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Abstract 
 

 

 This paper proposes a new continuum damage model accounting for inertial effects (Keita et al 
2014) to analyze the fracture behavior of rock in tension due to blasting. The two-scale damage model 
is fully deduced from small-scale descriptions of dynamic micro-cracks propagation under tensile 
loading (mode I). An appropriate micro-mechanical energy analysis is combined with homogenization 
based on asymptotic developments in order to obtain the macroscopic evolution law for damage 
(Dascalu et al 2008). 

The global macroscopic response predicted by the model is obtained by implementation of the 
dynamic damage law in a transient finite elements code. The damage pattern around the blasthole was 
simulated. Numerical simulations were able to illustrate the ability of the model to reproduce the 
radial cracks zone due to rock blasting. The influences of microstructural size and of micro-cracks 
orientation on damage distribution around the blasthole have been determined. 
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1. Introduction 
Rock fragmentation under blasting loads is a topic of great current interest and importance. It is a 

common practice in mining, quarries and construction industries. It also represents an index that is 
used to stimate the effect of bench blasting in the mining industry (Cho and Kaneko 2004). The blast 
induced-damage in the surrounding rock is a complex response and has to be well understood so that 
to better model the rock behavior under such a dynamic loading. The speed and high stress level of 
the loading are factors which complicate the establishment of appropriate damage law. In 
consequence, several intensive research activities have been carried out in the field of blast damage  

(Langefors and Kihlstrom 1978; Li et al. 2009). One of the ways to address this issue is the analysis of 
micro-structural damage process. The macroscopic damage evolution is due to micro-crack 
propagation that takes place at micro-scale. At that scale, the damage mechanism occurs in mode I 
(tension), even if the macroscopic loading is in compression (Brace and Bombalakis, 1963).  

In the present paper, we propose a new approach for blasting damage of rocks. Considering the 
micro-crack dynamic propagation, the dynamic model of damage is deduced through the 
mathematical homogenization method based on asymptotic developments and locally periodic 
distribution of micro-cracks (Bensoussan et al., 1978; Sanchez-Palencia, 1980).   
  
2. Two-scale problem 

In this paper, we consider the dynamic evolution of the elastic solid containing a large number of 
micro-cracks. We suppose that the micro-crack distribution is locally periodic (see Fig. 1a). We denote 
by   the size of a periodicity cell or, equivalently, the distance between the centers of neighbour 
micro-cracks and by l the micro-crack length. The length l is assumed to have small spatial variations 
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such that, locally, the distribution of micro-cracks may be considered as periodic. Each crack is 
assumed to be horizontal (parallel to the x1-axis) and straight. We define the damage variable as the 
ratio between the micro-crack length l and the period size  : 

                            


l
d   (1) 

The damage variable is necessarily included between 0 (for undamaged material) and 1 (for 
complete damaged material).  

 

Fig.1. (a) Micro-fissured medium with locally periodic microstructure,   is the size of a period and l is 
the local micro-crack length. (b) Unit cell with rescaled crack of length d. 

3. Elastodynamics equations 
We consider the elastodynamics equations for the initial heterogeneous medium that we assume 

to be a two-dimensional isotropic elastic medium containing a locally periodic array of micro-cracks. 
Let        be the solid part of  , with   the union of all micro-cracks inside  . The 
momentum balance equation is: 

                      
    

 

   
  

    
 

   
                  in     Bs                  (2) 

including the linear elasticity constitutive relation: 

                           
      

             
                                            (3) 

where       is the elasticity tensor,    
  is the stress field and    the displacement field from 

which the strain tensor is calculated in the small deformations hypothesis : 

             
   

 

 
 

   
 

  
 

   
 

  
                                                                  (4)                                                            

On the lips of cracks, free opening contact under tension or friction conditions are assumed. 
These two alternatives are expressed respectively by the two sets of conditions.  

                                     0 N
  

. 0   u N                                       (5) 

                       0   σ N   . 0 N N . 0 T N . 0   u N                (6)                                                    

where   is a unit normal vector on the crack faces, T is the unit vector which is tangent to the crack 

3.1 Asymptotic developments 
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The locally periodic microstructure is constructed from a reference unit cell   (Fig.1b) referred to 
microscopic coordinates (y1, y2). Rescaled with the small parameter  , the unit cell becomes the physical 
period of the material Y as in Fig. 2. We assume the microstructural period   to be small enough with 
respect to the characteristic dimensions of the whole body and the wavelength of the elasto-dynamic 
field. In this case, we can distinguish between the microscopic and the macroscopic variations of the 
mechanical field. We consider distinct variables at different scales: the macroscopic variable   and the 
microscopic variable y=x/ . For a variable depending on both x and y the total spatial derivative takes 
the form 

                                       

 

   
 

 

   
 

 

 

 

   
                                            (7)          

The unit cell   contains the scaled crack    and         its solid part. Following the 
method of asymptotic homogenization (e.g. Bensoussan et al. (1978); Sanchez-Palencia (1980)), we 
look for two-scale expansions of    and    in the form: 

        
                                                                      (8) 

                  
        

 

 
                                                            (9)     

where              and             ),     ,       are smooth functions an   - periodic in  . 

 

Fig.2. Rescaling of the unit cell to the microstructural period of the material.  

3.2 Homogenization analysis 
Substituting the asymptotic development of    and    (Eq.7 and 8) in the elasto-dynamic Eq. (2, 

3, 4) and taking into account the relation (6), one can obtain the followings expressions  

                   

 

   
   

   
 

 

   
   

     
  

    
   

   
                                        (10) 

             
   

   
                                                                   (11) 

that have to be solved for each I . 

(i) Eq. (9) for   = -1 and Eq. (10) for   = 0 give: 
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                                                    (12) 

            
 

  

   
                                                             (13) 

For given     , taking into account Eqs. (11-12) one obtains the boundary value problem for the 
corrector u

(1)
: 

                     

 

   
                         in  Ys                             (14)                

           
                                           on CY                        (15) 

with periodicity conditions on the external boundary of the cell. The microscopic corrector u
(1)

 
depends linearly on the macroscopic deformations 

                    
                                                               (16) 

Here the characteristic functions        are elementary solutions of Eqs. (13-14) for the 
particular macroscopic deformations           . The equilibrium Eq. (11) shows that inertial effects 
are not directly present at the microscopic level.  

(ii) Eq. (9) for   = 0 and Eq. (10) for I = 1 give 

               

 

   
   

   
 

 

   
   

   
  

    
   

   
                                             (17) 

           
   

   
                                                                    (18) 

By applying the mean value operator     
 

   
.

Ys
dy   (here     is the area of  ) to Eq. (16) 

and remembering that u
(0)

 is y-independent, one can obtain:  

                       

 

   
    

   
     

    
   

   
                                            (19) 

We define the macroscopic stress 

                         
    

     
)0(

ij
                                              (20) 

that can be expressed as 

                     

( 0 ) ( 0 )( )ijkl xklij
C e u                                              (21) 

where 

        
     

     
 

   Ys
                        

 
                           (22) 
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are the homogenized coefficients. We deduce the dynamic macroscopic behavior: 

                       

 

  


)0(

ij
    

   
 
   

   
 
 (23) 

as describing the overall dynamic behavior of an elastic body with a given distribution of 
(non-evolving) micro-cracks. These coefficients Cijkl can be computed by solving the unit cell 
problems (13) and (14) for several d and interpolating between the obtained values. Those unit cell 
problems have been computed by the FEAP finite element code.  

4. Energy release rate and dynamic damage evolution 
We consider in this section the problem of evolving micro-cracks and we extend our 

homogenization method in order to obtain a macroscopic evolution law for damage. 
 

4.1 Dynamic energy release rate 
The dynamic energy release rate can be expressed at the tip of a micro-crack as follows 

             
    

Yr
r 0lim             

    
 

   
   

 
 (24) 

where 

                
   

 

 
                          

 
              (25) 

                               
   

 

 
 

   

  

   

   
                                         (26) 

are respectively the energy of deformation and the density of kinetic energy (Freund, 1998). Here    
is a circle of an infinitesimal radius   surrounding the crack tip and n is the unit normal vector on    
(see Fig. 2).  

The physical energy release rate in dynamics is expressed as function of the stress intensity 
factors as follows (Freund, 1998): 

                          
     

    

 
              

   

 
                                 (27) 

For crack propagation in mode I, Freund (1998) established the relation 

                        
                 

  

  
 

 
                                        (28) 

where    is Rayleigh wave speed and can be expressed by 

                    
    

           

   
 

 

        
                                          (29) 

4.2 Dynamic damage evolution 
Including the asymptotic development (7, 8) into relation (24), and comparing the obtained results 

with the physical energy release rate in dynamics (27), we establish the following equation 

                      
 
  

  
 

   

 
 

  

  
      

  
                    

 
 

 
 

 
                            (30) 

as the dynamic damage evolution law (see Keita et al. (2014) for more details). 
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5. Numerical implementation 
Numerical implementation is done in a transient finite elements code with the combination of the 

following equations previously determined: 
 

1. The dynamic macroscopic behavior 

                                

 

  


)0(

ij
    

   
 
   

                               (31) 

with 

                                 
(0) (0)( )ijkl xklij

C e u                             (32) 

2. The dynamic damage evolution law 

                           
  

  
 

   

 
 

  

  
      

  
                    

 
 

 
                     (33) 

                              

3. The irreversibility condition 

                                   
  

  
                                        (34) 

The last condition expresses the fact that the micro-cracks can only increase in length during the 
deformation of the material.  

 

The implicit management integration scheme is run by the numerical algorithm of the finite element 
code LAGAMINE. Here will just explain the implementation procedure which are 7 steps : 

1. Application of the given load that generates the macroscopic deformation 
2. The homogenized coefficients are calculated according to the crack is opening or closing under 

the load applied at point 1. 
3. A new damage value is calculated from solving the dynamic damage equation (Eq. 33). If dd<0, 

dd=0 is imposed. 
4. The homogenized coefficients are updated according to the new value of damage calculated in 

point 3. 
5. The macroscopic stresses are calculated according to Eq. (32).  
6. The tangent matrix is obtained via the variation of the homogenized coefficients 

 

6.  Blasting damage simulation 
6.1 Blast load 

The following explosion pressure time history has been considered: 

                              
  

  
 

  

  
 

   
 

  
 
                             (35) 

 

where,    and    are the diameters of the explosive and blasthole (mm), respectively.    is the 
detonation pressure (Pa) which is the pressure exerted by the expansion of gases from the explosion. It 
can be calculated from the following equation, as suggested by the National Highway Institute (Konya 
and Walter 1991): 

                                  
               

         
                              (36)      
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where,     is the density of the explosive (g/cm3),     is the detonation velocity of the explosive 
(m/s), t is the elapsed time, and tr (= 0.0003361 s) is the time to reach peak pressure. The value of   ,    
and    are determined according to the type of explosive. In this study we consider the explosive 
Emulstar 3000 UG (see tab.1). Fig.3 shows the pressure time history corresponding to Eq.35. 

 

Table 1 the characteristic of EMULSTAR 3000 UG 

            
density of the 
explosive 

VOD(s) 
velocity of 
detonation 

         
detonation 
pressure 

   (mm) 
diameter of 
the explosif 

   (mm) 
blasthole 
diameter 

      to 
pressure reach 
peak time 

1.25 5600 9.9 80 165 0.0003361 

 

Fig.3. Blast pressure time history used in the simulations. 

  

6.2 Geometrical modeling 
We have considered a bench blast model in 2D. To obtain a detonation wave pressure and more 

precise explosion, the geometric model requires a very fine mesh near the borehole charge. The mesh 
comprises a total of 4080 elements. A progressive mesh refinement was performed as follows: until 100 
mm from the borehole center the mesh counts 1600 elements. From 100 to 500 mm from the borehole 
center, mesh refinement is reduced to 800 elements. This mesh refinement provides an appropriate 
transition to better represent the phenomena near the borehole charge (where they are strongest) as in 
(Li et al. (2009)).  Free boundary conditions have been considered for the external boundaries (see 
Fig.4). Blast pressure is applied in the borehole (see Fig.3). The numerical values of the parameters 
used in the simulations are given in Table 2. They represent the reference parameters of the numerical 
simulations performed below. However, in order to study the influence of the key parameters of the 
model, the following sub-sections consider varying values of  ,    and   
Table 2 Numerical values of parameters used in the simulations  

E(Pa)    ʋ(-)                                 
2. 10

9
   0.3 1.10

-3
 1400 0.2 164 90° 
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Fig.4. Geometrical model and mesh. 

 

7.  Numerical results 
Fig. 5 shows damage distribution around the borehole charge for different explosion times. The 

developed model takes exclusively into account the crack propagation in tensile mode (Mode I). 
Consequently, radial fractures zone is due to the orthoradial tensile stresses which are perpendicular to 
the direction of crack propagation. This is why the damage is greater in the vertical direction. The 
micro-cracks orientation is 90° in this simulation. At t= 2.85*10

-4
 seconds non-uniformity of the radial 

fractures are observed (Fig. 5). This non-uniformity of radial fractures is due to shear stresses in the 
elements of the mesh. This shear depends on the detonation pressure (see Fig.3) that increases up to t = 
3.36*10

-4
 seconds and decreases after this time. In the references related to cracks axes (horizontal and 

vertical axes), the maximum value of shear is find in half of each quarter of the circumference of the 
borehole charge. In the others words in the diagonal position of the geometry (45°, 135°, 225° et 315°). 
In these positions, the projections of the resulting shear stress in the elements on these axes have 
horizontal components which are perpendicular to cracks and which act in tension. This makes cracks to 
propagate in mode I. This is the reason why the damage is more important in the diagonal direction of 
the geometry. To highlight the effect of this shear stress, Fig.6 shows the shear stress evolution map 
with a zoom scale. This map illustrates that the shear is well intense is in the directions mentioned above 
that is to 45°, 135°, 225° and 315°). 

 

Fig.5. Damage distribution around borehole charge for differents explosion time 
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The Fig.7 shows the damage distribution around borehole charge for different micro-cracks 
orientation (0°,90°,30°). We can see that damage distribution for the orientation of 0° is symmetric to 
that for the orientation of 90°.  

 

Fig.6. Shear stress evolution map during blasting. 

We also study the influence of microstructual size   on the damage distribution. To do so, we 
performed some simulations for three different microstructual sizes:            ,             
and           . We find that the smaller the microstructual size    is, the more limited is the 
damage zone at the same moments of explosion (see Fig.8). 

 

Fig.7. Damage distribution around borehole charge for différents micro-cracks orientation:   
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Fig.8. Damage distribution around borehole charge for differents microstructual size   :    

       ,             and           . 

 
 

8.  Conclusions 
In this work a two-scale model for blasting damage in tension has been developed. We have shown 

that the model is capable of reproducing the radial fractures zone due to orthoradial tensile stresses. 
The influence of the microstructural size and the orientation of the micro-cracks on damage 
distribution have been studied. It was shown that these parameters have an significant influence on 
damage distribution.  
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