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ABSTRACT 

The modal state responses of very large floating structures 

subjected to sea waves are addressed in this paper. Semi-

analytical approximations for their second order statistics are 

first provided. They are derived by using the multiple timescale 

spectral analysis and they aim at calculating the variances of the 

nodal state responses much more rapidly than with the 

traditional time and frequency domain methods. Based on these 

approximate formulas, such expressions are developed for the 

correlation coefficients in this paper. They allow to understand 

in which cases the covariances between two modal state 

responses are significant and cannot legitimately be neglected. 

They are for instance important to consider when the natural 

frequencies of the corresponding modes are close to one another 

or when their shapes are similar. The accuracy of the proposed 

expressions is then verified on a realistic example inspired by an 

actual floating pontoon bridge. The results are shown to be less 

precise, although still acceptable, when the peak frequency of 

the loading and the natural frequencies of the structure are of 

the same order of magnitude. This is to be expected since the 

validity of the proposed approximations is conditioned upon the 

separation of these timescales. 

Keywords: multiple timescale spectral analysis, inertial loading, 

modal covariances, state formulation, correlation coefficients. 

 

NOMENCLATURE 

Lowercase and capital bold letters are respectively used for 

denoting vectors and matrices. Italic letters are employed for 

their elements. The superscripts (. )∗, (. )⊺, and (. )† respectively 

stand for the conjugate, the transpose and the conjugate 

transpose, or hermitian, operators. 

 

1. INTRODUCTION 

In order to cross wide and deep fjords or straits, long-span 

bridges usually have to be supported by floating supports. 

However, traditional time and frequency domain analysis 

methods actually struggle to evaluate the extreme response to the 

hydrodynamic actions of such large floating structures in a 

reasonable amount of time because the timescales associated 

with the motions of either the structure, either the loading, are 

most often clearly separated.  

Indeed, in the time domain, it relies on the statistical 

treatment of response signals. Unfortunately, they have to be 

simulated long enough to capture the slow dynamics of the 

floaters, and with a sufficiently short time step to capture the fast 

dynamics of the waves. Similarly, in the frequency domain, 

sharp and distant peaks appear in the spectral densities of the 

responses. Their numerical integration therefore requires using 

many closely spaced points, spread over a wide domain, to 

provide a correct estimation of the response statistics which are 

then used for determining the extreme distribution [1].  

Despite being more efficient than the generation of time 

histories, the computational cost of the analysis in the frequency 

domain becomes prohibitive as well for large structures with 

many degrees-of-freedom. Currently, the complexity of this 

method is driven by the projections of the matrix containing the 

spectral densities of the forces into the modal basis. It is indeed 

a time-consuming operation which additionally has to be 

repeated at each of the numerous integration points along the 

frequency axis. 
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This problem is tackled in this paper by deriving semi-

analytical approximations for the integrals at stake which allow 

to drastically reduce the number of modal projections required 

for computing these integrals with a sufficient accuracy. To do 

so, the multiple timescale spectral analysis is used. This general 

framework is based on perturbation theories and is known to 

provide simple expressions to approximate the statistics of the 

responses very quickly with a controllable discrepancy. It can 

actually be seen as a generalization of the background-resonant 

decomposition which is associated to the variances of the 

responses experienced by a single degree-of-freedom system 

under a buffeting wind loading [2].  

Until now, the multiple timescale spectral analysis has 

mainly been applied in a wind engineering context as well  [3]–

[7].  In this paper, however, such a simple expression is sought 

for the second order statistics of the modal state responses of 

wave-loaded structures, the main difference being that they 

might be excited in their inertial regime as well [8]. This 

formula is then manipulated to get a similar approximation for 

the modal correlation coefficients so that it is possible to derive 

in an analytical way the conditions under which the influence of 

the modal covariances is significant or not. Illustrations are 

finally provided for a simplified example inspired by the 

Bergsøysund Bridge, which is an actual floating pontoon bridge 

located in Norway. 

2. FREQUENCY DOMAIN SPECTRAL ANALYSIS 

2.1. Deterministic Analysis 
The dynamics of a linear elastic structure with N degrees-

of-freedom subjected to sea waves is governed by a set of N 

second order differential equations which reads 

[𝑲 + 𝑖𝜔𝑪 − 𝜔2𝑴]𝒙(𝜔) = 𝒇(𝜔) (1) 

where 𝑖 is the imaginary unit, 𝜔 is the circular frequency, 𝒙(𝜔) 

and 𝒇(𝜔) are two 𝑁 × 1 vectors containing the frequency-

domain representations of the structural displacements in every 

degree-of-freedom and the undisturbed wave loads acting on 

each of them, respectively, while 𝑲, 𝑪, and 𝑴, denote the sum 

of the structural and hydrodynamic stiffness, damping and mass 

matrices.  

Being related to fluid-structure interactions, the latter three 

matrices should in principle depend on the frequency but this 

particularity is discarded in the present paper, for the sake of 

simplicity. Instead, the frequency sensitivity of these matrices is 

considered limited enough to be neglected. Their elements are 

thus replaced by their values at 𝜔0 being the predominant 

frequency of the forces or of the motions [9]–[11].  

Unfortunately, the hydrodynamic damping is typically 

neither classical [12], nor negligible [11], and it is necessary to 

rewrite Equation (1) in terms of the state responses and the state 

forces, 𝒚(𝜔) = [𝑰 𝑖𝜔𝑰]⊺𝒙(𝜔) and 𝒈(𝜔) = [𝑰 0]⊺𝒇(𝜔) where 

I and 0 are respectively an identity and a zero 𝑁 × 𝑁 matrix, as 

[𝑨 + 𝑖𝜔𝑩]𝒚(𝜔) = 𝒈(𝜔) (2) 

in order to find an appropriate basis of size 2𝑁 × 2𝑀 with 2M 

≪ 2N which is simultaneously able to decouple the equations 

and to reduce drastically their number, even though the state 

matrices 

𝑨 = (
𝑲 𝟎
𝟎 −𝑴

)    &   𝑩 = (
𝑪 𝑴
𝑴 𝟎

) (3) 

are twice as large as the initial matrices 𝑲, 𝑪, and 𝑴 [13], [14]. 

The matrix 𝚯 usually gathers the shapes of the 2M most 

contributing modes. They are obtained as the solutions of the 

complex eigenvalue problem associated to the homogeneous part 

of the governing equations 

𝑖𝑨𝚯 = 𝑩𝚯𝚲 (4) 

together with the diagonal matrix 𝚲 which collects the 

corresponding eigenvalues 

𝜆𝑚 = 𝜓𝑚 + 𝑖𝜐𝑚 with {
𝜓𝑚 = (−1)𝑚√1 − 𝜉𝑗𝑚

2 𝜔𝑗𝑚

𝜐𝑚 = 𝜉𝑗𝑚
𝜔𝑗𝑚

   ,   𝑗𝑚 = ⌈
𝑚

2
⌉

  (5) 

where 𝜔𝑗𝑚
 and 𝜉𝑗𝑚

 are the j-th natural frequency and damping 

ratio of the undamped wet structure. 

The modal projection and decomposition of the state forces 

and responses, 𝒚(𝜔) =  𝚯⊺𝒒(𝜔) and 𝒑(𝜔) = 𝚯⊺𝒈(𝜔), are then 

introduced into Equation (2). This equation is subsequently left-

multiplied by 𝚯⊺ to give 

𝑞𝑚(𝜔) = 𝐷𝑚𝐻𝑚(𝜔)𝑝𝑚(𝜔) (6) 

where 𝐷𝑚 is a normalization constant ensuring that the real or 

the imaginary parts of the m-th mode reach one at most in 

absolute value, depending on whether m is odd or even, and 

𝐻𝑚(𝜔) = (𝜆𝑚 − 𝜔)−1 (7) 

is the m-th frequency response function. On top of being scalar, 

it also contains a single pole. The modal state responses are 

therefore monochromatic, in addition to being decoupled.  

2.2. Stochastic Analysis 
When dealing with deep water waves of moderate height 

[11], the hydrodynamic forces can be considered as being 

Gaussian. So are therefore the responses given that the structure 

is also linear. These processes are also zero-mean because they 

are defined with respect to the static equilibrium configuration.  

In this event, both the forces and the responses are fully 

characterized, in a probabilistic sense, on the sole basis of their 

power spectral densities. In particular, their probability density 

function is completely defined once their variance is established.  

Thanks to the state formulation and the modal 

decomposition, the probabilistic properties of the nodal state 

responses can be efficiently computed based on those of the 

forces, which are supposed to be known. The cross-spectral 

density of the i-th and j-th nodal state responses, for instance, is 

given as 

𝑆𝑦,𝑖𝑗(𝜔) = ∑ ∑ Θ𝑖𝑚Θ𝑗𝑛
∗ 𝑆𝑞,𝑚𝑛(𝜔)

2𝑀

𝑛=1

2𝑀

𝑚=1

 (8) 
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by combining linearly the cross-spectral densities of the m-th and 

n-th modal state responses which read as follows 

𝑆𝑞,𝑚𝑛(𝜔) = 𝐷𝑚𝐷𝑛𝐺𝑚𝑛(𝜔)𝑆𝑝,𝑚𝑛(𝜔) (9) 

where 

𝐺𝑚𝑛(𝜔) = 𝐻𝑚(𝜔)𝐻𝑛
∗(𝜔) (10) 

is the (m,n)-th structural kernel and 

𝑆𝑝,𝑚𝑛(𝜔) = ∑ ∑ Θ𝑖𝑚Θ𝑗𝑛
∗ 𝑆𝑓,𝑖𝑗(𝜔)

𝑁

𝑗=1

𝑁

𝑖=1

 (11) 

is the cross-spectral density of the m-th and n-th modal state 

forces.  

The projection performed in Equation (11) is currently the 

most time-consuming operation of the analysis. Unfortunately, it 

has to be repeated at a large number of closely spaced 

frequencies in order to determine the covariances of the modal 

state responses 

Σ𝑞,𝑚𝑛 = ∫ 𝑆𝑞,𝑚𝑛(𝜔)𝑑𝜔

+∞

−∞

 (12) 

and thus the variances of the nodal state responses 

Σ𝑦,𝑖𝑖 = ∑ ∑ Θ𝑖𝑚Θ𝑖𝑛
∗ Σ𝑞,𝑚𝑛

2𝑀

𝑛=1

2𝑀

𝑚=1

 (13) 

with a sufficient accuracy. The closeness of these integration 

points is required because the function to be integrated features 

up to two sharp peaks, at most, which are respectively associated 

to the resonance of the structure in the m-th and the n-th modes. 

Moreover, the integrand also exhibits some strong variations 

related to the particular energy content of the waves.  

3. MULTIPLE TIMESCALE SPECTRAL ANALYSIS 

3.1. Method Summary 
Fortunately enough, the peaks associated to the resonance 

of the structure are most often very well separated from the peaks 

that are coming from the cross-spectral densities of the loading. 

The multiple timescale spectral analysis is a general framework 

dedicated to the derivation of semi-analytical approximations for 

integrating such functions with distinct peaks. They are known 

to drastically reduce the number of integration points that are 

required and thus the number of frequencies at which the cross-

spectral densities of the loading are computed and projected.  

In the present configuration [15], the separation of the 

peaks in the cross-spectral density of the m-th and n-th modal 

state responses is conditioned upon the following assumptions: 

(i) The cross-spectral density of the m-th and n-th modal 

state forces is varying smoothly and moderately over 

the width of the resonant peaks. In other words, the 

derivatives of this cross-spectrum are considered small 

enough to maintain the asymptoticness of its Taylor 

series expansion in the neighborhood of these peaks, 

near 𝜓𝑚 and 𝜓𝑛, with respect to their extent. More 

formally, it reads 

 (𝜔 − 𝜓𝑚)𝑖𝜕𝜔
𝑖 𝑆𝑝,𝑚𝑛(𝜓𝑚) ≪ 𝑆𝑝,𝑚𝑛(𝜓𝑚) (14) 

and 

 (𝜔 − 𝜓𝑛)𝑖𝜕𝜔
𝑖 𝑆𝑝,𝑚𝑛(𝜓𝑛) ≪ 𝑆𝑝,𝑚𝑛(𝜓𝑛) (15) 

where 𝜕𝜔
𝑖  represents the i-th circular frequency 

derivative. 

(ii) The characteristic frequency of the loading, which is 

denoted 𝜔𝑝, is significantly different from the m-th and 

n-th natural frequencies of the structure, 𝜓𝑚 and 𝜓𝑛. 

This is formalized by noticing that the frequency ratios 

 𝛼𝑚 =
𝜔𝑝

|𝜓𝑚|
   &   𝛼𝑛 =

𝜔𝑝

|𝜓𝑛|
 (16)  

are either much lower, either much greater than one. 

In these circumstances, it is possible to demonstrate, see details 

in [15], that the covariance of the m-th and n-th modal state 

responses can approximately be decomposed into two main 

components as follows 

 Σ̃𝑞,𝑚𝑛 = Σ𝑟,𝑚𝑛 + Σℓ,𝑚𝑛. (17)  

The first term is due to the peaks of the structural kernel 

and is thus called resonant. The second term is coming from the 

peaks of the loading cross-spectrum and can therefore be named 

background if both 𝛼𝑚 < 1 and 𝛼𝑛 < 1, inertial if both 𝛼𝑚 > 1 

and 𝛼𝑛 > 1, or mixed otherwise. In general, though, it will be 

referred to as the loading component. 

Nevertheless, this second component should drop when one 

or both natural frequencies are close to the characteristic 

frequency of the loading. Indeed, the peak of the loading cross-

spectrum is stacked on one or both peaks of the structural kernel 

in this specific event and the resonant component is expected to 

encompass them all at once. 

3.2. Resonant Component 
In Equation (17), the resonant component of the modal state 

covariance reads 

Σ𝑟,𝑚𝑛 = 𝑖𝜋
𝐷𝑚𝐷𝑛

𝜆𝑚 − 𝜆𝑛
∗ [𝑆𝑝,𝑚𝑛(𝜓𝑚) + 𝑆𝑝,𝑚𝑛(𝜓𝑛)] (18) 

and corresponds to the integral of 

S𝑟,𝑚𝑛(𝜔) = −
𝐷𝑚𝐷𝑛

𝜆𝑚 − 𝜆𝑛
∗ [𝐻𝑚(𝜔)𝑆𝑝,𝑚𝑛(𝜓𝑚) 

−𝐻𝑛
∗(𝜔)𝑆𝑝,𝑚𝑛(𝜓𝑛)] 

(19) 

which approximates locally the cross-spectral density of the m-

th and n-th modal state responses over their resonant peaks. It 

was obtained by expanding the structural kernel in partial 

fraction, first, to get a sum of two rational functions with single 

poles.  

The integrand was thus separated into two parts, each of 

them with their own resonant peak, across which the multiplying 
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cross-spectral density of the m-th and n-th modal state forces was 

then replaced by the constant values 𝑆𝑝,𝑚𝑛(𝜓𝑚) and 𝑆𝑝,𝑚𝑛(𝜓𝑛) 

respectively.  

3.3. Loading Component 
The loading component is more involved, mathematically 

speaking, because it covers three different cases. Nevertheless, 

its behavior regarding some modifications of the input 

parameters is overall simple to understand. Indeed, it reads 

Σℓ,𝑚𝑛

= 𝐷𝑚𝐷𝑛𝐿𝑚𝑛 (∑(+𝜔𝑝)
𝛽𝑘𝒢𝑚𝑛

(𝑘)
(+𝜔𝑝)Σ𝑝,𝑚𝑛

(𝑘)(+)

4

𝑘=1

 

+ ∑(−𝜔𝑝)
𝛽𝑘 𝒢𝑚𝑛

(𝑘)
(−𝜔𝑝)Σ𝑝,𝑚𝑛

(𝑘)(−)

4

𝑘=1

) 

(20) 

where 

Σ𝑝,𝑚𝑛
(𝑘)(±)

= ± ∫ 𝜔−𝛽𝑘𝑆𝑝,𝑚𝑛

±∞

0

(𝜔)𝑑𝜔 (21) 

can be seen as a part of (−𝛽𝑘) spectral moment associated to the 

corresponding modal state forces and the multiplicative factor  

𝐿𝑚𝑛 = (1 −
𝑆𝑝,𝑚𝑛(𝜓𝑚)

𝑆𝑝,𝑚𝑛(𝜔𝑝)
) (1 −

𝑆𝑝,𝑚𝑛(𝜓𝑛)

𝑆𝑝,𝑚𝑛(𝜔𝑝)
) (22) 

forces the loading component to drop down to zero as it should 

when the multiple timescale spectral analysis does not provide 

valid expressions anymore, e.g. when the frequency ratios are 

close to one, or when the modal covariance is just fully resonant, 

e.g. the cross-spectral density of the modal state forces does not 

feature any peak. The function 𝒢𝑚𝑛
(𝑘)

(±𝜔𝑝) and the exponent 𝛽𝑘 , 

for their part, are listed for all 𝑘 indices in Table 1 where  

𝛽𝑚,𝑛 = ((−1)𝑚,𝑛𝛼𝑚,𝑛
−1 − 1)

−1
 (23) 

is given by 0 or 1 at leading order if 𝛼𝑚,𝑛 ≪ 1 or 𝛼𝑚,𝑛 ≫ 1. Their 

definitions are resulting from the replacement of the real and the 

imaginary parts of the frequency response functions over the 

positive or the negative frequency range by a monomial which is 

equal to the initial function at the location of the loading peak 

occurring in the considered frequency range and which is 

characterized by the same slope in logarithmic scales.  

TABLE 1:  DEFINITIONS FOR EQUATIONS (20) AND (24) 

 

Similarly to before, the loading component presented in 

Equation (20) corresponds to the integral of  

𝒮ℓ,𝑚𝑛
(±)

(𝜔)

= 𝐷𝑚𝐷𝑛𝐿𝑚𝑛 ∑(±𝜔𝑝)
𝛽𝑘 𝒢𝑚𝑛

(𝑘)
(±𝜔𝑝)𝒮𝑝,𝑚𝑛

(𝑘)(±)
(𝜔)

4

𝑘=1

 
(24) 

which is the local approximation derived for the cross-spectral 

density of the m-th and n-th modal state responses over the 

loading peaks. Given its non-symmetric nature, the symbols (+) 

and (−) have to be selected in accordance with the sign of the 

circular frequency. 

3.4. Relative Importance 
Based on the simple formulae established in the previous 

sub-sections, it is possible to derive similar expressions for the 

correlation coefficients. Being dimensionless, they allow to 

assess the importance of modal covariances when computing the 

nodal responses. The correlation coefficients can be written like 

the modal covariances as the sum of a resonant and a loading 

component: 

𝜌𝑞,𝑚𝑛 = 𝛾𝑟𝜌𝑟,𝑚𝑛 + 𝛾ℓ𝜌ℓ,𝑚𝑛 (25) 

where 

   𝛾𝑟 =
1

√1 + 𝑟𝑚
−1√1 + 𝑟𝑛

−1
  &  𝛾ℓ =

1

√1 + 𝑟𝑚 √1 + 𝑟𝑛

 (26) 

can be seen as weighting factors. They are related to the 

resonant-to-loading ratios of the corresponding modal variances 

as follows 

𝑟𝑚 =
Σ𝑟,𝑚𝑚

Σℓ,𝑚𝑚
    &   𝑟𝑛 =

Σ𝑟,𝑛𝑛

Σℓ,𝑛𝑛
 (27) 

and accordingly tend toward unity or zero if the modal responses 

are predominantly driven by their resonant or loading 

components, e.g. 𝛾𝑟 = 1 and. 𝛾ℓ = 0 if both 𝑟𝑚 ≫ 1 and 𝑟𝑛 ≫ 1, 

meaning that the responses are fully resonant. 

Substituting the appropriate components of the modal 

variances and covariances given by Equation (18) and Equation 

(20) in the following expression 

𝜌(.),𝑚𝑛 =
Σ(.),𝑚𝑛

√Σ(.),𝑚𝑚Σ(.),,𝑛𝑛

  (28) 

yields the resonant and the loading coefficients. The former 

interestingly reads 

𝜌𝑟,𝑚𝑛 = 𝑖
√𝜐𝑚𝜐𝑛  

𝜆𝑚 − 𝜆𝑛
∗

[Γ𝑚𝑛(𝜓𝑚)𝑆𝑚𝑛 + Γ𝑚𝑛(𝜓𝑛)𝑆𝑛𝑚] (29) 

which increases if the natural frequencies are getting closer to 

one another and if the values of the coherence function 

Γ𝑚𝑛(𝜔) =
𝑆𝑝,𝑚𝑛(𝜔)

√𝑆𝑝,𝑚𝑚(𝜔)𝑆𝑝,𝑛𝑛(𝜔)
 (30) 

at 𝜔 = 𝜓𝑚 and 𝜔 = 𝜓𝑛 comprised within the [−1; 1] interval 

grow as well, together with the spectral ratios 

𝑘 𝛽𝑘  𝒢𝑚𝑛
(𝑘)

(. ) 

1 𝛽𝑚 + 𝛽𝑛  ℜ𝐻𝑚(. )ℜ𝐻𝑛
∗(. ) 

2 𝛽𝑚 + 2𝛽𝑛 𝑖ℜ𝐻𝑚(. )ℑ𝐻𝑛
∗(. ) 

3 2𝛽𝑚 + 𝛽𝑛 𝑖ℑ𝐻𝑚(. )ℜ𝐻𝑛
∗(. ) 

4 2𝛽𝑚 + 2𝛽𝑛 −ℑ𝐻𝑚(. )ℑ𝐻𝑛
∗(. )   
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S𝑚𝑛 = √
𝑆𝑝,𝑛𝑛(𝜓𝑚)

𝑆𝑝,𝑛𝑛(𝜓𝑚)
    &    S𝑛𝑚 = √

𝑆𝑝,𝑚𝑚(𝜓𝑛)

𝑆𝑝,𝑚𝑚(𝜓𝑛)
 (31) 

they respectively multiply. The latter coefficient, however, is not 

easily interpretable unless the loading component is quasi-static 

in both modes, in which case it corresponds to the correlation 

coefficient of the modal state forces at leading order, i.e. 𝜌ℓ,𝑚𝑛 =
𝜌𝑝,𝑚𝑛 if 𝛼𝑚 ≪ 1 and 𝛼𝑛 ≪ 1. 

4. EXAMPLE: BERGSØYSUND BRIDGE 

4.1. Finite Element and Load Modelling 
The proposed formulae are now validated on a simplified 

2D model, considering the surge response only, of the 

Bergsøysund Bridge which crosses a 100 m deep strait in 

Norway and is one of the longest end-anchored floating bridge 

in the world with its total length of 933 m. As shown in Figure 

1, it is composed of 7 pontoons linked together by steel truss 

segments of 105 m long, which are just modelled as single 

equivalent beams with 10 elements of equal length by section for 

the sake of the illustration in this paper.  

Despite being realistic, their properties are given in Table 2 

and have been chosen to ensure that the background and the 

inertial regimes are respectively activated in a few modes by the 

loading. Some of the resulting natural frequencies and damping 

ratios are listed in Table 3 while the corresponding mode shapes 

are represented in Figure 2.  

Except for these differences, the pontoons and the forces are 

defined as in Kvåle’s paper [11] with a significant wave height 

of 2.4 m and a peak frequency of 2.2 rad/s at which the 

hydrodynamic matrices are evaluated, as explained in Section 2. 

A spreading parameter of 3 is also selected because it allows to 

neglect the correlations between the forces applied on different 

pontoons. 

TABLE 2:  PROPERTIES OF THE FINITE ELEMENTS 

4.2. Results 
Figure 3 compares the modal variances computed by means 

of the proposed approximation, see Eq. (17), to the values 

obtained through the numerical integration of the response 

power spectral densities, see Eq. (12) with 𝑚 = 𝑛. Overall, they 

coincide quite well, except in the shaded area where a more 

important discrepancy is observed but this was to be expected 

because the assumption (ii) is not verified in this zone. The 

responses in these modes are actually neither mainly resonant, 

contrary to what the figure suggest, neither quasi-static, nor 

inertial. The peaks of the loading and the peaks of the kernel are  

TABLE 3:  RESULTS OF THE MODAL ANALYSIS 

 

  

FIGURE 1: TOP VIEW OF THE BERGSØYSUND BRIDGE [11]  

 

FIGURE 2: MODE SHAPES OF THE 2D MODEL

PARAMETER VALUE 
Length 10.5 [m] 

Moment of Inertia 12.36 [m4] 
Young Modulus 2.1010 [N/m2] 
Cross-Section 0,6 [m2] 

Density 7850 [kg/m2] 

𝑗𝑚 𝜔𝑗𝑚
 [rad/s] 𝜉𝑗𝑚

 [%] 

1 0.2732 16.5 
2 0.4248 10.1 
3 0.6877 5.9 
4 0.8910 3.6 
8 2.7397 2.7 
13 5.3378 2.1 
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just interacting. Problem is that larger errors are thus committed 

on the most contributing components. It might consequently lead 

to significant differences once the nodal variances are 

reconstructed. Apart from that, the loading component, see Eq. 

(20) is clearly leading over the resonant one, see Eq. (18), when 

the modal responses are activated in their inertial regime. This is 

due to the exponential decay that the loading cross-spectral 

densities feature when the frequencies are getting much lower 

than the peak frequency and that they typically inherit of the 

wave elevation spectrum. Indeed, if the resonant peaks occur 

over there, the corresponding component depends on the factor 

𝑆𝑝,𝑚𝑛(𝜓𝑚) + 𝑆𝑝,𝑚𝑛(𝜓𝑛) which is exponentially small.   

Figure 4 shows the same results as Figure 3 for the 

correlation coefficients. They are divided into five categories, 

and they are referred to as being partly inertial in the bottom-left 

corner, partly background in the top-right corner, and partly 

mixed in the two remaining corners, bottom-right and top-left. 

Meanwhile, the loading and the resonant peaks are interacting 

again in the middle cross-shaped area. Just as before, a good 

match is observed, with a bit less accuracy in the central zone, 

between the approximated and the reference values. The 

histogram of absolute errors between the results obtained 

through the proposed approximation and the numerical 

integration also indicate that most of them are small while their 

mean value reaches 0.0114 only.  

Although the modal correlations are often related to the 

interaction observed between the resonance in two different 

modes and neglected provided that their natural frequencies are 

sufficiently distant from each other as it is confirmed by looking 

at the resonant components in Figure 4, they also appear to be 

FIGURE 3: MODAL STATE VARIANCES 

FIGURE 4: REAL PARTS OF THE CORRELATION COEFFICIENTS  BETWEEN THE MODAL STATE RESPONSES. THESE 

COEFFICIENTS ARE DIMENSIONLESS AND COMMONLY DEFINED BY EQ. (28) WHILE THE PROPOSED APPROXIMATION IS GIVEN 

BY THE SUM OF THE RESONANT AND THE LOADING COMPONENTS, AS INDICATED IN EQ. (26). 



 

 7 © 2022 by ASME 

significantly influenced by the loading component, which is 

typically important when the modal forces are coherent. This is 

usually the case if their respective mode shapes are similar. The 

1st and 8th modes, for instance, are both symmetric, changing sign 

at mid-length and possessing two half waves. 

5. CONCLUSION 

The multiple timescale spectral analysis is implemented in 

this paper to derive new approximate semi-analytical formulas 

for computing more efficiently the variances and the covariances 

of modal state responses. They are expressed as the sum of a 

resonant and a loading component. It provides a significant 

computational speed up because the proposed approximation 

requires to project the spectral densities of the loading at the 

natural frequencies only in order to determine the resonant 

components. The loading components, for their parts, depend on 

four spectral moments of the modal state forces at most. Each of 

these four results can interestingly be obtained by means of a 

single projection after having integrated the corresponding 

spectral densities in the nodal basis. 

The simple formulas introduced for the variances and the 

covariances of the modal state responses are then used to provide 

such an expression for the correlation coefficients. It highlights 

the importance of taking the modal covariances into account, not 

only when the natural frequencies of the corresponding modes 

are close to one another, but also when the corresponding modal 

forces are coherent.  

The approximations developed in this paper are finally 

verified on a 2D bridge model subjected to simplified wave 

loads. Their accuracy decreases as expected when the 

assumptions hidden behind the use of the multiple timescale 

spectral analysis are not respected, for instance if the peak 

frequency of the loading is getting close to a natural frequency 

of the structure.  
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