
Enhanced neural network-based polytopic model for
large-signal black-box modeling of power electronic

converters
Antonin Colot

Montefiore Institute
University of Liège

Liège, Belgium
antonin.colot@uliege.be

Antonio Giannitrapani
Dpt. of Information Engineering

and Mathematics
University of Siena

Siena, Italy

Simone Paoletti
Dpt. of Information Engineering

and Mathematics
University of Siena

Siena, Italy

Bertrand Cornélusse
Montefiore Institute
University of Liège

Liège, Belgium

Abstract—We propose a large-signal black-box model of power
electronic converters inspired by polytopic models. Small-signal
models are identified around different operating points to mimic
the converter’s local dynamics. The linear models’ responses are
then weighted using a trained neural network to create a large-
signal model. The traditional trial and error weighting function
tuning of polytopic models can result in a suboptimal combination
of linear models. In this work, we use neural networks to
approach an optimal combination. The analysis of the trained
neural network can enhance the model’s accuracy by suggesting
new small-signal models. It also permits removing linear models
that do not significantly improve the global model’s accuracy
while reducing complexity. The methodology is applied to a
voltage-regulated DC-DC boost converter and provides accurate
models of converter dynamics.

Index Terms—polytopic model, power electronic converters,
system identification, artificial neural networks

I. INTRODUCTION

Nowadays, distributed energy resources (DERs) are
widespread as more renewable energy sources (RESs) are
integrated to meet climate target plans, and energy storage
systems (ESSs) take an increasing role in dealing with RES
intermittency. Modern electrical power systems extensively use
power electronic converters (PECs) to interface RES/ESSs
with an electrical DC or AC grid (converter-interfaced gen-
eration/energy storage systems). PECs optimize the energy
yield by maximum power point tracking. Many PEC topolo-
gies exist, and their control algorithms differ largely from
manufacturer to manufacturer. As a result, PECs have very
different behaviors, and unstable electric phenomena may
occur when interconnected. There is a need in the industry
to model PECs and simulate their interconnection before im-
plementation, especially when designing system-level control.
PEC modelization is difficult, as manufacturers tend to restrict
the information they disclose. Black-box models are thus
investigated, as they are identified based only on measure-
ments and may accurately simulate PEC dynamics. Black-box
models can be significantly simpler than detailed models and,
therefore, less computationally expensive, which makes them
good candidates for real-time simulation. Because PECs are

non-linear and time-varying systems, the identification process
is complicated. Usually, one uses averaging techniques and
linearization around a specific operating point to extract a lin-
ear and time-invariant system. Unfortunately, the linearization
around an operating point is too restrictive when considering
the interconnection of PECs in an electrical system. For
instance, in microgrids, PEC flexibilities provide ancillary
services such as voltage support. Furthermore, as PECs are
interfaced with intermittent renewable energy sources, a linear
model may no longer be valid since the operating point often
changes [1].

Several techniques have been proposed for developing large-
signal black-box models of PECs. The most used technique
is the identification of a polytopic model that weights the
responses of linear models defined around different operating
points [2]. Polytopic models can then be used for local stability
analysis [2] or for system-level analysis [3], [4]. However,
they have two main drawbacks [3]; the identification of the
weighting functions of the linear models is not automated, and
the ideal partitioning of the PEC operating space is a priori
unknown. In the literature, a double sigmoid is usually used
as a weighting function to ensure a smooth transition between
models while keeping a simple mathematical expression [5].
To tackle the second issue, [6] proposes to analyze how
the different identified frequency response functions vary to
partition the PEC operating space in smaller regions (more
linear models in non-linear regions). Nevertheless, there does
not exist automated way to construct those polytopic models.
Trial-and-error methods are necessary to identify the param-
eters of the weighting functions and partition the operating
space optimally. Other techniques use deep neural networks
[7], [8] and do not require the identification of linear models
or some weighting functions. Using recurrent neural networks,
those methods can accurately represent PEC dynamics over a
large operating space. Nevertheless, they need a large amount
of data, and the model performance depends on the measure-
ments. For instance, the dynamics of the measurement/external
electrical devices, such as voltage sources, and current sinks,
can interfere with the dynamics of the PEC. This will be



+

+

-
PWM PI + -

-

Control

Fig. 1. Voltage regulated DC-DC boost converter using a proportional-integral
(PI) controller. The load is a current sink.

reflected in the measurements and eventually in the resulting
model.

We propose a new methodology to develop large-signal
black-box models of PECs. The main contributions are:

• A neural network (NN)-based polytopic model in which
the NN optimally combines the responses of linear mod-
els is introduced.

• The trained NN are used to improve the partitioning of
the PEC operating space. The analysis of the trained
NN gives useful information about which model can be
dropped or where to add new linear models.

The paper is organized as follows. Section II presents
modeling techniques for PECs based on linear models (G-
parameters models) and polytopic models. Section III intro-
duces the proposed methodology and compares its perfor-
mance on a toy example with methods based on polytopic
models. Section IV reports results on a voltage-regulated DC-
DC boost converter. Section V concludes the paper.

II. REVIEW OF PEC MODELING TECHNIQUES

A. G-parameters model

The G-parameters model is a two-port representation of a
converter. This method is suitable for analyzing PEC inter-
actions in large systems, as one can easily combine different
subsystems to model different architectures [1]. Each block in
the two-port representation corresponds to a transfer function,
mapping one input to an output. If a detailed converter
model is available, the transfer functions are built based
on an averaged model (replicating the average behavior of
the system dynamics). Then, a linearized model around an
operating point is constructed. This model is only valid for
slight variations around the considered operating point. The
form of the G-parameters model for a voltage-regulated DC-
DC boost converter (whose schematic is shown in Fig. 1) is
given by:(

ṽout
ĩin

)
=

(
G(s) Z(s) Gv−vref (s)
Y (s) H(s) Gi−vref (s)

) ṽin
ĩout
ṽrefout

 (1)

The control loop that sets the duty cycle, as well as the
modulator that provides the PWM signal, are included in the
two-port model (Gv−vref (s), Gi−vref (s)). The inputs of the
G-parameters model are small deviations from a specified
operating point, i.e. ṽin = vin − Vin where Vin is the value
of the input voltage for the specified operating point. vin
corresponds to the input DC voltage, vout is the output DC
voltage and vrefout the reference setpoint for the output DC
voltage. iin is the input current also called the inductor current,
and iout corresponds to the load current. In steady-state,
vout = vrefout if there is no saturation and iin = vout iout

η vin
, where

η is the converter efficiency, which depends on the operating
point. Without a detailed model, the transfer functions can
be estimated from measurements. Each transfer function is
defined independently, applying a small disturbance on one
input while keeping the others constant during the measure-
ment process. The dynamics of other voltage/current sources
or loads should not interfere. In practice, it is difficult to meet
this constraint. Thus, techniques to remove those dynamics
have been investigated [4], [9].

B. Polytopic models

Polytopic models combine several linear models’ responses
using weighting functions to improve G-parameters models in
the case of a non-linear system. Suppose that one wants to
approximate a non-linear model F(x). Let Gi(x) be a linear
model that approximates F(x) for values of x around xi. Let
ωi(x) be the weighting function associated to the linear model
Gi(x). For each value of x, ωi(x) takes a value in [0, 1]. It
indicates the confidence that we give to the model Gi(x) as
an estimate of the non-linear model F(x) at the point x. For
instance, it makes sense that ωi(x)|x=xi = 1 as Gi(x) has been
identified at xi. The polytopic model can be written as

F̂(x) =
N∑
i=1

ωi(x)Gi(x), (2)

where N is the number of linear models considered and F̂(x)
corresponds to an estimate of the non-linear model F(x). For
polytopic models, we have the following constraint:

∀x ∈ O ⊂ Rnx ,

N∑
i=1

ωi(x) = 1, (3)

where O is the operating space, and ωi(x) is the weight
multiplying the response of linear model i for a given input
x. This constraint expresses that the sum of linear models’
responses is not attenuated nor amplified. The constraint
removes degrees of freedom, as the slopes of two adjacent
weighting functions (as well as their centers) must be equal
[5]. Polytopic models ensure that the best-fitted linear model
is responsible for most of the model response as we span the
system operating space. In the case of non-linear systems, it
outperforms linear models but has two major drawbacks: there
is no automated way to identify the weighting functions and
the ideal partitioning of the PEC operating space is a priori
unknown.



III. PROPOSED ENHANCED POLYTOPIC MODEL

A. Neural network-based polytopic model: PM-net

We propose a NN method to resolve the main drawbacks
of polytopic models. The method includes:

• Weighting functions modeled by a neural network with
parameters tuned using a gradient descent algorithm.

• A methodology to improve the partitioning of the PEC
operating space based on the neural network analysis.

The NN used to provide weights for each linear model is
referred to as NN WF in the following and is shown in Fig. 2
along PM-net. It is composed of one multi-layer perceptron
(MLP) for each input vj that is called a premise variable.
The premise variables may differ from the actual inputs of the
linear models x if one wants to normalize the inputs fed to
the neural network. The end layer of each MLP is a Softmax
function such that the weights for each model i = 1, ..., N for
one specific input vj sum to one:

N∑
i=1

βi(vj) = 1, (4)

with N the number of linear models. The output of NN WF
corresponding to each input vj for model i are then combined
as:

γi =

nx∏
j=1

βi(vj). (5)

Then the weight associated with each model i is computed as:

ωi =
γi∑N
i=1 γi

. (6)

This ensures that constraint (3) is satisfied. We propose the
methodology shown in Algorithm 1 for partitioning the PEC
operating space. It takes as input the desired operating space
on which the resulting black-box model should be valid. We
start with an orthotope-based partition and identify the linear
models on the resulting operating points (the centers of the
orthotopes) using specifically designed measurements. Then
we train the neural network over a large dataset that includes
the system dynamics over its entire operating space. Finally,
we analyze the weighting functions associated with each linear
model. The latter is divided into two steps: a pruning and a
segregation procedure.

The pruning procedure removes linear models to reduce
the overall model complexity. If the weight associated with
a linear model is always below a specified threshold α, the
linear model can be removed since it does not significantly
impact the overall model response. This may happen if two
linear models have similar parameters as the system behaves
linearly along one input, or if one linear model was badly
identified.

If no model can be removed, we enter into the segregation
procedure. First, one needs to identify the linear model Gworst,
which performs the worst, so that we can identify an operating
region where the overall model response can be improved. For
each linear model i, we compute the value of a weighted loss

NN WF 

Linear models 

... 

PM-net

Fig. 2. NN WF topology and how it is interconnected with linear models
M(x). For each time t, NN WF takes as input the value of v at time t and
returns a weight value ωi(v[t]) comprised in [0, 1] for each linear model in
M(x). For each time t, the output of each linear model is computed and then
multiplied by the corresponding weight.

function. Let us consider a mean squared error loss function.
The weighted loss Li associated with linear model Gi can be
written as:

Li =
1

l

l∑
k=1

(ωi(x[k])(F(x[k])− Gi(x[k])))
2
, (7)

with l the number of measurements. The worst linear model
Gworst has the largest weighted loss value, that is Gworst =
Gi∗ where

i∗ = arg max
i=1,...,N

(Li). (8)

In operating regions where the linear model i is not expected
to perform well, the weight ωi is close to 0, and the loss
associated does not significantly increase. The weighted loss
function is also used in [10], where authors described the
Local Linear Model Trees methodology (LOLIMOT). The
working principle of LOLIMOT is to analyze every feasible
re-partitioning in the operating region associated with the
worst model. Then, after identifying the new linear models,
they select the best partitioning and continue the procedure.
In an n-dimensional operating space, this would imply n re-
partitioning and 2 × n linear models to be identified. For
PECs modeling, the process of identifying new linear models
is time-consuming. Achieving a successful identification of
a linear model implies the design of new experiments and
the measurements of the converter response, which requires



human-in-the-loop. This part should be minimized to speed up
the modeling. Thus, in this work, we analyze the NN WF to
find one cutting direction that can lead to good partitioning.
At every step of the procedure, one must identify only two
linear models based on new measurements, which significantly
reduces the number of new experiments that have to be carried
out on the converter. The cutting direction vj∗ is found by
looking at the gradients of the weighting functions βi∗(vj)
associated with the worst linear model as:

j∗ = argmax
j

{
max

k

∣∣∣∣∂βi∗

∂vj

∣∣∣∣
vj=vj [k]

}
. (9)

The gradient of the weighting functions βi∗(vj) for every
input vj boils down to a vector of length nx (the number of
inputs). Let us consider a multi-input system with a linear
behavior with respect to one input u. Two linear models
G1, G2 identified around two different values of input u have
the same parameters. Therefore, the weight associated with
G1 (β1(u)) or with G2 (β2(u)) along various values of u does
not vary, as no improvement can be gained by promoting one
linear model over the other when u changes. One of the two
linear models may be dropped during the pruning procedure.
On the contrary, if a system strongly behaves non-linearly
along one input, one linear model quickly performs better
than the others and the weight associated with that model
varies steeply. We thus decide that the best cutting direction
corresponds to the input along which the weight varies the
steepest.

Let us consider the linear model Gworst identified around
the operating point xworst. We can define an operating region
Oworst ⊂ O in which the linear model Gworst is supposed
to perform better than the other linear models. Once we
found the cutting direction vj∗ , we define three new orthotopic
regions, O−

worst,O0
worst and O+

worst. We can compute two new
operating points, x−

worst, x+worst from which we can build two
perturbation signals to be applied on the system to extract its
response. Based on those measurements, we can identify two
linear models, G−

worst and G+
worst, that will be associated with

operating regions O−
worst and O+

worst. The operating regions
for one model i can change from one step to another, as it
depends on the number of linear models identified on operating
points close to the operating points used to identify model i.

Finally, we rerun the algorithm until reaching a target
accuracy ϵ.

B. Performance comparison on a toy example

We use the non-linear system (10) as an example to com-
pare performance of classic polytopic models and PM-net at
estimating the behavior of a non-linear system.

y[k] =0.95y[k − 1]− 0.5p[k − 1]

+ 0.1u[k] + 0.5 arctan(u[k − 2]2) (10)

Assuming we want our model to be valid on p ∈ [−2, 2], u ∈
[−5, 5], we identified 4 linear models Gi(p, u) at points xi ∈
{[−1,−2.5], [1,−2.5], [−1, 2.5], [1, 2.5]}. The linear models

Algorithm 1: Operating space partitioning for a n-
dimensional non-linear system. In red, requires human-
in-the-loop.

input: O
// Split O into 2n orthotropic regions
Oi = split_OS(O);
// Identify linear models
for i← 1 to N do

xi = select_point (Oi);
Gi = LM_id (xi);

end
// Initialize PM-NET
while Loss (PM-NET)> ϵ do

Train (PM-NET);
// Pruning procedure
for i← 1 to N do

ωi = NN_WF (PM-NET,i);
if max(ωi)< α then

drop_model (Gi);
Train (PM-NET);

end
end
// Segregation procedure
Gworst ← (7),(8);
vj∗ ← (9);
x−
worst, x+

worst = select_point (O−
worst,O+

worst);
G−

worst,G+
worst = LM_id (x−

worst, x+
worst);

end

are identified based on a small-signal analysis i.e. we perturb
the system around one operating point and extract its response.
The system is perturbed one input at a time such that we build
a G-parameters model as a local estimate of the system. The
studied system is linear with respect to p, but non-linear with
respect to u. One can derive a linear surrogate, valid around
operating point xi = [ui, pi]

T such as:

y[k] =
1

1− 0.95z−1

(
0.1 + 0.5f(ui)z

−2

−0.5z−1

)(
u[k] p[k]

)
,

(11)
with

f(ui) =
2ui

1 + (ui)4
. (12)

We study the performance of two weighting functions, a
triangular function, and a double sigmoid. The double sigmoid
is a common choice for black-box models of PECs, while tri-
angular weighting functions have been used when considering
fuzzy models such as the one defined by Takagi-Sugeno [11].
The double sigmoid function is

ωi(x) =
(

1

1 + exp (−sp1 (p− (pi − 1))))

− 1

1 + exp (−sp2 (p− (pi + 1))))

)
(

1

1 + exp (−su1 (u− (ui − 2.5)))

− 1

1 + exp (−su2 (u− (ui + 2.5)))

)
.

(13)



It has two degrees of freedom, s1 and s2, for each input. Both
have to be positive and large enough such that ωi(x) can reach
the unitary value at x = xi. Finally, we also trained NN WF to
combine the linear models. The resulting G-parameters models
are included in a dynoNet topology [12] along MLPs for
the weighting function. We used a dynoNet topology because
it implements analytic formulas for differentiating transfer
functions defined in the z-domain. Fig. 3 illustrates Algorithm
1. In the first iteration, the operating space O is split into four
operating regions. Two of the four models can be dropped as
the system behaves linearly along p. In the third iteration, we
train the NN WF and compute the weighted loss Li for the
two remaining linear models. The operating region associated
with the worst performing model (see (8)) is re-partitioned. We
analyze the gradient of the weighting function to identify the
cutting direction, see (9), and observe that the gradient along u
is the largest. Two new linear models are added to enhance the
model’s performance, and new operating regions are defined.
The algorithm stops after six iterations, the required accuracy
being reached.

-5 +50

-2

0

2
Linear models

operating space
1 2 3

4 5 6

1 2

pruning

2 3

segregation

3 4

pruning

4 5

segregation

5 6

pruning

Fig. 3. Results after 6 iterations of Algorithm 1.

Fig. 4 compares the performance of the polytopic models
with different weighting functions (triangular: PM − ∆,
double sigmoid:PM − S and PM-net). The PM-net model
performs much better than the other techniques for the same
number of linear models, even though no information about
the identification process of the linear models or the structure
of the non-linear system has been given to NN WF.

IV. APPLICATION TO A DC-DC BOOST CONVERTER

We analyze a voltage-regulated DC-DC boost converter (see
Fig. 1), with a simple topology, but dynamics that strongly
depend on the operating point [5]. We are using a detailed
model of the converter which provides us a response close to
reality.

A. Operating space and first partitioning

The DC-DC boost converter has three inputs and two
outputs. The inputs and outputs of the G-parameters models
are x = [vin, pout, k] and y = [vout, iin], respectively. We
considered the output to input voltage ratio k =

vref
out

vin
and

0

50

y

0

50

y

0

50

y

0 100 200 300 400 500
Time t [s]

0

50

y

Ground Truth PM-S PM- LM PM-net

Fig. 4. Performance of the polytopic models and a linear model. The mean
squared error (MSE) is used to compare their performance at estimating the
non-linear system (10). The system is simulated for 500 seconds, with a
sampling frequency of 20Hz, and the MSE is computed based on the error
between the actual output of the system and the estimate at those points. MSE
for LM : 1.5264, PM −∆: 0.9426, PM − S: 0.9210, PM-net: 0.1060

TABLE I
DC-DC BOOST CONVERTER PARAMETERS.

Inductor L 1 mH
Inductor losses RL 0.1 Ω
Capacitor C 810 µF
Equivalent series resistor RC 0.01 Ω
Switching frequency fs 50 kHz
Proportional term P 0.006
Integral term I 0.4364

the load power pout = vrefout iout to highlight the dynamic
dependency on the operating point. Indeed, k depends non-
linearly on the converter duty cycle, and the converter effi-
ciency (which impacts iin) is a non-linear function of pout and
vin. The inputs x of the G-parameters models are normalized
to be bounded in [−1, 1], and the resulting v is fed to NN
WF. The operating space considered is vin ∈ [30, 40]V, pout ∈
[10, 210]W,k ∈ [1, 2]. Following Algorithm 1, we define
linear models in 23 orthotopic regions.

B. Identification of linear models

The linear models are G-parameters models, and each
transfer function composing the G-parameters model (1) is
identified by setting all the values of x to zero except one
where we apply a small-disturbance. The small disturbance
corresponds to a pseudo-random binary sequence (PRBS), and
the transfer functions are further validated using a different
PRBS. Each transfer function corresponds to Output-Error
(OE) models. The parameters identification of the OE models
depends on the user choice. In this work, we use the function
OE in MATLAB. The order of each transfer function is then
reduced using the function BALRED based on the Hankel
singular values, i.e. states with low energy are dropped.

C. Dataset and metric used

The dataset contains the converter’s dynamics over its entire
operating space. We have measured the converter’s response



over 200 seconds of operation for the training dataset. We
also have validation, and testing datasets, which contains the
converter’s response over 60 seconds of operation. The loss
function used to train the NN WF is

Loss =
1

l

l∑
i=0

((
vout,i − v̂out,i

Vbase

)2

+

(
iin,i − îin,i

Ibase

)2
)
, (14)

where Vbase and Ibase correspond to base values defined as the
maximum value of vout,i and iin,i calculated over the number
of measurements l of the dataset, respectively, where i = 0, .., l
is the index of the measurement.

D. Topology of the NN WF and training procedure
The NN WF used is composed of one hidden layer. For

the DC-DC boost converter, we have nx = 3, ny = 2. The
methodology proposes eight linear models for initialization,
thus N = 8. The number of hidden neurons is nhidden = 64
for each MLP, but this is a tunable parameter as well as the
number of hidden layers. As a design choice, we considered
tanh activation functions for the first two layers, such that
the weights vary smoothly. To prevent overfitting, the NN
WF is trained and then validated every 100 epochs using the
validation dataset.

E. Performance comparison with other modeling techniques
Fig. 5 compares performances of a single linear model, a

polytopic model with a double sigmoid weighting function
(13) and PM-net over the testing dataset. The loss function
(14) is computed for the different modeling techniques with
the true response of the system over the testing dataset. The
linear model scores 2.071, the PM-S scores 0.666 while the
PM-net outperforms the two other modeling techniques and
get a loss value of 0.155. Furthermore, PM-net only needs
five linear models while PM-S uses eight.

40

60

80

V o
ut

 [V
]

30 32 34 36 38 40
Time t [s]

0

4

8

I in
 [A

]

Ground Truth PM-S LM PM-net
Fig. 5. Comparison between the different modeling techniques over 10
seconds out of 60 seconds of the testing dataset.

V. CONCLUSION

We have presented a new methodology for large-signal
black-box modeling of power electronic converters. Based
on polytopic models, we use neural networks to optimally
combine linear models’ responses to estimate the converter’s
dynamics over a large operating space. Although the method-
ology is demonstrated with a DC-DC converter, it can also
be applied to DC-AC, AC-DC and AC-AC converters. The
following conclusions can be drawn about the proposed
methodology:

• It provides an effective way to re-partition the operating
space to decrease model complexity at the price of minor
performance degradation,

• It is able to suggest new operating points on which linear
models can be identified to improve model’s accuracy,

• The methodology is validated over a large dataset and the
enhanced neural-network based polytopic model shows
better results as compared to traditional methods.

ACKNOWLEDGEMENTS

Antonin Colot gratefully acknowledges the financial support
of a research fellowship of the F.R.S.-FNRS.

REFERENCES

[1] A. Francés, R. Asensi, Ó. Garcı́a, R. Prieto, and J. Uceda, “Modeling
electronic power converters in smart DC microgrids—an overview,”
IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6274–6287, 2017.

[2] A. Francés, R. Asensi, Ó. Garcı́a, and J. Uceda, “A blackbox large
signal Lyapunov-based stability analysis method for power converter-
based systems,” in 2016 IEEE 17th Workshop on Control and Modeling
for Power Electronics (COMPEL). IEEE, 2016, pp. 1–6.

[3] A. Francés, R. Asensi, Ó. Garcı́a, R. Prieto, and J. Uceda, “The
performance of polytopic models in smart DC microgrids,” in 2016
IEEE Energy Conversion Congress and Exposition (ECCE). IEEE,
2016, pp. 1–8.

[4] V. Valdivia, A. Lazaro, A. Barrado, P. Zumel, C. Fernandez, and
M. Sanz, “Black-box modeling of three-phase voltage source inverters
for system-level analysis,” IEEE Transactions on Industrial Electronics,
vol. 59, no. 9, pp. 3648–3662, 2011.

[5] A. Francés, R. Asensi, and J. Uceda, “Blackbox polytopic model with
dynamic weighting functions for DC-DC converters,” IEEE Access,
vol. 7, pp. 160 263–160 273, 2019.

[6] L. Arnedo, D. Boroyevich, R. Burgos, and F. Wang, “Polytopic black-
box modeling of DC-DC converters,” in 2008 IEEE Power Electronics
Specialists Conference. IEEE, 2008, pp. 1015–1021.

[7] G. Rojas-Dueñas, J.-R. Riba, K. Kahalerras, M. Moreno-Eguilaz,
A. Kadechkar, and A. Gomez-Pau, “Black-box modelling of a DC-DC
buck converter based on a recurrent neural network,” in 2020 IEEE
International Conference on Industrial Technology (ICIT). IEEE, 2020,
pp. 456–461.

[8] P. Qashqai, K. Al-Haddad, and R. Zgheib, “Modeling power electronic
converters using a method based on long-short term memory (LSTM)
networks,” in IECON 2020 The 46th Annual Conference of the IEEE
Industrial Electronics Society. IEEE, 2020, pp. 4697–4702.

[9] I. Cvetkovic, M. Jaksic, D. Boroyevich, P. Mattavelli, F. C. Lee, Z. Shen,
S. Ahmed, and D. Dong, “Un-terminated, low-frequency terminal-
behavioral DQ model of three-phase converters,” in 2011 IEEE Energy
Conversion Congress and Exposition. IEEE, 2011, pp. 791–798.

[10] O. Nelles, “Orthonormal basis functions for nonlinear system identifi-
cation with local linear model trees (LOLIMOT),” IFAC Proceedings
Volumes, vol. 30, no. 11, pp. 639–644, 1997.

[11] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,
Man, and Cybernetics, no. 1, pp. 116–132, 1985.

[12] M. Forgione and D. Piga, “dynoNet: A neural network architecture for
learning dynamical systems,” International Journal of Adaptive Control
and Signal Processing, vol. 35, no. 4, pp. 612–626, 2021.


