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ABSTRACT: Design against flutter is an important task when designing a flexible structure. 

Spectral flutter analysis necessitates the integrations of displacement power spectral densities for 

evaluating the covariance matrix of responses. This paper presents a light semi-analytical 

alternative to classical quadrature methods to integrate PSDs efficiently, decreasing the number of 

integration point by one or two orders of magnitude. It is based on a multiple timescale spectral 

analysis (MTSA), and constitutes the extension of the background/resonant decomposition of 

Davenport to aeroelastic systems. This approach is restricted to modal analysis, and assumes small 

damping ratios as well as low modal coupling but possibly highly correlated modes. 
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1. INTRODUCTION 

Last few decades have seen consequent progress in long span structures, driving civil engineers to 

design more and more slender structures with innovative shapes. Design against flutter is known as 

one of the most concerning issues for such flexible structures. 

The first insights in aeroelasticity are due to [Theodorsen (1935)] who studied the behaviour of 

aircraft airfoils with a flat plate model. Few decades later, research migrated to civil engineering, 

involving study of complex profile bridge girders. Among others, [Scanlan (1993)] proposed a 

canonical formulation relating the self-excited forces with the flutter derivatives. These derivatives 

are determined experimentally by testing in wind laboratory or numerically using computational 

fluid dynamics. The structural response is determined by superimposing self-exciting forces to the 

buffeting forces. In the frame of a spectral analysis, the structural response is characterized by the 

variances and the co-variances of the response, obtained by integration of the displacement power 

spectral densities.  

The presented semi analytical method offers a lightweight and time effective alternative to classical 

numerical integration methods to evaluate these integrals. Numerical models of bridges used to 

perform a flutter analysis have been so far dramatically limited by the computational resources 

available, and therefore consist most of the time in a 2-DOF pitch-plunge model. The proposed 

formulation allows significant acceleration of an essential step of the flutter design process. 

2. PROBLEM FORMULATION 

The dynamics of a M-DOF model subjected to buffeting and aeroelastic loads is described in 

frequency domain by 

[−𝜔2𝐌𝑠 + iω𝐂s + 𝐊𝑠]𝐗(𝜔) = 𝐅ae(ω) + 𝐅bu(𝜔) ( 1 ) 

where 𝐌𝒔, 𝐂𝒔 and 𝐊𝒔 refer respectively to the mass, damping and stiffness matrices. The right-hand 

side contains the self-excited 𝐅𝒂𝒆  and buffeting forces 𝐅𝐛𝐮 . The buffeting forces are most often 



described by their power spectral density matrix (PSD matrix) that depends on the geometrical 

properties of the structure and the buffeting spectrum. The self-excited forces are modelled by 

𝐅𝐚𝐞(𝝎) = 𝑖𝜔𝐂𝐚𝐞(𝝎) + 𝐊𝐚𝐞(𝝎)   [Scanlan (1993)] so that they can be incorporated as aeroelastic 

stiffness and damping, functions of the flutter derivatives. As a result, the transfer function reads 

𝐇(𝜔) = [− 𝜔2𝐌(𝜔) + 𝑖𝜔𝐂(𝜔) + 𝐊(𝜔)]−1 (2) 

with 𝐌(𝜔) = 𝐌𝑠(𝜔) + 𝐌𝑎𝑒(𝜔) , 𝐂(𝜔) = 𝐂𝑠(𝜔) + 𝐂𝑎𝑒(𝜔)  and  𝐊(𝜔) = 𝐊𝑠(𝜔) + 𝐊𝑎𝑒(𝜔). The 

spectral analysis consists in the determination of the displacement PSDs, expressed as 

𝑺𝒙(𝜔) = 𝐇(ω)𝐒𝐅bu
(ω)𝐇T(ω). (3) 

The integration of this matrix provides the covariance matrix that is used to recombine modal 

responses into physical displacements and, along with the extreme value theory, establish extreme 

displacements. The latter displacement, added to the average response serves as basis to perform 

the design of the structure. Because these power spectral densities are the result of a quadratic 

product in 𝐇(𝜔), they experience very sharp peaks. Classical integration methods such as the 

trapezoidal rule are typically used to integrate (3). However, they turn out to be highly resource 

consuming since a very high frequency resolution must be used to represent correctly the acute 

resonant peaks affecting the PSDs. Furthermore, the span of the frequency interval must be large 

enough to capture all the energy of the process. As a result, conventional quadrature methods 

struggle to integrate accurately the displacement spectrum because they require a large number of 

integration points [Heremans & Al. (2021)]. The method presented here offers a lightweight semi-

analytical alternative for the evaluation of this integral. 

3. PROPOSED APPROXIMATION 

The proposed approximation extends Davenport’s background/resonant decomposition to 

aeroelastic systems. The PSDs are split into two contributions: the content located in the low 

frequency range defines the background component, while the peak(s) in the neighbourhood of the 

resonant frequencies defines the resonant component. The derivation of the analytical expressions 

of these components is based on the Multiple Timescale Spectral Analysis (MTSA) [Denoël 

(2015)]. 

3.1.  Modal Analysis 

The cross power spectral densities expressed in nodal basis as proposed in (3) depicts up to 2N 

distinct peaks, if N refers to the number of nodes of the structure, and therefore the number of 

peaks in an FRF. The use of a modal analysis decreases this number to two distinct peaks at most in 

the resonance regime, which is highly appreciated since the MTSA then turns out to be competitive 

by providing approximation of the resonant component peak by peak. Expressed in a modal basis, 

equation (3) reads 

𝑺𝒒(𝜔) = 𝐇∗(ω)𝐒𝐅bu
∗ (ω)𝐇∗T(ω) (4) 

where the overhead asterisk indicates modal quantities.  

3.2.  Small Coupling Assumption  

Classical modal analysis in dynamics generally assumes Rayleigh damping as it allows to form a 

diagonal flexibility matrix in the modal basis 𝐉∗(𝜔) =  −𝜔2𝐌∗ + 𝑖𝜔𝐂∗ + 𝐊∗ , whose inverse is 

easily calculated. Unfortunately, the frequency dependency of stiffness and damping matrices does 

not allow an exact diagonalization of the flexibility matrix. Instead, a modal basis is chosen such 

that the dynamic flexibility matrix is nearly diagonal for all frequencies. This small coupling 

assumption, along with the first order approximation of slightly coupled matrices leads to the 

following expression for the FRF matrix [Denoël, Degée (2009)] 

𝐇 ≈ 𝐉𝑑
−1 + 𝐉𝑑

−1𝐉𝑜𝐉𝑑
−1, (5) 

for which no full matrix inversion is required. In the latter equation, 𝐉𝒅 refers to the diagonal of the 

modal dynamic flexibility, and 𝐉𝑜 = 𝐉∗ − 𝐉𝑑 contains only the coupling terms of 𝐉∗.  



3.3.  MTSA Approximation 

The spirit of the multiple timescales analysis is founded on processing separately two phenomena 

characterized by different timescales. The buffeting action brings most of its energy in the low 

frequency range, and constitutes therefore the background component. The dynamics of the 

structure is generally characterized by a higher frequency response, materialized by the resonant 

peaks. The sum of the two components gives an approximation of the modal displacement PSD 

𝐒𝑞(𝜔) = 𝐒𝑞
𝐵(𝜔) + 𝐒𝑞

𝑅(𝜔) (6) 

The background component is obtained by expanding the expressions of the modal transfer 

functions of modes 𝑖 and 𝑗 , and substituting them in (5). If 𝜔𝑖  and 𝜔𝑗  refer respectively to the 

circular natural frequencies of the modes 𝑖 and 𝑗, the background component reads 

𝑆𝑞,𝑖𝑗
𝐵 (𝜔) = 𝐻𝑑,𝑖𝑖(𝜔)𝑆𝑝,𝑖𝑗(𝜔)�̅�𝑑,𝑗𝑗 ≈

𝑆𝑝,𝑖𝑗(𝜔)

𝐾𝑑,𝑖 (𝜔)𝐾𝑑,𝑗(𝜔)
(7) 

in which the dynamics response is approximated by a quasi-static response in each mode. This PSD 

is then integrated to give the variance 𝜎𝑞,𝑖𝑗
𝐵2

. Because 𝑆𝑝,𝑖𝑗(𝜔) is a smooth function of 𝜔 , the 

evaluation of this integral does not require much integration points. The resonant component is 

obtained introducing a stretched coordinate 𝜔 = 𝑓(𝜂, 휀, 𝛿, 𝜌) with 𝜂 a variable of order ℴ(1), 휀 =
(𝜔𝑗 − 𝜔𝑖)/(𝜔𝑖 + 𝜔𝑗) a small parameter, and 𝜌 and 𝛿 two parameters functions of 𝜔𝑖 and 𝜔𝑗. This 

stretching is introduced in 𝐻𝑑,𝑖(𝜔) and 𝐽𝑜,𝑖𝑗(𝜔), and an asymptotic expansion of (5) in the sense of 

the perturbation method reviewed by [Denoël (2015)] is obtained. This series development is 

truncated at leading order, to get the following expression 

𝑆𝑞,𝑖𝑗
𝑅 (𝜔) =

1

휀2

𝑆𝑝,𝑖𝑗(𝜔𝑖𝑗)

𝜔𝑖𝜔𝑗

1

ℒ1(𝜂)ℒ2(𝜂)
(8) 

where ℒ1(𝜂) and ℒ2(η) are two functions linear in 𝜂 but still quite cumbersome whose expressions 

are omitted here. The two poles corresponding to the roots of ℒ1(𝜂) and ℒ2(η) suggests the use of 

Cauchy’s residue theorem to obtain the resonant contribution 

𝜎𝑞,𝑖𝑗
𝑅 2

= ∫ 𝑆𝑞,𝑖𝑗
𝑅 (𝜂) 𝑑𝜔

+∞

−∞

=
4𝜋𝑖 𝜔𝑖𝑗

휀𝜔𝑖𝜔𝑗

1

ℒ3
̅̅ ̅(𝑖)

[𝑖𝑐𝑗(𝜔𝑗) + 𝑖𝑐𝑖(𝜔𝑖) + 𝛿휀(1 + 𝜌)ℒ3(𝑖)]
−1

 (9) 

with ℒ3(𝑎) = 𝜕𝜔𝑘𝑎(𝜔𝑎) − 𝜔𝑎( 2𝑚𝑎(𝜔𝑎) + 𝜕𝜔𝑚𝑎(𝜔𝑎) ). This approximation is conditioned by 4 

important hypotheses: the separation of the timescales of the phenomena, the assumption of small 

modal damping and small 휀 and that Scanlan’s derivatives with respect to 𝜔 are smooth and not 

varying too fast across resonance peaks. The last hypothesis is probably the most restrictive, as it 

restrains, in principle, the application of the method to modes with close natural frequencies. The 

proposed method is therefore less accurate, relatively speaking, for pairs of modes with distinct 

frequencies, i.e. little correlation. This does not appear as a pragmatic limitation since errors on 

small correlations will not expose the quality of the recombination of modal responses. 

4. ILLUSTRATION 

The efficiency of the method is demonstrated on a pitch/plunge model of the Storebelt bridge, an 

example borrowed from the benchmark described in [Diana & al. (2019)] where a flat plate model 

is considered. In this application, the fundamental torsional and bending eigen frequencies have 

been modified to 0.25Hz and 0.2375Hz to illustrate the method with significantly correlated modal 

responses. 

The results are presented in Figure 1 in terms of PSDs for two different wind speeds. Despite a 

light and local underestimation of the PSD in the fundamental resonant peak, the MTSA method 

provides a trustful approximation of the modal PSD. The Figure 2 displays the correlation 

coefficient and the absolute errors for different wind speeds. The method provides an excellent 

approximation of the correlation coefficient, with errors of the order of 1%.   



 

Figure 1. Cross-PSD of the modal displacements, and its background and resonant decomposition for 

U=10m/s (left) and U=40m/s (right). 

 

Figure 2. Theorical modal covariances (orange), proposed approximation (blue) and absolute errors for 

different subcritical wind speeds. 

5. CONCLUSIONS 

The presented method offers a very simple alternative to classical integration methods for 

evaluating the integral of the power spectral densities during a spectral analysis. Its efficiency holds 

from the use of the analytical expression of the modal transfer function in the neighbourhood of 

resonance peaks, similarly to what is done in the classical background/resonant decomposition. The 

proposed method allows a significant reduction of the numerical burden associated with numerical 

integration of cross-PSDs. As such, it opens interesting perspectives on the analysis of large 

structures. The method was shown to work efficiently on a chosen application, providing a fine 

approximation of the correlation coefficient with an error limited to about 1%. 
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