained on a structured grid of points 

nxx

at each inclusion addition. The radius r  of the smallest enclosing circle (or sphere) of the 

new inclusion is used as an indicator of its size. The positions on the grid leading to overlap 

with existing inclusions can be excluded for the random inclusion positions by allowing 

selection only among the points of the grid satisfying the condition (Fig.2a) 

( )1 nLS x r>)x r) (4) 

This allows the addition of a new inclusion at each trial, and the generation cost is 

therefore not linked to any probability relative to the actual density, but rather to the number 

of added inclusions. Additional neighboring distance conditions can be enforced using 

( )
1LS x )x  such as for instance 

( )min 1 maxnnn r LS x nn r+ < < +))x nnx nn) (5) 

where minnn  and maxnn  are the minimum and maximum distance imposed from the first 

neighbor of the added inclusion (Fig. 2a). To increase packing density, the spatial 

organization has to be optimized by minimizing the distances of the added inclusion to its 

second nearest neighbor in 2D and its third nearest neighbors in 3D. The corresponding 

distance functions ( )
2LS x)x  and ( )

3LS x)x  are used for this purpose with the same type of 

condition (Fig. 2b). 

(a) (b)

Fig 2. (a) Non-overlap and first neighbor distance criteria to restrict the random position of the new inclusion 

to be added (the function ( )
1LS x )x  is represented in the insert), (b) First and second neighbor distance criteria to 

optimize spatial organization to obtain dense packing (the function ( )
2LS x)x   is represented in the insert) 

3.2 Inclusion morphing 

Marginal corrections required to adjust the inclusion volume fraction or shapes and more 

substantial modifications allowing to produce polycrystalline or cellular microstructures 

motivate the development of a tool enabling the morphing of inclusions once their population 

is entirely generated by sequential addition. At this stage, the inclusions neighborhood is 

completely determined and can be used to modify their shape according to inter-inclusion 

distance rules. A complete expansion of inclusions until vanishing of the inter-grain joint 

thickness allows forming polycrystal-like microstructures.  
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The morphing technique is strongly based on level set functions. The ( )1 nLS x )x  and  

( )2 nLS x )x  functions built during the sequential addition process are used to construct a 

function ( )nO x )x  that can be contoured to extract updated shapes of the inclusions. The 

function  

( ) ( ) ( )1 2n n nO x LS x LS x= -) ( ) ( )x LS x LS x) ( ) ( (6) 

vanishes at points of equal distance between two nearest inclusions and is negative elsewhere. 

The zero level set of this function thus determines a Voronoï-like diagram, each cell 

enclosing an inclusion and points closer to it than to other inclusions. If the initial inclusion 

distribution is a dense arrangement of mono-sized spheres, the produced grains are convex 

and the result is exactly a Voronoï diagram (Fig. 3a). The use of multi-sized arbitrary shaped 

polyhedra leads to disordered microstructures (Fig. 3b). A joint between the grains with 

constant thickness w  can be obtained by considering the function 

( ) ( ) ( )1 2n n nO x LS x LS x w= - +) ( ) ( )x LS LS w) ( ) ( )LS x LS xx( ) ( ) .

(a)  (b) 

Fig 3. (a) Convex Voronoï-like cells produced by a mono-sized spheres packing, (b) disordered cells 

produced by an arbitrary shaped multi-sized inclusion packing

3.3 Coating/bridging paste 

The presented methodology also allows generating coatings and bridges around inclusions. 

It may reproduce, for instance, the clayey bridge between coarse particles of sand in clayey 

sand. Cement paste of concretes or precipitate coating in cemented rocks are others examples 

that can correspond to this coating paste.  

On the one hand, a uniform coating of thickness w  is trivially extracted with the w level 

set of ( )
1LS x )x . On the other hand, bridges between two neighboring inclusions can be 

generated provided the inter-distance between two potentially bridged grains is small enough. 

The function ( ) ( ) ( )1 2n n nO x LS x LS x= -) ( ) ( )x LS x LS x) ( ) ( (Fig.4) contains explicitly in each point n the 

distance between the two nearest point via n. The zero level set of 

( ) ( ) ( )1 2n n nO x LS x LS x b= - -) ( ) ( )x LS x LS x b) ( ) ( )  give the geometry of bridges linking grains closer to each 

other than b .
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Fig 4. The function ( ) ( ) ( )1 2n n nO x LS x LS x= -) ( ) ( )x LS x LS x) ( ) (  explicitly contains the information to create bridging 

past between inclusions.

4 MECHANICAL MODEL 

4.1 X-FEM Computation 

The complexity of generating finite element meshes for the generated RVEs motivates the 

use of an alternative discretization method. The eXtended Finite Element Method (Sukumar 

et al., 2001, Moës et al., 2003), that does not require meshes conforming to the material 

boundaries, is therefore used. In addition to be defined as an extension of the standard finite 

element scheme, this method uses the level set formalism to describe the RVE geometry, 

which allows its seamless integration with the RVE generator. 

The principle of XFEM is to use a non-conforming regular mesh with additional degrees 

of freedom related to additional shape functions (denoted the enrichment) introducing the 

strain jumps induced by material heterogeneities. This treatment, concentrated on finite 

elements intersected by a material interface (e.g. inclusion/matrix boundary), uses signed 

distance functions to construct the enrichment and to subdivide elements by material at the 

stiffness integration stage. The interpolation of each displacement field components therefore 

reads 

( ) ( ) ( ) ( )
XFEM i i j j

i i

u x N x d N x x a= + Yå å (7) 

where the first term represents the usual finite element polynomial interpolation containing 

the standard shape functions as a partition of unity. The second term introduces the XFEM 

enrichment with ja  the additional unknowns and ( )xY  the enrichment functions. For 

heterogeneous materials, the 1LS  level set (distance) function was shown to introduce the 

required strain jump at the material boundary. The XFEM methodology implemented in a 3D 

setting is coupled with periodic homogenization and fully compatible with the RVEs 

generated using the tools presented previously. 
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4.2 Elasto-plastic constitutive model 

The elastic part of the deformation is considered through classical linear elasticity including 

constant values of the Young modulus and the Poisson ratio. The limit between the elastic 

and the plastic domain is represented by a Drucker-Prager yield surface: 
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where p  and q  are the mean stress and the deviatoric stress and c  and f  are the cohesion and the 

friction angle, respectively. An associate flow rule is considered producing dilatancy upon plastic 

shearing (the dilatancy angle is equal to friction angle): 
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Progressive hardening is introduced through the evolution of the cohesive term with the deviatoric 

strain (corresponding to the plastic multiplier 
Pl Pl P ):

0  Pk k A l= + PlP (10) 

5 RESULTS 

5.1 Clayey sand 

In this section, we deduce the macroscopic behaviour of a lime-treated clayey sand through 

the consideration of its mechanical behaviour at micro-scale. To achieve this, a representative 

microstructure was generated through the microstructure generation tool detailed in Section 

3. Periodic conditions have been applied on the boundaries of the RVE. Then, the mechanical 

problem has been addressed through the XFEM scheme considering a linear elastic response 

of the sand grains and elasto-plastic behaviour of the clay matrix. Material parameters are 

reported in Table 1. The inclusion packing generates the inert grain (considered >2μm) in 

agreement with the grain size distribution of inert particles. A bridging paste is introduced to 

represent the clayey matrix corresponding to the soil particles <2μm. This distinct phase 

contains the clay particles, a certain quantity of lime from the treatment and micro-voids 

including water and air. This phase plays an important cohesive role, acting as a matrix, 

coating and bridging inert grains together.  

This framework allows modeling, observing and understanding the basic mechanisms of 

plasticity propagation in the microstructure as well as studying the evolution of macroscopic 

elastic limit as a function of the morphology. A first application, assuming a 2D plane-strain 

problem, compares the macroscopic response of two specimens containing two different clay 

contents under oedometric compression (application of vertical loading while macroscopic 

radial displacements are constrained). Results are depicted in Figure 5. It is shown that even

if the macroscopic stress state is mainly isotropic (with a low deviatoric component compared 

to the mean stress), the local microstructure contains many zones in which deviatoric strains 

occur. This is particularly the case in the clayey bridging zones where the distance between 

two sand particles is small. The specimen with the lower clay content exhibits the softer 

response and the lower elastic limit. This may seem counterintuitive because clay is the 
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compressible phase in the medium. However, this feature of behaviour has also been 

observed experimentally. Until a certain quantity, clay has a positive effect on the stiffness 

and strength of clayey sand. Clay reinforces the particles contacts, provides cohesion and 

avoids strain localization in the particle contacts. 

The microstructure of a soil is highly three-dimensional and there is no trivial way to find 

a 2D mechanically equivalent description of a given 3D sample. Some morphological aspects 

concerning voids topology only emerge in 3D and the number of kinematically admissible 

mechanisms is also different. There is also no comparison possible in terms of volume 

fractions. Consequently, the clayey sand application is generalized in 3D with a clay content 

of 30 %. The same methodology is applied. However, up to now, due to computation time 

constraints, plasticity was not considered and a purely elastic computation is performed. Even 

if the behaviour of the clay matrix is not perfectly representative of real plastic clay, some 

general trends can be observed in terms of strain distribution in the microstructure (Figure 6). 

Strains are concentrated in the short clay bridges. The largest grains carry the main part of the 

stress. Chain forces are mainly developed across those large grains. Consequently, the largest 

strains occur mainly in the clayey bridges surrounding largest sand grains (see Figure 6, 

right).  

Table 1. Material parameters used in the different mechanical computations 

Materials E [GPa]  u [-] c [MPa] f [°] A [GPa]

Clayey sand 2D

Sand particles 10 0.1 - - -

Treated clay matrix 0.5 0.2 0.5 23° Perfectly 

plastic

Clayey sand 3D

Sand particles 10 0.1 - - -

Treated clay matrix 0.5 0.2 - - -

Rock-type material

Grains 60 0.1 - - -

Joints 30 0.3 40 17 1
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Fig 5. Macroscopic behaviour of lime-treated clayey sand upon oedometric compression interpreted from 

micro-scale computations. Focus on the effect of the clay content. The snapshots on the right represent the 

distribution of vertical strain in the microstructure. The size of RVE is 10 mm along each direction. 

Fig 6. Vertical strain distribution obtained from 3D elastic computation of lime-treated clayey sand upon 

oedometric compression. The size of RVE is 10 mm along each direction. 

5.2 Rock-type material 

As opposed to soil-type materials, rock-type materials do not exhibit macro-voids and the 

material can be considered as a continuum medium, even at micro-scale. The existing voids 

are included in the rock matrix. A 3D microstructure made of grains and large joints with a 

grain volume fraction of 58% was generated with the LS-RSA tool (Figure 7) and subjected 

to triaxial loading. The grains do not present any preferential orientation. They are assumed 

purely elastic, whereas a plastic behaviour is assumed in the joints. The set of parameters 

used in the computations is defined in Table 1. The applied loading follows a typical triaxial 

test with a strong confinement. A confinement of 100 MPa is first applied in all directions, 

followed by an increase of the axial stress, the other stress components remaining fixed. This 

high confining stress is used to avoid any convergence problem in the mechanical problem, 

and to keep the local strain distribution consistent with a small strain description. The strain 

are still concentrated in the weakest phase (the joints) while the grains remain almost 

unstrained. The plastic dilatancy in the joints produces high dilatant volumetric strains. The 

macroscopic mechanical response of the RVE is depicted in Figure 8.  

Fig 7. Volumetric strain distribution obtained in the rock-type material at 350 MPa of deviatoric stress. 

Strains occur in the joints. The size of RVE is 10 mm along each direction. 
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Fig 8. Homogenized response of the RVE. Mechanical response under triaxial conditions depicting the 

average deviatoric stress applied as a function of the axial and transverse strains.

6 CONCLUSIONS 

An efficient methodology including microstructural RVE generation of porous media 

combined with a XFEM computational scheme has been proposed to investigate the 

mechanical properties of heterogeneous geomaterials at small scale. A periodic 

homogenization scheme allows the scale transition in order to deduce homogenized response 

of the material from a macroscopic point of view. This framework allows understanding the 

basic mechanisms of plasticity propagation which control the mechanical response at 

macroscopic (laboratory) scale. In companion works (Massart and Selvadurai, 2012, Sonon et 

al., 2013), the obtained local damage propagation from the mechanical computations is

coupled with fluid transport modeling, which allows identifying microstructural features 

responsible for permeability evolution due to mechanical degradation.
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