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ABSTRACT: Flutter design consists in the repetitive computation of the structural 

response for increasing wind velocities until reaching the instability of the aeroelastic 

system. A linear model of aerodynamic forces such as that based on Scanlan 

derivatives can be studied by means of equivalent frequency-dependent stiffness and 

damping. Therefore, the analysis in the frequency domain is suitable. In a spectral 

analysis, the variance of the response is the integral of the corresponding power 

spectral density characterized by its sharp peaks in the vicinity of the natural 

frequencies of the system. In this paper, we present an alternative solution to standard 

integration methods which extends the Background/Resonant decomposition to a 

single degree-of-freedom frequency dependent oscillator. The proposed method avoids 

the need for a dense frequency discretization, which significantly cuts the CPU load. 

While providing a decent accuracy, it also consists in simple closed form equations 

which give physical understanding. The investigation is limited to a single degree-of-

freedom system but provides a significant insight into more complex models where 

such an approximation can become more valuable. A companion paper deals with the 

multi-degree-of-freedom case. 
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1. INTRODUCTION 

Flutter is among the aeroelastic phenomenon of outmost concern in the design of long span bridges 

exposed to wind effects. The deplorable collapse of the Tacoma Bridge in 1940 has warned 

designers and researchers about this type of instability severely detrimental to structural integrity.  

Building on the advances in aeronautics, extensive investigations have been conducted in civil 

engineering in order to predict flutter of bridge decks by means of wind tunnel testing, numerical 

simulations using sophisticated models and analytical approximations. Civil engineers use the 

Scanlan formulation (Scanlan, 1993) to express the self-excited forces by means of coefficients 

coming from wind tunnel tests called flutter derivatives. These coefficients model the interaction 

between the fluid and the structure and are the equivalent of the Küssner coefficients (Küssner, 

1936) used in aeronautics. Methods of flutter analysis are already available in the literature for 

bridge decks subjected to buffeting effects (Abbas et al., 2017). Pioneers like (Bleich, 1948) have 

demonstrated that bridge flutter is most of the time governed by the interaction between the 

fundamental vertical bending and its frequency-nearby torsional mode. This 2-mode model is 

considered to be sufficiently precise to predict the critical flutter speed especially for a predesign of 

deck sections. Based on the nature of aerodynamic forces, represented as frequency dependent 

stiffness and damping, the analysis can be performed in the frequency domain. Considering the 
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turbulent wind as a stationary random process defined by its power spectral density (PSD), the 

spectral response is obtained through the multiplication of the PSD of the buffeting loads by the 

FRF of the aeroelastic system. The variance of the response is then computed by integrating the 

resulting spectra. This operation is crucial as it is repeated for several wind velocities ranging from 

zero to the critical flutter velocity, in order to investigate the progressive increase of the structural 

response while approaching flutter.  In this paper, an alternative method to full numerical 

integration of the PSD is developed in order to address the need of computational efficiency. This 

method considers the coexistence of multiple timescales in the PSD of the response (Denoël, 2015), 

and provides analytical approximations of the variance in relevant regions of the frequency domain, 

particularly in the background region (very low frequencies) emerging from the turbulence and the 

resonant region inherent to the faster vibrations of the aeroelastic system. This represents a 

generalization of the quasi-steady formulation presented in Davenport’s works (Davenport, 1962). 

In this paper, the structural model is limited to the torsional degree-of-freedom, which does not 

cover the interaction between adjacent modes. However, it provides a general framework that can 

be followed in higher dimensional systems (Heremans et al. 2022). 

2. PROBLEM STATEMENT 

In time domain, the motion of a single dof structure subjected to aerodynamic and buffeting loads 

is governed by  

𝑚s�̈�(𝑡) + 𝑐s�̇�(𝑡) + 𝑘s𝑞(𝑡) = 𝑓ae(𝑡) + 𝑓bu(𝑡) (1) 

where 𝑚s, 𝑐s and 𝑘s are the structural mass, viscosity and stiffness. The loading is split into two 

components: the aerodynamic forces 𝑓ae(𝑡) and the buffeting forces 𝑓bu(𝑡). The buffeting loading 

is characterized as a linear combination of the turbulent components of the wind, while the 

aerodynamic loading is a linear combination of the velocity and the displacement of the structure. 

In frequency domain, the governing equation takes the following form via a Fourier transform 

[−𝑚s𝜔2 + i𝜔𝑐(𝜔) + 𝑘(𝜔)]𝑄(𝜔) = 𝐹bu(𝜔) (2) 

where 𝑐(𝜔) = 𝑐s − 𝑐ae(𝜔) and 𝑘(𝜔) = 𝑘s − 𝑘ae(𝜔) gather both the structural and aerodynamic 

viscosity and stiffness, 𝑐ae(𝜔)  and 𝑘ae(𝜔)  are frequency dependent functions. They can be 

expressed as a function of Scanlan derivatives for bridge decks. The buffeting loading is assumed 

to be a zero-mean Gaussian stochastic process; it is characterized by its power spectral density 

𝑆𝑓,bu(𝜔). The spectra of the response is obtained by 

𝑆𝑞(𝜔) = |𝐻(𝜔)|2𝑆𝑓,bu(𝜔) (3) 

where 

𝐻(𝜔) = [−
𝜔2

𝜔s
2 + 2iξ𝑠

𝜔

𝜔s
𝒞(𝜔) + 𝒦(𝜔)]

−1

 (4) 

represents the frequency response function of the aeroelastic system. 𝒦(𝜔)  and 𝒞(𝜔)  are 

dimensionless aeroelastic stiffness and damping defined as 

𝒦(𝜔) ≔
𝑘(𝜔)

𝑘s
= 1 −

𝑘ae(𝜔)

𝑘s
 , 𝒞(𝜔) ≔

𝑐(𝜔)

𝑐s
= 1 −

𝑐ae(𝜔)

𝑐s
  (5) 

The integration of (3) provides the variance of the displacement of the structural response 

𝜎𝑞
2(𝑈) = ∫ 𝑆𝑞(𝜔; 𝑈)

+∞

−∞

𝑑𝜔 (6)  

where 𝑈 is the mean velocity of the incident wind. 



3. MULTIPLE TIMESCALE SPECTRAL ANALYSIS 

3.1. Assumptions 

The approximation of the response is built on the following assumptions: 

• (i) The structural damping ratio 𝜉s is supposed as small as 5%-10%, beyond these values 

the quality of the approximation is deteriorated; 

• (ii) The damping and stiffness vary slowly around the resonance frequencies; 

• (iii) The buffeting loading varies slowly around the resonance frequencies; 

• (iv) The aeroelastic system and the buffeting loading have separate timescales: the natural 

vibrations of the main system are considered as fast dynamics and can be treated separately 

from the slow dynamics emerging from the turbulence of the wind. 

From assumption (iv), the response can be seen as the sum of a Background component (low 

frequencies) and a Resonant component (in the close neighbourhood of the natural frequencies) 

𝑆𝑞(𝜔) = 𝑆𝑞,𝐵(𝜔) + 𝑆𝑞,𝑅(𝜔) ⇒ 𝜎𝑞
2 = 𝜎𝑞,𝐵

2 + 𝜎𝑞,𝑅
2  (7) 

3.2. Background component 

In the range 𝜔 ≪ 𝜔s, the frequency response function in Equation (4) can be approximated by 

�̂�(𝜔) = (𝑘s𝒦(𝜔))
−1

. Therefore, the background contribution is given by 

𝑆𝑞,𝐵(𝜔) =
𝑆𝑓,bu(𝜔)

(𝑘s𝒦(𝜔))
2 ⇒ 𝜎𝑞,𝐵

2 =
1

𝑘s
2 ∫

𝑆𝑓,bu(𝜔)

(𝑘s𝒦(𝜔))
2 𝑑𝜔

+∞

−∞

. (8) 

3.3. Resonant component 

From Equation (7) and (8), the resonant contribution is obtained by approximating the residual 

𝑆𝑞,𝑅(𝜔) = (|𝐻(𝜔)|2 −
1

(𝑘s𝒦(𝜔))
2) 𝑆𝑓,bu(𝜔). (9) 

Following the general methodology of the Multiple Timescale Spectral Analysis (Denoël, 2015), 

we introduce the stretched coordinate 𝜂  to zoom on the resonance frequency �̅�  and its close 

neighbourhood such that 𝜔(𝜂) = �̅�(1 + 𝜉s𝜂), where �̅� is the resonant frequency, i.e. the solution 

of the nonlinear eigenvalue problem −
�̅�2

𝜔s
2 + 𝒦(�̅�) = 0. Invoking assumptions (i) and (iv) which 

are common to the classical (B/R) decomposition, we can write 

𝒦(𝜔(𝜂)) = 𝒦(�̅�) + 𝜉s𝜂�̅�𝜕𝜔𝒦(�̅�) + 𝒪(𝜉s
2) , 𝒞(𝜔(𝜂)) =  𝒞(�̅�) + 𝜉s𝜂�̅�𝜕𝜔 𝒞(�̅�) + 𝒪(𝜉s

2) (10) 

The replacement in Equation (4) and the truncation at leading order yields 

𝐻(𝜔(𝜂)) =
1

2𝜉s𝑘s
[(−

�̅�2

𝜔s
2 +

1

2
�̅�𝜕𝜔𝒦(�̅�)) 𝜂 + i

�̅�

𝜔s
𝒞(�̅�)]

−1

 (11) 

We can also transcribe assumption (iii) as 𝑆𝑓,bu(𝜔(𝜂)) = 𝑆𝑓,bu(�̅�) + 𝒪(𝜉s). From the last two 

expressions and via some standard calculus, an asymptotic approximation is found for the variance 

𝜎𝑞,𝑅
2 =

𝑆𝑓,bu(�̅�)

(𝑘s − 𝑘ae(�̅�))
2

𝜋�̅�

2𝜉̅

1

1 +
1
2

�̅�𝜕𝜔𝑘ae(�̅�)
𝑘s − 𝑘ae(�̅�)

 
(12) 

where 𝜉̅ ≔
𝑐s−𝑐ae(�̅�)

2√𝑚s(𝑘s−𝑘ae(�̅�))

 is an equivalent damping ratio including the aeroelastic contribution. 



4. ILLUSTRATION OF THE METHOD 

The B/R decomposition is validated through the case study of the Golden Gate bridge (Heremans, 

2021). The governing failure mode is limited to the pitching dof. The PSD of the response is 

depicted in Figure 1-(a), the resonant peak slightly shifts to the left as U increases, and becomes 

more acute on approaching the flutter instability. Figure 1-(b) compares the standard deviation of 

the response obtained with the proposed approach (purple), which is virtually superimposed with 

the reference results obtained with a dense numerical integration (blue). The relative error is less 

than 1%. It also provides a consistent measure of the critical flutter speed (𝑈cr ≈ 24 𝑚/𝑠). 

 

Figure 1 (a) PSD of the response numerically computed (Reference) and its B/R approximation (B+R). (b) 

Scaled standard deviations obtained with trapezoidal integration (Reference) and using the asymptotic 

solution (B+R). (Structural characteristics : Natural frequency 𝑓s = 0.19 𝐻𝑧, Damping ratio 𝜉s = 0.5%, Deck 

width 𝐵 = 27.43 𝑚, Moment of inertia 𝐼s = 4.4 ⋅ 106 𝑘𝑔𝑚2/𝑚) 

5. CONCLUSIONS 

The generalization of Davenport’s theory to aeroelastic systems is accomplished through the 

proposed method, where the timescale separation plays a major role. The analytical formulation 

remains simple and allows an immediate interpretation of the results. It is a generalization since the 

proposed expressions for the background (8) and resonant (12) contributions to the response 

degenerate into the well-known formulation for constant damping and stiffness. Within the 

assumptions of the study, it offers a serious alternative to intensive integration methods. While the 

formulation developed in this paper is limited to 1-dof aeroelastic systems, extension to multiple-

dof structures is also possible, following the same general derivation. 

References 
Abbas, T., Kavrakov, I., & Morgenthal, G. (2017). Methods for flutter stability analysis of long-span bridges: 

a review. Proceedings of the Institution of Civil Engineers-Bridge Engineering, 170(4), 271–310. 

Bleich, F. (1948). Lessons in bridge design taught by aerodynamic studies. Proc. Am. Soc. Civil Eng, 16, 

1269–1314. 

Davenport, A. G. (1962). The response of slender, line-like structures to a gusty wind. Proceedings of the 

Institution of Civil Engineers, 23(3), 389–408. 

Denoël, V. (2015). Multiple timescale spectral analysis [Article]. Probabilistic Engineering Mechanics, 39, 

69–86. https://doi.org/10.1016/j.probengmech.2014.12.003 

Heremans, J., Denoël, V. (2022) Background/resonant decomposition of modal response correlations of 

coupled aeroelastic models submitted to buffeting loads, 8th European-African Conference on Wind 

Engineering. 

Heremans J., Mayou A., Denoël, V. (2021) Background/Resonant decomposition of the stochastic torsional 

flutter response of an aeroelastic oscillator under buffeting loads. Journal of Wind Engineering and 

Industrial Aerodynamics. Vol. 208, page 104423 

Küssner, H. G. (1936). Zusammenfassender Bericht über den instationären Auftrieb von Flügeln. 

Luftfahrtforschung, 13(12), 410–424. 

Scanlan, R. H. (1993). Problematics in Formulation of Wind-Force Models for Bridge Decks. Journal of 

Engineering Mechanics, 119(7), 1353–1375. 

 


