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Abstract

The design of a mitigation dissipative system composed of several tuned mass dampers (TMDs) is

not a simple task. As soon as several structural modes or several additional degrees-of-freedom are

considered, the analytical response of the coupled system is not tractable anymore. The generic

problem involving any number of structural modes and any number of attached tuned mass dampers

is considered in this paper. The appropriate re-scaling of the problem is formulated in order to highlight

the governing scales in the problem. An asymptotic analysis in the frequency domain, similar to the

multiple timescale spectral analysis, is developed. The resulting expression for the frequency response

function of the coupled system is expressed in a lower dimensional space, which offers the possibility

to derive simple and accurate analytical solutions in other cases than the well-known single-mode

single-TMD case. Although the major contribution of this paper consists in the derivation of this

analytical formulation, two illustrations are also provided. The first one concerns the well-known

single-mode single-TMD case, which illustrates the benefits of the proposed formulation and validates

the resulting approximations against established literature. The second example concerns a single-

mode double-TMD, where the proposed approximation is used to discuss the accuracy with which

the two damping units need to be tuned in order to provide reasonable optimality with respect to

mitigation performances.
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1. Introduction

Slender structures such as modern footbridges suffer from vibration serviceability problems, mainly

because of their low stiffness and low damping ratio. To deal with such unwanted behavior, passive

linear vibration absorbers are generally installed. Tuned Mass Dampers (TMD) are the most popular

devices because of their simplicity, efficiency, and affordable cost. They consist of a mass, a damping

component and a spring (stiffness component), and are installed at critical locations on a structure,

such that the added components interact with the structural characteristics to fulfill an anti-resonant

role [26, 7]. The technology is involved in several applications in civil engineering, as it contributes,

inter alia, to the reduction of oscillations due to wind and wave loading in offshore installations [22],

due to vortex shedding in bridge decks [20], and to seismic excitation in multi-storey buildings [10, 21].

The effectiveness of a TMD relies on its accurate tuning, the parameters (damping ratio and

especially natural frequency) must be adjusted with high precision to meet the expected performance,

which constitutes a manufacturing challenge. This sensitivity to tuning opened investigations around

the robustness in its design, see e.g. [3] and [15]. For such a technology, the mass ratio can reach 3%

[2] or more in order to offer sufficient robustness against mistuning. Higher values can be virtually

reached with inerter-based absorbers, a technology borrowed from the automotive industry [24, 23]

and used to suppress cable vibrations [17, 18, 13].

Some simple criteria exist for the design of a tuned mass damper for Single-Degree-Of-Freedom

(SDOF) structures. Both [4] and [25] provide optimal tuning parameters for the effective attenuation

of the structural response. For Multi-Degree-Of-Freedom (MDOF) structures with sufficiently different

natural frequencies, a simple strategy is to associate one TMD with each structural mode. The modes

are studied separately and their interaction is neglected [1]. In case of close natural frequencies and

mode shapes, these interactions can no longer be neglected and the (favorable or not) influence of one

TMD on one or several modes at a time needs to be carefully studied. To the authors’ knowledge there

is no analytical solution available today as soon as several degrees-of-freedom are involved. This is

explained by the fact that a formal derivation of the response of, say, a 2-DOF structure with one TMD,

or the other way around a 1-DOF structure with two TMDs, involves in total a 3-DOF dynamical

model. The characteristic governing equation of this low-order model is a 6th-degree polynomial whose

general solution cannot be obtained explicitly. More complicated models follow the same observations.

Current trends today in the design of multiple TMDs for multiple mode vibration mitigation is to

recourse to optimal control [27] or repeated numerical simulation either in full parameter space [11, 6]
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or with the help of response surface methods [12].

In order to circumvent the need for numerical simulation, this work develops an asymptotic ap-

proach of the problem, by considering that several parameters are represented by small quantities :

the structural damping ratio, the mass ratio which represents the mass of TMD(s) over structural

modal mass(es), as well as the mistuning ratio (ratio of frequencies of structural modes and TMD

modes). A similar approach has already been used for a SDOF structure equipped with a single TMD

which allowed to derive very simple design formulas [8]. This work extends those solutions to MDOF

structures and/or multiples TMDs. The same problem has been addressed by Abe and Igusa [1] who

derived design criteria for TMDs on structures with closely spaced natural frequencies. They follow a

similar procedure based on the comparison of the orders of magnitudes of the various terms entering

the solution of the problem; they derive an analytical solution which admits closed-form solutions for

one or two natural frequencies, and under harmonic loading. The developments presented in this paper

continue along the same line, while providing a complete asymptotic analysis of the coupled Frequency

Response Function (FRF) of a structure with any number of mode shapes and any number of tuned

mass dampers. The game of stretching and squeezing coordinate allow to focus on the important

timescales of the problem which finally results in a simple formulation for the coupled FRF. Explicit

inversion of this matrix remains impossible in many cases but the proposed formulation proves helpful

in understanding the majors trends in more complex problems. Beside alleviating the complexity of

the mathematical solution, the proposed solution has the merit of retaining only the necessary pieces of

information of the problem, in the neighborhood of resonance, where interaction takes places between

the dynamics of the structural modes and of the TMDs. .

The method is illustrated through two examples. The elementary case of a single TMD on an

SDOF structure is first presented; this shows that well-known design criteria are retrieved. A second

example deals with the configuration of two TMDs to mitigate the vibrations of a single structural

mode. The motivation for this second example stems from the fact that TMDs are sometimes split

into several units and it is necessary to answer the question of how similar need to be two nominally

identical units to not prevent the optimality of the technical solution. While a formal solution of this

problem is mathematically cumbersome, the proposed approach is able to provide affordable solutions

to this question.
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2. Problem statement

The dynamics of a structure in its modal basis is governed by the equation of motion

Msq̈s + Csq̇s + Ksqs = ps (1)

where qs(t) collects the nm modal coordinates (the dot denotes time derivatives), Ms, Cs and Ks

are the structural modal matrices (nm × nm), and ps is the vector of modal loads. The considered

modal basis is the basis of undamped normal modes of vibration so that Ms and Ks are diagonal

matrices. As customary the inherent damping matrix Cs is assumed to be diagonal too; it is for

instance constructed by means of a chosen modal damping ratio or with a Rayleigh damping model

[16]. The number of modes nm is much lower than the number of DOFs.

One or several tuned mass dampers with small mass ratios are added to this structure. A number

nd of such devices is installed at locations in the structure where the modal coordinates are gathered in

the coordinate matrix ϕ (nm×nd), where ϕmk represents the modal coordinates of damper k ∈ [1, nd]

in modem ∈ [1, nm]. Introducing the coordinates qTMD(t) corresponding to the absolute displacements

of the tuned masses, the system is governed by the augmented state equations

Mq̈ + Cq̇ + Kq = p (2)

where the augmented coordinate vector q(t) is defined by

q =

 qs
qTMD

 (3)

and the augmented structural matrices are given by

M =

 Ms 0

0 0

+

 0 0

0 Md


C =

 Cs 0

0 0

+

 ϕCdϕT −ϕCd

−CdϕT Cd


K =

 Ks 0

0 0

+

 ϕKdϕT −ϕKd

−KdϕT Kd

 (4)

Matrices Md, Cd and Kd are diagonal matrices collecting, on their diagonal elements, the mass,

viscosity and stiffness associated with each tuned mass damper. Since these matrices are diagonal,
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each tuned mass damper interacts with the structural degrees-of-freedom only; direct interactions

between tuned mass dampers, such as the double tuned mass damper [14] are therefore not covered by

the following developments. The augmented load vector p is composed of the loads that are physically

applied to the structure ps and a zero loading on the TMDs,

p =

 ps
0

 . (5)

Equation (4) shows that the addition of TMDs in a structure couples modal responses, i.e. a load

in a given mode no longer induces a response in that mode only.

In practical applications, tuned mass dampers are devices that are added to the bare structure in

order to improve its dynamic behavior, i.e. to limit the amplitudes of vibration for given loading p(t).

The mechanical properties of the damped system, which comes in the model through Md, Cd and Kd,

therefore need to be determined in such a way that a cost function related to the structural response

is minimized. In most cases, they involve the steady-state response of the structure, which is obtained

by the frequency response function H (ω), as the Fourier transform of (2), Q (ω) = H (ω) P (ω), where

Q (ω) and P (ω) are the Fourier transforms of q (t) and p (t) respectively and

H =
(
−Mω2 + iωC + K

)−1
. (6)

Apart from the very simple case of a single degree-of-freedom structure (nm = 1) damped with a

single damper (nd = 1), which admits explicit solutions, the design process of tuned mass dampers

requires numerical techniques, which do not ease the design process. The main bottleneck is that, as

soon as there are two structural modes or two tuned mass dampers, the frequency response function

H being expressed as the inverse of a matrix, takes very long expressions, which makes it intractable.

Due to the mechanical coupling evidenced by the non-diagonal nature of C and K, this is indeed a

full matrix inversion.

It this paper, we provide a simple but approximate expression for the frequency response function

H (ω). As shown next, it takes advantage of the small numbers present in this problem, mainly the

small mass ratios. Then an asymptotic solution of the problem is developed. The dimensionless

formulation is developed in Sections 3 and 4, the perturbation approach is described in Section 5,

while examples of application are given in Section 7.
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3. Dimensionless formulation

The adimensionalization of the governing equation requires a characteristic time t?, a characteristic

displacement for the structure q?s and a characteristic displacement for the tuned mass dampers q?TMD.

With these, a dimensionless time and dimensionless displacements can be determined

τ = t

t?
; xs = qs

q?s
; xTMD = qTMD

q?TMD
(7)

so that the augmented coordinate vector q(t) is rewritten

q =

 q?s xs

q?TMDxTMD

 = q?s

 I 0

0 q?
TMD
q?

s
I

 xs

xTMD

 := q?x (8)

where q? is the diagonal scaling matrix and x [τ (t)] is a dimensionless augmented coordinate vector.

The two characteristic displacements in the scaling matrix q? will be determined later in order to have

dimensionless coordinates of order 1.

The characteristic time t? is chosen with respect to the dynamics (oscillations) of the primary

system which serves as a reference; it is anyway expected that the tuned mass dampers have similar

timescales, otherwise the coupling would be limited and they would be inefficient. It is therefore

required to define a characteristic structural mass m?
s (which could be the generalized mass of the

first structural undamped mode, Ms,11) and a characteristic structural stiffness k?s (which could be

the generalized stiffness of the first structural undamped mode, Ks,11). The characteristic timescale is

then chosen as

t? =

√
m?

s
k?s

: = 1
ω?
. (9)

The mass and stiffness matrices are written M = m?
s M̃ and K = k?s K̃ where M̃ and K̃ are di-

mensionless augmented mass and stiffness matrices. The elements in the upper part of these matrices

(those associated with the structural degrees-of-freedom) are assumed to have the same order of mag-

nitude, while the elements in the lower part of these matrices (those associated with the coordinates

of the tuned mass dampers) are much smaller. This smallness is exploited in the perturbation analysis

in Section 5 to derive simple asymptotic solutions.

Combining (7) and (9) into (2) and using the chain rule differentiation, the governing equation is

rewritten

m?
sω

?2
q?s M̃q?x′′ + ω?q?s Cq?x′ + k?s q

?
s K̃q?x = p (10)
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where the apex in x (τ) denotes differentiation with respect to the dimensionless time τ . Defining

a characteristic critical viscosity c?s = 2m?
sω

?ξ?s = 2ξ?s
√
k?sm

?
s , a dimensionless augmented damping

matrix C := c?s C̃ = 2ξ?sm?
sω

?C̃ is also introduced. After substitution in (10) and simplification, the

governing equation reads

Mx′′ + Cx′ +Kx = P (11)

whereM = q?M̃q?, C = 2ξ?sq?C̃q?, K = q?K̃q?, and where we have also defined P = 1
k?

s q
?
s
q?p, using

therefore k?s q?s as a characteristic modal load.

4. Appropriate Scaling

Now the augmented coordinate system has been rewritten in dimensionless coordinates, relying

exclusively on the macroscopic mechanical properties of the structural modes, a closer look can be

paid to the equation in order to highlight the relative smallness of the mechanical properties related

to the tuned mass dampers. The dimensionless augmented mass matrix reads

M =

 I 0

0 q?
TMD
q?

s
I

 1
m?

s
Ms 0

0 1
m?

s
Md

 I 0

0 q?
TMD
q?

s
I

 =

 1
m?

s
Ms 0

0 1
m?

s

(
q?

TMD
q?

s

)2
Md

 .

(12)

Let us also introduce the notations

Ms = m?
s M̃s ; Md = m?

TMDM̃d = ε2m?
s M̃d (13)

where M̃s and M̃d are the (diagonal) dimensionless mass matrices. They represent the relative mag-

nitude of the modal masses of the bare structure on the one hand, and of the tuned mass dampers on

the other hand. If m?
s and m?

TMD � m?
s are chosen as the largest modal mass and the largest tuned

mass, both M̃s and M̃d are composed of elements smaller than one. These two matrices are therefore

of order 1 at most. We have also introduced the small number, 0 < ε� 1, defined by the ratio of the

characteristic TMD mass over the characteristic structural modal mass,

ε :=

√
m?

TMD
m?

s
. (14)

In case there is only one structural mode and one tuned mass damper (see Illustration 1, Section 7),

it corresponds to the square root of the mass ratio, ε = √µ. This ratio is typically of the order of 1%
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to 3% in practical applications [9], and a little more for inerters [17, 18, 13]. Substitution of (13) into

(12) yields

M =

 M̃s 0

0
(
ε
q?

TMD
q?

s

)2
M̃d

 . (15)

In order to obtain a problem with all masses of order 1, it is now clear that the characteristic displace-

ments to be used to scale the response of the structural modes q?s and those to be used to scale the

tuned mass damper displacements q?TMD, need to satisfy ε q
?
TMD
q?

s
∼ 1, so that we choose

q?TMD
q?s

= 1
ε
. (16)

This conclusion supports the well-accepted fact that the motion of a tuned mass damper is larger than

the motion of the structure [8]. This equation shows that it actually scales with the square-root of the

masses. This scaling naturally comes from the governing equations.

Similarly, the relative smallness in the dimensionless stiffness matrix can be made explicit by

introducing

Ks = k?s K̃s and Kd = k?TMDK̃d (17)

which defines, K̃s and K̃d, the dimensionless stiffness matrices which have elements of order 1. Similarly

to (14), the small ratio of the characteristic stiffnesses k?TMD and k?s is made explicit by introducing

the parameter α ∼ 1 as

√
k?TMD
k?s

:= αε ⇔ α2 = k?TMD/m
?
TMD

k?s /m
?
s

= k?TMD
ε2k?s

. (18)

This ratio is close to unity when the dynamics of the structure and of the tuned mass dampers interact.

With these notations, the dimensionless augmented stiffness matrix defined in (11) reads

K =

 K̃s 0

0 0

+ α2

 ε2ϕK̃dϕT −εϕK̃d

−εK̃dϕT K̃d

 . (19)

At leading order, as ε → 0, we notice that this matrix is diagonal, composed of K̃s and α2K̃d, with

all elements of order 1. This highlights the appropriateness of the scaling.

Finally, the same operation is performed with the damping matrices, by introducing

Cs = c?s C̃s = 2ξ?s
√
k?sm

?
s C̃s and Cd = c?TMDC̃d = 2ξ?TMD

√
k?TMDm

?
TMDC̃d (20)
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which defines, C̃s and C̃d, the dimensionless damping matrices with elements of order 1 at most. The

characteristic viscosity c?TMD shall not be expressed by reference to the characteristic viscosity of the

undamped structure, since it is possible that it is several orders of magnitude larger. Instead, it is

defined with regards to the characteristic mass and stiffness of the tuned mass dampers. With these

notations, the dimensionless augmented damping matrix C = 2ξ?sq?C̃q?, as defined in (11), can be

written,

C = 2ξ?s

 C̃s 0

0 0

+ 2ξ?s
c?TMD
ε2c?s

 ε2ϕC̃dϕT −εϕC̃d

−εC̃dϕT C̃d

 . (21)

By introducing the characteristic damping ratios in the structure and in the tuned mass damper, whose

definitions are recalled in (20), we have

c?TMD
ε2c?s

= 1
ε2
ξ?TMD
ξ?s

(αε) ε = α
ξ?TMD
ξ?s

, (22)

so that finally

C = 2ξ?s

 C̃s 0

0 0

+ 2αξ?TMD

 ε2ϕC̃dϕT −εϕC̃d

−εC̃dϕT C̃d

 . (23)

In summary, having introduced the small parameter ε, defined in (14), we have been able to write the

dimensionless augmented structural matrices by highlighting explicitly the orders of magnitude of the

different terms. They are given in (15), (19) and (23). In these expressions, all symbols, except ε and

the small damping ratios ξ?s and ξ?TMD, represent quantities or order 1.

We are now in a position to derive an asymptotic analysis of the problem. A distinguished limit is

obtained by combining the following three ingredients : (i) small TMD mass ratio, (ii) small damping

ratios, (iii) small mistuning. The first having been already formalized through (14), the last two

statements are now detailed.

The smallness of the damping ratio is formalized by writing

ξ?s = ε2 ξ̃s and ξ?TMD = ε ξ̃TMD (24)

where ξ̃s and ξ̃TMD are re-scaled damping ratios of order 1 at most.

Furthermore, we also want to make explicit that the natural frequencies of the structural modes

and of the tuned mass dampers included in the analysis are in the same range, otherwise there would
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be no benefit to exploit the coupling between either the mode shapes together, either the structural

mode(s) and the tuned mass damper(s). This is formally expressed by writing

α = 1 + ε δ (25)

where δ ∼ 1 is a detuning parameter of order 1. This translates the fact that the characteristic

frequency of the structural modes and of the tuned mass dampers are close to each other. Besides, it

is also important to state that all structural modes have close natural frequencies and so do all tuned

mass dampers. This is stated by writing

K̃s = M̃s (I + 2ε∆Ωs) ; K̃d = M̃d (I + 2ε∆Ωd) (26)

where I is the identity matrix, with appropriate size (the same symbol is used to refer to identity

matrices of size (nm×nm) and (nd×nd)) and where ∆Ωs and ∆Ωd are diagonal matrices quantifying

the mistuning of the natural frequencies of structural modes on one hand, and of tuned mass dampers

on the other hand.

After substitution of these expressions in (15), (19) and (23), and after some simplifications, the

asymptotic expansions of the augmented structural matrices are obtained. They read

M =M0; C = ε C1 + ord
(
ε2) ; K = K0 + εK1 + ord

(
ε2) (27)

with

M0 =

 M̃s 0

0 M̃d

 ; K0 =

 M̃s 0

0 M̃d


C1 = 2

 0 0

0 ξ̃TMDC̃d

 ; K1 =

 2M̃s∆Ωs −ϕM̃d

−M̃dϕT 2M̃d (δI + ∆Ωd)

 (28)

It is important to notice that K0 = M0 because of (26). Although seemingly unimportant, this

properly plays a central role in the subsequent developments. It has been achieved thanks to the

careful and appropriate scaling. It indicates that all natural frequencies involved in the problem are

in the range Ω ∼ 1, after having accounted for the small mistuning(s).
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5. Asymptotic analysis of the FRF

The dimensionless frequency response function associated with (11) reads

H (Ω) =
(
−MΩ2 + iΩC +K

)−1 (29)

where Ω is the dimensionless frequency associated with the dimensionless time τ . Following the same

procedure as that described in the Multiple Timescale Spectral Analysis of stochastically excited

structures [5], a stretched frequency

Ω = 1 + εη + ord(ε2) (30)

with η ∼ 1 is introduced in order to focus on the frequency range of interest. This stretching can be

seen as the formal introduction of several timescales in classical multiple timescale methods [5]. The

ansatz

H := 1
ε
H0 +H1 + ord(ε2) (31)

is chosen for the frequency response function. It stems from the fact that M = K ∼ 1 and C ∼ ε at

leading order, see (27). The terms H0 and H1 in the series expansion can be determined by noticing

that H−1H =
(
−MΩ2 + iΩC +K

) 1
ε (H0 + εH1) = I, i.e.

(−M0 (1 + 2εη) + i (1 + εη) εC1 +K0 + εK1) (H0 + εH1) = εI. (32)

Substituting (28) and balancing the similar powers of ε, the leading order solution is

H0 = (−2ηM0 + iC1 +K1)−1
, (33)

or, after substitution of the full expression forM0, C1 and K1,

H0 = 1
2

 M̃s (−ηI + ∆Ωs) − 1
2ϕM̃d

− 1
2M̃dϕT M̃d ((−η + δ) I + ∆Ωd) + iξ̃TMDC̃d

−1

. (34)
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6. Discussion

This equation expresses, in its most simple form, the leading order dynamics of the structure and of

the tuned mass dampers for small mistuning and in the neighborhood of resonance. After truncation

at first order, it exclusively depends onM0, C1 and K1 which capture the main information about the

structural dynamics in near-resonance conditions : the small added mass, the damping ratio and the

tuning frequency.

In this formulation, we have transformed the formal expression (29) of the frequency response

function which features 2n poles into a n-pole expression. Indeed, while (29) involves the inverse of a

quadratic in Ω (with all matrices are n× n), (33) just involves the inverse of η. This is a consequence

of the use of the stretched coordinate (30) which allows focusing on the resonance peak(s) located on

the positive side of the frequency axis only, see [5] for more details. As a consequence, the analytical

expressions are more tractable than in the formal case. This makes it possible to determine simple

analytical solutions in case where a formal derivation (without explicitly exploiting the smallness of

the numerous small numbers in this problem) would yield very long and cumbersome expressions.

Last but not least, (34) degenerates into simple known cases. Some of them are shown in the

illustrations of the following section. We can also observe that if the tuned mass dampers were placed

at antinodes of vibration modes, ϕ = 0, or if the mass of the additional devices was tending to zero

M̃d → 0, there would be no benefit for the structure. This is indeed what our expression translates

since the coupling terms − 1
2ϕM̃d vanish as soon as one of these two conditions is met. This shows

that the structure and TMDs would live independently, as expected. It that case, the dynamics of

the structure would be ruled out by the upper left term in H0 (it yields unbounded response because

structural inherent damping is assumed of order ε2) and those of the additional devices by the bottom

right part of H0. Since these latter degrees-of-freedom are not excited by any external loading, this

yields the trivial solution qTMD = 0 in the uncoupled case.

So the coupling term − 1
2ϕM̃d is responsible for the intricate mixing of the dynamics of the struc-

ture, and of the tuned mass damper(s). It actually hinders to further pursue the analytical derivation.

In fact the Frobenius-Schur block matrix inversion formula can be used to extract the upper left par-

tition of the inverse but the exact expression remains rather long. As such, (34) is the most compact

form that we could obtain and that translates the complete dynamics of the problem.
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(a) (b)

Figure 1: Sketch of the practical applications

Illustration 1 Illustration 2

m?
s M1 M1

k?s K1 K1

m?
TMD mTMD mTMD,1 +mTMD,2

k?TMD kTMD kTMD,1 + kTMD,2

ξ?TMD ξTMD ξTMD,1 + ξTMD,2

Table 1: Reference characteristics used in the following illustrations

7. Illustrations

The very general equation (34) is now specialized to the two cases of practical application that

are sketched in Figure (1). The first illustration corresponds to the well-known case where only one

tuned mass damper is used to mitigate vibrations in a single structural mode, see Figure (1)-a. In

the second illustration, a single structural mode is damped with two tuned mass dampers. Practically

this configuration might occur when a single tuned mass damper is split into two (for available space

or size reasons) or when two slightly different tuned mass dampers are installed in order to provide

more robustness against mistuning. In that case, see Figure (1)-b, the two tuned mass dampers are

nominally identical or slightly different on purpose.

7.1. One mode, one TMD

The problem drastically simplifies if nd = 1 and nm = 1. In this first example, there is only one

structural mode (degree-of-freedom) and one tuned mass damper. It is therefore natural to choose the
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characteristic values m?
s and k?s as the modal mass and stiffness, and m?

TMD and k?TMD as the mass and

stiffness of the small added mass. The characteristic damping ratios ξ?s and ξ?TMD are also naturally

chosen as the damping ratios of the structural mode and of the tuned mass damper, respectively

(ξ?s = ξs; ξ?TMD = ξTMD), see Table 1. This results in M̃s = M̃d = K̃s = K̃d = C̃s = C̃d = 1.

Matrix H0 can be obtained by substituting this into (34), but it is interesting to develop interme-

diate results for this simple and well-known problem. Furthermore, the mass ratio µ = m?
TMD/m

?
s

is equal to ε2. Seen differently, ε is defined by √µ. This gives the physical meaning to the small

number. The magnitude ϕ of the mode shape at the position of the tuned mass damper becomes a

scalar. Finally, since there is only one mode shape, ∆Ωs = 0 becomes useless; same for ∆Ωd = 0.

The formal expressions (27) of the augmented structural matrices boil down to

M =

 1 0

0 1

 ; K =

 1 + µα2ϕ2 −√µα2ϕ

−√µα2ϕ α2

 ; C = 2ξs

 1 0

0 0

+2αξTMD

 µϕ2 −√µϕ

−√µϕ 1

 .

(35)

They are expressed as a function of the mass ratio µ, the frequency ratio α = ωTMD/ωs, the

damping ratios ξs and ξTMD and the mode shape amplitude ϕ at the location of the installed damper.

The exact expression of the frequency response function (29), obtained with these matrices will serve

as a reference solution. Alternatively the leading order expressions of the structural matrices are

M0 =

 1 0

0 1

 ; K1 =

 0 −ϕ

−ϕ 2δ

 C1 = 2

 0 0

0 ξ̃TMD

 (36)

where ξ̃TMD = ξTMD/
√
µ and δ = (α− 1) /√µ is the mistuning defined in (25). They are obtained

by specializing the general solution (28) to the current case or by introducing the small number

ε = √µ in (35). What the multiple timescale analysis indicates is that the coupled dynamics of this

structure (damped with a tuned mass damper) is represented, at first order, by these three simple and

short matrices, instead of the more complex expressions corresponding to the exact solution. Quite

interestingly, thanks to this, the FRF of the structural DOF takes a very simple expression.

H0(1, 1) = −
2
(
δ − η + iξ̃TMD

)
4η
(
δ − η + iξ̃TMD

)
+ ϕ2

. (37)

The module of this function is depicted by dashed lines in Figure 2-a (analytic), where it is also

compared to the exact solution obtained by numerical inversion of the full matrix, which is represented
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by solid lines (numeric). The double peak pattern is well reproduced with one peak being slightly

overestimated while the other is slightly underestimated, but with a well balanced compensation. A

better estimate could be obtained by including the second-order term H1 in the response but this goes

beyond the scope of this communication.

The variance of the displacement under a unit white noise (broadband) loading corresponds to the

2-norm of the frequency response function

σ2
x = ‖H‖2 =

+∞w

−∞
|H|2 dω. (38)

This integral is difficult to estimate in the general case. On the contrary, its computation is straight-

forward with the proposed simplifications. Using Cauchy’s residue theorem we obtain

σ2
x = π

4ϕ2√µ
4ξ̃2

TMD + 4δ2 + ϕ2

ξ̃TMD
= π

µϕ2

ξ2
TMD +

(
ωTMD
ωs
− 1
)2

+ µ
4ϕ

2

ξTMD
. (39)

This simple expression captures the well-known features of the influence of a TMD on the response

of a single degree-of-freedom structure. Specifically, it reveals the existence of optimal values of the

damping ratio ξTMD and the mistuning α = ωTMD
ωs

. Since α appears in the numerator only, the response

is minimized by minimizing (α− 1)2, i.e. adjusting ωTMD and ωs. A trade-off is however required for

the damping ratio which appears in both the numerator and denominator of fraction (39). The variance

σ2
x is seen to be minimum when the damping ratio ξTMD =

√
(α− 1)2 + µϕ2/4. Combining both

conditions, the proposed model provides the optimal tuning parameter (α, ξTMD)opt =
(
1,√µϕ/2

)
.

Furthermore, in the proposed model (39), the modal amplitude ϕ at the location of the TMD is always

combined with the mass ratio µ. This translates the well-known fact that the placement of a device

with mass ratio µ away from the antinode of the structural mode shape corresponds to placing a

smaller mass ratio µϕ2 exactly at the antinode.

Figure (2)-b shows the variance of the response to unit broadband excitation as a function of

the damping ratio of the tuned mass damper and for two values of the mistuning. Again, the exact

(numerical) solution and the proposed (analytical) solution are compared. The agreement is very

good, especially for α ' 1. The contours in Figure (2)-(c,d) illustrate the variance of the response as

a function of the TMD parameters. They also illustrate the accuracy of the proposed solution.
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Figure 2: Illustration 1: Comparison of the exact (numerical) and approached (analytic) transfer function (µ = 0.01,

ϕ = 1). (a) Frequency Response Function (FRF), (b) 2-norm of the FRF as a function of the damping ratio ξTMD, (c-d)

contours of the 2-norm of the FRF as a function of the damping ratio ξTMD and mistuning parameter α.
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Tuning parameters α ξTMD

Den Hartog 1
1+µ ∼ 1− µ

√
3
8

µ
1+µ ∼

√
3
8
√
µ

Warburton 1
1+µ

√
2+µ

2 ∼ 1− µ
√

µ(4+3µ)
8(1+µ)(2+µ) ∼

1
2
√
µ

Fujino
√

1+µ/2
1+µ ∼ 1− µ 1

2

√
µ(1+3µ/4)

(1+µ)(1+µ/2) ∼
1
2
√
µ

Proposed 1 1
2
√
µ

Table 2: Comparison with other criteria available in the literature.

The location of the optimum is slightly off since the proposed method results in α = 1 instead of

an optimal value slightly smaller than 1 in the exact formulation. This is because only the leading

order solution has been kept in the proposed derivation. The location of the optimum in the (α, ξTMD)

space can be compared to available solutions in the literature, see Table (2). The series expansions,

for small mass ratio, of all these expressions also yield α ∼ 1 at leading order, which is fully consistent

with the proposed formulation which is truncated after leading order. Concerning the damping ratio,

the optimal value suggested by our model is consistent with the results of Warburton [25] and Fujino

[8], but also close to the criteria of Den Hartog ξTMD ' 0.61√µ. This difference is explained by the

fact that Den Hartog’s strategy of equalizing the height of both peaks in the FRF corresponds to

minimizing the ∞−norm of H (ω) instead of the 2-norm as considered in this illustration and in the

works of Warburton and Fujino.

To close the discussion, it is interesting to point out that the location of the TMD ϕ comes in

the denominator of (39) which means that the response grows unbounded as ϕ → 0. As already

introduced, in that case, the coupling vanishes in (34) and the TMD-structure system behaves as a

2-DOF uncoupled system. Since the structural damping ratio does not enter the governing equations

at leading order, the response is unbounded.

This first illustration aimed at recovering known results from the literature and provide a general

framework that can be followed for higher dimensional systems. The second illustration is the first

step along that line.

7.2. One mode, two TMDs

In the second illustration, there is one structural degree-of-freedom and two additional masses. It

is therefore natural to choose the structural characteristic values as those of the physical system, in

particular m?
s = ms, so that M̃s = K̃s = C̃s = 1 and ∆Ωs = 0. The characteristic mass m?

TMD can

17



be chosen as the sum of the two masses, m?
TMD := mTMD,1 +mTMD,2. Once the characteristic masses

are defined, the small number ε is obtained by (14), i.e. ε =
√
m?

TMD/m
?
s . The characteristic stiffness

used for the TMDs is consistently chosen as k?TMD := kTMD,1 + kTMD,2, and the dimensionless mass

and stiffness associated with TMDs are

M̃d =

 mTMD,1/m
?
TMD 0

0 mTMD,2/m
?
TMD

 ; K̃d =

 kTMD,1/k
?
TMD 0

0 kTMD,2/k
?
TMD

 .

(40)

In the rest of this illustration, it is assumed that, for practical reasons, a single TMD was split into

two smaller units of equal mass (mTMD11 = mTMD21 so that the diagonal elements of M̃d are equal to

1/2). An objective of this study is to determine whether it is possible to provide better performances

with two slightly different units rather than two identical units.

Small mistuning is invoked so that (26) gives

kTMD,i

k?TMD
= mTMD,i

m?
TMD

(1 + 2ε∆Ωd,i) (41)

for i = 1, 2. The sum of these two equations yields, term by term, 1 = 1+2εmTMD,1∆Ωd,1+mTMD,2∆Ωd,2
m?

TMD
,

or

∆Ωd,1 + ∆Ωd,2 = 0 (42)

for equal masses. Furthermore, the natural frequency of each TMD taken separately is asymptotically

given by

ωTMD,i =

√
kTMD,i

mTMD,i
∼

√
k?TMD
m?

TMD
(1− ε∆Ωd,i) (43)

so that the relative distance between the natural frequencies reads

∆ := ωTMD,1 − ωTMD,2

ωTMD,1 + ωTMD,2
= ε

2 (∆Ωd,1 −∆Ωd,2) = ε∆Ωd,1. (44)

This indicates that ∆ is a small number, which is expected in view of the small mistuning (41).

Equation (44) is used in the sequel in order to get rid of ∆Ωd,1 and use the more meaningful quantity

∆ instead. In order to simplify the following notation, we also define ∆̃ = ∆Ωd,1 = ord(1), which also

means ∆Ωd,2 = −∆̃.

Assuming that the dimensionless damping ratio ξ̃TMD is equal for the two dampers and that the

two modal amplitudes ϕ1 and ϕ2 are equal at first order (because the two units are located close to

each other), ϕ1 = ϕ2 := ϕ, the asymptotic and stretched versions of the structural matrices take the

simple form

18



M0 =


1 0 0

0 1/2 0

0 0 1/2

 ;K1 =


0 −ϕ/2 −ϕ/2

−ϕ/2 δ + ∆̃ 0

−ϕ/2 0 δ − ∆̃

 ; C1 = ξ̃TMD


0 0 0

0 1 0

0 0 1


which are characterized by the two mistuning parameters: δ (structure vs. TMDs) and ∆̃ (TMD1 vs.

TMD2). These expressions are doubtlessly simpler than the formal expressions.

The general expression (34) of the frequency response function of the coupled system can be spe-

cialized with these matrices. In particular, the first element, related to the structural response, reads

H01,1 (η) = −
2
((

δ − η + iξ̃TMD

)2
− ∆̃2

)
4η
((

δ − η + iξ̃TMD

)2
− ∆̃2

)
+ ϕ2

(
δ − η + iξ̃TMD

) . (45)

Again, it is highlighted that this expression is drastically more compact than the exact solution (in-

volving the inverse of a 3 × 3 matrix). It provides however very accurate solutions as long as ε � 1.

For instance, Figure 3-a shows
∣∣H01,1

∣∣ for two different values of ξ̃TMD. The proposed method (ana-

lytic, dashed lines) is compared to a full numerical estimate (inverse of 3× 3 matrix) of the response.

Numerical values chosen for the illustration are a mass ratio µ = 0.01, i.e. ε = 0.1, and dampers

located at the antinode of the mode, ϕ = 1, while the mistuning parameters are α = 1, i.e. δ = 0 and

∆ = ε ∆̃ = 0.05. It shows that the proposed method is able to accurately capture the resonant peaks as

well as the monotonic decrease in the far field, away from resonances; this is all the more appreciated

that the proposed method is based on a stretched coordinate in the neighborhood of resonances.

The 2-norm of the frequency response functions, defined as in (38), do not accept simple closed

form expressions, neither in the exact case, neither in the proposed approach. The 2-norm of the

frequency response function obtained by numerical integration is shown as a function of the damping

ratio ξTMD in Figure 3-(b,c,d). The proposed formulation is again shown to be accurate, and most

importantly the existence of an optimum damping ratio is well captured by the simplified model, which

is not necessary a trivial feature when dealing with multiple scales methods [19]. The largest relative

errors are 0.6% and 2.9% for α = 1 and α = 1.05, respectively.

Although the 2-norm of the frequency response function does not accept a closed form expression

in the general case of the proposed formulation, some more insightful conclusions based on analytical

derivation can be obtained in specific cases. In particular, the influence of the mistuning of the two
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Figure 3: (a) Comparison of the proposed approximation of H01,1 (analytical) and the exact value numerically obtained

by inversion of the 3× 3 matrix, (b,c,d) 2-norm of the frequency response function H01,1 represented for α = 1 (δ = 0)

and α = 1.05 (δ = 0.5) or as a function of the tuning parameters (α, ξTMD) of the TMDs. Numerical values: ε = 0.1,

µ = 0.01, ϕ = 1, ∆ = 0.05, ∆̃ = 0.5.
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tuned mass dampers can be studied. It is expected that the two damping units do not work as a whole

when their natural frequencies are too different from each other. With the proposed formulation, it is

possible to determine the maximum relative difference (in terms of frequencies for instance) of the two

units so that they behave as a single tuned mass damper. To do so, it is noticed first that, in the case

∆ = 0, the two TMD units are identical (same mass, same frequency, same damping ratio), and (45)

interestingly degenerates into (37) after simplifying numerator and denominator by
(
δ − η + iξ̃TMD

)
.

This division by a function of the stretched coordinate η consists in dropping one pole (forget one

dimension in the dynamics) and it is indeed observed that we recover the model considered in the

first illustration with one mode and one TMD. For small values of the mistuning ∆̃, the leading order

expression of the variance of the response is therefore similar to (39) and given by

σ2
x,∆̃�1 = π

4ϕ2√µ
4ξ̃2

TMD + 4δ2 + ϕ2

ξ̃TMD
+ ord

(
∆̃
)
. (46)

This interesting conclusion was already hinted by the fact that the frequency response function (45)

tends towards the expression (37) for small values of ∆̃. The Figure 4-a represents the structural

response as a function of ∆ := ε∆̃. The configuration that provides the minimal variance is obtained

when ∆ is minimum, the numerical and analytic curves are in accordance and match the limit value

given in (46). For large mistuning, the FRF is approximated by

lim
∆̃→+∞

H01,1 (η) = −
2
(
−∆̃2)

4η
(
−∆̃2

)
+ ϕ2

(
δ − η + iξ̃TMD

) (47)

and the variance of the response to broadband loading is

σ2
x,∆̃�1 = 1

ϕ2√µξ̃TMD

4π∆̃4

4∆̃2 + ϕ2
= π∆̃2

ϕ2√µξ̃TMD
+ ord

(
1

∆̃2

)
. (48)

The standard deviation of the response ultimately grows linearly with the mistuning.

Numerical integration of (45) (labeled “Semi-analytic”) is compared to the numerical integral of the

original problem in Figure 4-a for δ = 0.1 and as a function of ∆. The two asymptotic solutions are also

represented and show very good agreement. The proposed method provides an acceptable estimation

of the numerical computation. The relative error with respect to the numerical model is plotted in

order to validate the asymptotic proposition for different tuning configurations (α,∆). According to

Figure 4-b, the approximation offers a good representation of the exact behavior (error lower than 10%)

despite the existence of zones of non-optimal functioning that appear when the natural frequencies of

the TMDs are far away from each other and so wide of the mark.
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Although the problem could not be fully solved with closed-form expressions, the proposed formula-

tion allowed to derive two simple asymptotic cases for small and respectively large ∆̃. The response of

the structure equipped with two tuned mass dampers can be idealized by considering that the efficiency

of the two units is optimal and unchanged for ∆̃ ∈ [0, ∆̃0] where ∆̃0 corresponds to the intersection of

the two asymptotes, then increases monotonically for larger mistuning. Solving σ2
x,∆̃�1 = σ2

x,∆̃�1 for

∆̃ yields

∆̃2
0 = ξ̃2

TMD + δ2 + 1
4ϕ

2 → ∆2
0 = ε2∆̃2

0 = ξ2
TMD + (1− α)2 + 1

4µϕ
2

Provided the two units are tuned for optimal conditions, α = 1 and ξ̃TMD = 1/2, the former deriva-

tion shows that two slightly mistuned units tend to work together as long as the mistuning of their

frequencies is lower than

∆0 = 1
2
√

1 + µϕ2

after what the performance of the 2-unit damping system worsens.
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%
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Figure 4: (a) Comparison of the semi-analytic approximation of the standard deviation for different values of ∆, (b)

Relative error of the std for different tuning configurations (numerical integration of the exact and approached FRFs)
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8. Conclusions

The proposed method developed in this paper suggests a simple mathematical model for the analysis

of multiple degree-of-freedom structural system equipped with multiple tuned mass dampers. A final

aim is to predict the optimal adjustment of the dampers associated to the minimal structural response

under wide-band excitation. This strategy stands out from the classical ones as it begins by putting

all the assumptions on the order of magnitude of the different parameters, then concentrates all the

computational efforts on the areas of the problem that are crucial, and finally tackles the calculation

of the response.

The analysis is frequential and implemented in the modal basis. The structural matrices and thus

the FRF appear to take a heavy and non-explicit form. In order to lighten up the computations and

make them applicable for design, a proper scaling of the different parameters involved is performed.

This opens the gates to exploit perturbation methods, and allows to gather with thoroughness the

essence of the information contained in the first order. The expressions of the transfer function and

thus the variance of the response are condensed, simplified and more meaningful. The asymptotical

developments are validated through two illustrations, as it predicts in a solid manner the structural

behavior.

A low-order mathematical model has been derived for the analysis of multiple degree-of-freedom

structural systems equipped with multiple tuned mass dampers. By carefully expressing the orders of

magnitude of the different quantities involved in this generic problem, it was shown that the frequency

response function (FRF) of the coupled system can be expressed with a simple expression. It has been

obtained with the multiple timescale spectral approach and by invoking the smallnesses of all possible

problem parameters. It is the simplest form that can be obtained for the general problem without

formulating additional assumptions. The corresponding solution is accurate as long as the mass ratio

remains small and the response to the considered loading is mostly contributed by structural resonance.

Once an approximate expression for the system FRF is obtained, any subsequent information

can be estimated. While the infinite norm of the FRF would inform about the response to harmonic

loading, the 2-norm corresponds to the response under broadband excitation. This latter case has been

investigated for two particular examples of application of the proposed formulation. In particular, it

has been demonstrated that it is possible to derive approximate solutions to problems that are more

complex than those enjoying today’s available closed-form solutions. In the second example, we could

derive a (first-order accurate) condition on the maximum frequency mistuning between two separate
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TMDs so that they can offer the same mitigation properties as a perfectly tuned device. This example

shows the perspectives of the simple model. The same methodology could be used to investigate the

response of a single mode under TMDs split into more than 2 mistuned units, the possible usage of

a single TMD to damp two or more structural modes at a time. Other scopes of application concern

the double TMD which do require, however, the derivation of another family of governing equations,

which includes interactions between the small masses of the problem.
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