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Abstract: This study introduces machine learning predictive models to predict the future values of
the monitored vital signs of COVID-19 ICU patients. The main vital sign predictors include heart
rate, respiration rate, and oxygen saturation. We investigated the performances of the developed
predictive models by considering different approaches. The first predictive model was developed
by considering the following vital signs: heart rate, blood pressure (systolic, diastolic and mean
arterial, pulse pressure), respiration rate, and oxygen saturation. Similar to the first approach, the
second model was developed using the same vital signs, but it was trained and tested based on a
leave-one-subject-out approach. The third predictive model was developed by considering three vital
signs: heart rate (HR), respiration rate (RR), and oxygen saturation (SpO2). The fourth model was a
leave-one-subject-out model for the three vital signs. Finally, the fifth predictive model was developed
based on the same three vital signs, but with a five-minute observation rate, in contrast with the
aforementioned four models, where the observation rate was hourly to bi-hourly. For the five models,
the predicted measurements were those of the three upcoming observations (on average, three
hours ahead). Based on the obtained results, we observed that by limiting the number of vital sign
predictors (i.e., three vital signs), the prediction performance was still acceptable, with the average
mean absolute percentage error (MAPE) being 12%, 5%, and 21.4% for heart rate, oxygen saturation,
and respiration rate, respectively. Moreover, increasing the observation rate could enhance the
prediction performance to be, on average, 8%, 4.8%, and 17.8% for heart rate, oxygen saturation, and
respiration rate, respectively. It is envisioned that such models could be integrated with monitoring
systems that could, using a limited number of vital signs, predict the health conditions of COVID-19
ICU patients in real-time.
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1. Introduction

The recent COVID-19 pandemic shocked healthcare systems around the globe, high-
lighting the need for intelligent monitoring solutions. Intelligent monitoring solutions
are needed to optimise the available resources in hospitals, more specifically in intensive
care units (ICUs). During the first wave of the pandemic, ICUs experienced a shortage of
beds, and healthcare workers were overloaded due to high admission rates and severely ill
patients. Therefore, it became necessary to develop intelligent systems to optimise the avail-
able resources at hospitals, as well as the efforts of medical staff, to provide faster detection
of patient deterioration. One key component of such an intelligent system involves data
analytics of (big) medical data. Machine learning has become a popular and reliable analyt-
ical technique in recent years, especially in the medical domain. Many studies investigated
hospitalised patients and ICU patients, for monitoring or mortality prediction [1–8]. Some
of these studies investigated to what extent vital signs could inform on a patient’s clinical
deterioration and adverse events [1,2]. Other studies focused on the mortality prediction of
ICU patients and the relevant predictors [3,4,6]. For instance, in our previous study [4], we
investigated the mortality prediction of ICU patients based on a set of vital signs, namely,
heart rate, blood pressure, respiration rate, and oxygen saturation. The observation rates of
these vital signs were hourly to bi-hourly measurements for each one. The main concept
in that study was to engineer interpretable/simple features in combination with a linear
hard margin support vector machine that can inform mortality prediction for ICU patients
one to two days in advance. Moreover, in the study by Mahdavi et al. [6], they developed
support vector machine models to predict the mortality risk of COVID-19 patients, based
on demographic and laboratory variables/features obtained from a patient’s first day
of admission. Another related approach involves vital sign predictors for hospitalised
patients [7,8]. In our previous study [8], we developed predictive models to predict the
future values of the same vital signs, up to three hours ahead on average. However, the
population of that study comprised patients admitted to general wards (i.e., cardiology,
post-surgical, and dialysis patients). Furthermore, in that study, the observations were
sampled at 1 Hz using wearable devices (Somnotouch NIBP, http://www.somnomedics.eu
(accessed on 28 November 2021)). Nevertheless, the acceptable predictions of both studies
motivated us to integrate the two concepts, namely extracting simple features from low
rate measurements of COVID-19 ICU patients to predict the near future values of the vital
signs, up to three hours ahead on average.

In this study, we introduce, for the first time, machine learning predictive models to
predict vital signs in COVID-19 patients. These machine learning models aim to predict a
set of monitored vital signs, for patients in the ICU, in upcoming hours (i.e., three hours).
Many machine learning algorithms are available that can be applied to such a case study.
In their study, Han et al. [9] compared different machine learning algorithms (i.e., random
forest, neural networks, and support vector machines) for a specific case study, and random
forest outperformed. However, the machine learning algorithm we used in this study
was the k-nearest neighbour least-squares support-vector machine (kNN-LS-SVM). This
algorithm was chosen based on its efficient performance that was obtained in our previous
study on vital signs predictors for hospitalised patients [8]. In addition, kNN-LS-SVM
provides the advantage of localised learning algorithms, such as handling class imbalance,
ambiguity, streaming analytics, and model personalisation [10]. The main focus of this
study was to predict the future values of specific vital signs for upcoming observations (on
average, three hours ahead) in COVID-19 ICU patients. These vital signs are mainly heart
rate, respiration rate, and oxygen saturation. These vital signs were specified based on
medical expert recommendations and constraints regarding the collected data. On the other
hand, as portions of the collected data contain consistent measurements of blood pressure
vital signs (i.e., systolic (SBP), diastolic (DBP), and mean arterial blood pressure (MAP)), we
developed a predictive model considering these vital signs, as well for comparative reasons,
to assess the influence of blood pressure (as a vital sign) on prediction performance.

http://www.somnomedics.eu
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2. Material and Methods
2.1. Data

Data used for developing and evaluating the models were collected for the
WearIT4COVID Interreg project at the hospital Ziekenhuis Oost-Limburg (ZOL, Genk,
Belgium), Maastricht University hospital MUMC+ (Maastricht, The Netherlands), and
Le Centre hospitalier universitaire de Liège (CHU) (Liège, Belgium), during the first and
second waves of the COVID-19 pandemic. The data were collected from the three hospitals
with the details shown in Table 1. For ZOL, the data of COVID-19 positive patients admit-
ted at the intensive care unit (ICU) were collected based on approval of the local ethics
committee (20/003R). A total of 51 patients were included in this dataset with various
lengths of stay at the ICU. The mean duration of ICU stay was 10.6 days (±8.87 days), and
the mean of the entire hospital stay was 16.7 days (±9.27). For MUMC+, data collection in
the Maastricht Intensive Care COVID (MaastrICCht) cohort was carried out by researchers
from the ICU department. Ethical approval was obtained from the Medical Ethical Commit-
tee UM/azM (Maastricht). All patients diagnosed with COVID-19, and entering the ICU
department, were included in the study; data were collected until patients were discharge
from the ICU. Data from 50 patients were provided for analysis. The mean duration of
ICU stay was 16.9 days (±16.3). For CHU Liège, the data of 84 patients were collected, and
patients who were monitored for less than 24 h were excluded. The collected data from the
three hospitals contained the vital parameters, demographic data (such as age and gender),
comorbidities, and outcomes of 185 patients in total.

Table 1. The demographic presentation and most frequent comorbidities (prior to or acquired during
their COVID infection) of the patients admitted to ICU in the three hospitals: ZOL, MUMC+, and
CHU de Liège.

ZOL (51 Patients) MUMC+ (50 Patients) CHU de Liège (84 Patients)

Demographic and comorbidity parameters Descriptive statistics

Age (mean ± std) 65.84 ± 12.44 67.02 ± 1.28 69 ± 12.16

Gender (male, %) 62.7% 80.0% 68%

Height (cm; mean ± std) 166.63 ± 12.11 176.3 ± 8.3 168 ± 26.53

Weight (kg; mean ± std) 83.76 ± 16.34 85.91 ± 13.68 81.45 ± 20.01

Smoking status (%)
Never: 66%

Smoker: 6.4%
Former smoker: 27.7%

Never: 90%
Smoker: 6.0%

Former smoker: 4.0%

Never: 50%
Smoker: 6%

Former Smoker: 12%

Cardiovascular disease (%) 17.6% 4.0 %
23% (yes)
22% (no)

55% (unknown)

Diabetes (%) 27.5% 18.0 %
51% (yes)
21% (no)

28% (unknown)

Arterial hypertension (%) 43.1% 16.0%
61% (yes)
14% (no)

25% (unknown)

Cerebrovascular accident or transient ischaemic attack (%) 5.9% 2.0% (unknown)

Kidney insufficiency (%) 60.8% 0.0% (unknown)

Heart Failure (%) 29.4% 4.0% (unknown)

NYHA classification
II: 8.3%

III: 8.3%
6.0% (unknown)

Myocardial infarction (%) 9.8% 42% (unknown)

PCI/PTCA 9.8% 67.02 ± 1.28 (unknown)

COPD 11.8% 80.0%
24% (yes)
29% (no)

47% (unknown)

Asthma (%) 7.8% 176.3 ± 8.3
9% (yes)
38% (no)

53% (unknown)

Intubated 23 (46%) 50 (100%) 38 (46%)

O2 Mask/Nasal Cannula 40 (78%) (Unknown) 71 (86%)
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2.2. Methods

In this section, we address the machine learning algorithm that was used to develop
the predictive model. The used machine learning algorithm was the hybrid localised
learning algorithm k nearest neighbour least-squares support-vector machine (kNN-LS-
SVM) for regression. This algorithm was introduced in our previous article [8] to predict
the future values of the monitored vital signs of hospitalised patients in general wards
using wearable sensors. The kNN-LS-SVM algorithm for regression was developed based
on the studies of [10–17]. The integration of the kNN algorithm into the LS-SVM algorithm
was proposed to build an efficient predictive model (LS-SVM) within a local region, which
is determined by the kNN search algorithm. Localising the model is considered beneficial,
to consider the local characteristics of the investigated region. In addition, such a localised
learning approach could help to build updated models and provide online analytics [10].

Local Learning of SVMs

In this section, we begin by reviewing the main concepts behind support vector
machines (SVMs) and localised learning approaches for SVMs.

SVMs are originally presented as binary classifiers that assign each datum instance
x ∈ Rd to one of two classes described by a class label y ∈ {−1, 1}, based on the decision
boundary that maximises the margin 2/||w||2 between the two classes. Generally, a feature
map φ : Rd 7→ Rp is used to transform the geometric boundary between the two classes to
a linear boundary L : wTφ(x) + b = 0 in a feature space, for some weight vectors w ∈ Rp×1

and b ∈ R. The class of each instance can then be found by y = sgn (w>φ(x) + b), where
sgn refers to the sign function.

Similar to the classification problems, regression models are obtained via estimating
the boundary L based on a set of training examples xi (1 ≤ i ≤ N) with corresponding
output values yi ∈ R. In particular, one is interested in parameters w and b that minimise a
loss-function:

min
w, b; ξ

1
2

w>w+ C
N

∑
i=1

(ξi + ξi
∗), (1)

and are subject to:

yi −w>φ(xi)− b ≤ ε + ξi, i = 1, 2, . . . , N ,

w>φ(xi)− yi + b ≤ ε + ξi
∗, i = 1, 2, . . . , N,

ξi, ξi
∗ ≥ 0, i = 1, 2, . . . , N.

The constant C in (1) denotes the penalty term that is used to penalise estimation error
through the slack variables ξi and ξi

∗ outside Vapnik ε-sensitivity loss function in the
optimisation process.

LS-SVM’s are obtained by using a least-squares error loss function [16]:

min
w, b; e

1
2

w>w+
1
2

γ
N

∑
i=1

ei
2, (2)

such that

yi = w>φ(xi) + b + ei, i = 1, 2, . . . , N.

where γ is the regularisation constant for LS-SVM. The optimisation procedure introduces
errors ei, such that 1− ei is proportional to the signed distance of xi from the decision
boundary. In fact, the non-negative slack variable constraint is removed and the solu-
tion of the optimisation problem can be obtained by a set of linear equations, reducing
computational efforts [16].
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Local learning approaches build models that fit the data in the local neighbourhood
around a test example and by locally adjusting the model parameters to the properties of
the data [14].

While global SVMs consider the same weights for all training instances in the optimi-
sation process (2), local learning approaches allow for the training samples near a test point
to be more influential than others. Localised learning approaches of SVMs [10] are based
on weighting functions λ(xs, xi) that express the similarity between the feature vectors of
the i-th data point xi and a test instance xs. For an LS-SVM, this leads to the following
cost function:

min
w, b; e

1
2

w>w +
1
2

γ
N

∑
i=1

λ(xs, xi)e2
i , (3)

such that

yi = w>φ(xi) + b + ei, i = 1, 2, . . . , N.

where yi is a real number. Weighted least-squares support vector machines [17] use a
similar approach, but here, a different weighting function can be used for any given test
point xs. In this work, we study a binary valued similarity criterion:

λ(xs, xi) =

{
1 if ||xs − xi||2 ≤ rs

0 otherwise,

where rs is the K-th smallest distance among {||xs − xi||; 1 ≤ i ≤ N}. This formulation
leads to the hybrid KNN-LS-SVM method that we applied on the time-series prediction
approach. In particular, a regression model was built for each test example using only the
training examples located in the vicinity of the test example [11].

KNN-LS-SVM has the additional advantage of sparseness. Indeed, for an LS-SVM or
the localised version that uses a continuous similarity function, all input data are required
to construct the separating hyperplane [17]. This can be seen by solving the optimisation
problem (3). Using the method of the Lagrangian multipliers, we find:

L(w, b, e; α) =
1
2
‖w‖2

2 +
1
2

γ
N

∑
i=1

λ(xs, xi)e2
i−

N

∑
i=1

αi(w>φ(xi) + b + ei − yi),

where αi are the Lagrangian multipliers. Thus, for a KNN-LS-SVM, the sparseness char-
acteristic is returned to the LS-SVM, as only the neighbour data points contribute to the
model. In an online learning mode, this sparseness will result in a computational advantage
compared to LS-SVM.

The illustration of the kNN-LS-SVM regression algorithm is shown in Figure 1. The al-
gorithm of KNN-LS-SVM is implemented as follows:

1. Given a test example xs, compute distances to all training examples and pick the
nearest K neighbours.

2. Train the LS-SVM model with the K nearest neighbours.
3. Use the resulting regressor to estimate the output of xs.

The parameter K and the distance metric (e.g., Euclidean, Mahalanobis, or Chebyshev)
are additional hyperparameters next to the kernel width σ0 and the penalty term γ that are
optimised in a cross-validation approach [10]. One challenge faced in finding the nearest
neighbour in a continuously increasing data pool is the search complexity. However,
several advanced search algorithms were developed to reduce this complexity [18].
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Figure 1. A flow chart illustrating the localised learning algorithm of KNN-LS-SVM for regression
(adapted from ref. [8]).

3. Results

In this section, we introduce the prediction results of the developed predictive models
following two test approaches. The first approach is the 80/20 approach, in which 80%
(7100 datapoints) of the shuffled data are used to train the model, and the remaining 20%
(1845 datapoints) of the data are used to test the model. The other approach is leave-one-
subject-out, in which for each subject, this subject’s data (on average 50 datapoints) is
excluded from the training set of the model to be used as the test set.

The developed models in this study are based on data from the three hospitals. More-
over, the results from the three hospitals together are consistent with the results from each
hospital individually. Therefore, in this section, we focus on the results from the merged
data of the three hospitals together . Prior to applying the localised learning approach
of kNN-LS-SVM, a set of statistical features were extracted from the raw measurements
of each vital sign. The extracted features were the minimum, maximum, mean, median,
standard deviation, and energy. These features were extracted from a time window of
three observations to predict the upcoming vital sign values up to three observations
ahead (approximately three hours on average, as the observation rate is not uniform).
After extracting the aforementioned features, we developed five predictive models. The
predictive models were evaluated based on the mean absolute percentage error (MAPE)
which is calculated by the formula MAPE = 1

n ∑n
t=1 ‖(At − Pt)/At‖, where n is the number

of observations, At and Pt are the actual and predicted values at time t.
For the first predictive model, we aimed to predict the future values of the vital signs

for the upcoming three observations (on average three hours ahead) based on hourly to
bi-hourly observation rate. These vital signs were heart rate, respiration rate, oxygen
saturation, and blood pressure (systolic, diastolic, and mean arterial). For this predictive
model, the features were extracted from all of these vital signs and forming vectors, with
(6 features × 6 vital signs) 36 dimensions. In other words, all vital signs contributed to
predicting each vital sign. The prediction performance is shown in Figure 2 in terms of
mean absolute percentage error (MAPE).
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Figure 2. The mean absolute percentage error of the predictions for the upcoming three hours (+1, +2,
+3 h) of the vital signs: heart rate (HR), diastolic (DBP), systolic (SBP), mean arterial blood pressure
(MAP), oxygen saturation (SpO2), and respiration rate (RR), respectively, based on the hourly to
bi-hourly observation rate.

The second predictive model is similar to the first, however, it is trained/tested based
on the leave-one-subject-out approach. As shown in Figure 3, the box-plots of the resulting
MAPE for the predictions of the six vital signs are depicted.

Figure 3. The box-plot of leave-one-subject-out predictions of the vital signs of heart rate (HR),
diastolic (DBP), systolic (SBP), mean arterial blood pressure (MAP), oxygen saturation (SpO2), and
respiration rate (RR) for the upcoming three observations (on average 3 h ahead).

For the third predictive model, we aimed to predict the future values of only three vital
signs for the upcoming three observations (three hours on average). These vital signs were
heart rate, respiration rate, oxygen saturation. These three vital signs were selected as they
were recorded in a more consistent way compared to blood pressure. Furthermore, these
vital signs could be easily measured using wearable sensors in contrast with blood pressure.
For this predictive model, the features were extracted from the three vital signs as well
forming vectors of (6 features × 3 vital signs) 18 dimensions. The prediction performance
is shown in Figure 4 in terms of MAPE. Moreover, examples of the comparison between
the predicted and the actual values of the three vital signs for the upcoming three hours
are shown in Figure 5.
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Figure 4. The mean absolute percentage error of the predictions for the upcoming three hours (+1,
+2, +3 h) of the vital signs: heart rate (HR), oxygen saturation (SpO2), and respiration rate (RR),
respectively, based on hourly to bi-hourly observation rate.

Figure 5. The comparison between the predicted and the actual values for the upcoming three hours (+1, +2, +3 h) of the
vital signs: heart rate (HR), oxygen saturation (SpO2) and respiration rate (RR), respectively, based on hourly to bi-hourly
observation rate.

Similar to the third model, for the fourth predictive model, it was based on the three
vital signs (heart rate, respiration rate, and oxygen saturation), but it was trained and
tested using the leave-one–subject-out approach. The box-plot of the resulting MAPE of
the predictions are shown in Figure 6.
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Figure 6. The box-plot of the leave-one-subject-out prediction of the vital signs of heart rate (HR),
oxygen saturation (SpO2), and respiration rate (RR) for the upcoming three observations (on average
3 h ahead).

Finally, the fifth predictive model predicted the future values of heart rate, oxygen sat-
uration, and respiration rate for the upcoming three observations (on average three hours).
However, the observation rate, in this case, was one observation/5 min. Therefore, the same
features were extracted from the same time windows, but with a larger number of observa-
tions (i.e., 12 observations per hour), forming vectors with (3 h × 6 features × 3 vital signs)
54 dimensions to predict the 1-hour average values for the upcoming three hours. The
prediction performance is shown in Figure 7 in terms of MAPE. Furthermore, in Figure 8,
we show some examples of the comparison between the predicted and the actual values
of the three vital signs with observation rate, one observation/5 min, for the upcoming
three hours.

Figure 7. The mean absolute percentage error of the predictions for the upcoming three hours (+1,
+2, +3 h) of the vital signs: heart rate (HR), oxygen saturation (SpO2), and respiration rate (RR),
respectively, based on an observation rate of one observation/5 min.
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Figure 8. The comparison between the predicted and the actual values for the upcoming three hours (+1, +2, +3 h) of the
vital signs: heart rate (HR), oxygen saturation (SpO2), and respiration rate (RR), respectively, based on observation rate of
one observation/5 min.

Based on the obtained predictions, the histograms of the obtained error between
the predicted and actual values were calculated for both the third and fifth predictive
models (cf. supra) as depicted in Figures 9 and 10 for the three vital signs (heart rate,
oxygen saturation, and respiration rate) for the upcoming three hours. After performing
the prediction, the early warning score components for the predicted vital signs were
calculated for the predicted and the actual values. The absolute error between the predicted
and the actual EWS components was calculated for the third and fourth predictive models
based on the ranges depicted in Table 2. The normalised histograms of the absolute EWS
error are shown in Figures 11 and 12 for the third and fifth predictive models, respectively.

Table 2. Early warning score system based on Ziekenhuis Oost-Limburg (ZOL) Hospital.

SCORE 3 2 1 0 1 2 3

Temperature (◦C) <35.1 35.1–36.5 36.6–37.5 >37.5
Heart Rate (BPM) <40 40–50 51–100 101–110 111–130 >130

Respiration Rate (BPM) <9 9–14 15–20 21–30 >30
Oxygen Saturation (%) <91 91–93 94–95 >95

Systolic Blood Pressure (mmHg) <70 70–80 81–100 101–180 180–200 >200
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Figure 9. Normalised histograms of the error of the predicted values for the three vital signs for
the upcoming three hours based on hourly to bi-hourly observations. Each row represents one of
the three vital signs: heart rate, oxygen saturation, and respiration rate respectively. Each column
represents the prediction hour: +1, +2, +3 h, respectively. (a) HR +1 h, (b) HR +2 h, (c) HR +3 h,
(d) SpO2 +1 h, (e) SpO2 +2 h, (f) SpO2 +3 h, (g) RR +1 h, (h) RR +2 h, (i) RR +3 h.

Figure 10. Normalised histograms of the error of the predicted values for the three vital signs for
the upcoming three hour based observation rate of one observation/5 min. Each row represents
one of the three vital signs: heart rate, oxygen saturation, and respiration rate respectively. Each
column represents the prediction hour: +1, +2, +3 h respectively. (a) HR +1 h, (b) HR +2 h, (c) HR
+3 h, (d) SpO2 +1 h, (e) SpO2 +2 h, (f) SpO2 +3 h, (g) RR +1 h, (h) RR +2 h, (i) RR +3 h.
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Figure 11. Normalised histograms of the absolute EWS error of the predicted values for the three vital
signs for the upcoming three hours based on hourly to bi-hourly observations. Each row represents
one of the three vital signs: heart rate, oxygen saturation, and respiration rate, respectively. Each
column represents the prediction hour: +1, +2, +3 h, respectively. (a) HR +1 h, (b) HR +2 h, (c) HR
+3 h, (d) SpO2 +1 h, (e) SpO2 +2 h, (f) SpO2 +3 h, (g) RR +1 h, (h) RR +2 h, (i) RR +3 h.

Figure 12. Normalised histograms of the absolute EWS error of the predicted values for the three
vital signs for the upcoming three hours based on the observation rate of one observation/5 min.
Each row represents one of the three vital signs: heart rate, oxygen saturation, and respiration rate,
respectively. Each column represents the prediction hour: +1, +2, +3 h, respectively. (a) HR +1 h,
(b) HR +2 h, (c) HR +3 h, (d) SpO2 +1 h, (e) SpO2 +2 h, (f) SpO2 +3 h, (g) RR +1 h, (h) RR +2 h,
(i) RR + 3 h.

4. Discussion

Based on the obtained results, we can compare the performance of the different models.
For example, by comparing the first and second predictive models, it is noticeable that
the performance of the first model, in terms of MAPE, is better for all vital signs than the
median MAPE values of the second model, which indicates that the performance is better
when the same-person data are considered in the training set.
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By comparing the prediction performance of the first and third models, as both are
based on hourly to bi-hourly observation rates, we notice that the HR and SpO2 prediction
error for the first model is similar to that of the third model for the first and second-hour
predictions, without a statistical significance (at 5% significance level), and less for the third
hour without significance. This similarity can indicate that, for these models, the considered
blood pressure vital signs are unnecessary for both HR and SpO2. However, for RR, the
prediction performance of the first model (MAPE = 19.8%, 20%, and 22%) is better than that
of the third model (MAPE = 22%, 21.3%, 25.2%) with significance at 10% significance level.
This outperformance indicates that blood pressure vital signs can be informative to predict
the respiration rate. Given these results, we can conclude that blood pressure vital signs
did not significantly influence the prediction performance for both heart rate and oxygen
saturation in this setup. On the other hand, respiration rate prediction is influenced by
the absence of blood pressure parameters. However, we should notice that the respiration
rate for the considered population is biased because at some moment(s) during their stays,
patients were coupled to mechanical ventilation, which makes the prediction of respiration
rate rather ambiguous. Moreover, it is worth mentioning that for all predictive models, the
MAPE values of RR are with the highest values, as the range of RR is small compared to
other vital signs (15 ± 6 BPM). Hence, an error with 1 BPM represents approximately 5% of
the original value.

For the third and fourth models, we observed that the performance of both models
is approximately similar without statistical significance by comparing the average MAPE
values in Figure 4 and the average values of the box plots in Figure 5. This result indicates
that the models based on the three vital signs are not notably influenced by the same-
person data.

By comparing the performance of the third and fifth models, we observe a significant
enhancement in the prediction performance of the fifth model compared to the third model,
as shown in Figures 4 and 6, which indicates that by increasing the observation rate, the
prediction performance will enhance.

A general note for SpO2 prediction is that the variation range of SpO2 is between
85 to 100% for this population. Therefore, an absolute percentage error of 5% represents
almost one-third of the variation range, which can be considered as a limitation of the
prediction performance.

Furthermore, the normalised histograms of the prediction errors as shown in
Figures 9 and 10 show the outperformance of the fifth model compared to the third model.
More specifically, for HR, the error frequency within the lowest error range (−5 to 5 BPM)
is approximately 20% higher for the fifth model than for the third model, which indicates
a lower error frequency for the higher error values. Similarly, for both SpO2 and RR, the
error frequency within the lowest error range (−2 to 2%) and (−2 to 2 BPM) respectively, is
higher for the fifth model than the third model with approximately 10%. Furthermore, by
applying the F-test to test the significance between the different distribution variances, it is
observed that the significance (5% significance level) is observed between each distribution
in Figure 9 and its equivalent in Figure 10. This significance approves the improvement in
the error distributions that can be obtained by increasing the observation rate. Moreover,
by comparing the absolute EWS error between the two models, it is noticeable that the
prediction error for the third model is lower than that of the second model for the three
parameters for the three prediction horizons, as shown in Figures 11 and 12.

5. Conclusions

Conclusively, in this study, we introduced for the first time machine learning predic-
tive models to predict the future values of COVID-19 patients’ vital signs at ICU. These
predictive models have shown promising performances with a few parameters (i.e., three
vital signs) in predicting their values for the upcoming three hours. This performance is
evaluated in terms of MAPE and it is on average 12%, 5% and 21.4% for HR, SpO2, and
R,R respectively. Moreover, the performances of the predictive models based on three vital
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signs show robustness in training the model, whether considering the same-person data or
not. Ultimately, increasing the observation rate could enhance the prediction performance
to be on average 8%, 4.8%, and 17.8% for heart rate, oxygen saturation, and respiration
rate, respectively. Ultimately, the obtained results show promising performance for the
particular profile of COVID-19 ICU patients.

For future work, having a high data rate (e.g., 1 Hz) may enhance the performance.
Moreover, we would suggest to test our approach on COVID-19 patients outside ICU for
real-time monitoring. Such real-time monitoring and prediction can lighten the work-
load on the medical staff in critical times during the pandemic. Furthermore, for larger
datasets, dividing the group of patients into sub-groups based on their comorbidities may
enhance the prediction performance. Ultimately, one of the main hurdles that may make
it challenging to provide real-time analytics is the limited data storage resources at most
hospitals. Hence, upgrading data storage facilities at hospitals would be a game-changer
for intelligent medical systems.
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