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Quantifying arousal and awareness in altered
states of consciousness using interpretable deep
learning
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Consciousness can be defined by two components: arousal (wakefulness) and awareness

(subjective experience). However, neurophysiological consciousness metrics able to disen-

tangle between these components have not been reported. Here, we propose an explainable

consciousness indicator (ECI) using deep learning to disentangle the components of con-

sciousness. We employ electroencephalographic (EEG) responses to transcranial magnetic

stimulation under various conditions, including sleep (n= 6), general anesthesia (n= 16), and

severe brain injury (n= 34). We also test our framework using resting-state EEG under

general anesthesia (n= 15) and severe brain injury (n= 34). ECI simultaneously quantifies

arousal and awareness under physiological, pharmacological, and pathological conditions.

Particularly, ketamine-induced anesthesia and rapid eye movement sleep with low arousal

and high awareness are clearly distinguished from other states. In addition, parietal regions

appear most relevant for quantifying arousal and awareness. This indicator provides insights

into the neural correlates of altered states of consciousness.
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Responsiveness is often thought to reflect consciousness, and
for a long time, unresponsiveness was considered as a
surrogate of unconsciousness. However, consciousness and

responsiveness are two different concepts1. Consciousness is
considered to be absent during sleep or anesthesia, but in certain
instances, subjective experience can still occur (e.g., dreaming)2,3.
Similarly, consciousness has been described as a result of both
arousal and awareness components4. Arousal refers to the overall
state of alertness (or wakefulness). In contrast, awareness refers to
the subjective experience, such as perceiving a blue triangle versus
a red circle5. Typically, at the clinical level, arousal is indicated by
the opening of the eyes, and awareness is inferred by the ability to
follow commands.

Various levels of consciousness exist in physiological, phar-
macological, and pathological modifications of consciousness
(Table 1). In non-rapid eye movement (NREM) sleep with no
subsequent reports of subjective experiences, both arousal and
awareness are low. However, in rapid eye movement (REM) sleep
with dreams, arousal is low but awareness can reach high levels5,6.
Under general anesthesia, propofol and xenon predominantly
induce states similar to NREM sleep without subjective experi-
ences, whereas ketamine induces dream-like experiences similar
to REM sleep with subjective reports upon awakening3,7. Addi-
tionally, recent findings suggest that a minority of patients under
anesthesia may also be conscious of their environment during a
surgical procedure, which is referred to as connected conscious-
ness. These patients exhibit the ability to follow commands using
the isolated forearm technique8, without recollection upon awa-
kening. Unresponsive wakefulness syndrome (UWS) describes
patients who recover with their eyes open, but only demonstrate
reflex behaviors, while patients in a minimally conscious state
(MCS) present reproducible non-reflex movements9. In both
UWS and MCS patients, arousal is high; however, unlike UWS,
MCS patients also show signs of awareness that can be considered
as a sign of volitional behavior10,11. However, certain UWS
patients (assessed several times with the Coma Recovery Scale-
Revised (CRS-R)12 may present brain activity similar to MCS
patients (e.g., high brain metabolism measured by positron
emission tomography). This peculiar state has been termed non-
behavioral MCS or MCS*13,14,15.

An effective measure of consciousness, labeled perturbational
complexity index (PCI), was developed from electroencephalo-
graphic (EEG) responses to direct and noninvasive cortical per-
turbation with transcranial magnetic stimulation (TMS)16. PCI
quantifies the complexity of deterministic patterns of significant
cortical activation evoked by TMS. This index was validated in a
large benchmark population to derive an empirical cutoff
(PCI*= 0.31) that reliably discriminates between unconscious-
ness (PCImax ≤ PCI*: NREM sleep; midazolam-, propofol- and
xenon-induced anesthesia) and consciousness (PCImax > PCI*:

REM sleep; wakefulness; ketamine-induced anesthesia; and con-
scious brain-injured patients)17. However, PCI cannot dis-
criminate REM sleep or ketamine-induced anesthesia from
healthy wakefulness. In addition, multiple trials are required to
compute PCI16,17. A few studies have attempted to develop an
objective measure of consciousness from resting-state EEG brain
activity3,4,18,19. Interestingly, the spectral exponent, which quan-
tifies the slope of power spectral density of resting-state EEG
activity, is another measure of consciousness that is highly cor-
related with PCI and allows distinguishing between ketamine and
propofol or xenon-induced anesthesia3. In addition, when low-
(1–20 Hz) and high-band (20–40 Hz) spectral exponents are
jointly considered, ketamine-induced anesthesia can be dis-
tinguished from wakefulness, and the xenon and propofol-
induced anesthesia conditions are partially superimposed in the
spectral exponent; consequently, these are difficult to
distinguish3. Recently, a decrease in high-frequency oscillations
and an increase in low-frequency power in the primary sensory,
motor, and visual cortices were observed during REM sleep when
compared to healthy wakefulness20. The quantification of the
spectral slope between 30 and 50 Hz was also proposed for dis-
criminating REM sleep from healthy wakefulness4. However, this
measure did not differentiate REM from NREM sleep; thus, it
distinguishes between different arousal levels but not awareness
levels. Therefore, an alternative measure to simultaneously dis-
entangle the two components of consciousness, requiring fewer
trials, would be a valuable and necessary tool.

The classical neurophysiological approach for calculating PCI,
power spectral density, and spectral exponent relies on many
epochs to improve the reliability of statistical estimates of these
indices21. However, these methods are only suitable for investi-
gating the averaged brain states and they can only clarify general
neurophysiological aspects. Machine learning (ML) allows
decoding and identifying specific brain states and discriminating
them from unrelated brain signals, even in a single trial in real-
time22. This can potentially transform statistical results at the
group level into individual predictions9. A deep neural network,
which is a popular approach in ML, has been employed to classify
or predict brain states using EEG data23. Particularly, a con-
volutional neural network (CNN) is the most extensively used
technique in deep learning and has proven to be effective in the
classification of EEG data24. However, a CNN has the drawback
that it cannot provide information on why it made a particular
prediction25. Recently, layer-wise relevance propagation (LRP)
has successfully demonstrated why classifiers such as CNNs have
made a specific decision26. Specifically, the relevance score
resulting from the LRP indicates the contribution of each input
variable to the classification or prediction decision. Thus, a high
score in a particular area of an input variable implies that the
classifier has made the classification or prediction using this

Table 1 Schematic representation of different states of consciousness according to low or high arousal and awareness: the plus
sign indicates high arousal or awareness, whereas the minus sign indicates low arousal or awareness.

Condition State Arousal Awareness

Physiology Healthy wakefulness + +
REM sleep with dreams − +
NREM sleep without dreams − −

Pharmacology Anesthesia induced with ketamine − +
Anesthesia induced with propofol or xenon − −

Pathology MCS + +
MCS* + +
UWS + −

REM rapid eye movement, NREM non-rapid eye movement, MCS minimally conscious state, MCS* non-behavioral MCS, UWS unresponsive wakefulness syndrome.
Note that the anesthesia-induced with propofol and xenon mentioned here does not include the use of the isolated forearm technique.
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feature. For example, neurophysiological data suggest that the left
motor region is activated during right-hand motor imagery27.
The LRP indicates that the neural network classifies EEG data as
right-hand motor imagery because of the activity of the left motor
region28. Therefore, the relevance score was higher in the left
motor region than in other regions. Thus, it is possible to inter-
pret the neurophysiological phenomena underlying the decisions
of CNNs using LRP.

In this work, we develop a metric, called the explainable con-
sciousness indicator (ECI), to simultaneously quantify the two
components of consciousness—arousal and awareness—using
CNN. The processed time-series EEG data were used as an input
of the CNN. Unlike PCI, which relies on source modeling and
permutation-based statistical analysis, ECI used event-related
potentials at the sensor level for spatiotemporal dynamics and ML
approaches. For a generalized model, we used the leave-one-
participant-out (LOPO) approach for transfer learning, which is a
type of ML that transfers information to a new participant not
included in the training phase24,27. The proposed indicator is a
2D value consisting of indicators of arousal (ECIaro) and aware-
ness (ECIawa). First, we used TMS–EEG data collected from
healthy participants during NREM sleep with no subjective
experience, REM sleep with subjective experience, and healthy
wakefulness to consider each component of consciousness (i.e.,
low/high arousal and low/high awareness) with the aim to analyze
correlations between the proposed ECI and the three states,
namely NREM, REM, and wakefulness. Next, we measured ECI
using TMS–EEG data collected under general anesthesia with
ketamine, propofol, and xenon, again with the aim to measure
correlation with these three anesthetics. Before anesthesia,
TMS–EEG data were also recorded during healthy wakefulness.
Upon awakening, healthy participants reported conscious
experience during ketamine-induced anesthesia and no conscious
experience during propofol- and xenon-induced anesthesia.
Finally, TMS–EEG data were collected from patients with dis-
orders of consciousness (DoC), which includes patients diagnosed
as UWS and MCS patients. We hypothesized that our proposed
ECI can clearly distinguish between the two components of
consciousness under physiological, pharmacological, and patho-
logical conditions.

To verify the proposed indicator, we next compared ECIawa

with PCI, which is a reliable index for consciousness. Then, we
applied ECI to additional resting-state EEG data acquired in the
anesthetized participants and patients with DoC. We hypothesize
that if CNN can learn characteristics related to consciousness, it
could calculate ECI accurately even without TMS in the proposed
framework. In terms of clinical applicability, it is important to use
the classifier from the previous LOPO training of the old data to
classify the new data (without additional training). Therefore, we
computed ECI in patients with DoC using a hold-out approach29,
where training data and evaluation data are arbitrarily divided,
instead of cross-validation. Finally, we investigated why the
classifier generated these decisions using LRP to interpret ECI30.
We show that proposed ECI using interpretable deep learning
distinguishes arousal and awareness between normal conscious-
ness, sleep, anesthesia, and patients with DoC. Furthermore, we
show that the parietal region is most closely related to quantifying
arousal and awareness in altered states of consciousness.

Results
Overview of the calculation of ECI. We used TMS–EEG data in
three conditions: (i) sleep, (ii) general anesthesia, and (iii) severely
brain-injured patients (Fig. 1a). Figure 1b shows the framework
for calculating ECI to distinguish between low and high states in
each arousal and awareness. To explore the optimal input and

classifier, we compared the single-trial classification performance
in each component (see Supplementary Notes 1–2, Supplemen-
tary Figs. 1–3, and Supplementary Tables 1–3). For an input in
the classifier, we converted time-series EEG data to 3D data (2D
meshes according to the spatial information+ 1D vector
according to temporal information). The CNN model was used to
distinguish low from high state in each arousal and awareness.
Next, the interclass probability in the new target participant was
calculated using the trained model. Finally, ECI was measured by
averaging the probability of a high state in each arousal and
awareness over a single session.

To improve the classification performance, we trained the
models with domain transfer learning, which uses the knowledge
learned in one domain to improve generalization, based on
similarity in the sense of pooling the training data across domains
(Supplementary Fig. 4). When referring to domain transfer
learning using the EEG signals in this study, the domain refers to
the clinical condition in which the EEG signals were acquired.
Precisely, three domains were considered here: sleep, anesthesia,
and patients with DoC. In domain transfer learning, the target
domain indicates a state that contains a single session for
calculating ECI, whereas the source domain indicates those
sessions that are included in the training phase. Therefore, the
information (knowledge) trained in the source domain is applied
when testing the target domain, and this is described as the
transfer of learned information for domain transfer learning. In
the LOPO approach, the data from all the participants in the
source domain, except for the target participant, were used for
training (Supplementary Fig. 3b). Note that the data for training
and testing did not overlap. We used all three domains to classify
high and low states in both arousal and awareness (Table 2).
Consequently, the classification performance was higher when
training with a closer domain (see Supplementary Notes 3–4 and
Supplementary Table 4). Therefore, we trained these domains
together when calculating ECI in sleep and anesthesia domains,
but trained the DoC domain along with the anesthesia domain
when calculating ECI in patients with DoC.

Then, we applied ECI to resting-state EEG data in two
conditions: (i) general anesthesia and (ii) severely brain-injured
patients (Fig. 1a). Similarly, we classified low and high states in
resting-state EEG data for arousal and awareness using domain

Table 2 Averaged single-trial classification accuracy (%) in
physiological, pharmacological, and pathological conditions
for TMS–EEG: this represents the accuracy ± standard
deviation.

Target domain Source domain Arousal Awareness

Sleep Sleep 87.79 ± 2.50 91.95 ± 4.74
Sleep + Ane 87.23 ± 2.99 89.96 ± 5.48
Sleep + DoC 80.73 ± 5.05 89.60 ± 4.26
Sleep + Ane + DoC 84.01 ± 3.46 91.14 ± 4.29

Ane Ane 79.01 ± 10.61 80.20 ± 10.06
Ane + Sleep 82.58 ± 6.92 87.78 ± 6.46
Ane + DoC 69.99 ± 11.89 82.22 ± 10.66
Ane + Sleep + DoC 72.68 ± 17.22 85.61 ± 9.09

DoC DoC – 75.84 ± 14.71
DoC + Sleep 75.94 ± 18.14 79.44 ± 15.51
DoC + Ane 83.12 ± 12.79 75.30 ± 11.99
DoC + Sleep + Ane 66.29 ± 19.02 78.78 ± 12.98

Ane anesthesia domain, DoC patients with disorders of consciousness domain.
The target domain implies the condition with the target participant to be tested for calculating
explainable consciousness indicator (ECI) using convolutional neural network (CNN) with
spatiotemporal information, and the source domain implies the conditions included in training
for learning classifiers.
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transfer learning (Table 3). This result was similar to the
classification performance of TMS–EEG data, considering that
there was no resting-state EEG during sleep in the same
participants (see Supplementary Note 4). Based on the results
of domain transfer learning, we used only the anesthesia domain
for calculating ECI under anesthesia; however, the DoC and

anesthesia domains were used for calculating ECI in patients with
DoC.

ECI in TMS combined with electroencephalography. Figure 2a
shows ECI for each TMS session during sleep and wakefulness.
This is a 2D indicator, ranging from 0 (low) to 1 (high) for both
arousal and awareness. The cutoff was set to 0.5 for both arousal
and awareness, as it is the mean probability for the two-class
classification (low versus high). ECI in NREM sleep showed low
arousal and awareness, whereas REM sleep had low arousal with
high awareness. ECI in healthy wakefulness had both high arousal
and awareness. We performed a receiver operating characteristic
(ROC) curve analysis and determined that the area under the
curve (AUC), sensitivity, and specificity for low and high arousal
when using ECI were all equal to 1.0. The AUC, sensitivity, and
specificity for low awareness were 0.995, 1.0, and 0.980, respec-
tively, whereas, for high awareness, values of 0.995 for AUC,
0.980 for sensitivity, and 1.0 for specificity were obtained with
ECI (Fig. 2d).

We measured ECI using three anesthetic drugs (ketamine,
propofol, and xenon) and wakefulness before anesthesia (Fig. 2b).

Fig. 1 Overview of the study. a Data description. The same participants participated in transcranial magnetic stimulation-induced electroencephalography
(TMS–EEG) and resting-state electroencephalography (EEG) measurements. The sleep condition did not include resting-state EEG, and one participant
under ketamine-mediated anesthesia was missing in resting-state EEG. b Schematic framework for determining the explainable consciousness indicator
(ECI). In step 1, raw EEG signals were converted into a spatio-spectral or spatiotemporal 3D matrix. In step 2, the converted 3D feature was used on a
convolutional neural network in the two components of consciousness: arousal and awareness. In each arousal and awareness state, the EEG data were
trained as two classes (low versus high). For example, for awareness, rapid eye movement (REM) sleep with subjective experience (i.e., dreaming) and
healthy wakefulness belong to the same class in terms of high awareness; however, for arousal, non-rapid eye movement (NREM) with no subjective
experience and REM sleep with subjective experience belong to the same class in terms of low arousal. The output pi indicates the probability in the trial i
of arousal and awareness. For the training and test phase, we used the leave-one participant-out approach as transfer learning. Therefore, the EEG data in
the source pool were used for training and the data of target participants was predicted for arousal or awareness. The source pool contains data
corresponding to the source domain except for the target participant. In step 3, the interclass probability for each arousal and awareness was averaged for
calculating ECI in each session j. The averaged probability Cj is ECIaro and ECIawa on the x- and y-axes, respectively. Therefore, we represented the 2D
consciousness indicator for the two components of consciousness. In the final step, we checked which brain signals the model has learned and why it made
such a decision using layer-wise relevance propagation (LRP). Through this step, we could interpret the proposed indicator. ECIawa= ECI in awareness
component; ECIaro= ECI in arousal component.

Table 3 Averaged single-trial classification accuracy (%) in
pharmacological and pathological conditions for resting-
state EEG: this represents the accuracy ± standard
deviation.

Target domain Source domain Arousal Awareness

Ane Ane 89.91 ± 8.01 90.14 ± 6.96
Ane+DoC 73.33 ± 14.25 88.62 ± 8.83

DoC DoC – 73.03 ± 17.26
DoC+Ane 86.04 ± 12.35 73.68 ± 15.42

The target domain implies the condition with the target participant to be tested for calculating
ECI using CNN with spatiotemporal information, and the source domain implies the conditions
to be included in training for learning classifiers.
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ECI in ketamine-induced anesthesia demonstrated low arousal
and high awareness, whereas propofol- and xenon-induced
anesthesia showed low arousal and awareness. Also, all periods
of wakefulness showed high arousal and awareness. As a result of
the ROC analysis, classification using ECI achieved an AUC,
sensitivity, and specificity of 1.0 for all parameters for both
arousal and awareness (Fig. 2d).

In patients with DoC, ECI indicated high arousal and
awareness in MCS patients and high arousal and low awareness
in UWS patients (Fig. 2c). AUC, sensitivity, and specificity of ECI
were 1.0 for both high and low states of awareness (Fig. 2d). ROC
analysis for arousal was not conducted because both UWS and
MCS patients were considered to have high arousal. We
additionally applied ECI to four MCS* patients; these cases were
not included in the training phase. Similar to patients with DoC,
anesthesia and DoC domains were selected as source domains in

the training phase. For the MCS* patients, ECI successfully
predicted high arousal and awareness, as expected (Supplemen-
tary Fig. 5).

Relationship with PCI. We calculated PCI in TMS–EEG sessions
that had at least 80 trials with healthy participants under sleep,
anesthesia, and brain-injury conditions. PCI in all three condi-
tions was consistent with the optimal cutoff (0.3116,17) that
maximizes the accuracy of the distinction between consciousness
and unconsciousness in a benchmark population. For ECI, the
optimal cutoff of 0.5 perfectly distinguished low or high states of
arousal and awareness in the physiological, pharmacological, and
pathological conditions (see Supplementary Note 5).

We investigated the relationship between ECIawa and PCI
(Fig. 3). During sleep, a positive correlation between ECIawa and

Fig. 2 Characteristics of ECI in TMS–EEG. In ECI, the symbols show the average ECI value of each transcranial magnetic stimulation (TMS) session, and
the gray dashed lines indicate the optimal cutoff (0.5) dividing the space into high and low states of ECI. a In sleep and normal wakefulness, we depicted
P01–P06 by circles, diamonds, squares, plus signs, asterisks, and cross signs, respectively. Orange indicates NREM sleep with no subjective experience;
copper indicates REM sleep with subjective experience (i.e., dreaming); moreover, purple indicates normal wakefulness. b In anesthesia and wakefulness
before anesthesia, the orange, copper, and purple dots indicate the use of ketamine, propofol, and xenon, respectively. In addition, cross markers indicate
normal wakefulness before each anesthetic. c In patients with disorders of consciousness, the orange and purple dots indicate patients in the minimally
conscious state (MCS) and with unresponsive wakefulness syndrome (UWS), respectively. d In each condition, the classification performance for ECIaro

and ECIawa was measured. W normal wakefulness; W – K = healthy wakefulness before ketamine; W – P = healthy wakefulness before propofol; W – X =
healthy wakefulness before xenon.
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PCI was observed (r= 0.872, p < 0.001). Similarly, ECIawa during
anesthesia and in brain-injured patients showed a strong
correlation with PCI (anesthesia: r= 0.885, p < 0.001; brain
injury: r= 0.770, p < 0.001). ECIawa and PCI, therefore, matched
for all states.

ECI in resting-state electroencephalography. ECI results using
resting-state EEG data were similar to those when using
TMS–EEG results (Fig. 4). In anesthesia, ECI using resting-state
EEG statistically correlated with ECI using TMS–EEG (ECIaro:
r= 0.848, p < 0.001; ECIawa: r= 0.938, p < 0.001). Similarly, in
patients with DoC, there was a positive correlation (ECIaro:
r= 0.534, p= 002; ECIawa: r= 0.832, p < 0.001). Similarly, we
applied this method to four MCS* patients to verify ECI. As
expected, similar to TMS–EEG results, accurate predictions were
obtained in four MCS* patients (Supplementary Fig. 5).

The practicality of calculating ECI. We explored the possibility
of calculating ECI with a limited number of trials during sleep
and wakefulness. The classification performance was compared
through the calculation of ECI from a single trial up to the
standard number of trials (i.e., 80 trials similar to PCI16) (Fig. 5).
In the sleep and healthy wakefulness conditions, the performance
reached a specificity of 0.853, a sensitivity of 0.884, and an AUC
of 0.931 when using single trials (based on one TMS pulse), but
from 2 trials, it was above 0.9 for specificity, sensitivity, and AUC.
In the anesthesia and patients with DoC conditions, the detailed
performance from 1 to 80 trials is shown in Supplementary
Note 6.

Figure 6 shows the possibility of awareness being high for the
first participant in each of these conditions: sleep, anesthesia
(ketamine, propofol, and xenon), and patients with DoC (UWS
and MCS). For instance, as NREM sleep is considered to have low
awareness, in P01, it was correctly predicted when the probability
in a single trial was less than 0.5. Notably, NREM sleep showed
that 17 trials were incorrectly predicted with a probability higher
than 0.5. In addition, 1 out of 80 trials in both REM sleep and
healthy wakefulness showed a value less than 0.5 and were
incorrectly predicted. This indicates that ECI can be predicted as
somewhat low or high, even in a single trial. There was a clear
spatiotemporal difference between correct and incorrect trials
only in parietal regions (Supplementary Fig. 6). No significant
differences between both types of trials were observed over frontal

and temporal regions. However, in parietal regions, TMS-evoked
potentials at 350–400ms were significantly higher in incorrect
trials than in correct trials. In a single trial, these different
patterns resulted in misprediction. Nevertheless, the effect of the
incorrect trials (i.e., a failure to predict) was eliminated because
ECI was calculated by averaging the interclass probability in a
single trial. The probability in a single trial is shown in
Supplementary Figs. 7–9 for other participants in all conditions.

To demonstrate that the method can be easily applied to a new
set of patients (without additional training) to identify their state
of consciousness in a clinical setting, we computed ECI using the
hold-out approach. The dataset in the patients with DoC was split
between the training and evaluation sets with respective ratios of
0.75 and 0.25. In other words, two MCS patients and five UWS
patients were completely excluded from training, and their ECI
was calculated. Consequently, ECIs using conventional LOPO
and the hold-out approaches showed high positive correlation
(ECIaro: r= 0.702, p= 005; ECIawa: r= 0.886, p < 0.001) (Supple-
mentary Figure 10). In both TMS–EEG and resting-state EEG, the
ECI using the hold-out method indicated high arousal and
awareness in MCS patients, whereas high arousal and low
awareness in UWS patients. This was consistent with 0.5 typical
cutoffs. These results show that the proposed method generalizes
to new data without retraining the classifier.

Interpretation for calculating ECI. We further checked what the
classifier learned through CNN and how it was able to derive
those results using LRP. This algorithm describes the predictions
of CNN in a given dataset using relevance scores30. Figure 7
shows the relevance scores for arousal and awareness among the
frontal, temporal, and parietal regions at the scalp level for cal-
culating ECI using TMS–EEG. A high relevance score implies
that the trained model recognized the brain region that deter-
mines whether it is low or high arousal and awareness. Specifi-
cally, brain regions with higher relevance scores indicate that
brain signals over that region contributed more to the decision of
the classifier on whether arousal and awareness were low or high.
In the three conditions (sleep, anesthesia, and patients with DoC),
the relevance score over the parietal region was higher than those
in the frontal and temporal regions at the group level for both
arousal and awareness. The detailed statistical results are reported
in Supplementary Table 5. However, since most TMS sites tar-
geted the parietal cortex, it can be argued that the relevance of

Fig. 3 Correlation between ECIawa and PCI from TMS–EEG. During sleep and healthy wakefulness (left), under anesthesia, and wakefulness before
anesthesia (middle), and in severely brain-injured patients (right), ECIawa was compared to PCI. The gray horizontal and vertical dashed lines represent the
optimal cutoff of ECIawa and PCI to discriminate between low and high awareness, respectively. The solid lines represent linear fits to the data. W healthy
wakefulness, W – K healthy wakefulness before ketamine, W – P healthy wakefulness before propofol, W – X healthy wakefulness before xenon, MCS
patients in a minimally conscious state, UWS patients with unresponsive wakefulness syndrome, MCS* non-behavioral MCS.
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parietal regions to correctly classify datasets may be biased.
Therefore, we investigated the relevance scores with only non-
parietal stimulations in patients with DoC. As a result, the par-
ietal region had statistically higher relevance scores than the
frontal and temporal regions in both arousal and awareness
(Supplementary Fig. 11 and Table 6). Similarly, there was a higher
relevance score over the parietal region in both arousal and
awareness when calculating ECI from resting-state EEG (Sup-
plementary Fig. 12 and Table 7).

We additionally compared the classification performance of
ECIawa among patients with DoC using TMS–EEG data when we
excluded electrodes in different brain regions from the input
during classification. Consequently, AUC was 1.0 when using all
electrodes; however, AUC values were 0.867 and 0.680 when
removing frontal and parietal electrodes, respectively (Supple-
mentary Fig. 13).

Discussion
We show that ECI clearly distinguishes between low and high
states of arousal and awareness in TMS–EEG results under sleep,
anesthesia, and patients with DoC. Our results suggest that this
proposed indicator could similarly be used for resting-state EEG
data without TMS under anesthesia and patients with DoC,
yielding the same degree of accuracy. In addition, a high corre-
lation with PCI, which measures the integrated EEG response of

the thalamocortical system to a direct perturbation induced by
TMS16, proves that ECIawa is reliable using TMS–EEG data. It
also shows that the two measures calculated entirely indepen-
dently using different methods resulted in the same conclusion,
which is a sign that deep learning is indeed a valid and reliable
approach. For an ML-based indicator, ECI can be calculated
using very few trials. Furthermore, because the classifier learned
specific features of the data on its own, our indicator can be
computed regardless of whether TMS is applied or its location.
Therefore, ECI is a significantly practical and reliable indicator to
evaluate levels of consciousness under various conditions. Our
analyses using LRP highlighted the major role of the parietal
region in determining consciousness, as the classifier primarily
uses brain activity in this lobe for predicting low and high states
of arousal and awareness.

TMS–EEG responses under sleep exhibited well-known
phenomena31. In wakefulness, TMS generates a series of low-
amplitude high-frequency activities related to cortical flow in
long-range connections32. A similar long-lasting response is
evoked during REM sleep with subjective experience33. During
NREM sleep with no subjective experience, TMS triggers larger,
low-frequency activity that quickly dissipates32, which is the
hallmark of bistability in the thalamocortical system. Cortical
effective connectivity is also broken down during NREM
sleep33,34. The brain response to TMS perturbation was already

Fig. 4 Relationship between ECI using TMS–EEG and resting-state EEG. The x-axis represents ECI using TMS–EEG, and the y-axis represents ECI using
resting-state EEG for arousal (left) and awareness (right). The gray dashed lines indicate the optimal cutoff (0.5) dividing the space into high and low
states of ECI. The solid lines represent linear fits to the data. a In anesthesia and wakefulness before anesthetics, the orange, copper, and purple dots
indicate the use of ketamine, propofol, and xenon, respectively. In addition, cross markers indicate normal wakefulness before each anesthetic. b In patients
with disorders of consciousness, the orange and purple dots indicate MCS and UWS patients, respectively.
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used to distinguish the levels of awareness, irrespective of sensory
processing and motor responses under physiological, pharmaco-
logical, and pathological conditions34–36. Therefore, this TMS-
evoked response was applied to our end-to-end CNN framework.
Similar to several studies using ML, we observed higher two-class
(low or high) classification accuracy using CNN when compared
to linear discriminant analysis (LDA) and support vector
machine (SVM) for both arousal and awareness. This suggests
that our framework is especially relevant for EEG results, which
possess several nonlinear features. The classification performance
of spatiotemporal information was higher than that of spatio-
spectral information. Using our framework, it was shown that
temporal information discriminates different levels of con-
sciousness more clearly than spectral information, as the func-
tional connectivity associated with consciousness changes in both
space and time37. However, this does not imply that temporal
information is more important than spectral information for
distinguishing consciousness. Temporal information has more
distinct characteristics than spectral information for predicting
the state of consciousness in the proposed framework. Never-
theless, PCI also used spatiotemporal dynamics in TMS-evoked
responses16, which is significantly important for distinguishing
consciousness.

We applied transfer learning to a single domain as well as
multiple domains. In the sleep domain, classification performance

was high when trained on only the sleep domain or together with
the anesthesia domain. Due to a large number of trials in the sleep
domain, training was performed satisfactorily using only sleep
data. The distance of the averaged TMS-evoked potentials under
the domains of anesthesia and sleep was significantly close, which
indicated that the two domains were highly similar38. Thus, a
close distance implies that the two domains have similar patterns,
and the classification performance indeed increased when these
domains were trained together. In the anesthesia and DoC
domains, the trials of a single domain were not sufficient; thus a
higher classification performance was achieved when trained with
similar domains. In addition, brain signals change over time, even
when recorded with the same participants because of physiolo-
gical and psychological differences over time27. Therefore,
participant-independent learning such as the LOPO cross-
validation is considerably difficult, as opposed to participant-
dependent learning24. We solved these problems via transfer
learning utilizing multiple domains and participant-
independent ECI.

ECI, by averaging interclass probability, distinguished whether
each state was low or high in both arousal and awareness. Because
of its inherently high two-class performance, it was possible to
calculate the discriminable ECI using a few trials in a single
session. The criteria used for determining ECIaro and ECIawa were
different, especially for REM sleep, ketamine-induced anesthesia,

Fig. 6 Interclass probability in the representative participant for ECIawa. We depicted the probability of a representative participant (P01) in all
conditions (sleep, anesthesia, DoC). P01 was the first participant of each list, randomly chosen. Each colored box indicates the probability that the
corresponding trial is considered as high awareness in each participant. If it was a perfect prediction in one trial, during sleep and healthy wakefulness,
NREM sleep with no subjective experience (low awareness) has a probability of less than 0.5, whereas REM sleep and normal wakefulness (high
awareness) have probabilities of more than 0.5. Under anesthesia and wakefulness, ketamine and wakefulness before anesthesia are high awareness,
whereas propofol and xenon have low awareness. MCS and UWS patients have high and low awareness, respectively.

Fig. 5 Performance of ECIawa according to the number of trials in the ECI calculation. During sleep and healthy wakefulness (left), under anesthesia and
wakefulness before anesthesia (middle), and in severely brain-injured patients (right). The area under the curve, sensitivity, and specificity were measured
for calculating ECIawa when going from single trials to 80 trials.
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and UWS patients. Although the dataset was the same, these
states were trained by different labels depending on arousal and
awareness. For instance, REM sleep is high in awareness but low
in arousal. The proposed classifier learns models for these dif-
ferent criteria by training itself based on the criteria of arousal
and awareness. Specifically, because the learning ability of the
CNN is derived from the automatic extraction of complicated
representations from EEG signals39, it can properly distinguish
between both states, even if the same state has different labels
depending on the criteria. We further used data from MCS*
patients as verification samples. MCS* patients were correctly

predicted, since data from UWS and MCS patients were included
during training, and the classifier is independent of behavior.

According to the LRP, we observed higher relevance scores in
the parietal regions, compared to other regions at the scalp level.
This was observed for all data, including TMS–EEG and resting-
state EEG results. The brain regions that led to decision-making
were similar in arousal and awareness. However, this does not
imply that arousal and awareness are supported by the same
underlying neurophysiological mechanisms. The relevance scores
simply explain the patterns of cortical EEG activity resulting in
this classification.

Fig. 7 Relevance scores from LRP in TMS–EEG. a Sleep and normal wakefulness, b anesthesia and wake, and c patients with DoC. The violin plots depict
the average relevance scores over the frontal, temporal, and parietal regions in all participants. The exact p-value corresponding to the significance level
was shown using two-sided multiple t-tests with Fisher’s least significant differences method for multiple comparisons. [arb. units] denotes an arbitrary
unit. F frontal region, T temporal region, P parietal region.
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In sleep and healthy wakefulness, when arousal and awareness
were high, they were highly relevant in the parietal region. This
EEG feature, which distinguishes high and low states in arousal
and awareness, can be interpreted in line with the posterior hot
zone of consciousness40. Local changes in this parietal region are
associated with the occurrence of dreaming and unconscious
sleep41,42, and our framework may learn from EEG pivotal fea-
tures recorded in this area. The importance of the posterior hot
zone has already been emphasized using the within-state sleep
paradigm43,44. Similar to sleep, we observed high relevance scores
for the parietal region in the domains of both anesthesia and
patients with DoC. This implies that EEG activity in this region
had a decisive effect in determining the high and low states of
arousal and awareness. The increased slow-wave activity was
observed under propofol- and xenon-induced anesthesia when
compared to healthy wakefulness before drug administration36.
In addition, just as cortical neurons induced bistable changes
during NREM sleep, TMS in propofol-mediated anesthesia-
induced low-amplitude, low-frequency, positive–negative poten-
tials, and TMS in xenon-mediated anesthesia caused a sig-
nificantly large amplitude but stereotyped positive–negative
deflection36. Moreover, under ketamine-induced anesthesia,
TMS-evoked response was determined to be similar to REM
sleep, which features dreaming during a low state of arousal36.
Previous studies have shown that the change in slow waves
induced by propofol is primarily observed in the posterior hot
zone45 and the posterior main hub is disrupted during anesthesia-
induced alteration of consciousness7. In UWS patients, TMS
triggered a local and slow response similar to NREM sleep and
general anesthesia, whereas MCS patients showed complex TMS-
evoked responses33. Similarly, differences in alpha connectivity
between the UWS and MCS patients are apparent within the
posterior hot zone46. That is, when determining whether arousal
and awareness are low or high, our classifiers used differences and
changes in EEG activity over the parietal region to make deci-
sions. Particularly, similar results were observed in patients with
DoC using several TMS target sites, and in sleep and anesthesia
domains, where the parietal region was primarily stimulated. This
suggests that our findings regarding the parietal region are
unrelated to the TMS target site. Thus, our trained model used
neurophysiological features to classify whether arousal and
awareness are low or high. This indicates an appropriate design of
our model as the classification decision was primarily based on
EEG signals over the parietal region, which is suggested to be a
hot spot of consciousness, compared to the frontal region43. The
difference in the parietal region could be clearly identified
through correct trials during sleep and healthy wakefulness. It is
meaningful that the frontal region contributed less than parietal
regions in the context of the controversy regarding the spatial
localization of the neural correlates of consciousness40,45. Con-
sidering the subcortical influences related to striatal-thalamic
circuits, it has been recently observed that the parietal region
contributes more to the levels of consciousness than the frontal
region47. The implication of the parietal cortex in consciousness
has also been demonstrated in other neuroimaging modalities,
such as functional magnetic resonance imaging48 and
magnetoencephalography49.

This study does have certain limitations. First, our sample size
was relatively small. In the future, it will be necessary to further
test the reliability of the proposed indicator with larger cohorts
and validate it at the clinical level before implementing it in a
clinical setting. Sleep experiments would also have to be applied
to more participants in the future. Second, we explored the
possibility of calculating ECI with a minimal amount of data, up
to a single trial. However, we did not attempt to measure ECI in
real time. Thus, in the future, ECI could be calculated in real-time

for practical application. Third, ECI does not differentiate
between physiological, pharmacological, and pathological condi-
tions, but distinguishes between high and low states of arousal
and awareness. ECI can thus distinguish between REM sleep (or
ketamine) and wakefulness. It may also be difficult to select the
model to use when calculating ECI since the domain has to be
known beforehand. Nevertheless, if a single domain has sufficient
trials, the LOPO approach would be the most accurate. Another
limitation might be related to the possible contamination of TMS-
EEG data by auditory and somatosensory components. As in
previous studies17,35,36, to avoid auditory and somatosensory co-
stimulation, participants wore earphones with noise masking and
a thin foam between the scalp and the TMS coil that was used.
Although it is difficult to systematically rule out the contribution
of sensory co-stimulation in every measurement, the application
of effective noise-masking procedures50 and the real-time mon-
itoring of data quality during the acquisition51 may significantly
mitigate this issue52. Finally, ECI indicates whether arousal and
awareness are low or high and cannot be considered functional.
It, therefore, should be developed into a functional index.

In conclusion, we proposed ECI as a neurophysiological indi-
cator to simultaneously discriminate the levels of arousal and
awareness in modified states of consciousness. This tool allows
disentangling the levels of consciousness, with a single measure,
in different clinical settings such as monitoring surgical inter-
ventions (i.e., anesthesia-induced states) and diagnosing patients
with DoC. This indicator was validated under different physio-
logical, pharmacological, and pathological conditions, and it
reliably disentangled low levels from high levels of both arousal
and awareness. Besides, the proposed ECI is considerably acces-
sible and practical, as it can be applied to resting-state EEG
without TMS, and requires fewer trials. Therefore, the proposed
indicator can be a reliable discriminator and valuable tool as an
objective measure of consciousness. As parietal regions appear to
be the most relevant for classification, an EEG configuration
around that area could be sufficient if ECI is used in clinical
practice. These findings could be useful in diagnosing severely
brain-injured patients and monitoring their levels of conscious-
ness in real-time, especially in clinical settings where time con-
straints preclude long-duration assessment. The proposed reliable
ECI can provide insights into the classification of conscious levels
using deep learning and neural correlates of consciousness.

Methods
Datasets. The sleep dataset included six healthy participants (five males, aged
23.7 ± 3.2 years), as previously reported by Nieminen et al.43 for NREM data and
Lee et al.53 for REM data. The inclusion criteria included (i) between 18 and 75
years of age and (ii) in good general health. The exclusion criteria were as follows:
(i) neurological, psychiatric, mood, and sleep disorders, (ii) contraindications for
TMS (e.g., history of seizures), and (iii) psychotropic medication. All participants
provided written consent, and the experimental paradigm was approved by the
Institutional Review Board (IRB) at the University of Wisconsin–Madison (HSC-
2013-0019). Sleep stages were manually scored every 30 s following the American
Academy of Sleep Medicine Scoring Manual. After 3 min or more, when the
participant entered a specific sleep stage, TMS was applied over the parietal cortex
using a navigated brain stimulation system (eXimia Navigated Brain Stimulation,
Nexstim Plc, Finland). Supplementary Table 8 lists the TMS target site and the
number of sessions and trials. The participants were awoken by an alarm sound
that lasted for 1.5 s after each session. They were then asked if they had had
conscious experience. The TMS–EEG experiments were performed over a period of
four or five nights per participant.

The anesthesia data were previously published by Sarasso et al.36. Sixteen
healthy participants (eight males, aged 18–28 years) were included under ketamine-
(n= 6), propofol- (n= 5), and xenon-induced (n= 5) anesthesia. The inclusion
criteria included (i) older than 18 years and (ii) stability of vital parameters. The
exclusion criteria were as follows: (i) neurological, cardiovascular, psychiatric, and
mood disorders, (ii) contraindications for TMS (e.g., history of seizures, metal
implants such as a pacemaker), and (iii) medical conditions that were incompatible
with the anesthesia and/or the TMS procedure. This experimental protocol was
approved by IRB at the University of Liège (2009/153 (ketamine), 2007/191
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(propofol), and 2009/242 (xenon)); moreover, all participants provided written
informed consent. TMS was applied over the left parietal or motor regions after
participants reached deep unresponsiveness (a score equal to 5 in the Ramsay scale,
which corresponds to no response to external stimuli) following standard
anesthetic procedures36. The stimuli target site and the number of trials are listed
in Supplementary Table 9. In addition, upon waking up from anesthesia, reports
about the conscious experience during anesthesia were collected. Conclusively, the
participants reported little conscious experience during propofol- and xenon-
induced anesthesia, but vivid dreams were experienced during ketamine-induced
anesthesia.

For patients with severe brain injury, the data of six UWS patients (2 males, 4
traumatic brain injuries, time since the injury of 10.6 months (1–47), age:
36.2 ± 28.6 years) and ten MCS patients (7 males, 5 traumatic brain injuries, time
since the injury of 65.7 months (1–343), age: 44.6 ± 20.5 years) were previously
reported by Bodart et al.54,55 and Rosanova et al.56. This study was approved by the
Ethics Committee of the Medicine Faculty of the University of Liège (ref 2009/52)
and written informed consent was obtained from legal representatives of all
patients. All of them fell into a coma due to brain injury and presented a prolonged
state of impaired consciousness. The inclusion criteria included (i) older than 18
years and (ii) diagnosis of DoC following a severe acquired brain injury. The
exclusion criteria for patients were as follows: (i) patients having significant
neurological, neurosurgical, or psychiatric disorders prior to the brain injury that
leads to DoC, (ii) patients having any contraindication to TMS–EEG or magnetic
resonance imaging (electronic implanted devices, active epilepsy, external
ventricular drain), and (iii) patients who were not medically stable. Accredited
experts performed repeated CRS-R for each patient, including on the day of the
TMS–EEG examination and before the fluorodeoxyglucose-positron emission
tomography (FDG-PET) scan. The FDG-PET is a reliable and sensitive tool to
detect MCS* patients based on the previous literature15. MCS* patients were the
patients who were diagnosed with a UWS with the CRS-R at the bedside but
diagnosed as an MCS based on the FDG-PET data (that is, patients showing
relative metabolic preservation of the frontoparietal network based on a subjective
visual assessment of the Statistical Parametric Mapping analysis15). TMS–EEG data
were acquired similar to previous studies16,35. Moreover, added data were newly
included as follows: 9 UWS patients (6 males, 5 traumatic brain injuries, time since
the injury of 6.2 months (1–13), age: 41.4 ± 21.1 years), 5 MCS patients (4 males, 2
traumatic brain injuries, time since the injury of 63.0 months (2–169), age:
32.4 ± 14.0 years), and 4 MCS* patients (2 males, 3 traumatic brain injuries, time
since injury 18.5 months (3–52), age: 36.3 ± 10.5 years). This study was approved
by the Ethics Committee of the Medicine Faculty of the University of Liège (ref
2012/55) and all legal representatives of patients provided written informed
consent before the experiments; moreover, newly recorded data used exactly the
same procedure as before. These added data were recently acquired by Dr. Olivia
Gosseries & Pr. Steven Laureys team at the University of Liège. For the added data,
the inclusion and exclusion criteria for patients were exactly the same as the
previously used data. These data are part of a bigger study conducted in the frame
of the Human Brain Project. The final dataset consisted of 15 UWS patients, 15
MCS patients, and 4 MCS* patients. The detailed demographic and clinical
information of severely brain-injured patients is listed in Supplementary Table 10.
The TMS target site was selected using a neuronavigation system over the parietal,
motor, or premotor regions, avoiding structural lesions using the magnetic
resonance imaging data of the patient. The stimuli target sites for all participants
are listed in Supplementary Table 11. The participants remained awake or were
kept awake using the CRS-R arousal protocol in between TMS stimulation12.

For the four datasets, EEG data were recorded using a 60-channel TMS-
compatible amplifier and a two-channel electrooculogram (Nexstim eXimia,
Nexstim Plc, Finland) with a 1450 Hz sampling rate. During all the sessions,
earphones presenting white noise were used to reduce the noise of the TMS pulses
and we used a thin foam between the scalp and the TMS coil to avoid
somatosensory evoked potentials. These pulses were presented at random intervals
of 2–2.3 s using a figure-of-eight coil. The maximum electric field was between 100
and 130 V/m at the TMS target site. In particular, the TMS stimulation was always
performed in the medial half of one hemisphere, to avoid any muscle artifacts.

Finally, we used resting-state EEG without TMS for the domains of anesthesia
and severely brain-injured patients. These data were acquired using the same
participants as in the TMS–EEG experiments. We used the ketamine- (n= 5),
propofol- (n= 5), and xenon-induced anesthesia data (n= 5) as previously
reported by Sarasso et al.36. For at least 3 min before the TMS–EEG experiments,
resting-state EEG data were recorded during anesthesia and each state of
wakefulness before the anesthesia. With regard to the severely brain-injured
patients, 5-min resting-state EEG for MCS patients (n= 15) and UWS patients
(n= 15) was included. In addition, four MCS* patients were added along with the
same participants for whom TMS–EEG was recorded. The sampling rate was
1450 Hz. Finally, among previously published data, the data with a signal-to-noise
of 1.4 or less were excluded from the analysis16.

Data preprocessing. TMS–EEG data were preprocessed using the SiSyPhus
Project MATLAB program (University of Milan, Italy) and the EEGLAB toolbox57.
The signals were down-sampled to 362.5 Hz and band-pass filtered between 0.5
and 45 Hz using a second-order Butterworth filter. The signals of −400 to 1000 ms

were segmented and baseline-corrected using the 400 ms baseline before the TMS
pulses. Bad channels were manually detected and interpolated using superfast
spherical interpolation for artifact removal. We also discarded the components
related to eye movements using independent component analysis and removed
trials setting a threshold of ±100 μv affected by ocular artifacts, other artifacts, or
noise. The data were re-referenced to an average reference58,59.

Resting-state EEG data were processed using the EEGLAB toolbox57.
Preprocessing was performed using a process similar to that used with TMS–EEG
data, with segmentation being performed every 1 s. The number of trials for each
session we used is listed for patients under anesthesia (Supplementary Table 12)
and severely brain-injured patients (Supplementary Table 13).

Proposed framework for calculating an ECI. Step 1—Extraction of EEG features:
In all trials of all TMS–EEG data, we used the 200–400 ms time window of data
after the TMS regardless of the lateralization or target site of the TMS in sleep,
anesthesia, and for patients with severe brain injury. More details related to this
deliberate choice are reported in Supplementary Note 2. In resting-state EEG, only
the first 200 ms of data were used from the segmented 1 s of data. In the first step,
EEG data were converted from 2D raw signals to 3D input. To preserve the spatial
information and characteristics of EEG, we used spatio-spectral and spatiotemporal
3D features. The raw EEG signals at time index t are measured in a 1D data vector

rt ¼ s1t ; s
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t ; s

i
t ; � � � ; snt

� �T
, where sit is the acquisition data by the ith electrode

channel at timestamp t. n indicates the number of electrode channels. However,
these simple signals do not capture all the spatial information characteristics in the
brain. Therefore, we converted 1D data vectors to 2D EEG data meshes using the
spatial information of the electrode location. Zero was inserted in the place of a null
electrode in 2D matrices at time index t60. Finally, we calculated 3D data by adding
spectral or temporal information (Supplementary Fig. 14). Specifically, spectral
information was divided into 5 frequency bands: delta (1.5–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma bands (30–40 Hz)44. Finally, a
10 × 11 × 5 matrix using spectral information and a 10 × 11 × 72 matrix using
temporal information were used as the final CNN inputs (here, 10 × 11: the con-
verted matrix of spatial information; 5: delta, theta, alpha, beta, and gamma bands
of spectral information; 72: 200–400 ms of temporal information).

Step 2—Calculation of interclass probability using CNN: The model was trained
to distinguish both arousal and awareness in terms of whether they were low or
high. We first calculated the domain similarity based on the cosine distance for
domain transfer learning. The cosine distance D between domains A and B is
defined as follows:

D A; Bð Þ ¼ 1� f TAf B
k f A kk f B k ð1Þ

where k � k indicates the norm of a vector. This similarity was used when selecting
the source domain for domain transfer learning38. In calculating the similarity
according to the states of arousal and awareness, the labels in each state are
different. During sleep, NREM sleep with no subjective experience and REM sleep
with subjective experience were learned as low arousal, whereas healthy
wakefulness was learned as high arousal. Conversely, in awareness, REM sleep with
subjective experience and healthy wakefulness indicated by open eyes were learned
as high awareness, while NREM sleep with no subjective experience was learned as
low awareness. Specifically, we used stage 3 of NREM sleep for clear feature
extraction of deep sleep. Under general anesthesia and in healthy wakefulness
before anesthesia, the arousal state was divided as follows: (i) low, when under
ketamine, propofol, and xenon-induced anesthesia, and (ii) high, when in healthy
wakefulness before anesthesia. Conversely, the awareness state was divided into low
(under propofol and xenon-induced anesthesia) and high (under ketamine-
induced anesthesia and healthy wakefulness before anesthesia). Finally, in patients
with DoC, UWS and MCS patients were distinguished in terms of awareness: low
(UWS patients) and high (MCS patients). The UWS and MCS patients
corresponded to high arousal.

Deep learning was conducted in a MATLAB environment powered by a TITAN
V GPU. We used the LRP toolbox30 for CNN classification and interpretation. The
CNN was applied to the two components of consciousness (arousal and
awareness). In each architecture, we inserted five convolutional layers with 2D
filters for the deep neural network. The first layer with 100 filters and the second
layer with 80 filters featured kernel sizes of 3 × 3 and 2 × 2 with stride 1 × 1,
respectively. Then, a max-pooling layer with a pool size of 2 × 2 and stride 1 × 2
was added. Similarly, two convolutional layers with kernel sizes of 3 × 3 (with stride
1 × 1) and 2 × 2 (with stride 2 × 1) were subsequently used. After max-pooling with
a pool size of 2 × 1 and stride 2 × 1, a final convolutional layer comprising two
filters with a kernel size of 1 × 1 and stride 1 × 1 was incorporated. Finally, the
generated feature maps were flattened into a 1D vector. A softmax layer was used
for classification. In the softmax layer, each element indicates the probability that
the original input belongs to the corresponding class. In this training procedure,
the parameters in the deep neural network were learned through back-propagation.
The activation function in each convolutional layer was a rectified linear unit. The
detailed CNN architecture is presented in Supplementary Table 14. The Adam
optimizer was used with an initial learning rate of 0.005, and the learning rate was
updated to sublinear for learning rate decay during an evaluation step of training.
Specifically, we used hyperparameters as values of 0.9 for β1, 0.999 for β2 for Adam
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optimizer61. The batch size was 25 for training, and the maximum number of
training iterations was five times the number of training data. Consequently, the
output of this architecture was the probability of each class.

For a comparison with other classifiers, we also considered an LDA classifier62

and SVM with polynomial kernel function63 using the same input data as fair
baseline methods. The classification performance was measured in LOPO-nested
cross-validation for the generalized neural network. This method is a special case of
k-fold cross-validation. Specifically, all participants except one (the target
participant) were used for training, and the target participant was then tested using
the classifier. In the training phase, 80% of the datasets were used to learn the
classifier, and the remaining 20% were reserved for validation. This process was
repeated for each participant. Further, internal validation sets (inner cross-
validation) were performed to choose the hyperparameters of the model64. Thus,
the same hyperparameters were selected in the external validation sets65. The
LOPO cross-validation procedure uses data efficiently and can reduce overfitting. It
also provides unbiased estimates of the averaged classification error for all possible
training sets66. The same LOPO-nested cross-validation is applied in LDA and
SVM using the Berlin brain–computer interface toolbox67. Three possible values
(0.0001, 0.01, and 1) were chosen as penalties for misclassification in the SVM
model65. For spatio-spectral input and spatiotemporal input 1 and 0.0001 were
used respectively.

Step 3—Calculation of ECI in a single session: We obtained each interclass
probability according to two components (arousal and awareness) at the previous
step. In each TMS session, the interclass probability was averaged to calculate an
ECI. This approach has the advantage of being able to offset outliers.

Cj ¼
1
N

∑
N

i¼1
pi ð2Þ

Here, pi is the probability of high arousal or high awareness from each trial i
among the probability values (high versus low) for the two classes from the softmax
function in the CNN. N is the number of trials in a single session j. The averaged
interclass probability Cj from arousal is the value of the x-axis as ECIaro, and the
averaged interclass probability Cj from awareness becomes the value of the y-axis
as ECIawa. Consequently, ECI is expressed as a 2D indicator representing both
arousal and awareness simultaneously. As mentioned earlier, we used the LOPO
cross-validation. It is to be noted that only data from one participant were used as
the test, and the data from the remaining participants were used for training.
Finally, the test and training data did not demonstrate an overlap at all.

Step 4—Interpretation using LRP: We used LRP based on a backward-
propagation mechanism for interpretability of the deep neural networks. This
calculated the pixel-based decomposition process28.

∑
d

p¼1
Rp ¼ f ðxÞ ð3Þ

Here, x = (x1; ¼ xd) indicates an input vector and f ðxÞ is the model output.
The relevance score Rp is the decomposition of the prediction for the input xp . This
score is calculated through the backward propagation of the model input.
Therefore, relevance scores describe a single nonlinear decision for the output
corresponding to each input68. Through this method, we can observe not only the
interpretation of classification decisions but also what features the model has
learned28. To investigate which brain regions and signals caused these classification
results, we compared the relevance scores from the LRP by dividing them into the
following three regions69: the frontal (Fp1–2, Fpz, AF1–2, AFz, F1–8, and Fz),
temporal (FT9–10, T7–8, TP9–10), and parietal (CP1–6, CPz, P1–4, P7–8, and Pz)
regions. We focused on the frontal, temporal, and parietal regions when comparing
the relevance score resulting from the LRP as there is an ongoing debate regarding
which brain area, i.e., the front versus the back, is related to consciousness40. We
also included the temporal region as activation in the NREM sleep increases in this
region70.

Additional EEG analyses are shown in Supplementary Methods as follows: (i)
performance according to the number of trials in the ECI calculation, (ii)
comparison of the difference between correct and incorrect trials, and (iii)
classification performance using EEG signals excluding frontal or parietal
electrodes.

Comparison with PCI. We compared ECIawa with the PCI values computed fol-
lowing the same procedure described in16. PCI measures the complexity of the
spatiotemporal patterns of cortical activity significantly evoked by TMS16. PCI
ranges between 0 (minimum complexity) and 1 (maximum complexity). Previous
extensive validation of PCI provided an empirical cutoff (PCI*= 0.31) to dis-
criminate between consciousness and unconsciousness17.

Statistical analysis. We used the Kruskal–Wallis test (nonparametric one-way ana-
lysis of variance) to analyze the differences in the classification accuracy; moreover, two-
sided multiple t-tests were used for post-hoc analysis using Fisher’s least significant
differences method for multiple comparisons to compare the classification performance
of the three classifiers (LDA, SVM, and CNN) of sleep data for each component
(arousal and awareness) and at three-time ranges (0–200, 200–400, 400–600ms) of
spatiotemporal information. The Kruskal–Wallis test was also performed to compare

the classification performance using transfer learning. Similarly, Fisher’s least significant
differences method was applied after the two-sided multiple t-tests.

To investigate the discrimination of ECI in each state of consciousness, the
feedforward network was trained with 20 hidden layers using the LOPO approach.
For each output class, the AUC, sensitivity, and specificity were calculated using
ROC analysis.

The Kruskal–Wallis test was employed to investigate if there were any
differences in relevance scores among brain regions from LRP under sleep. We
performed two-sided multiple t-tests using Fisher’s least significant differences
method for multiple comparisons. In addition, the Kruskal–Wallis test was
performed to explore the differences in relevance scores from LRP under the
condition of anesthesia and for severely brain-injured patients. For post-hoc
analysis, two-sided multiple t-tests were performed using Fisher’s least significant
differences method for multiple comparisons.

Finally, we used Pearson’s correlation to investigate the relationship between
ECIawa and PCI. In this study, all significances were indicated by α= 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data (sleep dataset, anesthesia dataset, already published brain injury dataset, and new
added brain injury dataset) generated and used in this study have been deposited in a
local database and are available upon reasonable request to Olivia Gosseries. In addition,
resting-state EEG signals during anesthesia and wake are available online upon request at
the repository Zenodo (https://doi.org/10.5281/zenodo.806176). The TMS–EEG data of
some brain injury patients (published and new datasets) will also be freely available
through EBRAINS within 2022 with no restriction to access (https://doi.org/10.25493/
G8E3-DQE). The sleep dataset was previously reported by Nieminen et al.43 for NREM
data and Lee et al.53 for REM data. The anesthesia data were also previously published by
Sarasso et al.36. The published brain injury dataset was previously reported by Bodart
et al.54,55 and Rosanova et al.56. However, new added brain injury dataset has not yet
been published. The raw EEG data are protected and are not made publically available
owing to data privacy laws, but are available from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
Source code generated and used for this study is publicly available for download at
https://github.com/MinjiLee-ku/ECI and https://doi.org/10.5281/zenodo.5760787
(ref.71). Source code for CNN and LRP is freely available at https://github.com/sebastian-
lapuschkin/lrp_toolbox. Source code for violin plot is available from https://
www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot. Source code for
shaded error bar is available from https://github.com/raacampbell/shadedErrorBar.

Received: 8 August 2020; Accepted: 25 January 2022;

References
1. Sanders, R. D., Tononi, G., Laureys, S. & Sleigh, J. W. Unresponsiveness

unconsciousness. Anesthesiology 116, 946–959 (2012).
2. Darracq, M. et al. Evoked alpha power is reduced in disconnected

consciousness during sleep and anesthesia. Sci. Rep. 8, 16664 (2018).
3. Colombo, M. A. et al. The spectral exponent of the resting EEG indexes the

presence of consciousness during unresponsiveness induced by propofol,
xenon, and ketamine. Neuroimage 189, 631–644 (2019).

4. Lendner, J. D. et al. An electrophysiological marker of arousal level in humans.
eLife 9, e55092 (2020).

5. Mashour, G. A. & Hudetz, A. G. Neural correlates of unconsciousness in large-
scale brain networks. Trends Neurosci. 41, 150–160 (2018).

6. Casarotto, S. et al. Exploring the neurophysiological correlates of loss and
recovery of consciousness: perturbational complexity in Brain Function and
Responsiveness in Disorders of Consciousness (ed Monti, M. M.) 93–104
(Springer, 2016).

7. Bonhomme, V. et al. General anesthesia: a probe to explore consciousness.
Front. Syst. Neurosci. 13, 36 (2019).

8. Sanders, R. D. et al. Incidence of connected consciousness after tracheal
intubation: a prospective, international, multicenter cohort study of the
isolated forearm technique. Anesthesiology 126, 214–222 (2017).

9. Noirhomme, Q., Brecheisen, R., Lesenfants, D., Antonopoulos, G. & Laureys,
S. “Look at my classifier’s result”: disentangling unresponsive from
(minimally) conscious patients. Neuroimage 145, 288–303 (2017).

10. Giacino, J. T. et al. The minimally conscious state: definition and diagnostic
criteria. J. Neurol. 58, 349–353 (2002).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28451-0

12 NATURE COMMUNICATIONS |         (2022) 13:1064 | https://doi.org/10.1038/s41467-022-28451-0 | www.nature.com/naturecommunications

https://doi.org/10.5281/zenodo.806176
https://doi.org/10.25493/G8E3-DQE
https://doi.org/10.25493/G8E3-DQE
https://github.com/MinjiLee-ku/ECI
https://doi.org/10.5281/zenodo.5760787
https://github.com/sebastian-lapuschkin/lrp_toolbox
https://github.com/sebastian-lapuschkin/lrp_toolbox
https://www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot
https://www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot
https://github.com/raacampbell/shadedErrorBar
www.nature.com/naturecommunications


11. Gosseries, O., Di, H., Laureys, S. & Boly, M. Measuring consciousness in
severely damaged brains. Annu. Rev. Neurosci. 37, 457–478 (2014).

12. Giacino, J. T., Kalmar, K. & Whyte, J. The JFK Coma Recovery Scale-Revised:
measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil.
85, 2020–2029 (2004).

13. Thibaut, A. et al. Preservation of Brain Activity in Unresponsive Patients
Identifies MCS Star. Ann Neurol 90, 89–100 https://doi.org/10.1002/ana.26095
(2021).

14. Gosseries, O., Zasler, N. D. & Laureys, S. Recent advances in disorders of
consciousness: focus on the diagnosis. Brain Inj. 28, 1141–1150 (2014).

15. Stender, J. et al. Diagnostic precision of PET imaging and functional MRI in
disorders of consciousness: a clinical validation study. Lancet 384, 514–522
(2014).

16. Casali, A. G. et al. A theoretically based index of consciousness independent of
sensory processing and behavior. Sci. Transl. Med. 5, 198ra105–198ra105 (2013).

17. Casarotto, S. et al. Stratification of unresponsive patients by an independently
validated index of brain complexity. Ann. Neurol. 80, 718–729 (2016).

18. Gosseries, O. et al. Automated EEG entropy measurements in coma,
vegetative state/unresponsive wakefulness syndrome and minimally conscious
state. Funct. Neurol. 26, 25 (2011).

19. Engemann, D. A. et al. Robust EEG-based cross-site and cross-protocol
classification of states of consciousness. Brain 141, 3179–3192 (2018).

20. Baird, B. et al. Human rapid eye movement sleep shows local increases in low-
frequency oscillations and global decreases in high-frequency oscillations
compared to resting wakefulness. eNeuro 5, 4 (2018).

21. Müller, K.-R. et al. Machine learning for real-time single-trial EEG-analysis:
from brain–computer interfacing to mental state monitoring. J. Neurosci.
Methods 167, 82–90 (2008).

22. Lemm, S., Blankertz, B., Dickhaus, T. & Müller, K.-R. Introduction to machine
learning for brain imaging. Neuroimage 56, 387–399 (2011).

23. Liu, Q. et al. Spectrum analysis of EEG signals using CNN to model patient’s
consciousness level based on anesthesiologists’ experience. IEEE Access 7,
53731–53742 (2019).

24. Fahimi, F. et al. Inter-subject transfer learning with end-to-end deep convolutional
neural network for EEG-based BCI. J. Neural Eng. 16, 026007 (2019).

25. Webb, S. Deep learning for biology. Nature 554, 555–557 (2018).
26. Montavon, G., Binder, A., Lapuschkin, S., Samek, W. & Müller, K.-R. Layer-

wise relevance propagation: an overview in explainable AI: interpreting,
explaining and visualizing deep learning (eds Samek, W., Montavon, G.,
Vedaldi, A., Hansen, L. K., Müller, K.-R.) 193–209 (Springer, 2019).

27. Kwon, O.-Y., Lee, M.-H., Guan, C. & Lee, S.-W. Subject-independent brain-
computer interfaces based on deep convolutional neural networks. IEEE
Trans. Neural Netw. Learn. Syst. 31, 3839–3852 (2020).

28. Sturm, I., Lapuschkin, S., Samek, W. & Müller, K.-R. Interpretable deep neural
networks for single-trial EEG classification. J. Neurosci. Methods 274, 141–145
(2016).

29. Lotte, F. et al. A review of classification algorithms for EEG-based
brain–computer interfaces: a 10 year update. J. Neural Eng. 15, 031005 (2018).

30. Lapuschkin, S., Binder, A., Montavon, G., Müller, K.-R. & Samek, W. The LRP
toolbox for artificial neural networks. J. Mach. Learn. Res. 17, 3938–3942 (2016).

31. Massimini, M. et al. Triggering sleep slow waves by transcranial magnetic
stimulation. Proc. Natl. Acad. Sci. USA 104, 8496–8501 (2007).

32. Massimini, M., Tononi, G. & Huber, R. Slow waves, synaptic plasticity and
information processing: insights from transcranial magnetic stimulation and
high-density EEG experiments. Eur. J. Neurosci. 29, 1761–1770 (2009).

33. Napolitani, M. et al. Transcranial magnetic stimulation combined with high-
density EEG in altered states of consciousness. Brain Inj. 28, 1180–1189
(2014).

34. Massimini, M. et al. Breakdown of cortical effective connectivity during sleep.
Science 309, 2228–2232 (2005).

35. Rosanova, M. et al. Recovery of cortical effective connectivity and recovery of
consciousness in vegetative patients. Brain 135, 1308–1320 (2012).

36. Sarasso, S. et al. Consciousness and complexity during unresponsiveness
induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–3105 (2015).

37. Luppi, A. I. et al. Consciousness-specific dynamic interactions of brain
integration and functional diversity. Nat. Commun. 10, 4616 (2019).

38. Jeon, E., Ko, W. & Suk, H.-I. Domain adaptation with source selection for
motor-imagery based BCI. in 2019 7th International Winter Conference on
Brain-Computer Interface (BCI). 1–4 (IEEE).

39. Lawhern, V. J. et al. EEGNet: a compact convolutional neural network for
EEG-based brain–computer interfaces. J. Neural Eng. 15, 056013 (2018).

40. Koch, C., Massimini, M., Boly, M. & Tononi, G. Posterior and anterior cortex
—where is the difference that makes the difference? Nat. Rev. Neurosci. 17,
666 (2016).

41. Siclari, F. & Tononi, G. Local aspects of sleep and wakefulness. Curr. Opin.
Neurobiol. 44, 222–227 (2017).

42. Siclari, F., Bernardi, G., Cataldi, J. & Tononi, G. Dreaming in NREM sleep: a
high-density EEG study of slow waves and spindles. J. Neurosci. 38,
9175–9185 (2018).

43. Nieminen, J. O. et al. Consciousness and cortical responsiveness: a within-
state study during non-rapid eye movement sleep. Sci. Rep. 6, 30932 (2016).

44. Lee, M. et al. Connectivity differences between consciousness and
unconsciousness in non-rapid eye movement sleep: a TMS–EEG study. Sci.
Rep. 9, 5175 (2019).

45. Lee, M. et al. Network properties in transitions of consciousness during
propofol-induced sedation. Sci. Rep. 7, 16791 (2017).

46. Chennu, S. et al. Brain networks predict metabolism, diagnosis and prognosis
at the bedside in disorders of consciousness. Brain 140, 2120–2132 (2017).

47. Afrasiabi, M. et al. Consciousness depends on integration between parietal
cortex, striatum, and thalamus. Cell Syst. 12, 363–373 (2021).

48. Vanhaudenhuyse, A. et al. Default network connectivity reflects the level of
consciousness in non-communicative brain-damaged patients. Brain 133,
161–171 (2010).

49. Andersen, L. M., Pedersen, M. N., Sandberg, K. & Overgaard, M. Occipital
MEG activity in the early time range (<300 ms) predicts graded changes in
perceptual consciousness. Cereb. Cortex 26, 2677–2688 (2016).

50. Russo, S. et al. TAAC–TMS Adaptable Auditory Control: a universal tool to
mask TMS clicks. J. Neurosci. Meth., https://doi.org/10.1016/
j.jneumeth.2022.109491 (2022).

51. Casarotto, S. et al. The rt-TEP tool: real-time visualization of TMS-evoked
potentials to maximize cortical activation and minimize artifacts. J. Neurosci.
Meth. 370, 109486 (2022).

52. Belardinelli, P. et al. Reproducibility in TMS–EEG studies: a call for data
sharing, standard procedures and effective experimental control. Brain Stimul.
12, 787–790 (2019).

53. Lee, M. et al. Graph theoretical analysis of cortical networks based on
conscious experience. in 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). 3373–3376 (IEEE).

54. Bodart, O. et al. Measures of metabolism and complexity in the brain of
patients with disorders of consciousness. Neuroimage Clin. 14, 354–362
(2017).

55. Bodart, O. et al. Global structural integrity and effective connectivity in
patients with disorders of consciousness. Brain Stimul. 11, 358–365 (2018).

56. Rosanova, M. et al. Sleep-like cortical OFF-periods disrupt causality and
complexity in the brain of unresponsive wakefulness syndrome patients. Nat.
Commun. 9, 4427 (2018).

57. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis. J.
Neurosci. Methods 134, 9–21 (2004).

58. Bertrand, O., Perrin, F. & Pernier, J. A theoretical justification of the average
reference in topographic evoked potential studies. Electroencephalogr. Clin.
Neurophysiol. 62, 462–464 (1985).

59. Ludwig, K. A. et al. Using a common average reference to improve cortical
neuron recordings from microelectrode arrays. J. Neurophysiol. 101,
1679–1689 (2009).

60. Zhang, D. et al. Cascade and parallel convolutional recurrent neural networks
on EEG-based intention recognition for brain computer interface. in 32nd
AAAI Conference on Artificial Intelligence, AAAI 2018. 1703–1710.

61. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint
at arXiv https://arxiv.org/abs/1412.6980 (2014).

62. Blankertz, B., Lemm, S., Treder, M., Haufe, S. & Müller, K.-R. Single-trial
analysis and classification of ERP components—a tutorial. Neuroimage 56,
814–825 (2011).

63. Smits, G. F. & Jordaan, E. M. Improved SVM regression using mixtures of
kernels. in 2002 International Joint Conference on Neural Networks. IJCNN'02
(Cat. No. 02CH37290). 2785–2790 (IEEE).

64. Rueda-Delgado, L. et al. Brain event-related potentials predict individual
differences in inhibitory control. Int. J. Psychophysiol. 18, 30870–30875 (2019).

65. Korjus, K., Hebart, M. N. & Vicente, R. An efficient data partitioning to
improve classification performance while keeping parameters interpretable.
PLoS ONE 11, e0161788 (2016).

66. Thiery, T. et al. Long-range temporal correlations in the brain distinguish
conscious wakefulness from induced unconsciousness. Neuroimage 179,
30–39 (2018).

67. Krepki, R., Blankertz, B., Curio, G. & Müller, K.-R. The Berlin Brain-
Computer Interface (BBCI)—towards a new communication channel for
online control in gaming applications. Multimed. Tools Appl. 33, 73–90
(2007).

68. Lapuschkin, S. et al. Unmasking Clever Hans predictors and assessing what
machines really learn. Nat. Commun. 10, 1096 (2019).

69. Tóth, B. et al. EEG network connectivity changes in mild cognitive
impairment—preliminary results. Int. J. Psychophysiol. 92, 1–7 (2014).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28451-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1064 | https://doi.org/10.1038/s41467-022-28451-0 | www.nature.com/naturecommunications 13

https://doi.org/10.1002/ana.26095
https://doi.org/10.1016/j.jneumeth.2022.109491
https://doi.org/10.1016/j.jneumeth.2022.109491
https://arxiv.org/abs/1412.6980
www.nature.com/naturecommunications
www.nature.com/naturecommunications


70. Nir, Y., Massimini, M., Boly, M. & Tononi, G. Sleep and consciousness in
Sleep and Consciousness (ed Cavanna, A. E., Nani, A., Blumenfeld, H. &
Laureys, S.) Chapter 9, 133–182 (Springer Berlin Heidelberg, 2013).

71. Lee, M. et al. Quantifying arousal and awareness in altered states of
consciousness using interpretable deep learning. MinjiLee-ku/ECI: First
release of ECI_update. https://doi.org/10.5281/zenodo.5760787 (2021).

Acknowledgements
This work was supported by the Institute for Information and Communications Tech-
nology Planning and Evaluation (IITP) funded by the Korean government (Nos. 2017-0-
00451; 2017-0-01779; 2019-0-00079; 2019-0-01371; and 2021-0-02068), the University
and University Hospital of Liège, Belgian National Fund for Scientific Research (F.R.S-
FNRS), the Italian Ministry of Health, GR-2016–02361494 (to S.C.), the Canadian
Institute for Advanced Research (CIFAR) (to M.M.), European Union’s Horizon 2020
Framework Program for Research and Innovation under the Specific Grant Agree-
ment (No. 945539, Human Brain Project SGA3) (to M.M. and S.L.), BIAL Foundation,
AstraZeneca Foundation, Fund Generate, King Baudouin Foundation, DOCMA project
[EU-H2020-MSCA-RISE-–778234], James McDonnell Foundation, Mind Science
Foundation, Fondazione Europea di Ricerca Biomedica, National Institutes of Health
(No. R01MH064498), Academy of Finland (Nos. 265680 and 294625), Tiny Blue Dot
Foundation (to M.M.), and grant EraPerMed JTC 2019 “PerBrain” (to M.R.). L.R.D.S.
and R.P. are PhD fellows, O.G. and A. T. are research associates, and S.L. is research
director at the F.R.S.–FNRS. We thank S. Lapuschkin for sharing the code; further, we
thank all the healthy participants, patients, and their families who participated in
this study.

Author contributions
O.G., J.O.N., M.B., S.L., M.M., and G.T. designed the experiments. O.G., A.W., A.B.,
L.R.D.S., J.O.N., R.P., V.B., M.B., O.B., J.A., A.T., M.R., S.C., and M.M. performed the
experiments. M.L. and S.-W.L. designed the methodology and analyzed the data. M.L.
drafted the manuscript with the help of O.G. All authors revised the manuscript critically
and contributed to the important intellectual content.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28451-0.

Correspondence and requests for materials should be addressed to Olivia Gosseries or
Seong-Whan Lee.

Peer review information Nature Communications thanks Christof Koch and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28451-0

14 NATURE COMMUNICATIONS |         (2022) 13:1064 | https://doi.org/10.1038/s41467-022-28451-0 | www.nature.com/naturecommunications

https://doi.org/10.5281/zenodo.5760787
https://doi.org/10.1038/s41467-022-28451-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning
	Results
	Overview of the calculation of ECI
	ECI in TMS combined with electroencephalography
	Relationship with PCI
	ECI in resting-state electroencephalography
	The practicality of calculating ECI
	Interpretation for calculating ECI

	Discussion
	Methods
	Datasets
	Data preprocessing
	Proposed framework for calculating an ECI
	Comparison with PCI
	Statistical analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




