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Abstract

Today, floating structures are widely recognized as one of the main keys to unlock a number of
problematic situations. This includes for instance floating wind turbines and solar panels which are
envisionned to play a big role in the energy transition; floating platforms and facilities which o�er
an economically and environmentally sustainable solution to reclaim land from the water when the
urban density, the space scarcity and the climate change are making it necessary; and also floating
bridges and tunnels which enable the crossing of large and deep bodies of water.

But determining the statistics of their responses to the loading of the waves is intense, although
it can typically be achieved in a more e�cient way than in time domain already, by integrating
the appropriate spectra. In this context, the computational burden is currently driven by the fact
that heavy operations need to be repeated at all integration points, which are actually numerous.
This is because the spectra usually exhibit sharp peaks as a result of the typical separation ob-
served between the frequency bands where either the energy of the loading concentrates, either the
resonance of the structure occurs.

This problem is thus addressed in the following with the help of the Multiple Timescale Spectral
Analysis. This method hinges in fact on the perturbation theory to turn the existence of distinct
peaks in the spectra into an advantage and to develop simple expressions for approximating their
integrals with a small but controllable discrepancy. In particular, these semi-analytical formulas are
intended to reduce the number of integration points and, above all, to find alternatives to bypass
the most demanding operations. This approach can essentially be seen as a generalization of
Davenport’s background-resonant decomposition, which is very well known in wind engineering. It
is by the way in this field that the Multiple Timescale Spectral Analysis has been applied until now,
and more especially for the response of structures whose natural frequencies are all much higher
than the characteristic frequency of the loading. But, when dealing with wave-loaded floating
structures, the roles of the slow and the fast timescales are likely to be interchanged for a few of
the lowest natural frequencies.

This is the main reason why the Multiple Timescale Spectral Analysis needs to be extended
first, before the resulting formulas can be employed to solve the problem at hand. In this thesis,
we therefore derive the expressions that are still missing to calculate the second and the third
order statistics of a linear oscillator’s response under a non-Gaussian loading, whose bispectrum
is possibly complex-valued. At second order, the same is done for the crossed statistics of the
multiple structural responses obtained when a modal state formulation of the governing equations
is adopted. As a result, these equations of motion are perfectly decoupled even if the damping is
not classical. It is the first time that such a feature is handled with the Multiple Timescale Spectral
Analysis, the main di�erence being that the eigenfrequencies and the eigenmodes are consequently
complex-valued as well. Overall, these expressions drastically reduce the number of integration
points required as they decrease the order of integration by one at least, or else they depend on a
few costly operations only, which do no longer have to be repeated at all integration points. In the
sequel, they are validated, verified and eventually shown to degenerate to the formulas that have
formerly been derived under more restrictive circumstances.

Besides these substantial additions to the state-of-the-art, three significant novelties are also
reported in this thesis. First, a completely new technique is introduced to find the local approx-
imations of the spectra for the resonant components. Second, a unified expression is developed
and acts as a matching in the sense of the perturbation theory for the background and the iner-
tial components. Third, two di�erent strategies are proposed to decouple the equations of motion
when fluid structure interactions are included, depending on whether the frequency sensitivity of
the mass, the damping, and the sti�ness matrices is negligible or not.
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INTRODUCTION

Problem Addressed in This Thesis

In the past several decades, the design of very large floating structures has attracted considerable
attention because they o�er a�ordable solutions to respond to many of our needs and problems
[1, 2]. Several major and strategical ongoing projects aiming at the crossing of wide and deep fjords
or straits, such as the $20-billion E39 coastal highway project in Norway [3] or the various versions
of the Messina Straits crossing [4], are even not feasible at all unless floating bridges or tunnels
technologies are used [5, 6]. Floating facilities also provide extensions for coastal areas where land
reclamations are not economically nor environmentally reasonable while floating solar platforms
and energy hubs are expected to strongly support the energy transition [7].

In general, floating structures are subjected to the action of wind and wave loads. Although they
are stochastic by nature and specified in the frequency domain by their power spectral densities, see
Figure 3, as well as frequency-dependent mass, damping, and sti�ness matrices, this problem is also
specific by the various nonlinearities associated with the loading processes and with the structural
behavior. As long as they are limited in magnitude, the dynamic analysis of such floating structures
can be conducted in both the time domain and the frequency domain, but the latter option is known
to be much more e�cient [8, 9].

Interestingly enough, in the frequency domain, the so-called spectral approach makes it quite
clear that several timescales coexist in the response of a slender bridge deck to wind forces, and
similarly for a slender floading body to wave excitations. This is for instance illustrated for one
of the floating bridge concepts proposed to complete the crossing of the Bjørnafjorden bridge in
Norway, which is represented in Figure 1, see the ranges attributed to the natural frequencies of
the structure with respect to the location of the wind and wave load spectra in Figure 2.

Moreover, this separation of timescales is known to provide approximate expressions to compute
the statistics of the structural responses to bu�eting winds with a small but controllable discrepancy,
cutting the time it takes by 10 to 100 compared to the traditional frequency domain analysis method
[10, 11, 12, 13, 14]. But these approximations are yet to be established when dealing with wave
loads and this is thus the purpose of the present thesis, as further detailed below.

Four reasons to rely on a time domain analysis.
At start, there are four main reasons to justify the use of a time domain analysis instead

of a frequency domain analysis. First, the nonlinearity of the wind loading ,[16] which is weak
though, and takes the simple form of a quadratic-type transformation of the stochastic wind field
[17].Second, the nonlinearity of the wave forces, as expressed by the Morison equation [18]. Third,
the nonlinearity of the structural behavior, which is typically attributable to the nonlinear behavior
of the cables [19]. At last but not least, fourth, the non Gaussianity of the response, which results
from the nonlinear transformation of the known (and assumed Gaussian) input fields, namely the
wind velocity field and the wave height profile.

Because of these four reasons, conducting the analysis of floating structures in the time domain,
based on extensive simulations is naturally appealing [20, 21, 22, 23]. It indeed quite simply consists
in generating synthetic Monte Carlo realizations of the wind and wave loads [24, 25, 26], then solving
the equations of motion with a step-by-step integrator to determine the time evolution of the design
quantities (displacements, stresses, cable forces) and finally performing a statistical treatment of
these quantities in order to provide extreme value distributions for the final design, see Figure 3.
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Figure 1: A three-span suspension bridge with tension-leg platforms as pylons, one of the
proposed floating bridge concepts for crossing the Bjørnafjorden strait in Norway. Illustrated

by Arne Jørgen Myhre, Statens Vegvesen. Courtesy of [15].

Figure 2: Autospectral density of the wind (blue) and the wave (red) forces on the bridge
represented in Figure 1. Courtesy of [15].
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But this traditional method actually struggles to evaluate the extreme response of large floating
structures to the actions of winds and waves in a reasonable amount of time when the timescales
associated with the motions of either the structure, either the loadings, are clearly separated. The
surge response of a compliant structure, for instance, have to be simulated long enough to cap-
ture the slow dynamics of the floaters, and with a su�ciently short time step to detect the fast
oscillations of the waves [27, 28]. This is all the more accentuated if higher order statistics such as
the skewness and the kurtosis are to be estimated since they require to use even longer response
histories.

The four reasons, revisited in the frequency domain.
In the wind engineering community, the equivalence between time and frequency domains has

been utilized and recognized for a while [14]. The design of large span bridges subjected to bu�eting
wind loads is typically done in the frequency domain [29], then spread over to the time domain in
order to take advantage of the great flexibility of the Monte Carlo simulations [30]. One should also
admit that the nonlinearity of the wind loading is not strong and equivalent linearized models have
proven very accurate[29]. It thus justifies the regular use of linear models to evaluate the bu�eting
and aeroelastic responses of large span bridges [29].

In the marine engineering community as well, many works have highlighted the possibility to
provide an equivalent linear [20], quadratic [31] or cubic [32] modeling of the problem. Based on
these equivalences and on the theory of Volterra and Wiener systems [33], the analysis of marine
structures such as tension leg and floating platforms can also be performed in the frequency domain
[34], by means of a spectral approch.

In its most simple form, it consists in the multiplication of the power spectral density of the
loading by the frequency response function of the system in order to establish the power spectral
density of the response, which contains the necessary information for the design [35]. Extensions to
the non Gaussian case exist and rely on the bispectrum of the loading and the higher order frequency
response functions of the system [12]. This allows, through a simple multiplication again, to tackle
non Gaussian and slightly nonlinear systems [36].

The second and third statistical moments of the response can then be obtained by integrating
these spectra over a one or a two-dimensional frequency space, respectively. These statistics are
particularly useful to determine the short-term extreme response distribution [37] and accumulated
damage state of the structure [38]. However and although less than in time domain, their compu-
tation is known to be demanding as well, even if modal truncation techniques are used.

The remaining computational burden in the frequency domain.
First, time consuming operations have to be repeated at each integration point, e.g. the estab-

lishment of the loading spectra in three dimensions for all combinations of the numerous structural
degrees-of-freedom, or the projection of such a large number of loading spectra into the modal
basis [13]. Second, computing these integrals accurately enough necessitates to use many closely
spaced points because the spectra of the response typically feature several sharp peaks related to
the resonance of the structure in its multiple modes and to the particular energy content of the
wave loads [11]. Third, a large panel of such short-term analyses have to be executed for many
di�erent sea states. Depending on their probability of occurence, the results can then be weighted
and concatenated to provide long-term extreme distributions [39] and fatigue accumulations [40].

Over the years, many studies have explored the possibility to improve the computational e�-
ciency of the long-term analyses for various marine structures [41, 42]. They tried to reduce the
number of short-term analyses that are required, by using for instance the first and second order
reliability methods, the inverse reliability method, the environmental contour approach but also
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surrogate modelling and learning algorithms [43, 44, 45, 46, 47]. Besides, they attempted to accel-
erate each of these many short-term analyses. With this in mind, Giske et al. recently proposed to
estimate the cross-spectral densities of the wave loads by using Fourier series [48]. But, although
they are obtained much more rapidly than before, they still have to be projected into the modal
basis for a lot of frequencies.

How is the reduction of this complexity addressed in the current thesis?
Whereas the sharpness and the distinctness of the peaks in the spectra to integrate constitute

a huge drawback for a traditional frequency domain analysis, it can in fact be turned into an
advantage as it allows to use the Multiple Timescale Spectral Analysis [11].

This general framework is based on the perturbation theory and hinges on the existence of
well separated timescales in the responses of structures. It has been formulated to provide rapid
and accurate estimations for the main components of the response statistics in the form of semi-
analytical expressions. These formulas are actually derived with the aim to reduce the number of
points that are needed to integrate such spectra with sharp peaks, and especially avoid to project
the forces into the modal basis so many times.

For the moment, though, the Multiple Timescale Spectral Analysis concerns the response of
slightly-damped structures to the loading of bu�eting winds, whose characteristic frequency is
typically much lower than the natural frequencies of the structures [10, 11, 12, 13]. They are hence
excited in their background and resonant regimes. By contrast, when dealing with wave loads on
floating structures, the roles of the slow and fast timescales are likely to be interchanged, as this is
schematically represented for the power spectral densities in Figure 3.

In brief, the purpose of this thesis is thus to extend the Multiple Timescale Spectral
Analysis further, in order to e�ciently tackle the analysis of large and slender structures
which are expected to respond in the inertial regime as well, leaving aside the wind loads for
which solutions already exist. Other novelties reported in this thesis also aim at handling the
non-classical damping and the frequency-dependent nature of the structural properties which
can result from the consideration of fluid-structure interactions.

What are the expected outcomes of the proposed developments?
As the Multiple Timescale Spectral Analysis is supposed to be much more e�cient than any

other method, while providing a small and controllable discrepancy, it is the perfect tool to analyze
very rapidly numerous possible layouts and configurations. It should thus be used at the early
stage of the design, in order to guide engineers with graspable information, while a heavier time
domain simulation (as performed today) would be used for the final design.

At last but not least, many floating structures have also been constructed over the recent
years and today’s monitoring possibilities allow comparison between numerical predictions and
real operating conditions of a bridge [29-30]. In this context, it is not surprising to observe that
the comparison is based on frequency domain information (power spectral density, coherence and
related information in the modal basis) and on the dispatching of the structural response between
the background and resonant components, while this thesis makes it possible to examine also the
inertial ones.

Altogether, these two expected outcomes certainly show that the spectral approach is the best
way to understand the actual behaviour of the structures and is definitely much richer than what
the comparison of time series could give.
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The Multiple Timescale Spectral Analysis

Where does it come from?
Historically, in wind engineering, Davenport formulated an approximate expression for the vari-

ances of the modal responses [14]. It yielded the well-known background/resonant decomposition,
which relies on a single projection of the forces. Then, Gu [49] and Denoël [13] independently did
the same for the covariances of the modal responses, which can sometimes not be ignored in the
reconstruction of the nodal statistics. To do so, the power spectral densities of the wind loads were
just replaced by a constant value over the whole domain of integration.

However, such a substitution was not fully justified at this point, mathematically speaking [12].
Besides, it also appeared that this approach could not be extended as is to higher orders [12]. To
solve these issues, Denoël identified some small parameters in the definition of the response spec-
tra, which allowed them to be integrated with one of the perturbation methods proposed by Hinch
[50]. Nevertheless, Denoël adapted it to deal with the third order analysis of a wind-excited oscilla-
tor in [12] and this is what subsequently gave birth to the Multiple Timescale Spectral Analysis [11].

How does it work?
The Multiple Timescale Spectral Analysis consists in the sequential evaluation of the major

contributions to these integrals with sharp peaks. This is achieved by looping around the same
steps: (i) select the peak that contributes the most, then (ii) find a local approximation of the
integrand that is su�ciently accurate over the extent of the peak considered, integrable in the
far field, and in an explicit way. After integration, it thus provides a simple expression for the
statistical component associated to the considered peak. Except for these requirements of precision,
integrability and simplicity, freedom is left to the user on how to find such a closed-form formula.

Next move is to (iii) subtract the approximate function from the integrand in order to obtain a
residual. The sequence (i)-(iii) is then repeated for the following contribution. Bit by bit, the peaks
that have already been treated disappear from the residual function until a proper balance is reached
between the accuracy and the complexity of the formulas developed for the main components of
the statistics. At this point, the iterative process is stopped and the last remainder is neglected.

Whenever in step (ii), an arbitrary small parameter is most often introduced together with a
stretching. It usually relates to a particular feature of the problem and it helps to find a proper
estimation for the analytical functions over the zone of interest, which is justified from an asymp-
totic standpoint. According to the perturbation theory, this number eventually disappears from
the final results because it is arbitrarily chosen.

How about an example?
For the sake of the understanding, let us exemplify this procedure with the variance of the

response of a linear oscillator subjected to the loading of the wind, or equivalently, in a decoupled
setting, a modal response of a linear structure to such a wind excitation. At start, it reads

‡
2
q =

+Œ⁄

≠Œ

Sq (Ê) dÊ (1)

where Sq (Ê) stands for the power spectral density of the response and is schematically represented
by a black line in Figure 4-(A).

As mentioned earlier, the power spectral density of the response can actually be expressed as
the following product

Sq (Ê) = Sf (Ê) |H (Ê)|2 (2)
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where Sf (Ê) is the power spectral density of the force and |H (Ê)|2 is the structural kernel of the
system. In the current situation, it is given by

|H (Ê)|2 = 1
k2

1
1
1 ≠

!Ê
Ê̄

"222
+

!
2›

Ê
Ê̄

"2
(3)

where k is the sti�ness, › is the damping ratio and Ê is the natural circular frequency.
The wind loading is usually seen as a slow driving process, which means that the center of grav-

ity of its power spectral density is located at – π Ê̄. The integrand in Equation (1) thus exhibits
a peak in the background region. It also features two additional peaks related to the resonance of
the system, at ± Ê̄.

Loop 1: Based on the available information, it is not possible to rank these three peaks ac-
cording to the importance of their contribution. When applying the Multiple Timescale Spectral
Analysis, any of them can therefore be selected at Step (i) but it is customary to start with the
background one.

In order to complete Step (ii), the stretched coordinate Ê = –÷ can first be introduced. It
interestingly rescales the range Ê = ord (–) to an order-one in ÷, see the resulting functions in the
gray box in Figure 4-(A). Using this scaling, the structural kernel reads

|H (Ê [÷])|2 = 1
k2

1
1
1 ≠

!–
Ê̄ ÷

"222
+

!
2›

–
Ê̄ ÷

"2
(4)

and can then be expanded in an asymptotic series for –/Ê̄ π 1. At leading order, it can con-
sequently be approximated by 1/k

2. Substituting this coe�cient in Equation (2) subsequently
provides

Sb (Ê) = Sf (Ê)
k2 (5)

which is an appropriate approximation of the integrand in the sense of the Multiple Timescale
Spectral Analysis. As shown by the red dashed line in Figure 4-(A), it is indeed locally accurate in
the low frequencies. It is also bounded in the far field and integrable in an explicit way as it yields
the simple expression

‡
2
b =

‡
2
f

k2 (6)

where ‡
2
f is the variance of the wind load, for the background component of the response. Pro-

ceeding with Step (iii), the first residual function

Ŝq (Ê) = Sq (Ê) ≠ Sb (Ê) (7)

= Sf (Ê)
3

|H (Ê [÷])|2 ≠ 1
k2

4
(8)

is eventually built and has obviously no more peak in the vicinity of the origin, see the black line
in Figure 4-(B).

Loop 2: Starting back at Step (i), the rightmost peak is then selected. As shown in the gray
box in Figure 4-(B), the introduction of the strained coordinate Ê = Ê̄ (1 + ›÷) allows to focus on
this peak, whose extent is known to scale with › π 1. Indeed, the smaller the damping ratio, the
sharper the peaks of the structural kernel. Please notice that this choice is commonly made to add
such a physical insight in the derivation, although any small number Á π 1 could be employed and
would disappear anyways in the end.
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Figure 4: Schematic representation of how the Multiple Timescale Spectral Analysis applies
to the second order response of a linear oscillator and allows to express the background/resonant

decomposition of the variance.
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Then in Step (ii), among other possibilities [11], it is decided to expand the residual structural
kernel in an asymptotic series for › π 1. It reads as follows

|H (Ê [÷])|2 ≠ 1
k2 = 1

4k2›2 (÷2 + 1) ≠ ÷

4k2›2

!
÷

2 + 2
"

(÷2 + 1)2 › + ord
1
›

2
2

(9)

and it can satisfactorily be truncated at leading order provided that the damping ratio is e�ectively
very small. Meanwhile, the power spectral density of the loading is replaced by the constant value
Sf (Ê) across the width of the resonant peak. To justify this from a Taylor series perspective, it is
necessary to check that Ê̄ˆ

i
÷Sf (Ê̄) π Sf (Ê̄) to keep the asymptoticness of the series

Sf (Ê [÷]) = Sf (Ê̄) + ÷ˆ÷Sf (Ê̄) › + ord
1
›

2
2

(10)

in the neighborhood of ÷ = 0, with ˆ
i
÷ indicating the i-th order di�erentiation with respect to the

stretched coordinate ÷. Under these conditions, the local approximation

Sr1 (Ê) = 1
4› (÷2 + 1)

Sf (Ê̄)
k2 (11)

is supposed to be su�ciently accurate over the range of interest. It is also integrable in the far field
and in an explicit way. It can therefore be considered as appropriate in the sense of the Multiple
Timescale Spectral Analysis. Integrating Equation (11) thus gives the simple expression

‡
2
r1 = fiÊ̄

4›

Sf (Ê̄)
k2 (12)

for the contribution of the rightmost resonant peak to the response.

Loop 3: Repeating these steps one last time, or taking the symmetry of the integrand into account,
subsequently yields

Sr2 (Ê) = Sr1 (≠Ê) (13)

for the local approximation of the leftmost resonant peak, meaning that Sr1 (Ê) is just mirrored
with respect to the y-axis, see Figure 4-(C). Therefore, ‡

2
r1 = ‡

2
r2 and the resonant component of

the response is expressed by
‡

2
r = ‡

2
r1 + ‡

2
r2 = fiÊ̄

2›

Sf (Ê̄)
k2 (14)

once the two resonant peaks are considered.

Globally: In the end, the last residual is negligible, see Figure 4-(D), and the background/resonant
decomposition thus reads

‡
2
x = ‡

2
b + ‡

2
r (15)

with

‡
2
b =

‡
2
f

k2 (16)

and
‡

2
r = fiÊ̄

2›

Sf (Ê̄)
k2 (17)

which correspond to Davenport’s formulas [14].
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My Personal Contributions, see Blue Boxes in Figure 5

Figure 5 provides an overview of the existing and the missing pieces in the Multiple Timescale
Spectral Anaysis of linear structures. It currently covers: the background and the resonant compo-
nents of the variance, the skewness and the kurtosis of the response of a single degree-of-freedom
system as well as the covariances between the two-by-two responses of a multi degree-of-freedom
system, provided that they are decoupled in the modal basis [12, 13, 11, 10].

The inital input of Davenport for the background/resonant decomposition of the variance is
acknowledged by being represented in green, even if it was then revisited in the light of the Multiple
Timescale Spectral Analysis. Meanwhile, the background/resonant components of the higher order
statistics, which grant access to the skewness and the kurtosis, and the crossed statistics at second
order are displayed in yellow. Their expressions have been provided by Denoël [12, 13, 11, 10].

The new elements whose formula will be derived in this thesis are coloured in dark blue. To
do so, we will follow the principles of the Multiple Timescale Spectral Analysis, as illustrated in
the previous section, but applied to much more complicated situations. Meanwhile, the light blue
shading indicates a case which is not discussed in the manuscript but results directly from it.

Although they all represent a substantial extension of the state-of-the-art, these components
are not the only novelties presented herein. In particular, (i) a brand new way of finding the
approximations for the resonant components is introduced, (ii) a unified expression is developed for
the background and the inertial components, as shown by the bracket symbols in Figure 5, and (iii)
two strategies are proposed to decouple the equations of motion when fluid structure interactions
are included. They rely on a state space formulation (SSF) of the governing equations and depend
on either constant, either frequency dependent mass (M), damping (C) and sti�ness (K) matrices.
They are respectively denoted by the symbols (⇢Ê) and (Ê) in Figure 5.
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Figure 5: Application range for the Multiple Timescale Spectral Anaysis of a linear structure.
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Outline of the Thesis

As the reader can see in Figure 5, two axes of complexity are explored in this thesis:

In Part 1 The response of a single degree-of-freedom system is studied under a non-Gaussian
loading. In this case, the di�culty lies in the consideration of higher order statistics.

In Part 2 The response of a multi-degree-of-freedom system is studied under a Gaussian loading.
In this case, the di�culty arises in examining the crossed statistics of the responses, at
second order only.

At the beginning of Part 1, Chapter 1 establishes the governing equations of an oscillator,
such as a tension-leg platform, which is excited by a Morison wave load. The nondimensionalization
and the simplification of the problem are discussed. The first and second order spectra of such an
oscillator’s response under a linearized, quadratized and non-polynomial forcing process are also
examined.

In Chapter 2, the Multiple Timescale Spectral Analysis is applied to the power spectral density
of the response in order to formulate simple expressions to estimate the main components of the
variance in an e�cient way. Several variants are tested and are eventually compared in a parametric
analysis.

Chapter 3 focuses on the developments of the closed-form expressions required to approximate
rapidly the third central moments of the response to a non-normal loading, whose bispectrum is
possibly complex-valued. A parametric analysis is conducted to validate these formulas and evaluate
their limitations as well.

As we enter the second part of the thesis, Chapter 4 presents the specificities of the governing
equations obtained when dealing with the responses of a multi degree-of-freedom system to the
forces of the waves, which include fluid-structure interactions. In order to decouple the equations
of motion, two di�erent strategies are introduced together with a modal state formulation.

Chapter 5 contains the derivations of the simple expressions which are dedicated to the rapid
estimation of the spectral densities and the second moments of the responses given by the first de-
coupling strategy. Their validity is assessed with a parametric analysis, performed on a minimalistic
example.

In Chapter 6, simple expressions are derived for approximating the spectral densities and the
second moments of the responses which result from the implementation of the second decoupling
strategy. A demonstration is provided regarding on how well they degenerate to the formulas
obtained by Denoël and Davenport in more restrictive circumstances.

Finally, Chapter 7 aims at validating the decoupling strategies and the approximate decom-
positions proposed in the second part of the thesis by using them for the stochastic analysis of
realistic multi-degree-of-freedom structures subjected to hydroelastic loads.
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Chapter 1

Contextualization

1.1 Context and Propositions

In this first part of the thesis, we focus on the second and the third central moments of the
response of a linear single-degree-of-freedom system to a non-Gaussian wave loading, neglecting
fluid-structure interactions.

To start, the equations of motion are introduced, first in the time domain, in Section 1.2, and
then in the frequency domain, in Section 1.4. Once the second and the third order spectra of the
response are established, they can eventually be integrated in order to determine the second and
the third central moments of the response. These operations are performed in a much more e�cient
way, by using the simple expressions derived for the major components of these statistics with the
help of the Multiple Timescale Spectral Analysis. However, as explained in the introduction and
detailed further, in Section 1.5, some of them are still missing or are not yet applicable in a marine
engineering context.

Chapter 2 and Chapter 3 therefore aim at addressing these issues for the second and the
third central moments, respectively. At the end of each chapter, the resulting decompositions are
eventually validated and verified for a wide range of parameters against the numerical integration
of the response spectra obtained from analytical formulations and simulated data.

1.2 Governing Equations in Time Domain

The surge response of an oscillator, which can typically represent a tension-leg platform as shown
in Figure 1.1, is governed by the nonlinear second order di�erential equation

mẍ (t) + cẋ (t) + kx (t) = f (t) (1.1)

where x (t) is the displacement, ẋ (t) is the velocity and ẍ (t) is the acceleration of the oscillator,
k is the sti�ness, c is the viscosity, and m = ms + ma is the e�ective mass (i.e. the mass of the
structure plus the mass of fluid accelerating with the structure). Also, the horizontal force exerted
by random waves on such an oscillating point-like structure, which is elastic and small compared
to the wavelength of the waves, can be expressed according to Morison’s equation [18] by the sum
of two loading components

f (t) = fm (t) + fd (t) (1.2)

where fm (t) and fd (t) are respectively an inertia and a drag force. The inertia force reads

fm (t) = kmu̇ (t) (1.3)

and is due to the pressure gradient generated by the acceleration of the flow, u̇ (t). It resembles a
buoyancy force and results from a linear transformation, as the overhead dot denotes di�erentiation
in time of u (t) being the fluctuations of the water velocity around uc, the constant current speed.
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Figure 1.1: Examples of tension-leg structures.

The drag force reads
fd (t) = kd |uc + u (t) ≠ ẋ (t)| (uc + u (t) ≠ ẋ (t)) (1.4)

and acts in the same direction as the relative velocity of the fluid with respect to the speed of the
structure, ẋ (t). This is the reason why this relative velocity enters a nonlinear function involving
the product of its absolute value and its signed value. At last, the coe�cients km and kd, are related
to geometric and hydrodynamic properties through

km = cmvwdw and kd = 1
2cdawdw (1.5)

where dw is the density of the water while cm is the inertia coe�cient, cd is the drag coe�cient,
and aw is the cross-sectional area of vw, the volume of the submerged part of the body.

Because of the memoryless and the feedback type nonlinearities included in the drag loading
component, the response of the structure is expected to be non-normal. It is therefore necessary
to determine not only the variance but also the higher order statistics of the response in order to
describe its probability density, and especially the tail of the distribution in an unambiguous and
accurate way.

These developments are presented next. They are valid regardless of the analytical, numerical
or experimental definition selected for the power spectral density of the random process u (t). This
sole input of the dynamical system is for its part supposed to be zero-mean, Gaussian, stationary,
and is thus fully defined by its power spectral density

Su (Ê, s) = Fh (Ê, s) Sh (Ê) (1.6)

where Fh (Ê, s) is a wave elevation-to-velocity amplitude operator, depending on the depth s, and
Sh (Ê) is a wave elevation power spectral density. This being said, for the sake of the illustrations,
the structure is assumed to be located at the still-water level in deep water. Thus, the application
of the Linear Airy Wave Theory [61] gives

Fh (Ê, s) = Ê
2 (1.7)
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and it is also decided herein to model the wave elevation process, h (t), by using the two-sided
Pierson Moskovitz spectrum

Sh (Ê) = 5
32

Ê
4
h

|Ê|5 h
2
s exp

A

≠5Ê
4
h

4Ê4

B

(1.8)

with two parameters, hs and Êh. They are typically referred to as the significant wave height and
the peak frequency of the wave elevation spectrum [61]. Please notice that the power spectral
densities employed in this thesis are two-sided and can thus be integrated from ≠Œ to +Œ to
provide the variances of the processes they are associated to. For the wave elevation and velocity
processes, for instance, it yields

‡
2
h =

3
hs

4

42
and ‡

2
u =

Ú
3fi

4 Ê
2
u‡

2
h (1.9)

where

Êu = 4
Ú

5
3Êh (1.10)

is the peak frequency of Su (Ê) and can also be obtained by cancelling the Ê-derivative of Su (Ê).

1.3 Dimensionless Formulation of the Equations

Equation (1.1) can then be written in a non-dimensional form by introducing a time duration, a
structural response and a water velocity of reference: tr, xr, and ur respectively. The associated
dimensionless quantities

· = t

tr
; ‰ = x

xr
and ‚ = u

ur
(1.11)

can hence be defined. They are subsequently substituted into Equation (1.1). After division by
kxr, it yields

m

kt2
r
‰

ÕÕ + c

ktr
‰

Õ + ‰ = kmur

kxrtr
‚

Õ + kdu
2
c

kxr

----1 + ur

uc
‚ ≠ xr

tr

1
uc

‰
Õ
----

3
1 + ur

uc
‚ ≠ xr

tr

1
uc

‰
Õ
4

(1.12)

where the new independent time coordinate, · , is omitted for conciseness. In order to ease the
comparison with the equation obtained for a wind-excited oscillator in [36], the reference response
and reference time are chosen as

kxr = 2kducur and tr = 1
Ê0

(1.13)

where Ê0 =


k/m is the natural frequency of the undamped system. These choices allow to obtain
a unitary coe�cient in front of the highest order derivative as it is usually recommended. Lastly,
the reference water velocity is also set equal to ‡u being the standard deviation of the process u (t).

As a consequence, the presence of the turbulence intensity of the waves, ⁄u = ‡u/uc, is revealed
in the dimensionless formulation of the governing equation

‰
ÕÕ + 2›s‰

Õ + ‰ = Ÿf ‚
Õ + 1

2⁄u

--1 + ⁄u‚ ≠ 2›a⁄u‰
Õ-- !

1 + ⁄u‚ ≠ 2›a⁄u‰
Õ" (1.14)

where the symbol Õ denotes di�erentiation with respect to · . Similarly, Equation (1.6) is rewritten
dimensionlessly as

S‚ (�) =
Ú

3
fi

–
2
‚

|�|3 exp
A

≠3–
4
‚

4�4

B

(1.15)
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where � = Êtr is the nondimensional circular frequency and –‚ = Êu/Ê0 is the frequency ratio of
the wave velocity process. Besides, the integration property of the power spectral densities holds
true for the rescaled processes as well and can thus be applied to the water velocity process, ‚ (·),
to demonstrate that, given the chosen non-dimensionalization, this input is characterized by a unit
variance, ‡

2
‚ = 1, regardless the value of the frequency ratio.

According to the Vashy-Buckingham theorem, the problem described by Equation (1.14) and
Equation (1.15) is ruled out by a set of five dimensionless numbers. They are listed as follows

⁄u = ‡u

uc
, ›s = c

2
Ô

km
, ›a = kducÔ

km
, Ÿf = kmÊ0

2kduc
, –‚ = Êu

Ê0
(1.16)

and they are readily identified as the turbulence intensity, the stuctural damping ratio, the added
damping ratio, the loading ratio and the frequency ratio.

In marine engineering applications, the structural and the added damping ratios (›s and ›a) are
usually small numbers, ranging between 10≠3 and 10≠1, but the turbulence intensity (⁄u) can reach
values from zero up to approximately 3 [62]. All the more so, the frequency ratio (–‚) associated
to the surge motion is typically much greater than unity when compliant wave-loaded structures,
such as floating o�shore wind turbines or floating bridges, are considered [27, 28]. Besides, the
loading ratio (Ÿf ) also starts at zero and is theoretically unbounded, meaning that the inertia force
can sometimes be neglected in front of the drag force [63], and vice versa [64]. Also, it is more
appropriate to relate ⁄u to the relative lenght of the waves by writing it as follows

⁄u = 4
Ú

5fi

1024
hs

uc
Êh

instead of the turbulence intensity.
For an oscillating flow then, the relative importance of the drag forces over the inertia forces is

usually related to the Keulegan-Carpenter number [65]. It is expressed as

Nkc = UTu

W
(1.17)

which is the ratio between the amplitude of the waves and the characteristic lengthscale of the
immersed body. Alternatively, it can be rewritten as

Nkc = 2�‚

Ÿf
(1.18)

where �‚ = Ê0/Êu is the inverse of the frequency ratio. Equation (1.18) therefore highlights the
fact that larger Keulegan-Carpenter numbers are associated with smaller loading ratios, and thus
a relatively smaller influence of the inertia forces. In order to focus on the nonlinear nature of the
loading process, it is considered as drag-dominated. Being linear and independent anyways, the
inertia force are thus discarded in the sequel, by setting the loading ratio equal to zero.

Moreover, since the purpose of the present chapter is to study the surge motion of such floating
structures, which is much slower than the water particles for most wave loading conditions, an
alternative formulation can actually be adopted for the nondimensional drag force [32]. It reads

Ïd (·) = 1
2⁄u

(1 + ⁄u‚ (·)) |1 + ⁄u‚ (·)| ≠ ›a |1 + ⁄u‚ (·)| ‰
Õ (·) (1.19)

where the term ›a |1 + ⁄u‚ (·)| ‰
Õ (·) is in general supposed to contribute substantially to the overall
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damping. For practical reasons, though, it is typically replaced by a time invariant substitute1. Var-
ious procedures exist to do so but the most common consists in using the mean value of |1 + ⁄u‚ (·)|
instead [66].

As a result of this simplification, the velocity-feedback disappears from the definition of the
loading process and transformed into an additional damping parameter. The motion of the system
in surge is consequently governed by the di�erential equation

‰
ÕÕ (·) + 2›‰

Õ (·) + ‰ (·) = Ïf (·) (1.20)

whose homogeneous part is linear. The non-normality of the response is thus solely due to the
nonlinear transformation of the zero-mean, stationary and Gaussian process ‚ (·)

Ïf (·) = 1
2⁄u

(1 + ⁄u‚ (·)) |1 + ⁄u‚ (·)| (1.21)

which is still necessary to define the loading process.

1.4 Spectral Formulation of the Equations

In a spectral approach, it is necessary to determine the power spectral density, but also the higher
order spectra of these non-Gaussian loading and response processes, for them to be completely
described in a probabilistic sense [67]. In particular, the power spectral density, the bispectrum,
and so on, of the response can basically be obtained once their loading counterparts are introduced.

Although the power spectral density and the bispectrum of the loading, SÏ (�) and BÏ (�1, �2),
can theoretically be defined in an analytical way based on the power spectral density of the water
velocity fluctuations, this possibility is generally disregarded because the expressions at stake are
practically intractable2.

As a consequence, the preferred solution usually consists in polynomializing the loading, first,
so that the spectra are much more simple to establish [68]. In principle, the higher the relative
wave lenght, the higher the degree of the polynomial required to reproduce the actual nonlinearities
of the loading in a satisfactory way [62].

For the purpose of this thesis, however, a degree two at most is considered because the next
ones do no longer alter the topology of the spectra in the low frequency range. It thus reads

Ïp (·) = p0 + p1‚ (·) + p2‚
2 (·) (1.22)

where the coe�cients of the polynomialization are herein obtained by minimizing the mean-square
error between the actual nonlinear loading and its polynomial approximation. Interestingly enough,
they are actually expressed in closed-form as

p0 = b1 + b2 ; p1 = 2⁄up0 and p2 = ⁄
2
ub1 (1.23)

with

b1 = 1
2⁄u

erf
AÛ

1
2⁄2

u

B

and b2 =
Ú

1
2fi

exp
3

≠ 1
2⁄2

u

4
(1.24)

by applying this rationale to Equation (1.21) and Equation (1.22) as in [69].
With such a polynomial formulation, the power spectral density of the loading process can

therefore be expressed in very simple terms by
1
Handling a time-variant coe�cient is manageable but complicated because it would be dealt with by means of a

convolution operation after the application of a Fourier transform.
2
If only they have already been developed, which is not the case for the bispectrum
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Figure 1.2: Structural kernel, real and imaginary parts of the frequency response function.
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Figure 1.3: Power spectral density of the response to a quadratized loading process.
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SÏ (�) = SÏ1 (�) + SÏ2 (�) (1.25)

with SÏ1 (�) = p
2
1S‚ (�) (1.26)

and SÏ2 (�) = 2p
2
1p2

+Œs

≠Œ
S‚ (�1) S‚ (� ≠ �1) d�1 (1.27)

while BÏ (�1, �2) = BÏ1 (�1, �2) + BÏ2 (�1, �2) (1.28)

with BÏ1 (�1, �2) = 2p
2
1p2 (S‚ (�1) S‚ (�2) + S‚ (�1) S‚ (�1 + �2) + S‚ (�1 + �2) S‚ (�2))(1.29)

and BÏ2 (�1, �2) = 8p
3
2

+Œs

≠Œ
S‚ (� + �1) S‚ (�1 ≠ �) S‚ (�) d� (1.30)

corresponds to the bispectrum of the loading process. When the loading is linearized and p2 = 0,
the power spectral density is thus proportional to the power spectral density of the water velocity
fluctuations while the bispectrum trivially vanishes. When the loading is quadratized, however,
the power spectral density is complemented by SÏ2 (Ê), which contains some energy in the low
frequency range, and the bispectrum is no longer nil.

According to Equation (1.20), the power spectral density and the bispectrum of the response
are eventually given by

S‰ (�) = Gs (�) SÏ (�) and B‰ (�1, �2) = Gb (�1, �2) BÏ (�1, �2) (1.31)

where
Gs (�) = |H‰ (�)|2 and Gb (�1, �2) = H‰ (�1) H‰ (�2) H

ú
‰ (�1 + �2) (1.32)

are the structural kernels at second and third orders. They both depend on the frequency response
function

H‰ (�) =
1
1 ≠ �2 + 2ÿ̇›�

2≠1
(1.33)

which completely characterizes the dynamical behavior of the considered oscillator. To get a first
overview of the problem at second order, illustrations are provided in in Figure 1.2 and Figure
1.3 for the structural kernel and the power spectral density of both the loading and the response,
respectively, whereas the constitutive functions of the bispectrum will be represented later on, in
Chapter 3.

Since the power spectral density of the loading is divided into two parts, the same is done for
the power spectral density of the response. The resulting functions are therefore shown separately
and for two di�erent loading cases, in Figure 1.3 (A1)-(A2) for –‚ = 1/4 < 1 and in Figure 1.3
(B1)-(B2) –‚ = 2 < 1, respectively.

However, the structure responds in the background and the resonant regimes in Figure 1.3 (A1),
(A2), and (B2), surprinsingly, while the structure is exclusively excited in the inertial regime in
Figure 1.3 (B1). In order to discriminate these two types of compositions, it consequently seems
more appropriate to introduce a new parameter, –Ï, which corresponds to the location of the main
peak in the power spectral density of the loading instead of the water velocity fluctuations. More
specifically, in the power spectral densities at stake, it means that –Ï1 = –‚ and –Ï2 = 0.

In the end, the probabilistic description of the response usually requires to calculate its statistics.
The second and third central moments of the response can in particular be obtained by integrating
the corresponding spectra of the response as follows

‡
2
‰ =

+Œ⁄

≠Œ

S‰ (�) d� and —‰ =
+Œx

≠Œ
B‰ (�1, �2) d�1d�2 (1.34)
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and subsequently be used to compute the skewness of the response

“‰ = —‰

‡3
‰

(1.35)

which characterizes the extremes. Nevertheless, these operations are numerically expensive to
perform due to the presence of sharp and distinct peaks in the integrands, as shown for the power
spectral density of the response in Figure 1.3. This is thus what motivates the use of the Multiple
Timescale Spectral Analysis. Unfortunately, some pieces are still missing to do so, as detailed in
the upcoming section. The objective of this work is therefore to develop them.

1.5 Need for MTSA Extension

For the record, the inertia force can directly be discarded by imposing Ÿf = 0 in a wind engineering
setting because the flow is not periodically oscillating as the waves are. In addition, in this specific
context, the other dimensionless numbers listed in Equation (1.16), i.e. ⁄u, ›s, ›a, and –‚, are
typically recognized as being all small [36]. The absolute value in Equation (1.20) can therefore
be dropped based on the smallness of the turbulence intensity and the added damping. Indeed,
it indicates that the mean velocity of the flow is much larger than the velocity of its fluctuations
and of the structure itself. The direction of the relative wind velocity is therefore expected to stay
in line with the mean flow and the absolute value is not needed anymore, because its argument is
always positive.

Implementing this brings us directly back to the governing equation of a wind-excited oscillator
when a quasi-steady assumption is made. It is accordingly given by

‰
ÕÕ + 2›‰

Õ + ‰ = 1
2⁄u

(1 + ⁄u‚)2 (1.36)

and it can be expanded as
‰

ÕÕ + 2›‰
Õ + ‰ = 1

2⁄u
+ ‚ + ⁄u

2 ‚
2 (1.37)

where › := ›s +›a is the total damping ratio, by definition. The smallness of this damping ratio also
suggests that the memory of the structure is relatively long and, last but not least, the smallness of
the frequency ratio indicates that the wind loading is much slower than the motion of the structure.

Calculating the statistics of the structural response to a bu�eting wind excitation in the time
domain consequently necessitates resorting to realizations that are long enough to capture the slow
dynamics of the forces, but whose time steps are short enough to detect fast oscillations of the
structure. And this is all the more accentuated if higher order statistics are to be estimated as well.

Alternatively, since the wind loading process is shown to be defined as a quadratic transforma-
tion of a Gaussian process, the response spectrum, bispectrum, and so on, can easily be expressed
in the frequency domain and can then be integrated to get the same response statistics as in
time domain. But again, the smallness of the frequency and the damping ratios imply that these
spectra, in possibly multiple dimensions, exhibit sharp peaks whose accurate integration requires
using many close quadrature points. In either way, obtaining the response statistics is therefore
computationally demanding.

This is the reason why the Multiple Timescale Spectral Analysis has been used on these in-
tegrands with sharp peaks in the past as well. For instance, it helped to derive semi-analytical
expressions for the second, third and fourth central moments of such an oscillator’s response to a
wind loading, without velocity feedback, first, in [12] and with a velocity feedback, then, in [36].
These statistics can therefore be computed much more e�ciently than before, at the extra cost of
a small but controllable discrepancy.
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To do so, it was however assumed that the frequency ratio and the turbulence intensity (a.k.a.
the relative wave length) were small, which is however not systematically valid for marine engi-
neering applications and especially not when floating structures are moving in surge, as explained
in Section 1.3.

The wave loads are thus expected to activate the system in its inertial regime, resulting in the
emergence of other contributions than the background ones in the statistics of the response which
are yet to be taken into account by the Multiple Timescale Spectral Analysis as well.

In Chapter 2, it is desired to overcome these restrictions and to develop solutions for the inertial
components of the variance, first, that are valid no matter the power spectral density of the loading.
A unified formulation is eventually sought in order to match the two limit cases that are observed
when the frequency ratio is either much smaller, either much greater than unity and the contribution
which is due to the peaks of the loading spectrum is either background, either inertial. This also
aims at discovering to what extent it is possible to lower the level of the errors that are committed
when the timescales are not well separated and the frequency ratio approaches unity.

Besides, the bispectrum of the response and its two-dimensional integral, which gives access
to the third central moment of the response, are also intended to be examined in the light of the
Multiple Timescale Spectral Analysis, in Chapter 3. After combination with the second moment,
it is supposed to provide an e�cient tool to compute the skewness of the response.

As at second order, the background and resonant components have already been derived in
[12] and revisited in the light of the Multiple Timescale Spectral Analysis in [11]. However, in
these studies, the loading bispectrum was assumed to be real-valued only. This was of course fully
justified since the wind loading was expressed, as usual, as a quadratic transformation of a Gaussian
process [70].

But when trying to apply this decomposition to the experimental wind data collected at Tokyo
Polytechnic University [71], Michele Esposito discovered that a component seemed to be missing
[72]. It then appeared that the imaginary part of the loading bispectrum is sometimes of the same
order of magnitude as the real part for signals recorded in real conditions and therefore contributes
to the third moment of the response as well [73]. Besides, evidences show that this is also likely to
be observed with wave loads and this is even more widely recognized in this field [74, 75, 76, 77].

Although the current wind and wave loading models are not able to reproduce this particular
feature because they are expressed as static transformations of a Gaussian process, they should
theoretically be refined to include memory e�ects in the future.

In Chapter 3, the Multiple Timescale Spectral Analysis is thus applied to derive some expres-
sions for the components of the third order response which are due to the existence of an imaginary
part in the bispectrum of the loading when the loading is background, in order to complete the
former decomposition of Denoël. Then, the contributions which originate from the product of the
third order kernel with both the real and the imaginary parts of the loading bispectrum are tackled
in a similar fashion when the loading is inertial.
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Chapter 2

Second Central Moment

2.1 Introduction and Preliminary Considerations

In this chapter, simple expressions are formulated for the main components of the variance of an
oscillator’s response to a given wave loading. To do so, the integration of the power spectral density

S‰ (�) = Gs (�) SÏ (�) (2.1)

where the structural kernel reads
Gs (�) = |H‰ (�)|2 (2.2)

is handled with the help of the Multiple Timescale Spectral Analysis.
Following the discussion held in Section 1.5, it is anticipated that there are essentially a resonant

contribution, which is due to the peaks of the structural kernel, and a loading contribution, which
is either background, either inertial, but anyways always pertaining to the peaks of the loading
spectrum.

As evidenced in the introduction for the background resonant decomposition and according to
the perturbation theory, some assumptions need to be verified for the proposed approximations to
be su�ciently accurate. They are therefore listed and adapted to the novel case of concern, i.e. the
resonant inertial decomposition, at start, in Section 2.2.

Then, and contrary to the custom application of this general Multiple Timescale Spectral Anal-
ysis framework, the resonant component is first investigated, in Section 2.3. Second, the focus is
placed on the inertial component, in Section 2.4, and a unified formula is ultimately sought for the
so-called loading component, which reduces seamlessly to either the inertial, either the background
component as they are both pertaining to the peak contained in the power spectral density of the
loading.

2.2 Formulation of the Necessary Assumptions

Before anything else, the first step of the Multiple Timescale Spectral Analysis consists in identifying
the origin of the main contributions to the integral at stake, and thus to the variance. Being readily
related to the peaks of the loading spectrum and the structural kernel, the following hypotheses
must be respected, then, in order to discern them from one another:

(i) The power spectral density of the loading varies smoothly and moderately across the
peaks of the structural kernel. In mathematical formalism, it signifies that the deriva-
tives of the function are relatively much smaller than the value of the function itself in
the vicinity of � = ± 1:

--- (� û 1)i
ˆ

i
�

Ë
SÏ (± 1)

È
/ i!

--- π
--- SÏ (± 1)

--- (2.3)
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where ˆ
i
� (.) denotes the i-th derivative with respect to the dimensionless frequency.

In this event, the Taylor series expansion of the loading spectrum can be truncated at
leading order as follows

SÏ (�) = SÏ (± 1) (2.4)

in the neighborhood of the poles. Such a constant term provides a proper approximation
of SÏ (�) in an interval where

--- (� û 1)i
/ i!

--- π
--- SÏ (± 1) /ˆ

i
�

Ë
SÏ (± 1)

È --- (2.5)

according to Equation (2.3).

(ii) The peak frequency of the loading spectrum is significantly greater than the natural
frequency of the oscillator. The frequency ratio and its inverse accordingly read

–Ï = Êp

Ê0
∫ 1 … �Ï = Ê0

Êp
π 1 (2.6)

and are respectively much greater, or much smaller than unity. As a consequence, the
system is expected to respond in its resonant regime, still, but also in its inertial regime,
a contrario to the background one. Given that the perturbation theories usually rely
on the use of small parameters, the inverse of the frequency ratio is therefore employed
in the following when dealing with an inertial loading whereas, on the flip side, the
frequency ratio is manipulated when the loading is background, since

–Ï = Êp

Ê0
π 1 … �Ï = Ê0

Êp
∫ 1 (2.7)

in this respective event.

These assumptions reveal the existence of several small parameters which will subsequently be
used from a perturbation perspective to decompose the power spectral density of the response into
several parts. In these circumstances, the response spectrum is expected to be approximately given
by

S̃‰ (�) = SÍ (�) + SÎ (�) (2.8)

where the subscripts Í and Î respectively stand for the resonant and the inertial contributions to
the function. Provided that these local approximations are accurate over the considered zones,
bounded in the far field and integrable in an explicit way, we will demonstrate that the variance of
the response can be estimated by the sum of two components with simple expressions

‡̃
2
‰ = ‡

2
Í + ‡

2
Î (2.9)

which are again associated to either the resonance of the oscillator, either the inertial nature of the
loading through the subscripts Í and Î.

In brief, in Section 2.3 and Section 2.4, these two components and their dimensional counter-
parts are shown to be expressed as

‡
2
Í = fi

2›
SÏ (1) … ‡

2
r = fiÊ0

2›

Sf (Ê0)
k2 (2.10)
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and

‡
2
Î =

A

1 ≠ SÏ (1)
SÏ (–Ï)

B

‡
2s

Ï
… ‡

2
i =

A

1 ≠ Sf (Ê0)
Sf (Êp)

B
‡

2s
f

k2 (2.11)

where

‡
2s

Ï
=

+Œ⁄

≠Œ

CÏSÏ (�)
CÏ + �4 d� … ‡

2s
f

=
+Œ⁄

≠Œ

Cf Sf (Ê)
Cf + Ê4 dÊ (2.12)

with

CÏ =
–

4
Ï

|H‰ (–Ï)|≠2 ≠ 1
… Cf =

Ê
4
p

|Hx (Êp)|≠2 ≠ 1
(2.13)

and

H‰ (�) =
1
1 ≠ �2 + 2ÿ̇›�

2≠1
… Hx (Ê) =

1
k ≠ mÊ

2 + 2ÿ̇›Ê

2≠1
(2.14)

when –Ï > 1. Besides, when –Ï < 1, the inertial component extends in a unified way to the
well-known background component by replacing the fourth powers in the above equations with
zeroth powers as follows

‡
2s

Ï
=

+Œ⁄

≠Œ

SÏ (�)
1 + 1/CÏ

d� … ‡
2s

f
=

+Œ⁄

≠Œ

Sf (Ê)
1 + 1/Cf

dÊ (2.15)

where

CÏ = 1
|H‰ (–Ï)|≠2 ≠ 1

… Cf = 1
|Hx (Êp)|≠2 ≠ 1

(2.16)

accordingly tend towards zero as –Ï decreases.

2.3 Derivation of the Resonant Component

Starting with the resonant component, as explained hereabove, two contributions of equal magni-
tude are to be taken into account. They are originating from the peaks of the structural kernel
which lie at � = ± 1 and span a width of about a few damping ratios. Given that the general
framework of the Multiple Timescale Spectral Analysis leaves some freedom to the user on how to
find a locally accurate and explicitly integrable approximation for the power spectral densities over
the range of interest, two options are explored in the following.

First Option. Although the focus is currently placed on finding an approximate expression
for the original function instead of the residual one, the procedure presented for the resonant
component in the introduction can be applied to the functions at stake and delivers the exact same
leading order solution.

Accounting for the even nature of the loading spectrum, the local approximation of the response
spectrum over the present zone of interest thus reads

SÍ1 (�) = SÏ (1)
A

1/4
(� + 1)2 + ›2 + 1/4

(� ≠ 1)2 + ›2

B

(2.17)
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in the initial coordinates and its integral gives the very simple expression

‡
2
Í = fi

2›
SÏ (1) (2.18)

for the resonant component of the variance of the response.
Second Option. The possibility to expand the structural kernel in partial fractions is investi-

gated. It is shown to o�er an interesting alternative for the resonant component because it allows
to split the peaks without having to use and to truncate an asymptotic series.

On the real axis, the structural kernel under consideration can be decomposed into simple
elements of the second kind only but they still feature two peaks, which are positioned in mirror
image with respect to the y-axis. To succeed in separating them, the complex poles of the structural
kernel are considered. They correspond to the roots of the four monomials (� ≠ B), (� ≠ B

ú),
(� + B) and (� + B

ú) with B =


1 ≠ ›2 + ›ÿ̇. Thus, the structural kernel can equivalently be
written

Gs (�) =
3

A

� ≠ B

4
+

3
A

ú

� ≠ Bú

4
≠

3
A

ú

� + B

4
≠

3
A

� + Bú

4
(2.19)

with

A =
5
8›

2
Ò

1 ≠ ›2 + 8›

1
1 ≠ ›

2
2

ÿ̇

6≠1
(2.20)

after some standard algebra. In this sum, the first two and the last two terms are respectively
responsible for the apparition of a peak on the right and a peak on the left of the y-axis.

The power spectral density of the response can consequently be separated into four pieces as
well. Then, the appropriate stretched coordinate among � = (�� + 1) and � = (�� ≠ 1), with
� being of order one at most and � being an arbitrary small number, can be introduced into the
former and the latter two terms in order to focus on their respective resonant peak.

Being symmetric, the loading spectrum can ultimately be replaced by the constant value
SÏ (+1) = SÏ (≠1) in these specific zones, under Assumption (i), and the local approximation
of the response spectrum thus reads

SÍ2 (�) = Gs (�) SÏ (1) (2.21)

at leading order. This expression is simpler than Equation (2.17) and the residual it provides is
expected to be more convenient to handle with the Multiple Timescale Spectral Analysis in the
next step.

Nevertheless, integrating Equation (2.17) and Equation (2.21) yield the same formula for the
resonant component of the variance. This illustrates the freedom in choosing the local, accurate
and far-field integrable approximations of the power spectral densities, which are e�ectively not
unique, when using the Multiple Timescale Spectral Analysis.

2.4 Derivation of the Inertial Component

Following the method described in [11] and briefly recalled in the introduction, these first approx-
imations are subtracted from the original integrands to yield the residual functions

Ŝ‰1 (�) = S‰ (�) ≠ SÍ1 (�) and Ŝ‰2 (�) = S‰ (�) ≠ SÍ2 (�) (2.22)

which do no longer contain any significant contribution in the vicinity of the poles, see the dashed
lines in Figure 2.1 for instance. As a consequence, the remaining peaks in these new integrands are
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twofold. They are attributed to the loading spectrum and are distributed symmetrically about the
y-axis again.

To make this more evident, the loading spectrum can be factored out in the residual functions.
Thus, for the first and the second option, they respectively read

Ŝ‰1 (�) = Ĝs1 (�) SÏ (�) and Ŝ‰2 (�) = Ĝs2 (�) SÏ (�) (2.23)

where
Ĝs1 (�) = Gs (�) ≠ SÍ1 (�)

SÏ (�) and Ĝs2 (�) =
A

1 ≠ SÏ (1)
SÏ (�)

B

Gs (�) (2.24)

are further referred to as the residual kernels.
The coordinate stretching � = (1 + ��) /�Ï with � ≥ ord (1) and � π 1 again is injected into

the residual kernels in order to zoom on their rightmost peaks, which are positioned at � = 1/�Ï.
The equations are then expanded in series for small values of the frequency ratio, �Ï π 1. It gives

Ĝs1 (�) = ≠1
2

SÏ (�)
SÏ (�)

�2
Ï

(1 + ��)2 +
�4

Ï

(1 + ��)4 + O
1
�6

Ï

2
(2.25)

and
Ĝs2 (�) =

A

1 ≠ SÏ (�)
SÏ (�)

B
�4

Ï

(1 + ��)4 + O
1
�6

Ï

2
(2.26)

with �� = (�Ï ≠ 1), respectively. As it can clearly be appreciated at this point, the expression is
indeed more complicated in the first case than in the second. Theoretically, the identification of the
leading term in Equation (2.25) requires to formulate an additional condition regarding the relative
smallness of SÏ (�) /SÏ (�) with respect to �. It is however not necessary to do so in Equation
(2.25) and this justifies why the second option is kept from there on. In the neighborhood of the
origin, � = 0, the inverse of the loading spectrum can also be rewritten as follows

1
SÏ (�) = 1

SÏ (0) ≠ �ˆ� [SÏ (0)] 1
S2

Ï (0) + O
1
�2

2
(2.27)

by making use of Taylor series expansion. Given that the loading spectrum reaches its maximum
value at this specific location, its inverse can actually be considered as small enough to maintain
the convergence of the series and to be replaced by a constant value over the whole range of
interest. Finally, in the region spanned by the strained coordinate, the kernel therefore appears to
be properly estimated by a monomial of (≠4)-th degree. After returning to the original coordinates,
it can consequently be approximated by

G̃s (�) = Gs (1/�Ï) (��Ï)≠4 (2.28)

which replicates well this decreasing trend but also the value of the initial function at the location
of the considered peak. However, it has the disadvantage of tending towards infinity as the circular
frequency approaches zero. It is not a problem as long as the loading spectrum decreases rapidly
enough to ensure that the local approximation of the response spectrum

SÎ (�) =
A

1 ≠ SÏ (1)
SÏ (1/�Ï)

B

G̃s (�) SÏ (�) (2.29)

is integrable in the vicinity of the origin. This condition is commonly satisfied when the loading
corresponds to a linear transformation of a water-particle velocity process, whose power spectrum
is defined as in Equation (1.26).
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In this event, the inertial component of the variance is eventually independent of any structural
property and can be established a priori, maybe even in closed-form, for a given loading spectrum.
In general, however, it reads

‡
2
Î =

A

1 ≠ SÏ (1)
SÏ (1/�Ï)

B

�≠4
Ï Gs (1/�Ï) ‡

2s
1

(2.30)

where

‡
2s

1
=

+Œ⁄

≠Œ

�≠4
SÏ (�) d� (2.31)

is the spectral moment of order ≠4 of the loading. It seems interesting to notice that the multi-
plicative factor (1 ≠ SÏ (1) /SÏ (1/�Ï)) in Equation (2.30) is expected to be approximately equal
to unity on the basis of Assumption (ii), provided that the loading spectrum exhibits a relatively
sharp peak at � = 1/�Ï.

But otherwise, it is important to consider its exact value because it ensures that the proposed
decomposition is also suitable to deal with a flatter loading spectrum. In the limit case of a white-
noise forcing process, for instance, the power spectral density is constant, SÏ (1) = SÏ (1/�Ï), and
the multiplicative factor drops down to zero. The loading component consequently disappears and
the variance of the response is eventually given by the resonant component only, as it is supposed
to.

This being said, the local approximation (2.29) of the response spectrum provided hereabove
might not always be integrable. To overcome this problem, instead of (2.28), the kernel can alter-
natively be replaced by

G̃s (�) = C

C + �4 (2.32)

where
C = Gs (1/�Ï)

�4
Ï ≠ �4

ÏGs (1/�Ï) (2.33)

is selected so that this (0, 4) Padé approximant is bounded and matches the initial function at the
origin. With this specific choice, the inertial component of the response spectrum is given by

SÎ (�) =
A

1 ≠ SÏ (1)
SÏ (1/�Ï)

B

G̃s (�) SÏ (�) (2.34)

again, with a di�erent definition of the approximate kernel though, and the variance reads

‡
2
Î =

A

1 ≠ SÏ (1)
SÏ (1/�Ï)

B

‡
2s

2
(2.35)

where

‡
2s

2
=

+Œ⁄

≠Œ

CSÏ (�)
C + �4 d� (2.36)

seems less advantageous to evaluate, at first glance, than Equation (2.31) because it mixes structural
and loading characteristics.

Nevertheless, Equation (2.31) and Equation (2.36) boil down to the same expression if the fourth
powers of �Ï and � are replaced by zeroth powers as it should for the background component. It
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thus reads
SÎ (Ê) =

A

1 ≠ SÏ (1)
SÏ (1/�Ï)

B

Gs (1/�Ï) SÏ (�) (2.37)

and
‡

2
Î =

A

1 ≠ SÏ (1)
SÏ (1/�Ï)

B

Gs (1/�Ï) ‡
2
Ï (2.38)

which implies that the background component presented in Equation (15) can eventually be recov-
ered by acknowledging that 1/�Ï π 1.

2.5 Validation and Parametric Analysis

The simple expressions derived hereabove for the resonant and the loading components of the
spectral densities and the second moments of the responses to a given loading are assessed in
this section. To this aim, the results they provide under a linearized, or quadratized and a non-
polynomial loading are compared to the values obtained by integrating the power spectral densities
of the corresponding responses.

Presentation of the results

To begin with, the dimensionless definition derived in the end of Section 1.4 for the power spectral
density of the water velocity fluctuations is employed. For the record, it reads

S‚ (�) =
Ú

3
fi

–
2
‚

|�|3 exp
A

≠3–
4
‚

4�4

B

(2.39)

and solely depends on –‚. In the following, this parameter is set equal to 5 for illustrating the
power spectral densities of the responses under a fast loading, see Figure 2.1. The variances,
however, are represented for –‚ œ

#
10≠2

, 102$
, see Figure 2.2. It means that both the background

and the inertial components are examined depending on whether –‚ < 1 or –‚ > 1. They are
pictured by orange patches and lines in Figure 2.1 and Figure 2.2, respectively, whereas the resonant
components are colored in green. As shown in these figures, three turbulence intensities are also
picked: ⁄u = {0.1, 0.3, 1}.

First, a linearized wave forcing process is considered. It is expressed as a linear transformation
of the water velocity fluctuations. As a consequence, its power spectral density is given by

SÏ1 (�) = p
2
1S‚ (�) (2.40)

and contains a peak at –Ï1 = –‚. The values of the coe�cient, p1, are also computed in an
analytical way as explained in Section 1.4 and are listed in Table 2.1 with respect to the selected
relative wave lenght. The power spectral densities of the responses are subsequently calculated
through the analytical definition

S‰1 (�) = Gs (�) SÏ1 (�) (2.41)

for –‚ = 5 and › = {0.1 %, 1 %, 10 %}. They are illustrated by black lines in Figure 2.1-(A).
When using the Multiple Timescale Spectral Analysis, the resonant and the inertial components
of these power spectral densities are approximated by Equation (2.21) and Equation (2.34). They
are represented in Figure 2.1-(A). The sums of these two contributions are then pictured by black
dots in Figure 2.1-(A).
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Figure 2.1: Power spectral densities of the response to a linearized and a quadratized drag
loading for di�erent turbulence intensities of the waves and damping ratios of the system.
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Figure 2.2: Variances of the response to a linearized, a quadratized and a non-polynomial
drag loading for di�erent turbulence intensities of the waves and damping ratios of the system.
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Similar results are shown for the variances in Figure 2.2-(A), for various values of –‚. Black
lines are obtained through the numerical integration of Equation (2.41) which is handled by using
the adaptive algorithm with default parameters implemented in Version 12.0.0.0 of Wolfram Math-
ematica. Green and orange lines represent respectively the resonant and the loading (background
or inertial) components, which are given by Equation (2.21) and Equation (2.37), or Equation
(2.21) and Equation (2.34), depending on whether –‚ < 1 or –‚ > 1. Their sums are then depicted
by black dots, which thus correspond to the approximation provided by the Multiple Timescale
Spectral Analysis.

Second, a quadratized wave loading process is considered. The corresponding results are il-
lustrated in Figure 2.1-(B,C) and Figure 2.2-(B,C). The power spectral density of the loading is
now complemented by an additional contribution which is obtained by auto-convolving the power
spectral density of the water velocity fluctuations as follows

SÏ2 (�) = 2p
2
1p2

⁄
S‚ (�1) S‚ (� ≠ �1) d�1 (2.42)

and where p2 is the second coe�cient of the polynomialization, see Table 2.1 for their values. This
second part of the loading spectrum consequently features a bump around the origin, as well as
another one of half the size at twice the peak frequency of the waves, see Figure 1.3.

The power spectral densities of the responses to such a quadratized loading are represented by
black lines Figure 2.1-(B,C). Two scenarios are then investigated regarding the use of the approx-
imate expressions derived with the help of the Multiple Timescale Spectral Analysis. Either the
second part of the loading spectrum is considered independently of the first one and the results it
provides in terms of response, (ıı), are just added to those obtained with the linearized loading,
(ı). This option is denoted by (ı + ıı) and presented in Figure 2.1-(B) and Figure 2.2-(B). Either
the first and the second parts of the loading spectrum are considered as a whole to get the results in
terms of response which are denoted by (ı ı ı) and presented in Figure 2.1-(C) and Figure 2.2-(C).

When the loading is background, the power spectral densities of the responses can be approx-
imated by the sum of a resonant and a background component, as given by Equation (2.21) and
Equation (2.37), in both scenarios. Likewise, the resonant and the background components of the
variance are thus provided by Equation (2.18) and by Equation (2.38). Please notice that the
background components respectively correspond to the integral of SÏ1 (�), SÏ2 (�) and SÏ3 (�),
which can be expressed in closed-form as p

2
1 = (1), 2p

2
2 = (2) and (1) + (2) = (3). The values of

these components for ⁄u = {0.1, 0.3, 1} are gathered in Table 2.1.
Otherwise, when the loading is inertial, the power spectral densities and the variances of the

responses are treated in two di�erent ways, as explained above.

(ı + ıı) In the first scenario, the center of gravity of SÏ2 (�) is identified as being located
in the low frequency range. The second part of the response spectrum is therefore
approximated by the sum of a resonant and a background contribution, instead of an
inertial one, even if –‚ ∫ 1. They are respectively given by Equation (2.21) and
Equation (2.37).

(ı ı ı) In the second scenario, however, the main peak is located at –Ï ¥ –‚ in the global
loading spectrum. In addition, this power spectral density is not exponentially small in
the neighborhood of the origin, by contrast with SÏ1 (Ê). The power spectral density
of the response is hence approximated by the sum of the resonant and the inertial
contributions given by Equation (2.21) and Equation (2.34), respectively.

Again, similar results are eventually computed for the variances. In order to ease the understand-
ing, information regarding the equations employed when applying the Multiple Timescale Spectral
Analysis are summarized in Table 2.2 and Table 2.3, depending on whether –‚ π 1 or –‚ ∫ 1.
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Globally, the same color code as before is used for the power spectral densities in Figure 2.1-(B,C)
and the variances in Figure 2.2-(B,C).

Table 2.1: Polynomial coe�cients and background components.

⁄u p1 p2 (1) (2) (3)
0.1 1.0 0.05 1.0 0.005 1.005
0.3 1.0 0.15 1.0 0.045 1.045
1.0 1.17 0.34 1.4 0.231 1.631

Table 2.2: Numbers of the equations employed when –‚ < 1.

Load Case Freq. Ratio SÍ (�) SÎ (�) ‡
2
Í ‡

2
Î

ı –Ï1 π 1
Eq. (2.21) Eq. (2.37) Eq. (2.18) Eq. (2.38)ıı –Ï2 π 1

ı ı ı –Ï3 π 1

Table 2.3: Numbers of the equations employed when –‚ > 1.

Load Case Freq. Ratio SÍ (�) SÎ (�) ‡
2
Í ‡

2
Î

ı –Ï1 ∫ 1
Eq. (2.21)

Eq. (2.29)
Eq. (2.18)

Eq. (2.30)
ıı –Ï2 ¥ 1 Eq. (2.37) Eq. (2.38)

ı ı ı –Ï3 ∫ 1 Eq. (2.34) Eq. (2.35)

Last but not least, a non-polynomial Morison drag loading, as derived in Equation (1.21), is
considered in order to provide reference values for the variances which are independent of the
polynomialization. The power spectral density of such a loading can actually be defined in an
analytical way as well but, since it involves cumbersome expressions, it will not be done herein.
Instead, it is calculated from generated signals.

To do so, the power spectral density of the nondimensional water velocity fluctuations is first
computed for the corresponding set of dimensionless numbers, according to Equation (2.39). Next,
a time history of the Gaussian process ‚ (·) is generated by computing the inverse Fourier transform
of

F [‚ (·)] (Ê) =
Ò

Nf �sS‚ (Êi) exp (ÿ̇◊i) (2.43)

where �s = max (20, 20 –‚) is the sampling frequency, Nf = 107 is the number of frequencies
employed to represent the power spectral density in the range [≠�s, �s] and ◊i is a phase angle,
randomly distributed in the interval [0, 2fi[. This realization then feeds Equation (1.21) and provides
a loading sample whose power spectral density can subsequently be computed by using standard
algorithms [78].

Although it looks like a Monte Carlo simulation at the beginning, this loading history is not
considered as an input for the equations of motion and the recourse to a time marching algorithm
is bypassed afterwards. To do so, the power spectral density of the response is directly calculated
by multiplying the power spectral density of the non-polynomial loading by the structural kernel
and the variances are eventually obtained by integrating them with a trapezoidal scheme. In total,
5000 points are distributed over the frequency domain, in the positive range. Among those, a fine
mesh of 1000 points is considered in the interval [1 ≠ 4›, 1 + 4›] in order to properly capture the
area under the resonant peaks, which become sharper as the damping decreases. These values are
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considered for reference only. Thus, they are not approximated with the expressions derived in this
chapter.

Discussion of the results

Overall, the validation of these expressions is endorsed by the good agreement of the results obtained
for a large range of frequency ratios, damping ratios and turbulence intensities. As a consequence,
the proposed decomposition appears to provide accurate estimations for the variances of various
systems, be they subjected to quasi-static or inertial loads expressed as a linear, polynomial or
whatever transformation of a Gaussian process.

However and although the Multiple Timescale Spectral Analysis is not to blame, the power
spectral densities, and hence the variances of the responses, do not contain any resonant component
when the loading is linearized and inertial, see the right parts of the graphs in Figure 2.2-(A) for
the statistics. As well established in the field, this is due to the exponential decay observed at
low frequencies in the power spectral density of the wave velocities. This specificity implies that
Equation (2.40) is integrable and thus Equation (2.30) can be used to get the inertial components
of the statistics. But, in the meantime, the value of SÏ1 (1) is so small that the resonant peaks do
not emerge at all in this zone, no matter how slightly damped the stucture is and thus how sharp
the peaks are in the kernel.

Accounting for the nonlinear nature of the loading by means of its quadratic or non-polynomial
formulations solves this problem and allows to observe the typical increase of the resonant compo-
nents for small damping ratios, which is suggested by the apparition of this specific parameter in
the denominator of Equation (2.18). The resonant components also grow with the relative wave
lenght. This e�ect, in turn, can be explained by looking at the expression provided in Equation
(2.42) for SÏ2 (�). This additional part in the power spectral density of the loading is proportional
to the square of the second polynomial coe�cient. Therefore, and as shown in Table 2.1 as well,
the stronger the relative wave lenght, the larger the coe�cient and hence the power spectral den-
sity. Moreover, this additional contribution features a bump in the low frequency range, near the
resonant peaks, as well as another half one at twice the peak frequency of the waves.

In the first scenario, once the resonant component is removed, the residual function is thus
expected to provide (i) a background component, which is due to the bump located in the vicinity
of the origin, and (ii) an inertial component, which is due to the bump located at twice the peak
frequency of the waves. Interestingly enough, the contribution of (i) can approximately be ignored
on the basis that the characteristic frequency for this second part of the loading spectrum is
actually close to one and the multiplicative factor (1 ≠ SÏ (1) /SÏ (–Ï)) approaches zero. Besides,
the contribution of (ii) can be discarded as well on the basis that the corresponding bulge is half
the size of the former and is placed in an area where the kernel is also much smaller.

In fact, it is precisely because these e�ects cannot be treated aside in the second scenario that
the contribution of (i) is accounted for twice, in both the resonant component and the inertial
component, resulting in the slight overestimation of the response spectrum which is observed near
the origin, in Figure 2.1-(C). Nevertheless, it does not seem to a�ect the variances.

Although it is expected that the proposed decomposition is a little less reliable when the peak
frequency of the loading is close to the natural frequency of the system, meaning that Assumption
(ii) is violated, the multiplicative factor interestingly helps to limit the errors over there. This is
all the more verified when the damping is small since the resonant peaks are then much sharper
than the loading peaks. This, in turn, ensures that Assumption (i) is respected even if all of these
peaks are almost superimposed. The resonant component is therefore expected to cover them both
at once while the background/inertial component drops down to zero thanks to cancelation of the
multiplicative factor.
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Chapter 3

Third Central Moment

3.1 Introduction and Preliminary Considerations

The objective of this chapter is to derive a semi-analytical approximation for the third central
moment of the response, in a similar fashion as the decomposition provided for the second central
moment in the previous chapter. To do so, the Multiple Timescale Spectral Analysis is applied to
the bispectrum of the response which can be written in the canonical form

B‰ (�1, �2) = Gb (�1, �2) BÏ (�1, �2) (3.1)

where Gb (�1, �2) and BÏ (�1, �2) correspond respectively to the structural kernel and the loading
bispectrum.

For symmetry reasons, the imaginary part of the response bispectrum does not contribute at
all to the third central moment of the response, as it is to be expected because this process, and
hence its central moments, are real-valued. It is therefore possible to compute the third central
moment as follows

—‰ =
x

Ÿ [B‰ (�1, �2)] d�1d�2 (3.2)

instead of integrating the imaginary part of the response bispectrum as well.
To get familiar with the derivation of semi-analytical formulations dedicated to such an inte-

gration in two dimensions, this chapter firstly deals with the third central moment of an oscillator’s
response to a non-normal and quasi-static loading because it has already been treated in [12]. It
has then led to the development of the Multiple Timescale Spectral Analysis method, and it has
eventually been revisited in the light of this general framework in [11].

In the present configuration, however, the loading is not supposed to be expressed as a static
nonlinear transformation of a Gaussian process. As a consequence, the loading bispectrum is
theoretically complex-valued and the real part of the response bispectrum reads

Ÿ [B‰ (�1, �2)] = Ÿ [Gb (�1, �2)] Ÿ [BÏ (�1, �2)] ≠ ⁄ [Gb (�1, �2)] ⁄ [BÏ (�1, �2)] (3.3)

where the second term can no longer be discarded. A new component is therefore required to
take the product of the imaginary parts into account. A simple expression for this specific term is
derived for the first time in this thesis, in Section 3.4.

In parallel, this chapter also focuses on the third moment of the response of an oscillator
subjected to a non-normal but inertial loading, and in particular on two other new contributions.
They come from the emergence of high-frequency peaks in the bispectrum of the response, which
are due to those of either the real, either the imaginary parts of the loading bispectrum. The
expressions of these two components are formulated in Section 3.5.
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3.2 Identification of the Main Components

Before determining the conditions under which the Multiple Timescale Spectral Analysis is able to
operate, it seems appropriate to start by describing the functions under consideration in more details
because their characteristics are not so commonly known, although these functions are particularly
useful in a non-linear and non-normal setting. This section therefore aims at identifying the areas
where peaks are intended to protrude in the bispectrum of the response, or where the volume below
the surface is significant, in order to pave the way for the e�ective inclusion of their contributions
to the third central moment of the response in a multiple timescale context.

Being defined as the product of three frequency response functions whose poles are respectively
located on the lines of equation

{�1 = ± 1, �2 œ R} , {�1 œ R, �2 = ± 1} and {�1 œ R, �2 = ± 1 ≠ �1} (3.4)

as shown in Figure 3.1, the structural kernel exhibits six crest/ditch lines around these zones, on
frequency bands whose width is of order ›, and some bi-resonant peaks at their two-by-two cross-
ings, on frequency patches whose size is of order › ◊ ›. These peaks are called as such in order to
indicate that they are due to the interaction of two poles from either two out of three frequency
response functions. Meanwhile, the third frequency response function is activated in its background
region for six of these peaks. They are therefore higher than the six other ones for which the third
frequency response function is excited in its inertial region, see Figure 3.2.

Overall, the real part of the structural kernel discloses essentially:

• six background bi-resonant peaks centered at (�1, �2) = (± 1, 0), (0, ± 1) and (± 1, û 1);

• six bi-resonant inertial peaks centered at (�1, �2) = ± (1, ≠2), ± (2, ≠1) and ± (1, 1);

• six triangular basins in-between the ridges, the background and the inertial peaks;

• a flat tri-background zone whose height is of order one in the vicinity of (�1, �2) = (0, 0).

Similar features are observed in the imaginary part of the structural kernel, except that the height
of the background zone drops down to zero and the peaks are called double because they are spiking
on the two sides of the pole lines, reaching opposite values at these locations and passing by zero
in between. In order to get a better picture of what this function looks like, it is represented in
Figure 3.2 as well.

This figure also illustrates the symmetries which are theoretically observed in the real and the
imaginary parts of both the structural kernel and the bispectrum of the loading. It is interesting to
notice for a further understanding of how the product of their imaginary parts looks like, although
the bispectrum of the loading is just real-valued in here, as explained before.

As shown in Figure 3.3, the real part of the loading bispectrum is characterized by a twelve
peaks pattern like the structural kernel, except that the high versus low peaks are switched and
are now positioned at (�1, �2) = (± 2–Ï, 0), (0, û 2–Ï), (± 2–Ï, û 2–Ï) or (�1, �2) = (± –Ï, 0),
(0, û –Ï), (± –Ï, û –Ï), respectively. This inversion of their aspect ratio is due to the faster decay
of the bispectrum towards the origin than towards infinity, in contrast with the structural kernel.

If the loading is quasi-static (i.e. –Ï π 1), these peaks will appear as such amid the tri-
background zone, in the bispectrum of the response, see Figure 3.4-,1 . Then, given the rapid
decrease of the loading bispectrum as the frequencies increase, the smallness of the bi-resonant
inertial peaks with respect to the background bi-resonant peaks, see Figure 3.4-,2 , is all the more
accentuated and it results in the possibility to simply neglect their contribution.

If the loading is inertial (i.e. –Ï ∫ 1), the bi-resonant inertial peaks do not disappear from the
response bispectrum, see Figure 3.5-,3 . In addition, the crest/ditch arrangements in the structural
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kernel create some pairs of double peaks in the resonant bi-inertial frequency ranges, see Figure
3.5-,4 .

To summarize, the bispectrum of the response eventually exhibits six background bi-resonant
peaks centered at (�1, �2) = (± 1, 0), (± 1, 0) and (± 1, û 1), which come from the products of
both the real and the imaginary parts of the loading spectrum and the structural kernel, plus a
background zone with twelve bumps close to the origin, which is due to the product of the real
parts only, when the loading is associated to the slow timescale, or six background bi-resonant peaks
centered at (�1, �2) = (± 1, 0), (± 1, 0) and (± 1, û 1), plus six bi-resonant inertial peaks centered
at (�1, �2) = ± (1, ≠2), ± (2, ≠1) and ± (1, 1), which originate from the product of the real parts
only, and six resonant inertial peaks centered at (�1, �2) = (± –Ï, 0), (0, ± –Ï) and (± –Ï, û –Ï)
when the loading is related to the fast timescale.

conjugate

conjugate

high peak
low peak

double peak

Figure 3.2: Real and imaginary parts of the structural kernel, Gb (�1, �2).
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=

+

high peak
low peak

Figure 3.3: Real-valued bispectrum of the quadratic loading process, BÏ (�1, �2).
Decomposition as the sum of BÏ1 (�1, �2) and BÏ2 (�1, �2).
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Figure 3.4: Bispectrum of the response when the loading is background, –Ï π 1.
Contributions of the real parts only since the loading bispectrum is real-valued.

Figure 3.5: Bispectrum of the response when the loading is inertial, –Ï ∫ 1.
Contributions of the real parts only since the loading bispectrum is real-valued.
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3.3 Formulation of the Necessary Assumptions

To succeed in the derivation of semi-analytical formulas for the contributions to the third central
moment of the response, which enable to reduce the order of integration by one at least, it is
required to ensure that the structural kernel and the loading bispectrum interact in one direction
at most in the areas of concern. This is subject to the following provisions.

First possibility, see Section 3.4:

(B1) The peak frequency of the loading bispectrum is considerably smaller than the natural
frequency of the system. Mathematically speaking, it yields

–Ï π 1 and �Ï ∫ 1 (3.5)

for the frequency ratio and its inverse. In this event, the structural kernel is relatively
flat across the peaks of the loading bispectrum. Therefore, and unlike the loading
bispectrum, the structural kernel does not vary at all in the background region, no
matter the direction considered. This is typically formalized by admitting that the
structural kernel is approximately equal to the leading order term of its Taylor series
expansion in the vicinity of the origin while the asymptoticness of such an expression
is not ensured for the loading bispectrum.

(B2) Around the background bi-resonant peaks, on the other hand, the structural kernel
varies rapidly in all directions. The loading bispectrum fluctuates significantly in par-
allel to the crests as well but moderately in the perpendicular direction. It is hence
supposed that the variation of the structural kernel can be regarded alone in this di-
rection while the interaction of the two functions should be accounted for in the other
one.

Under these specific assumptions, the Multiple Timescale Spectral Analysis allows to decompose
the third central moment of the response into the following sum of contributions

—̃‰ = —bbb + 6—Ÿ[brr] + 6—⁄[brr] (3.6)

which are respectively identified, in accordance with the previous section, as a tri-background
component, six Ÿ ◊ Ÿ and six ⁄ ◊ ⁄ background bi-resonant components, being attributed to the
peaks in the products of either the real, either the imaginary parts of the structural kernel and the
loading bispectrum.

In Section 3.4, we demonstrate that these three components can be expressed as

—bbb = —Ï , (3.7)

—Ÿ[brr] = 2›
fi

2

+Œ⁄

≠Œ

Ÿ [BÏ (1, �2)]
4›2 + �2

2
d�2 (3.8)

and

—⁄[brr] = ≠fi

2

+Œ⁄

≠Œ

�2
⁄ [BÏ (1, �2)]

4›2 + �2
2

d�2. (3.9)
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Second possibility, see Section 3.5:

(I1) The peak frequency of the loading bispectrum is significantly greater than the natural
frequency of the system. The frequency ratio and its inverse thus read

–Ï ∫ 1 and �Ï π 1 (3.10)

respectively. As opposed to Assumption (B1), the bispectrum of the loading is approx-
imately constant over the zones where the peaks of the structural kernel arise. But,
although their roles are interchanged, these two functions are still not interacting at all
in the low frequency range.

(I2) By contrast with Assumption (B2), the variations of the loading bispectrum are smooth
in the direction perpendicular to the crests with respect to those of the structural kernel,
whereas both functions fluctuate more strongly along these ridgelines. For a number
of reasons which will appear clear in the light of the mathematical developments, it is
however not possible to completely discard the slow evolution of the loading bispectrum
perpendicularly to the crests. Nevertheless, as it is moderate enough, the order of
integration will be reduced anyways by having recourse to more advanced techniques.

Under these particular hypotheses, the third central moment is in principle given by the sum of
several contributions as follows

—̃‰ = —rr + 6—Ÿ[rii] + 6—⁄[rii] (3.11)

via the application of the Multiple Timescale Spectral Anaysis. These components are respectively
pertaining to the activation of the background bi-resonant and the bi-resonant inertial regimes, first,
as well as the resonant bi-inertial ones in both the real and the imaginary parts of the structural
kernel, second and third.

In Section 3.5, we demonstrate that these three components can be expressed as

—rr = 8fi
2

3 (1 + 8›2)Ÿ [BÏ (0, 0)] , (3.12)

—Ÿ[rii] =
+Œ⁄

≠Œ

Ÿ [H‰ (�2)]
P0 + P2�2

2
d�2 and —⁄[rii] = ≠fi

2

+Œ⁄

≠Œ

⁄
5

BÏ (�1, 1)
1 + �4

1

6
d�1 (3.13)

where

P0 = IŸ (0) and P2 = 1
IŸ (1) ≠ 1

IŸ (0) (3.14)

with

IŸ (�2) =
+Œ⁄

≠Œ

CÏ

CÏ + �4
1
Ÿ [BÏ (�1, �2) ≠ BÏ (0, 0)] d�1 ,

CÏ =
–

4
Ï

|H‰ (–Ï)|≠2 ≠ 1
and H‰ (�) =

1
1 ≠ �2 + 2ÿ̇›�

2≠1
. (3.15)
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3.4 Background Bi-Resonant Decomposition

When the excitation is quasi-static, the background region of the response bispectrum can first be
targeted by zooming on the origin. In this zone, the structural kernel can be replaced by a constant,
according to Assumption (B1). The response bispectrum is thus trivially approximated by

Bbbb (�1, �2) = Gb (0, 0) BÏ (�1, �2) (3.16)

whose double integral reads
—bbb = Gb (0, 0) —Ï (3.17)

with —Ï being the third central moment of the loading. Given the non-dimensionalization employed
in Chapter 1, Gb (0, 0) is equal to one but this is not implemented in Equation (3.17) for the reader
to think about it when returning to the dimensional variables.

Taking this approximation out of the initial function then yields the first residual of the response
bispectrum

B̂‰ (�1, �2) = B‰ (�1, �2) [Gb (�1, �2) ≠ Gb (0, 0)] (3.18)

which mainly complements the third moment due to the bi-resonant peaks. Among those, the
peak located at (�1, �2) = (± 1, 0) is subsequently looked at more closely by introducing the
stretched coordinates �1 = (1 + Á÷1) and �2 = Á÷2 with ÷1 and ÷2 being of order one at most into
Equation (3.18). Meanwhile, the parameter Á is a small number which reflects the extent of the
peak considered in the structural kernel.

Next, the loading bispectrum and the structural kernel are expanded in series for Á π 1. Under
Assumption 3.3, the loading bispectrum is given by

B̃Ï (�1, �2) = BÏ (1, Á÷2) (3.19)

at leading order and is thus made independent of ÷1. The structural kernel can therefore be
integrated along ÷1 before being multiplied by the loading bispectrum and eventually integrated
along ÷2. At leading order again, it reads

G̃b (÷1, ÷2) =
!
÷

2
1 + ÷1÷2 + 1

"
+ ÿ̇÷2

!
÷

2
1 + ÷1÷2 + 1

"2 + ÷
2
2

(3.20)

for the structural kernel whose integral can subsequently be worked out in closed form as follows

+Œ⁄

≠Œ

G̃b (÷1, ÷2) d÷1 = fi

2

32 + ÿ̇÷2
4 + ÷

2
2

4
(3.21)

and contains a real and an imaginary part which are respectively even and odd. Since this statement
also holds true for the real and the imaginary part of the loading bispectrum, two out of four terms
in the integral are strictly equal to zero. They are directly discarded and the background bi-resonant
components associated to the peak of interest are finally expressed as

—Ÿ[brr] = 2›
fi

2

+Œ⁄

≠Œ

Ÿ [BÏ (1, �2)]
4›2 + �2

2
d�2 and —⁄[brr] = ≠fi

2

+Œ⁄

≠Œ

�2
⁄ [BÏ (1, �2)]

4›2 + �2
2

d�2 (3.22)

with the initial coordinates. For symmetry reasons, these contributions will simply be multiplied
by 6, in the end, to account for the other background bi-resonant peaks.
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3.5 Bi-Resonant Inertial Decomposition

Regarding the response of an oscillator to a loading whose bispectrum contains peaks in the high
frequency range now, the bi-resonant peaks of the response bispectrum, which are due to the poles
of the structural kernel, can first be studied by looking at the region where both �1 and �2 are
of order one. Being so already, it is therefore not required to stretch these coordinates in order to
focus on the considered peaks.

According to Assumption (I1), the bispectrum of the loading is also su�ciently flat to be
replaced by a constant value in the neighborhood of (�1, �2) = (0, 0). As a consequence, the
bispectrum of the response behaves as

Brr (�1, �2) = Ÿ [Gb (�1, �2) BÏ (0, 0)] (3.23)

in this area. This approximation of the bi-resonant peaks is local indeed because the structural
kernel decreases rapidly as �1 and �2 increase. Given that this last function is also integrable in
an explicit way as follows

+Œx

≠Œ
Gb (�1, �2) d�1d�2 = 8fi

2

3 (1 + 8›2) (3.24)

and that the imaginary part of the loading bispectrum is exactly equal to zero at the origin, the
integration of Brr (�1, �2) over the two dimensional frequency space gives the following expression

—rr = 8fi
2

3 (1 + 8›2)Ÿ [BÏ (0, 0)] (3.25)

for the background and inertial bi-resonant components which is hence real-valued, as expected.
The subtraction of Brr (�1, �2) from the response bispectrum of the response subsequently

provides the first residual bispectrum which reads

B̂‰ (�1, �2) = Gb (�1, �2) B̂Ï (�1, �2) (3.26)

with
B̂Ï (�1, �2) = BÏ (�1, �2) ≠ BÏ (0, 0) (3.27)

and does no longer contain any bi-resonant peak. The coordinate stretching �1 = �1/�Ï and �2 =
�2, with �1 and �2 being of ord (1) at most, can then be injected into Equation (3.26) to zoom on
one of the remaining resonant inertial contributions, which is located at (�1, �2) = (–Ï = 1/�Ï, 0).
By recalling that the inverse of the frequency ratio is small in the current context, the structural
kernel can be expanded in series for �Ï π 1 and hence be given by

G̃b (�1, �2) = H (�2) |H (�1)|2 (3.28)

at leading order. Interestingly enough, each term of this product depends on its own single strained
coordinate. Moreover, the latter one relates to the second order structural kernel and can therefore
be approximated by the same (0, 4) Padé approximant as before in the interval of interest, see
Equation 2.32 in Section 2.4.

Such an evolution of the kernel with respect to �1 cannot be discarded. It might indeed change
significantly across the zone of concern because this area needs to be relatively large to cover the
peaks of the loading bispectrum. In other words, any function with a small gradient but extending
over a long distance can fluctuate as importantly in total as if the gradient was larger and the
distance was shorter. Besides, nor can the respective variations of the loading bispectrum and the
structural kernel about �1 and �2 be neglected either, since they are responsible for the peculiar
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shape of the peaks. If they were to be dropped, the local approximation would not adequately suit
the original function.

As regards the real part of the loading bispectrum, its slightly curved nature along �2, although
almost flat when zoomed at, is actually essential to obtain a non-zero result for the resonant bi-
inertial component. To picture this, imagine stretching the blue box in Figure 3.3. Otherwise, the
local approximation of the response bispectrum would read

G̃b (�1, �2) B̂Ï (�1, �2) = Ÿ [H (�2)] G̃s (�1) B̂Ï (�1, �2)

and its integral with respect to �2 would be computed independently of the variations in the other
direction. But it unfortunately yields

+Œ⁄

≠Œ

Ÿ [H (�2)] d�2 = 0 (3.29)

and it would thus directly cancel the result by multiplying the remaining integral along �1.
Nevertheless, for this precise contribution, the number of points where the bispectrum of the

loading has to be evaluated can be drastically reduced by acknowledging that the integral

IŸ (�2) =
+Œ⁄

≠Œ

G̃s (�1) Ÿ
Ë
B̂Ï (�1, �2)

È
d�1

is properly matched by the following (0, 2) Padé approximant

P (0, 2) [IŸ (�2)] = 1
P0 + P2�2

2
(3.30)

with
P0 = IŸ (0) and P2 = 1

IŸ (1) ≠ 1
IŸ (0) (3.31)

guaranteeing that the Padé approximant and the original function are perfectly matched at the
origin, �2 = 0, and at the location of the resonant peaks, �2 = ± 1. In the end, the Ÿ ◊ Ÿ resonant
bi-inertial component of the third central moment of the response is therefore given by

—Ÿ[rii] =
+Œ⁄

≠Œ

Ÿ [H (�2)]
P0 + P2�2

2
d�2 (3.32)

which only requires to compute the bispectrum of the loading on two lines –within IŸ (0) and
IŸ (1)– instead of on the entire two-dimensional domain.

Meanwhile, vis-à-vis the imaginary part of the loading bispectrum, it is not especially its vari-
ation between the two peaks of ⁄ [H (�2)] that matters, but rather its change of sign which makes
these two peaks end up on the same side of the axis, whereas they are opposite at start, see Figure
3.6. Their respective contributions can hence be isolated and accounted for in a separate way. To
do so, the imaginary part of the frequency response function under consideration is first rewritten
as follows

⁄ [H (�2)] = ⁄
5

D

�2 ≠ Bú

6
≠ ⁄

5
D

�2 + B

6
(3.33)

with
B =

Ò
1 ≠ ›2 + ›ÿ̇ and D = 1/

Ò
4 ≠ 4›2 (3.34)
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Figure 3.6: Schematic representation of the functions discussed in this section.

by being expanded in partial fractions. Each term of Equation (3.33) accordingly features a single
peak, in the vicinity of �2 = ≠1 or �2 = +1 for small damping ratios, across which the loading bis-
pectrum is deemed to be constant. At last, the response bispectrum is consequently approximated
by

B⁄[rii] (�1, �2) =
3

D

�2 ≠ Bú + D

�2 + B

4
⁄

5
BÏ (�1, 1)

1 + �4
1

6
(3.35)

and its double integral gives

—⁄[rii] = ≠fi

2

+Œ⁄

≠Œ

⁄
5

BÏ (�1, 1)
1 + �4

1

6
d�1 (3.36)

for the ⁄ ◊ ⁄ resonant bi-inertial component of the third central moment of the response.

3.6 Validation and Parametric Analysis

Presentation of the results

The expressions derived hereabove for the main contributions to the integral of the response bispec-
trum are assessed in this section. To this aim, the results they provide are compared to the values
obtained through the implementation of a numerical quadrature algorithm for ⁄u = {0.1, 0.3, 1.0}
and for › = {1 %, 3 %, 10 %}, see Figure 3.7 and Figure 3.8. They are eventually combined with the
outcomes of Chapter 2 to see how the errors committed by using the proposed decompositions for
the second and the third central moments a�ect the skewnesses of the response as well, see Figure
3.9 and Figure 3.10. Overall, these four figures are grouped at the end of this section.

These comparisons are additionally conducted for three di�erent definitions of the loading bis-
pectrum, in order to evaluate the appropriateness of the simplifications that are required to get
handy formulas for computing the loading bispectrum in an analytical way. The results obtained
for these three options are respectively represented in the (A), (B), and (C) graphs of the figures.
From the least to the most complicated, the definitions of the loading bispectrum in each of these
three scenarios are given as follows.

(A) The loading is quadratized, first, and its bispectrum is expressed as the first term of
Equation (1.28) only. Meanwhile, the second term of Equation (1.28) is considered as
being negligible. As it will be shown later on, this is in principle conditioned upon the
smallness of the relative wave length, ⁄u, which indirectly modifies the values of the
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polynomialization coe�cients, see Table 3.1. In this first scenario, the bispectrum of
the loading therefore reads

BÏ1 (�1, �2) = 2p
2
1p2 (S‚ (�1) S‚ (�2) + S‚ (�1) S‚ (�1 + �2) + S‚ (�1 + �2) S‚ (�2))

(3.37)
where

S‚ (�) =
Ú

3
fi

–
2
‚

|�|3 exp
A

≠3–
4
‚

4�4

B

(3.38)

solely depends on –‚ being the frequency ratio of the water velocity fluctuations.

(B) The loading is quadratized, again, but the second term of Equation (1.28) is no longer
discarded. Thus, the bispectrum of the loading reads

BÏ = BÏ1 (�1, �2) + BÏ2 (�1, �2) (3.39)

where

BÏ2 (�1, �2) = 8p
3
2

+Œ⁄

≠Œ

S‚ (� + �1) S‚ (�1 ≠ �) S‚ (�) d� (3.40)

is actually much more cumbersome to compute than BÏ1 (�1, �2) as it involves a con-
volution alike operation.

(C) The non-polynomial loading is kept as is and its bispectrum is computed from simu-
lated time series, in a similar fashion as the power spectral density of the loading in
Section 2.5 [78]. This third scenario is therefore regarded as the reference one and the
results obtained through the numerical integration of the response bispectrum are hence
watermarked on the (A) and (B) graphs to help visualize the discrepancies which are
attributable to the polynomialization and to the omission of BÏ2 (�1, �2).

In the first and the second scenarios, the numerical integration of the response bispectrum is
performed by using the adaptive integration algorithm of Wolfram Mathematica, Version 12.0.0.0,
with predefined parameters. In the third scenario, however, a trapezoidal scheme is employed.
In total, 5000 points are distributed over both the positive and the negative frequency ranges,
for both �1 and �2. Among those, a fine mesh of 1000 points is implemented in the intervals
�1|�2 œ [≠1 ≠ 4›, ≠1 + 4›] and �1|�2 œ [1 ≠ 4›, 1 + 4›] in order to properly capture the volumes
under the resonant peaks and ridges, which become sharper as the damping decreases. The ensuing
results are represented by blue lines in Figure 3.7 and Figure 3.8, for ten uniformly spaced values
of –‚ within the intervals [0.1, 0.3] and [4, 6], respectively.

The graphs in Figure 3.7 and Figure 3.8 are therefore associated to either a quasi-static loading,
either an inertial loading. In Figure 3.7, the black lines are thus given by the sum of the tri-
background component as introduced in Equation (3.17), which is also displayed in red, and the
background bi-resonant component as presented in Equation (3.22), which is pictured in green as
well. In Figure 3.8, however, the black lines correspond to the sum of the complete bi-resonant
component as expressed in Equation (3.25), which is also shown in green, and the resonant bi-
inertial component as given by Equation (3.32), which is represented in yellow.

Likewise, the skewnesses of the response are computed for the same sets of –‚ values, by
combining the blue and the black colored results from both the previous and the current chapter.
This is done graph-by-graph, meaning that the second central moments, which are computed as
those shown in Figure 2.2-(A1) for instance, are compiled with the third central moments, which are
calculated as those enclosed in Figure 3.7-(A1) or Figure 3.8-(A1), depending on whether –‚ < 1
or not, and so on.
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Figure 3.7: Third central moment of the response when the loading is background, –‚ π 1.
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Figure 3.8: Third central moment of the response when the loading is inertial, –‚ ∫ 1.
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Figure 3.9: Skewness of the response when the loading is background, –‚ π 1.
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Figure 3.10: Skewness of the response when the loading is inertial, –‚ ∫ 1.
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Table 3.1: Polynomial coe�cients and background components.

⁄u p1 p2 (1) (2) (3) “(1) “(3)
0.1 1.00 0.05 0.300 0.001 0.301 0.30 0.29
0.3 1.00 0.15 0.899 0.027 0.926 0.90 0.87
1.0 1.17 0.34 2.787 0.318 3.105 1.70 1.53

In the end, please notice that the tri-background components related to BÏ1 (�1, �2) and
BÏ2 (�1, �2) can in fact be expressed in closed-form by (1) = 6p

2
1p2 and (2) = 8p

3
2, respectively.

Their numerical values and their sums, (3) = (1) + (2), are listed in Table 3.1, with respect to the
relative wave lenght of concern. They are also indicated on the relevant graphs.

Discussion of the results

Globally, there is a good agreement between the third central moments calculated via the numerical
integration, in blue, and via the proposed formulations, in black. These results are all the more
accurate if the damping ratio and the frequency ratio drop, as it is expected from a perturbation
standpoint. The background bi-resonant decomposition additionally tends to be more sensitive to
the smallness of the frequency ratio than the bi-resonant inertial decomposition because –Ï has
to reach smaller values than �Ï for the third moments to be a�ected by the same level of error.
However, as shown in Figure 3.11, the results eventually tend to be equal to the third central
moment of the loading for –Ï π 1, meaning that the response becomes fully background. This is
due to the fact that the bi-resonant peaks arise in a zone where the loading bispectrum is very low.

The same applies to the skewness in Figure 3.9 and Figure 3.10 where the greater the damping,
the faster the convergence. But, on the opposite, the response is less skewed than the loading
when the frequency ratio approaches unity and the damping ratio decreases. This corroborates the
central limit theorem even if, contrary to what would be anticipated based on the behavior of the
second moments, the reduction in the amount of damping is not accompanied by an increment in
the resonant proportion for the third moment of the response. Indeed, although the bi-resonant
peaks are sharper, they are consequently concentrated in the frequency bands where the loading
bispectrum is almost zero, on the other hand.

The results are however significantly biased when the relative wave lenght reaches unity. Nev-
ertheless, this is not due to the use of the multiple timescale spectral analysis. These discrepancies
can actually be attributed to the polynomialization because they are shown to decrease with the
relative wave lenght. In practice, a loading of higher degree should indeed be considered when the
relative wave lenght is not so small [79].

In addition, when the loading is also quasi-static, it appears that BÏ2 (�1, �2) is well negligible
for the lowest value of the relative wave lenght, as shown by the similarity between Figure 3.7-
(A1) and Figure 3.7-(B1). Thus the outcomes of the numerical integration and the proposed
decomposition match quite closely.

A contrario, when the loading is inertial, its bispectrum is however exponentially small in the
neighborhood of the origin, and hence of the resonant peaks, in the first scenario. The resonant
components are therefore completely obliterated in Figure 3.8-(A) whereas, in principle, they are
responsible for a substantial part of the third central moments, no matter the smallness of the
relative wave lenght, as indicated in Figure 3.8-(B).

This is akin to what was observed with the power spectral densities of the response in the
previous chapter, although the loading bispectrum is herein simplified on the premise that the
relative wave lenght is small but remains associated to a quadratized, and not a linearized, forcing
process. The second part of the bispectrum can therefore be treated like the second part of the
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Figure 3.11: Close-up view on Figure 3.7-(B2) for smaller –‚.

power spectrum. For the record, in Section 2.5, it yielded a resonant contribution only because of
its low frequency content and the presence of the multiplicative factor (1 ≠ SÏ (1) /SÏ (1/�Ï)).

Although it does not appear so clearly for the bispectrum in the above formulas, it seems that
the addition of a bi-resonant component only also provides the adequate complement for the results
to match with the reference values in Figure 3.8-(B). The inertial components, in yellow, therefore
remain the same as in the first-row graphs. Overall, it indicates that the second part of the loading
bispectrum cannot be neglected at all when the loading is inertial, even if the relative wave lenght
is very small.
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Chapter 4

Contextualization

4.1 Context and Propositions

In this second part of the thesis, the Multiple Timescale Spectral Analysis is specialized to calculate
the second central moments of the responses of a linear multi-degree-of-freedom (MDOF) system
to the forces of the waves.

As shown in Section 4.2, these hydroelastic loads typically include fluid-structure interaction
e�ects which are represented herein by additional sti�ness, damping and mass matrices. They are
usually defined in the frequency domain, and so are therefore expressed the equations of motion. In
this thesis, their decoupling is then achieved by adopting a modal state-space formulation (SSF), in
Section 4.3, and by proposing two decoupling strategies, in Section 4.4 and Section 4.5, respectively.
The former supposes that the frequency sensitivity of the matrices can actually be neglected while
the latter transforms it into a small correction of the spectral densities. Hence, they are respectively
denoted by the symbols (⇢Ê) and (Ê) in Figure B.

However, as explained in Section 4.7, the Multiple Timescale Spectral Analysis has never been
used in such a decoupled setting. The method is therefore applied to derive simple expressions for
the main components of the second order statistics that are obtained with either the first, either
the second decoupling strategy, in Chapter 5 and Chapter 6 respectively, as represented in Figure
B. In the first scenario, the proposed decompositions are validated on a minimalistic example for
several sets of parameters. In the second scenario, it is not possible to do so and they are instead
shown to degenerate to the formulas that have been developed in the past under more restrictive
conditions. These two possibilities are eventually verified and compared with examples of realistic
floating bridges in Chapter 7.

4.2 Governing Equations in Frequency Domain

The dynamics of a linear elastic structure with N degrees-of-freedom subjected to sea waves is
governed by a set of N second order di�erential equations whose Fourier transform reads

Ë
Ks + ÿ̇ÊCs ≠ Ê

2Ms
È

x (Ê) = fh (Ê) (4.1)

where x (Ê) and fh (Ê) are two N ◊ 1 vectors containing the frequency-domain representations of
the structural displacements in every degree-of-freedom around the static equilibrium configuration
and the total hydrodynamic loads acting on each of them, respectively. The symbols Ks, Cs, and
Ms denote the N ◊ N static sti�ness, damping and mass matrices of the structure. They are
typically real and symmetric within a finite element modelling framework [80, 81].

More explicitly, the total hydrodynamic actions can generally be expressed in the frequency
domain by

fh (Ê) = f (Ê) ≠
Ë
Kh (Ê) + iÊCh (Ê) ≠ Ê

2Mh (Ê)
È

x (Ê) (4.2)
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where the first term is due to the undisturbed waves and the other ones are originating from the
interactions between the relative motion of the fluid and the structure. It gives rise to additional
elastic, viscous and inertial forces, as indicated by the hydrodynamic sti�ness, damping and mass
matrices, Kh (Ê), Ch (Ê), and Mh (Ê). In numerical studies, their determination usually relies on
the potential theory, which is fundamentally linear and thus allows to superimpose the well-known
flow fields obtained with the panel method when the body is supposed to oscillate in still water
or when it is fixed and exposed to sinuisoidal waves of unit height by assuming that the steepness
of the waves is small, the fluid motion is irrotational and the water is inviscid and incompressible
[82]. In this context, the added damping and mass matrices basically depend on the frequency of
the oscillations whereas the supplemental sti�ness matrix does not, i.e. ˆÊK (Ê) = 0. However,
in order to remain completely generic, this specificity is not implemented in here and moving the
hydrodynamic matrices to the left-hand side of Equation (4.1) yields

Ë
K (Ê) + ÿ̇ÊC (Ê) ≠ Ê

2M (Ê)
È

x (Ê) = f (Ê) (4.3)

where the global hydroelastic matrices are given by K (Ê) = Ks +Kh (Ê), C (Ê) = Cs +Ch (Ê), and
M (Ê) = Ms + Mh (Ê). By keeping such a general formulation, the methodology developed in this
thesis can be used in other fields of applications, and for instance help to deal with the aeroelastic
problems in wind engineering. In this context, though, the mass matrix is actually fixed while the
sti�ness matrix is function of the frequency.

The static analysis of the structure is supposed to be performed beforehand to define the refer-
ence position of each degree-of-freedom. Hence, the dynamic parts of the loadings are zero-mean
random processes. They are additionally deemed to be stationary over a given time interval and
Gaussian when deep water waves of moderate heights are considered [83]. Under such conditions,
these processes are completely described, in a probabilistic sense, by the matrix Sf (Ê) which gath-
ers the cross-spectral densities of all i-th and j-th nodal forces, Sf,ij (Ê). Establishing them is not
the purpose of the present thesis, see e.g. [84] for that matter, but a few of their peculiarities are
worthy to be highlighted for further discussion. In brief, they are typically obtained by using a
wave elevation spectrum whose unified expression reads

Sw (Ê) =
A

Ê
5
p

Ê5

B

exp
A

≠5
4

Ê
4
p

Ê4

B

(4.4)

and whose maximum is reached at Êp in the positive frequency range [61]. Equation (4.4) is then
commonly multiplied by some filters, which include for instance the influence of directional spread-
ing e�ects, spatial correlations, and wave elevation-to-force amplitude operators. Despite these
modifications, the spectral densities of the hydrodynamic forces habitually feature a similar expo-
nential decay as Sw (Ê) when the circular frequencies are approaching the origin. In addition, their
energy content remains relatively massed around Êp which is hence referred to as the characteristic
frequency of the loading in the sequel [11].

Once filled, the matrix Sf (Ê) is used to compute the matrix which contains the spectral densities
of the responses as follows

Sx (Ê) = Hx (Ê) Sf (Ê) H†
x (Ê) (4.5)

where
Hx (Ê) =

Ë
K (Ê) + ÿ̇ÊC (Ê) ≠ Ê

2M (Ê)
È≠1

(4.6)

is the matrix of frequency response functions. Given that the behavior of the structure is supposed
to be linear, the responses inherit the zero-mean Gaussian nature of the forces. Their probabilistic
properties are therefore fully defined on the sole basis of their spectral densities. In particular, the
second order statistics of the structural responses and their time derivatives are respectively given
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by

�x =
+Œ⁄

≠Œ

Sx (Ê) dÊ and �ẋ =
+Œ⁄

≠Œ

Ê
2Sx (Ê) dÊ (4.7)

whose diagonal elements are the variances of the corresponding processes. The overhead dots will
be adopted in this part of the thesis to represent the di�erentiation in time. Please remember that
this operator is equivalently written as the product of the factor (ÿ̇Ê)i and the Fourier transform of
the process at stake in the frequency domain, e.g. ẋ (Ê) = ÿ̇Êx (Ê) and ẍ (Ê) = ÿ̇Êẋ (Ê) = ≠Ê

2x (Ê).
The quantities derived in Equation (4.7) are essential from a design point of view because they

enter into the definition of the peak factors [85, 86], the cumulative probability distributions of
the extreme responses [37, 39], and the fatigue accumulated damage [38, 40], to cite just a few
examples. They are also employed when Equation (4.1) is the result of the stochastic linearization
performed on a set of nonlinear equations and is solved through an iterative procedure because the
sti�ness, damping and mass matrices are depending on �x and �ẋ as well [87, 88].

Nevertheless, the system and hence the matrix Hx (Ê) to be inverted are possibly very large.
First, this operation is computationally demanding. Second, it has to be repeated for as many
frequencies as the number of points nÊ that are necessary to compute the integrals in Equation
(4.7). Unfortunately, on top of that, the spectral densities of the responses are expected to exhibit
sharp and distant peaks when the structures are slightly damped. Their numerical integration
therefore requires using a lot of closely spaced points to give accurate results. Globally, it means
that huge matrices of size N ◊N ◊nÊ are to be handled. Sometimes, they cannot even be stored in
their entirety. To avoid such problems, the structural responses are most often defined by using a
limited number M of modal responses, with M π N for large structures. This approach is usually
intended to dissociate the equations of motion as well, so that they can be solved independently of
one another, without requiring any costly matrix inversion.

4.3 Modal State Formulation of the Equations

Being impracticable to evaluate explicitly [89], the static damping matrix is traditionally expressed
as a linear combination of the static mass and sti�ness matrices, following the simple proportional
damping rule proposed by Rayleigh [83, 90]. As a consequence, these three matrices satisfy the
Caughey-O’Kelly commutativity condition but this criterion, or any equivalent one [91], is however
hardly verified by the matrices that are originating from fluid-structure interactions [92], especially
when they are functions of the frequency as Kh (Ê), Ch (Ê), and Mh (Ê). The three static matrices
(Ks, Cs, and Ms) are therefore simultaneously diagonalizable by resorting to an appropriate pro-
jection space but the three hydrodynamic ones are never, no matter the basis considered [93, 94].
For instance, projecting the equations of motion into a subspace formed by the eigenmodes of the
undamped structure, as usual, would diagonalize the global mass and sti�ness matrices but not
the damping. It would contain non-zero o�-diagonal terms which are responsible for a remaining
coupling between the modal responses. These entries can unfortunately not always be ignored since
high levels of damping can be generated by the fluid-structure interactions, again [83, 95].

Overall, the above remarks imply that decoupling cannot be achieved in a satisfactory way
unless additional hypotheses are introduced. First, if the frequency sensitivity of the hydrodynamic
matrices is negligible, a modal state formulation can be introduced in order to separate the governing
equations. Being just two instead of three, the state matrices can indeed be diagonalized in a
simultaneous way even though the hydrodynamic damping is neither classical [92, 94], nor negligible
[83, 89]. This first condition is also trivially met when analyzing a structure whose properties do not
depend at all on the frequencies. Second, if the frequency sensitivity of the hydrodynamic matrices
can no longer be discarded, but remains somewhat limited, the transfer matrix of the modal state
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responses is not supposed to be exactly diagonal anymore but is still diagonally dominant. It can
therefore be expanded in series on the basis that the o�-diagonal entries are small with respect to
the diagonal ones, in order to virtually decouple the set of governing equations [96, 97]. These two
strategies are detailed in Section 4.4 and Section 4.5, respectively, after the reference modal state
approach is presented in this section.

To start, the structural responses are combined with their time derivatives to describe the
system in state-space. The state variables thus read

y (Ê) =
Ë

I ÿ̇ÊI
È|

x (Ê) (4.8)

with I being a N ◊ N identity matrix. An additional set of equations is subsequently introduced
to create a system of 2N first order equations whose constitutive matrices aim at conserving the
symmetry and the positive definiteness of the initial ones: K (Ê), C (Ê), and M (Ê) [98, 99, 100].
To do so, the state forces are defined as

g (Ê) =
Ë

I 0
È|

f (Ê) (4.9)

where 0 is a N ◊ N zero matrix. They allow to recast the set of N second-order equations, (4.3),
into 2N first-order equations as follows

[A (Ê) + ÿ̇ÊB (Ê)] y (Ê) = g (Ê) (4.10)

where
A (Ê) =

C
K (Ê) 0
0 ≠M (Ê)

D

and B (Ê) =
C

C (Ê) M (Ê)
M (Ê) 0

D

(4.11)

are designated as the state matrices.
Considering that they are symmetric and positive definite, these matrices are actually very

convenient to handle in order to find an adequate subspace in which the first 2M π 2N contributing
modal state responses are su�cient to perform the analysis of the structure with an acceptable level
of accuracy. In general, the higher modes are legitimately discarded because they tend to be less
excited by the hydrodynamic loads and to be more a�ected by discretization errors [89, 92].

Although the eigendecomposition can be numerically expensive as well, the eigensystem asso-
ciated to the homogeneous part of the governing equations is interestingly written in the standard
form

ÿ̇A (Âm) ◊m = ⁄mB (Âm) ◊m (4.12)

when it is expressed in the state coordinates. This complex eigenproblem will be referred to as
EVP-� in the rest of the thesis. Despite being nonlinear, it can be solved with well-established
and time-e�cient algorithms to get the matrix of eigenvalues, � = diag(⁄1, ..., ⁄m, ..., ⁄2M ) of size
2M ◊ 2M , and the matrix of corresponding eigenmodes, � = [◊1, ..., ◊m, ..., ◊2M ], of size 2N ◊ 2M .
The eigenvalues are reported as

⁄m = Âm + ÿ̇‚m with Âm = (≠1)m
Ò

1 ≠ ›
2
jm

Êjm and ‚m = ›jm Êjm (4.13)

where Êjm and ›jm are referred to as the jm-th natural frequency and damping ratio of the structure
with jm =

'm
2

(
. The real (resp. imaginary) part of the eigenvectors of odd (resp. even) rank

are also set to a unit maximum absolute value. These notation, normalization and organization
choices eventually imply that the eigensolutions come in pairs. In particular, they are such that
⁄m = ≠⁄

ú
m+1 and ◊m = ≠ÿ̇◊ú

m+1 when m is odd. Besides, according to the added state equations,
the top and the bottom parts of the eigenmodes can also be related as follows



4.3. Modal State Formulation of the Equations 67

◊m =
C

„m

ÿ̇⁄m„m

D

(4.14)

where „m is a vector of size N ◊ 1.
Thanks to the symmetry and positive definiteness of the state-space formulation, the left eigen-

vectors can directly be identified as the transposes of the right ones. If not, the left eigenvectors
are to be computed independently of the right eigenvectors. This is not detailled in here to keep
clutter-free equations but it would not substantially modify the following procedure. In any case,
the mode shapes are however not orthogonal through the state matrices because of their frequency
dependent nature. Their projection into the modal basis thus reads

�|A (Ê) � = D
≠1

A (Ê) and �|B (Ê) � = D
≠1

B (Ê) (4.15)

where the o�-diagonal entries of A (Ê) and B (Ê) are not necessarily equal to zero. Meanwhile,
their diagonal elements are given by

Akk (Ê = Âk) = ⁄k and Bkk (Ê = Âk) = ÿ̇ (4.16)

but they drift away as soon as they are evaluated at another circular frequency. The matrix
D = diag (D1, ..., Dm, ..., D2M ) is diagonal and is intended to contain the constants that normalize
the eigenvectors as explained hereabove.

Introducing the modal projection of the state forces, p (Ê) = �|g (Ê), and the modal decompo-
sition of the state responses, y (Ê) = �q (Ê), into Equation (4.10) consequently yields the modal
state formulation of the governing equations

q (Ê) = J
≠1 (Ê) p (Ê) (4.17)

which indicates that the modal state responses are indeed not decoupled, as previously announced,
because the dynamical flexibility matrix

J (Ê) = D
≠1 [A (Ê) + ÿ̇ÊB (Ê)] (4.18)

is still a full matrix to invert. From a stochastic point of view, these governing equations translate
into the spectral densities of the modal state responses as follows

Sq (Ê) = DH (Ê) Sp (Ê) DH
† (Ê) (4.19)

where
H (Ê) = [A (Ê) + ÿ̇ÊB (Ê)]≠1 (4.20)

is the frequency response function matrix of the coupled system. As indicated in Section 4.2, the
spectral densities of the forces are also initially expressed in the physical coordinates by the matrix
Sf (Ê). According to Equation (4.9), the matrix Sf (Ê) is then used to define the matrix

Sg (Ê) =
C

Sf (Ê) 0
0 0

D

(4.21)

which gathers the spectral densities of the i-th and j-th state forces, Sg,ij (Ê). The matrix Sg (Ê)
is subsequently projected into the modal basis to get the matrix

Sp (Ê) = �|Sg (Ê) � (4.22)

which collects the spectral densities of the m-th and n-th modal state forces, Sp,mn (Ê). Taking
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advantage of the zero blocks in Sg (Ê), Equation (4.21) can be bypassed and the matrix Sp (Ê) can
alternatively be written

Sp (Ê) = �|Sf (Ê) � (4.23)

by using the relation between the top and the bottom parts of the eigenmodes which is derived in
Equation (4.14).

Globally, the good point is that the size of the matrices to be processed has been drastically
reduced. But, although it is smaller than before, the full matrix J (Ê) of size 2M ◊ 2M still has
to be inverted, and now the matrix Sf (Ê) also has to be projected into the modal basis at each of
the numerous integration points that are required to calculate the second moments of the modal
state responses

�q =
+Œ⁄

≠Œ

Sq (Ê) dÊ (4.24)

with a su�cient resolution. This is problematic because both the inversions and the projections
are computationally demanding tasks and should be avoided as much as possible. In order to get
rid of the inversions, two decoupling strategies are detailed hereafter while the projections will be
dealt with afterwards, in Chapter 5 and Chapter 6, by using the general framework of the Multiple
Timescale Spectral Analysis.

4.4 Decoupling of the Equations - Scenario 1

The first decoupling strategy steps in even before the introduction of the state space formulation and
consists in neglecting the frequency sensitivity of the three hydrodynamic matrices. To do so, they
are respectively substituted by Kh (Ê0), Ch (Ê0) and Mh (Ê0), which are constant over the whole
range of circular frequencies. In order to limit the errors caused by this replacement, the parameter
Ê0 usually chosen as the dominant frequency of the forces or of the motions [1, 83, 101, 102]. In
these circumstances, Equation (4.1) becomes

Ë
K0 + ÿ̇ÊC0 ≠ Ê

2M0
È

x0 (Ê) = f (Ê) (4.25)

where the global hydroelastic matrices read K0 = Ks + Kh (Ê0), C0 = Cs + Ch (Ê0), and M0 =
Ms + Mh (Ê0). It then percolates through Equation (4.10) and Equation (4.11) to finally arrive at
the eigensystem

ÿ̇A0�0 = �B0�0 (4.26)

which is not only standard, but also linear given that the state matrices

A0 =
C

K0 0
0 ≠M0

D

and B0 =
C

C0 M0
M0 0

D

(4.27)

are now constant. This complex eigenproblem will be designated as EVP-0 in the rest of the thesis.
For the sake of conciseness in the developments, the same notation, normalization and organization
choices as in Section 4.3 are adopted but it is important to notice that they should actually di�er.
Be careful to use the eigensolutions associated to either EVP-�, either EVP-0, depending on the
scenario considered in the following sections and chapters.

In the context at stake, the mode shapes are by definition orthogonal to each other through the
state matrices. Projecting these matrices into such a modal basis thus yields

�|
0A0�0 = D≠1� and �|

0B0�0 = ÿ̇D≠1 (4.28)
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which are therefore simultaneously diagonal. The modal projection and decomposition of the state
forces and responses, p0 (Ê) = �|

0g (Ê) and y0 (Ê) = �0q0 (Ê), are then injected into Equation
(4.10). After left multiplication by �|

0 and DH (Ê), this equation reads

q0 (Ê) = DH (Ê) p0 (Ê) (4.29)

where the matrix of generalized frequency response functions, H (Ê) = diag (H1 (Ê) , ..., Hm (Ê) , ...,

H2M (Ê)) is diagonal and is therefore not expensive to calculate anymore. As a consequence,
Equation (4.29) can equivalently be written

q0,m (Ê) = DmHm (Ê) p0,m (Ê) with Hm (Ê) = (⁄m ≠ Ê)≠1 (4.30)

in indicial format and, on top of being decoupled, the modal responses are additionally monochro-
matic because their respective frequency response functions contain a single pole.

As shown in Figure 4.1, the real part of Hm (Ê) hence exhibits a double peak, spiking just left
and just right to Âm with a sign change in between. Meanwhile, the imaginary part of Hm (Ê)
displays a single peak located at Âm as well. The position, the height and the width of these peaks
are clearly indicated in Figure 4.1-(a) which pictures the real and the imaginary parts of Hm (Ê) in
linear scales, with their signs. More specifically, both the half-width at half-height of the peak in
⁄ [Hm (Ê)] and the half-width between the maximum and the minimum of Ÿ [Hm (Ê)] are related
to ‚m which in turn depends on the damping ratio. Thus, the smaller the damping ratios, the
sharper the peaks.

Meanwhile, Figure 4.1-(b) gives an overview of what happens far below and far above the poles
by presenting the real and the imaginary parts of Hm (Ê) in absolute values and in logarithmic
scales. In particular, the slopes of the straight lines drawn at both extremities of this log-log plot
indicate that Ÿ [Hm (Ê)] and ⁄ [Hm (Ê)] are approximately constant when |Ê| π |Âm| and behave
like monomials of degree (≠1) or (≠2), respectively, when |Ê| ∫ |Âm|.

As per Equation (4.30), the spectral density of the m-th and the n-th modal state responses
can then be written in the canonical form

Sq0,mn (Ê) = DmDnGmn (Ê) Sp0,mn (Ê) (4.31)

where

Gmn (Ê) = Hm (Ê) H
ú
n (Ê) (4.32)

is used to define the structural kernel associated to the m-th and the n-th modal state responses.
This function is illustrated in Figure 4.2 and Figure 4.3 for a few sets of parameters in order to get
a picture of how the m-th and the n-th frequency response functions are supposed to interact in
these various cases.

Integrating Sq0,mn (Ê) instead of Sy,ij (Ê) is, in principle, easier to achieve as it features two
sharp peaks at most, and no longer a multitude. These peaks are respectively associated to the
resonance of the structure in the m-th and the n-th modes and come along some strong variations
related to the particular energy content of the waves. However, despite their reduced number,
the sharpness and the distinctness of these peaks imply that a large number of closely spaced
integration points are still needed to determine the second moments of the modal state responses

�q0,mn =
+Œ⁄

≠Œ

Sq0,mn (Ê) dÊ (4.33)

in an accurate way. Thanks to the method described above, the modal state equations are now
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Figure 4.1: Real (Ÿ) and imaginary (⁄) parts of Hm (Ê): (a) with their signs in linear scales,
(b) in absolute values and logarithmic scales.

decoupled. They can therefore be solved independently of one another, without requiring to invert
a full matrix anymore. Instead, the spectral densities of the modal state forces are computed and
projected into the modal basis at each of the numerous integration points. Unfortunately, this
operation is actually very costly as well, especially given the possibly large size of the system,
meaning that the computational demand is not particularly reduced in overall. As previously
mentioned, this problem will be dealt with in Chapter 5 for the decoupling strategy at hand. It
will be addressed by applying the Multiple Timescale Spectral Analysis to the integral of Equation
(4.33).

4.5 Decoupling of the Equations - Scenario 2

The eigenvalues and the eigenmodes considered in the upcoming section are obtained as the solu-
tions of the EVP-� because the second decoupling strategy operates at the level of the dynamical
flexibility matrix, by introducing the alternative expression

J
≠1 (Ê) =

C

I +
+Œÿ

k=1
(≠1)k

1
J

≠1
d (Ê) J o (Ê)

2k
D

J
≠1
d (Ê) (4.34)

where J d (Ê) = diag(J (Ê)) while J o (Ê) = J (Ê) ≠ J d (Ê) contains the o�-diagonal entries of
J (Ê) and zeros anywhere else [96, 97, 103]. As a result, the inversion of a full matrix is no longer
required. Inverting the diagonal part of the dynamical flexibility matrix su�ces to obtain the
transfer matrix

DHd (Ê) = J
≠1
d (Ê) (4.35)

where Hd (Ê) = diag (Hd,1, ..., Hd,m, ..., Hd,2M ), and to correct it by a series of terms which do not
depend on any other inverse. But even so, the computational demand is not substantially reduced
when an infinite number of corrections is implemented.

It is therefore interesting to notice that the series presents a high convergence rate if the di-
agonality index of J (Ê) is much smaller than unity for all Ê œ R. This parameter measures the
diagonal dominance of the matrix and is defined in [104] as

fl (J ) = ‡

1
J

≠1
d (Ê) J o (Ê)

2
(4.36)
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Figure 4.2: Real (Ÿ) and imaginary (⁄) parts of Gmn (Ê) when Ê1 = 3 rad/s, Ê2 = 9 rad/s,
›1 = 6 %, and ›2 = 3 %: (a) |Âm| = |Ân| and ÂmÂn > 0, (b) |Âm| = |Ân| and ÂmÂn < 0, (c)

|Âm| ”= |Ân| and ÂmÂn > 0, (d) |Âm| ”= |Ân| and ÂmÂn < 0.
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Figure 4.3: Real (Ÿ) and imaginary (⁄) parts of Gmn (Ê) when Ê1 = 5.5 rad/s, Ê2 =
6.5 rad/s, ›1 = 6 %, and ›2 = 3 %: (a) |Âm| = |Ân| and ÂmÂn > 0, (b) |Âm| = |Ân| and

ÂmÂn < 0, (c) |Âm| ”= |Ân| and ÂmÂn > 0, (d) |Âm| ”= |Ân| and ÂmÂn < 0.
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where ‡ stands for the spectral radius. Depending on its smallness, the series can thus be truncated
after a given number of terms. Keeping only the leading term, for instance, amounts to neglect the
o�-diagonal entries in J (Ê). This approach is typically referred to as the decoupling approximation
and is attributed to Lord Rayleigh [90].

In the following, the first order correction is considered as it partially accounts for the modal
couplings which result from the frequency dependency. It complements the modal correlations
which are due to the coherence of the modal forces. Hence, the transfer matrix is finally given by
the series

H2 (Ê) = [I ≠ DHd (Ê) J o (Ê)] DHd (Ê) (4.37)

which is truncated at first order. Likewise, the modal state responses are supposed to be estimated
precisely enough by the first order approximation

q2 (Ê) = [I ≠ DHd (Ê) J o (Ê)] qd (Ê) (4.38)

where the leading order terms correspond to a set of decoupled modal state responses which can
actually be obtained independently of one another, without having to invert any full matrix. They
read

qd (Ê) = DHd (Ê) p (Ê) (4.39)

and given that Hd (Ê) collects the frequency response functions of these decoupled modal state
responses

Hd,m (Ê) = [Amm (Ê) + ÿ̇ÊBmm (Ê)]≠1 (4.40)

on its diagonal but zeros everywhere else, Equation (4.39) can alternatively be written

qd,m (Ê) = DmHd,m (Ê) pm (Ê) (4.41)

in indicial form.
Then, introducing the first order approximation of the transfer function into Equation (4.19)

allows to estimate the spectral densities of the modal state responses as

Sq2 (Ê) = Sq1 (Ê) +
Ë
�Sq1 (Ê) + �S†

q1
(Ê)

È
(4.42)

where the leading order term reads

Sq1 (Ê) = DHd (Ê) Sp (Ê) DH
ú
d (Ê) (4.43)

and where the first order term is given by

�Sq1 (Ê) = ≠DHd (Ê) J o (Ê) DHd (Ê) Sp (Ê) DH
ú
d (Ê) , (4.44)

while the next corrective term

�Sq2 (Ê) = DHd (Ê) J o (Ê) Sq1 (Ê) J
†
o (Ê) DH

ú
d (Ê) (4.45)

is directly discarded on the basis that it is a second order term [97]. The corrections delivered
by �Sq2 (Ê) are not significant when the diagonality index of the dynamical flexibility matrix is
relatively small. Plus, it would not be consistent to keep them anyway since the series expansion
of the transfer function has previously been truncated at first order.

As indicated in [97], the corrections provided by the first order terms, �Sq1 (Ê) and �S†
q1

(Ê),
are usually su�cient to ensure that Sq2 (Ê) approximates Sq (Ê) with a high level of accuracy. They
are on the other hand necessary to achieve this objective for the o�-diagonal elements of Sq2 (Ê),
even though they are globally small with respect to the leading terms. If the modal forces are
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uncorrelated, for instance, Sp (Ê) and thus Sq1 (Ê) are transformed into diagonal matrices. As a
consequence, the o�-diagonal elements of Sq2 (Ê) are exclusively given by �Sq1 (Ê) + �S†

q1
(Ê).

In this specific case, the corrective terms are therefore not negligible, no matter their smallness
because they are to be compared with zeros.

On the other hand, they completely disappear when the generalized flexibility matrix is either
diagonal, either considered as such. Thus, Sq1 (Ê) corresponds to the densities that are obtained
when the modal responses are directly decoupled, or approximated as such. They are therefore
solely influenced by the modal correlations, while the modal couplings are partially accounted for
by the first order corrections.

Besides, in the above equations, the diagonal nature of the matrix D and the matrix Hd (Ê)
is already accounted for. These matrices are hence symmetric and equivalent to their transposes.
The elements of D are also real-valued. Thus, D corresponds to its hermitian conjugate and so
does Sp (Ê), according to [105]. Rewriting Equation (4.42) in indicial form then yields

Sq2,mn (Ê) = Sq1,mn (Ê) + �Sq1,mn (Ê) + �S
ú
q1,nm (Ê) (4.46)

with the leading order term

Sq1,mn (Ê) = DmDnGd,mn (Ê) Sp,mn (Ê) (4.47)

and the first order correction

�Sq1,mn (Ê) =
2Mÿ

k=1
DmDnDkGd,mnk (Ê) Jo,mk (Ê) Sp,kn (Ê) (4.48)

being defined as functions of the structural kernels

Gd,mn (Ê) = Hd,m (Ê) Hú
d,n (Ê) (4.49)

and
Gd,mnk (Ê) = Hd,m (Ê) Hú

d,n (Ê) Hd,k (Ê) (4.50)

which are respectively formed by the product of two or three frequency response functions. Provided
that each of these functions contains a single pole, Sq1,mn (Ê) and �Sq1,mn (Ê) are thus expected to
exhibit the same amount of resonant peaks as the number of frequency response functions entering
into their expression, at most. The former contains two peaks as is usually the case when the modal
state responses are completely decoupled. The latter introduces small corrections in the form of
additional peaks which make the spectral densities of the modal state responses look like those of
coupled systems. However, instead of dealing with a multitude of peaks, they are to be handled
two-by-two in Equation (4.46) or three-by-three in Equation (4.47). Being so readily identified,
their contributions to the leading order terms

�q1,mn =
+Œ⁄

≠Œ

Sq1,mn (Ê) dÊ (4.51)

and the first corrective terms

��q1,mn =
+Œ⁄

≠Œ

�Sq1,mn (Ê) dÊ (4.52)

are expected to be easily treated by the Multiple Timescale Spectral Analysis, see Chapter 6. But
until then, the numerical integration of these functions requires to use an important number of
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points and to project large matrices for each of them in order to get an accurate estimation for the
second moments of the modal state responses which reads

�q2,mn = �q1,mn + ��q1,mn + ��†
q1,mn (4.53)

at last. Thus, although the current decoupling strategy allows to avoid the inversion of full matrices,
the repeated projections of large matrices are still driving the computational cost up, and sometimes
even out of reasonable ranges.

4.6 Recombination of the Modal Responses

At last, the spectral densities and the second moments of the modal state responses obtained in
Section 4.3, Section 4.4 and Section 4.5 can finally be recombined by yı (Ê) = �qı (Ê) in order to
get references and approximations for the spectral densities and the second moments of the nodal
state responses. They thus read

Syı
(Ê) = �ıSqı

(Ê) �†
ı … Syı,ij (Ê) =

2Mÿ

m=1

2Mÿ

n=1
�ı,im�ú

ı,jnSqı,mn (Ê) (4.54)

where the star subscript denotes nothing, zero, one or two depending on the case considered here-
above. They are known to fully describe the probabilistic features of the responses in the present
linear, normal and zero-mean context. In particular, the second moments of the i-th and the j-th
nodal state responses can be defined as the integrals of the corresponding spectral densities along
the frequencies. They are hence expressed as

�yı
= �ı�qı

�†
ı … �yı,ij =

2Nÿ

m=1

2Nÿ

n=1
�ı,im�ú

ı,jn�qı,mn (4.55)

in matricial form and indicial form.
In order to identify the so-called square root of the sum of the squares (SRSS) and complete

quadratic combination (CQC) rules, Equation (4.55) can also be rewritten as follows

�yı,ij = �ı,im�ú
ı,jm�qı,mm

+
2Nÿ

m=1

2Nÿ

n=1,n”=m

�ı,im�ú
ı,jnflqı,mn

Ò
�qı,mm�qı,nn (4.56)

where
flqı,mn = �qı,mn

�qı,mm�qı,nn
(4.57)

is the correlation coe�cient of the modal state responses. By contrast with the second moments,
these coe�cients are dimensionless and bounded in the interval [≠1, 1]. They thus enable a fair
evaluation of the influence that the modal covariances might have on the nodal results, as regards
to the modal variances. If the modal correlations are much smaller than unity in absolute value,
the second line of Equation (4.56) drops. In this event, the SRSS, which is less burdensome as it
considers the elements in the first line of Equation (4.56) only, is expected to be as accurate as the
CQC, which includes the elements in both lines of Equation (4.56). Otherwise, the nodal results
can be significantly a�ected by the choice of such a recombination rule.

Through the definition of the state variables, yı (Ê) =
Ë

I ÿ̇ÊI
È|

xı (Ê), the spectral densities
and the second moments of the state responses also end up being related to those of the initial
responses as follows
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Syı
(Ê) =

C
Sxı (Ê) ≠ÿ̇ÊSxı (Ê)

ÿ̇ÊSxı (Ê) Ê
2Sxı (Ê)

D

(4.58)

where Ê
2Sxı (Ê) = Sẋı (Ê). Hence, the top left and bottom right blocks of size N ◊ N in �yı

can readily be identified as containing the second moments of the initial responses and their time
derivatives, �xı and �ẋı , respectively. As mentioned earlier, these matrices and especially their
diagonal elements, which represent the variances of the corresponding processes, are the quantities
of interest for a design perspective. For instance, according to the conventional formula based on
the Poisson assumption which has been widely adopted in most international codes and standards,
the average of the extreme values encountered over windows of duration T in the response processes
reads

zx,i =
AÒ

2 ln nx,i + “


2 ln nx,i

B Ò
�x,i (4.59)

for the i-th degree-of-freedom, where

nx,i = T

2fi

Û
�ẋ,i
�x,i

(4.60)

and “ ƒ 0.5572 is the Euler constant [106]. When environmental loads are considered, these results
are likely to be used by the wind engineering community to determine peak factors. In wave
engineering, they are related to the short-term extreme responses whose cumulative distribution
functions are then computed for many di�erent sea states in order to derive the statistics of the
long-term extreme responses. Although the state space formulation doubles the size of the matrices
to be processed throughout the analysis, the extreme responses of the system are fully characterized
by �y and thus by �q. In order to speed up the calculation of �q with the help of the Multiple
Timescale Spectral Analysis, a single formula can be used for all of its elements, whereas in physical
coordinates, two di�erent expressions are needed: one is dedicated to the statistics of the modal
responses and another one is required for the statistics of their derivatives [11].

4.7 Need for MTSA Extension

In comparison with the direct integration of the spectral densities presented in Equation (4.7),
resorting to the modal state approach and the decoupling strategies, as detailed above, is already
more e�cient in computing the variances and the covariances of the initial responses and their time
derivatives for several reasons. First, the size of the system has been drastically reduced by being
projected into an appropriate basis composed of 2M π 2N modes only. Second, the responses
have been decoupled, at the expense of a small loss of accuracy or not depending on whether the
frequency dependency of the hydroelastic matrices is significant or not.

As a result, their second order statistics can be obtained independently of one another, without
requiring to invert a full matrix anymore, and the number of poles in the functions to integrate
has been restricted to three at most instead of up to 2N , provided that the frequency sensitivity
of the hydroelastic matrices is relatively limited. But in return, the complexity of the stochastic
analysis is now driven by the projections of the spectral densities of the modal state forces into the
modal basis. This is indeed another computationally demanding task which additionally has to be
repeated for a large number of integration points because the functions to be integrated feature
sharp and distinct peaks.

Whereas the sharpness and the distinctness of the peaks constitute a huge drawback for the
numerical integration, it can in fact be turned into an advantage as it provides a sound basis
for the implementation of the Multiple Timescale Spectral Analysis. This general framework has
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specifically been formulated to reduce the number of points that are needed to compute such
integrals, and especially avoid to project the spectral densities of the forces into a modal basis so
many times. This objective is typically achieved by deriving semi-analytical approximations for the
main components of the corresponding statistics [11].

In ocean engineering applications though, the fast dynamics are not necessarily linked with
the structural motions, especially when wave-loaded structures are compliant in surge, as floating
o�shore wind turbines or floating bridges. Such systems might therefore respond in the background
and the resonant regimes, but also in the inertial one which is on the contrary hardly ever activated
in land-based wind-loaded structures. The Multiple Timescale Spectral Analysis is therefore yet to
take the inertial components into account.

In addition, fluid-structure interactions are also regarded for the first time. Given that we
propose to handle the resulting non-classicality of the added damping and frequency dependency
of the hydroelastic matrices by means of a modal state formulation, the consideration of complex
eigenfrequencies and eigenmodes is expected to modify the expressions of the background and the
resonant components which have been derived in the past for the second moments of the modal
responses as well.

These are hence the two reasons why the method is extended in this thesis, in Chapter 5 and
in Chapter 6 depending on whether the first or the second decoupling strategy is selected, before
being finally applied on realistic wave-loaded structures in Chapter 7.
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Chapter 5

Covariances, Excluding

Frequency-Dependency

5.1 Introduction and Preliminary Considerations

In this chapter, the first decoupling strategy is supposed to have previously been implemented. It
thus follows Section 4.4 and the integration of

Sq0,mn (Ê) = DmDnGmn (Ê) Sp0,mn (Ê) (5.1)

where the structural kernel reads

Gmn (Ê) = Hm (Ê) H
ú
n (Ê) (5.2)

is now tackled with the Multiple Timescale Spectral Analysis in order to accelerate the computation
of the statistics, by reducing the number of times the spectral densities of the loading need to be
projected.

Using this method first requires to formulate a few assumptions regarding the distinctness of the
peaks observed in the integrands at stake. They are detailed in Section 5.2 and they consequently
allow to identify the areas that contribute the most to the integrals. As in Chapter 2, these zones
are readily identified as being twofold and related to either the peaks of the structural kernel, either
the peaks of the loading spectrum. They are then focused in a sequential way in Section 5.3 and
Section 5.4. In these regions, locally accurate approximations of the integrands are derived and are
eventually integrated in an analytical way to provide a decomposition into two main components
with simple formulas for the second order statistics of the modal state responses.

A realistic description of the wave loads will be considered later on, in Chapter 7, for valida-
tion. In this chapter, however, the spectral density of the m-th and n-th modal state forces are
temporarily defined by using the following expression

Sp0,mn (Ê) = Pa,mn |Sw (Ê)| + ÿ̇Ps,mnSw (Ê) (5.3)

which is introduced in details in Appendix A. It allows to illustrate and to validate the mathematical
developments presented in this chapter but also to study the influence that the natural frequencies,
the damping ratios and the peak frequencies of the waves have on the results through a parametric
analysis, in Section 5.5. Please note that the coe�cients Pa,mn and Ps,mn are complex. Therefore
and contrary to the spectral densities of real processes, the co- and quad-spectral densities of the
modal state forces, Ÿ[Sp0 ,mn (Ê)] and ⁄ [Sp0,mn (Ê)], are no longer even and odd because of the
projection into a complex basis, see Appendix A for further explanations.
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Figure 5.1: Origin of the peaks in the spectral density of the m-th and n-th modal state
responses, with m and n being di�erent even numbers. The natural frequencies and damping
ratios are Êjm = 0.1 rad/s, Êjn = 1 rad/s, ›jm = 1 % and ›jn = 1 % while the spectral
density of the m-th and n-th modal state forces is given by Equation (5.3) where Pa,mn = 1,
Ps,mn = ≠ÿ̇/2 and (i) Êp = 0.03 rad/s for the red curves, (ii) Êp = 0.3 rad/s for the orange

curves or (iii) Êp = 3 rad/s for the yellow curves.

5.2 Formulation of the Necessary Assumptions

In the current situation, the peaks in the spectral density of the m-th and n-th modal state responses
are separated provided that a few conditions are verified. They read as follows and they can typically
be linked to the existence of some small numbers which set the stage for a successful application
of the perturbation theories.

(i) The spectral density of the m-th and n-th modal state forces varies smoothly and
moderately over the width of the resonant peaks. This is based on the fact that the
derivatives of these functions are small with respect to the extent of the considered zone
which scales with ‚m Ã ›jm and ‚n Ã ›jn . If the damping ratios are very small and
the resonant peaks are very sharp, for instance, the spectral density of the m-th and
n-th modal state forces is allowed to fluctuate more. Otherwise said, it will globally
not change much between the two sides of an extremely narrow frequency interval.

(ii) The characteristic frequency of the waves, which is denoted Êp, is significantly di�erent
from the m-th and n-th natural frequencies of the structure, Âm and Ân. The frequency
ratios

–m = Êp

|Âm| and –n = Êp

|Ân| (5.4)
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are therefore much lower or much higher than one in absolute value. In the first case,
the wave loading actually excites the corresponding mode in its background regime
while it triggers the inertial regime in the second.

Under these assumptions, the Multiple Timescale Spectral Analysis can decompose the spectral
densities of the modal state responses into two main parts. It yields

S̃q0,mn (Ê) = Sr0,mn (Ê) + S¸0,mn (Ê) (5.5)

where the tilde symbol indicates that this is an approximate expression. On the one hand, the first
term fits the initial spectral density (i.e. the non-tilde function) over the peaks that are caused by
the poles of the frequency response functions. It is referred to as the resonant contribution and
tagged by a subscript r. On the other hand, the second term approximates locally the spectral
density of the response over the peaks that are related to the particular shape featured by the
spectral densities of the modal state forces. Depending on the relative position of this peak with
regard to the resonant ones, it is designated as the background, if both Êp < Êjm and Êp < Êjn ,
the inertial, if both Êp > Êjm and Êp > Êjn , or the mixed contribution, otherwise. These three
eventualities are shown in Figure 5.1 and labelled (i), (ii), and (iii), respectively. In general,
however, it can be identified as the loading contribution and this is denoted by the subscript ¸.

If these local approximations are su�ciently accurate in the regions considered, are integrable in
the far field, and are such that the formulations of their integrals are explicit, the second moments
of the modal state responses can be estimated through the use of the Multiple Timescale Spectral
Analysis as the sum of two components

�̃q0,mn = �r0,mn + �¸0,mn (5.6)

whose expressions are derived in Section 5.3 and Section 5.4. It seems interesting to notice that
dropping the loading component should su�ce to get a correct estimation for the second moment
when –m and/or –n approaches unity, even if Assumption (ii) is not met. Indeed, in this event, one
or both natural frequencies are close to the characteristic frequency of the waves. The peak of the
loading spectrum is stacked on one or both peaks of the structural kernel. Being in the same zones,
they are all covered by the first local approximation of the response spectrum, which is herein the
resonant one, when the Multiple Timescale Spectral Analysis is applied.

In brief, in in Section 5.3 and Section 5.4, we demonstrate that �r0,mn and �¸0,mn can respec-
tively be expressed as

�r0,mn = ÿ̇fi
DmDn

⁄m ≠ ⁄ú
n

[Sp0,mn (Âm) + Sp0,mn (Ân)] (5.7)

and

�¸0,mn = DmDnLmn

4ÿ

l=1

5
(+ Êp)—

(l)
mn G(l)

mn (+Êp) � (l)(+)
p0,mn + (≠ Êp)—

(l)
mn G(l)

mn (≠Êp) � (l)(≠)
p0,mn

6
(5.8)

where
Lmn =

A

1 ≠ Sp0,mn (Âm)
Sp0,mn (Êp)

B A

1 ≠ Sp0,mn (Ân)
Sp0,mn (Êp)

B

, (5.9)

� (l)(±)
p0,mn = ±

Nÿ

i=1

Nÿ

j=1
�im�ú

in

±Œ⁄

0

Ê
≠—

(l)
mnSf,ij (Ê) dÊ , (5.10)
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and

l —
(l)
mn G(l)

mn (Ê)
1 —m + —n Ÿ [Hm (Ê)] Ÿ [Hú

n (Ê)]
2 —m + 2—n ÿ̇Ÿ [Hm (Ê)] ⁄ [Hú

n (Ê)]
3 2—m + —n ÿ̇⁄ [Hm (Ê)] Ÿ [Hú

n (Ê)]
4 2—m + 2—n ≠⁄ [Hm (Ê)] ⁄ [Hú

n (Ê)]

as shown in Table 5.1.

5.3 Derivation of the Resonant Component

The resonant component is due to the poles of the frequency response functions, Hm (Ê) and H
ú
n (Ê).

As shown in Figure 4.2 and Figure 4.3, the resulting peaks can interact di�erently –sometimes less,
sometimes more– depending on how close Âm is to Ân and eventually merge if these eigenfrequencies
are coalescent, e.g. when the auto-spectral densities and thus the variances are examined (m = n).

Given that the denominator of the structural kernel is already factorized as the product of
(⁄m ≠ Ê) and (⁄ú

n ≠ Ê) being two first degree polynomials with single but complex roots, it is quite
straightforward to expand it in partial fractions. Equation (5.2) is indeed expected to read

Gmn (Ê) = a

⁄m ≠ Ê
+ b

⁄ú
n ≠ Ê

(5.11)

where a and b are constant but complex coe�cients. Equation (5.11) can be rewritten as

b (⁄m ≠ Ê) = 1 ≠ a (⁄ú
n ≠ Ê) (5.12)

which is subsequently evaluated at Ê = ⁄
ú
n in order to get the following expression

b = 1
⁄m ≠ ⁄ú

n
(5.13)

for the first coe�cient of the partial fraction expansion. Reintroducing Equation (5.13) into Equa-
tion (5.12) then yields

a = ≠b (5.14)

for the second coe�cient of the partial fraction expansion. These two coe�cients are substituted
back in the initial equation and the partial decomposition of the structural kernel is eventually
given by

Gmn (Ê) = ≠ 1
⁄m ≠ ⁄ú

n

5 1
⁄m ≠ Ê

≠ 1
⁄ú

n ≠ Ê

6
(5.15)

or equivalently by
Gmn (Ê) = ≠Hm (Ê) ≠ H

ú
n (Ê)

⁄m ≠ ⁄ú
n

(5.16)

in terms of the frequency response functions.
As a result, these functions are subtracted instead of being multiplied and the spectral density

of the modal state responses becomes

Sq0,mn (Ê) = ≠ DmDn

⁄m ≠ ⁄ú
n

[Hm (Ê) Sp0,mn (Ê) ≠ H
ú
n (Ê) Sp0,mn (Ê)] (5.17)

where the respective poles of Hm (Ê) and H
ú
n (Ê) are now isolated, without any approximation, in

two di�erent parts of the function to integrate. The stretched coordinate Ê = Âm (1 + Á÷) can then
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be substituted into the first term of Equation (5.17) in order to focus on the pole of Hm (Ê) by
placing it at ÷ = 0 and by zooming on the contributing area, where ÷ ≥ ord (1), thanks to the
smallness of the arbitrary parameter, Á π 1. Its value can actually be related to ‚m which is the half
width at half height of the peak in ⁄ [Hm (Ê)] or the half width between the positive and the negative
maxima in Ÿ [Hm (Ê)], as indicated in Figure 4.1-(a). Invoking Assumption (i), the derivatives of
the loading spectrum are considered small enough to maintain the asymptoticness of its Taylor
series expansion in the neighborhood of ÷ = 0, or more formally Á

i
÷

i
ˆ

i
÷Sp0,mn (Âm) π Sp0,mn (Âm),

see [11]. This spectral density can therefore be replaced by the constant value Sp0,mn (Âm) on the
region spanned by the strained coordinate while the frequency response function is expressed by

Hm (÷) = ≠ Á÷Âm

‚2
m + (Á÷Âm)2 ≠ ÿ̇‚m

‚2
m + (Á÷Âm)2 (5.18)

which is already integrable in closed-form and which is anyways not possible to further simplify on
the basis of the hypotheses at stake.

Following the same path for the second term of Equation (5.17) with another but similar
stretched coordinate, Ê = Ân (1 + Á÷), it yields

Sr0,mn (Ê) = ≠ DmDn

⁄m ≠ ⁄ú
n

[Hm (Ê) Sp0,mn (Âm) ≠ H
ú
n (Ê) Sp0,mn (Ân)] (5.19)

to approximate locally the cross-spectral density of the response over the resonant peaks. Being
su�ciently simple, locally accurate and bounded in the far field, Sr0,mn (Ê) fits the requirements
of the Multiple Timescale Spectral Analysis. It can finally be integrated in an explicit way to give
the resonant component of the covariance

�r0,mn = ÿ̇fi
DmDn

⁄m ≠ ⁄ú
n

[Sp0,mn (Âm) + Sp0,mn (Ân)] (5.20)

which boils down, as expected, to the formulas derived in [13] and [11] under a few conditions, see
Section 6.5.

5.4 Derivation of the Loading Component

As suggested in the presentation of the Multiple Timescale Spectral Analysis, Equation (5.19) is
then subtracted from Equation (5.1) to give the residual function

Ŝq0,mn (Ê) = Sq0,mn (Ê) ≠ Sr0,mn (Ê) (5.21)

which yields
�̂q0,mn = �q0,mn ≠ �r0,mn (5.22)

after integration. This remaining contribution is now solely due to the two peaks that are coming
from the spectral density of the modal state responses. Although they are positioned symmetrically
with respect to the origin (i.e. at Ê = ± Êp), they are however not supposed to reach the same
maximum values. It is therefore not possible to treat them simultaneously as it was suggested for
the variance of a wind-loaded oscillator in Section 2.4. Instead, in order to isolate these peaks into
two di�erent integrands again, the residual function is split into two parts as follows

Ŝq0,mn (Ê) = Ŝ
(+)
q0,mn (Ê) + Ŝ

(≠)
q0,mn (Ê) (5.23)
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Figure 5.2: Decreasing trends observed in the structural kernel before, between, and after
the poles of the frequency response functions: (a) ÂmÂn > 0 and |Âm| π |Ân|, (b) ÂmÂn < 0

and |Âm| π |Ân|, (c) ÂmÂn > 0 and |Âm| < |Ân|, (d) ÂmÂn < 0 and |Âm| < |Ân|

where Y
]

[
Ŝ

(+)
q0,mn (Ê) = Ŝq0,mn (Ê) if Ê > 0

Ŝ
(+)
q0,mn (Ê) = 0 if Ê < 0

(5.24)

and Y
]

[
Ŝ

(≠)
q0,mn (Ê) = 0 if Ê > 0

Ŝ
(≠)
q0,mn (Ê) = Ŝq0,mn (Ê) if Ê < 0

(5.25)

respectively. This is just a mathematical trick which does not modify the residual function in
overall.

The change of coordinate Ê = Êp (1 + Á÷) is then introduced in the first integrand to focus on
the peak located in the positive frequency range. Since this peak typically extends over a relatively
large domain in contrast to the resonant ones, see Figure 5.1, the structural kernel cannot necessarily
be replaced by a constant value across the whole area of interest unless the background regimes are
activated in both the m-th and the n-th modes. Indeed, when –m π 1 and –n π 1, the strained
coordinate actually covers a domain where the frequency response functions are not varying much
as Êp π |Âm| and Êp π |Ân|, see Figure 5.2.
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In general, instead, the real and the imaginary parts of the m-th frequency response function
can conveniently be approximated by a monomial which is equal to the initial function at the
considered peak location and which is characterized by the same slope in logarithmic scales. They
thus read

Ÿ
Ë
H̃m (÷)

È
=

3 1
1 + Á÷

4—m

Ÿ [Hm (0)] (5.26)

and
⁄

Ë
H̃m (÷)

È
=

3 1
1 + Á÷

42—m

⁄ [Hm (0)] (5.27)

where

—m = –m

–m ≠ 1 (5.28)

tends to 0 or 1 respectively when –m π 1 or –m ∫ 1, the two cases covered by Assumption (ii).
By comparing Equation (5.19) to Equation (5.17), Sr0,mn (Ê) also appears to be negligible in

relation to Sq0,mn (Ê) in the region spanned by the stretched coordinate because Sp0,mn (Âm) π
Sp0,mn (Êp) and Sp0,mn (Ân) π Sp0,mn (Êp) when the ratios –m and –n are either much lower, either
much greater than one. If one of these inequalities is not verified, however, the loading component
drops and even reaches zero in the limit case, i.e. when the cross-spectral density function is
constant over the whole range of frequencies, meaning that the covariance of the modal responses
is fully resonant. In order to comply with these observations while simplifying the expressions,
Sr0,mn (Ê) is removed from Equation (5.21) and replaced by the multiplicative form

Lmn =
A

1 ≠ Sp0,mn (Âm)
Sp0,mn (Êp)

B A

1 ≠ Sp0,mn (Ân)
Sp0,mn (Êp)

B

(5.29)

which accordingly decreases down to zero when a frequency or a loading cross-spectrum ratio is
getting close to one.

Proceeding with the same steps for the peak of the second integrand by using another but
equivalent stretched coordinate, Ê = ≠Êp (1 + Á÷), the local approximation of the residual function
eventually reads

S
(±)
¸0,mn (Ê) = DmDnLmn

4ÿ

l=1

5
(± Êp)—

(l)
mn G(l)

mn (± Êp) S(l)
p0,mn (Ê)

6
(5.30)

after returning to the circular frequencies. The symbols (+) and (≠) are selected in accordance
with the sign of the frequencies because of the non-symmetric nature of the peaks at stake while
G(l)

mn (± Êp) is defined in Table 5.1 and

S(l)
p0,mn (Ê) = Ê

≠—
(l)
mnSp0,mn (Ê) (5.31)

is integrated over the positive or the negative frequency range to yield

� (l)(±)
p0,mn = ±

±Œ⁄

0

S(l)
p0,mn (Ê) dÊ (5.32)
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which is a part of the spectral (fractional) moment of order ≠—
(l)
mn associated to the m-th and n-th

modal state forces. Interestingly enough, this last equation can alternatively be written

� (l)(±)
p0,mn = ±

Nÿ

i=1

Nÿ

j=1
„im„

ú
in

±Œ⁄

0

Ê
≠—

(l)
mnSf,ij (Ê) dÊ (5.33)

when the modal decomposition of the spectral densities from Equation (4.23) is reintroduced, show-
ing that the integration can actually be performed in the nodal basis, before the modal projection,
in order to avoid doing so at each integration point with the spectral densities of the nodal state
loadings. For each of these terms, the number of projections is therefore drastically reduced.

At last, the loading component of the modal covariance is given in an explicit way by

�¸0,mn = DmDnLmn

4ÿ

l=1

5
(+ Êp)—

(l)
mn G(l)

mn (+Êp) � (l)(+)
p0,mn + (≠ Êp)—

(l)
mn G(l)

mn (≠Êp) � (l)(≠)
p0,mn

6
(5.34)

which boils down to the well-known background component when –m and –n are much lower than
one (—m = —n = —

(l)
mn = 0 and Êp = 0). This expression additionally extends in a unified way to the

inertial component or to the mixed background/inertial component which did not exist before. The
next remainder can ultimately be neglected as it corresponds to the integral of a residual function
which does no longer contain any significant contribution.

Table 5.1: Definitions for (5.30), (5.31) and (5.34)

l —
(l)
mn G(l)

mn (Ê)
1 —m + —n Ÿ [Hm (Ê)] Ÿ [Hú

n (Ê)]
2 —m + 2—n ÿ̇Ÿ [Hm (Ê)] ⁄ [Hú

n (Ê)]
3 2—m + —n ÿ̇⁄ [Hm (Ê)] Ÿ [Hú

n (Ê)]
4 2—m + 2—n ≠⁄ [Hm (Ê)] ⁄ [Hú

n (Ê)]

5.5 Verification with a Parametric Analysis

Globally, in Section 5.3 and Section 5.4, semi-analytical formulas have been established for the
main components of the spectral densities, in Equation (5.19) and Equation (5.30), as well as the
second statistics, in Equation (5.20) and Equation (5.34), of the m-th and the n-th modal state
responses. They are now verified for di�erent sets of parameters in the following section. To do
so, the results they provide are compared with the references, a.k.a the spectral densities defined
in Equation (4.31) and the second statistics obtained through the numerical integration of these
functions with a su�cient number of points. This operation is performed hereafter by making use
of the adaptive algorithm which is implemented in Version 12.0.0.0 of Wolfram Mathematica.

On the one hand, the adequacy of the expressions derived for the spectral densities in the
previous sections is well confirmed by looking at the good agreement between the proposed decom-
positions and the numerical definitions of the co- and quad-spectral densities which is illustrated
for all possible combinations of contributions in Figure 5.3 and Figure 5.4. Thanks to the color
code adopted to represent them –green for the resonant, yellow for the inertial, orange for the
mixed and red for the background component–, they are indeed identified as inertial and resonant
in Figure 5.3-(a), mixed and resonant in Figure 5.3-(b), background and resonant in Figure 5.3-(c)
but also in Figure 5.4. This background/resonant case is actually depicted for two di�erent sets of
parameters because the functions appear to be significantly di�erent if the signs of the m-th and
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the n-th eigenfrequencies are the same. It would however not change anything in Figure 5.3-(a)
and the green bump would just flip side with respect to the y-axis in Figure 5.3-(b).

These figures can also be analyzed in the light of Equation (5.20) and Equation (5.34). Being
simple, they allow to explain in a mathematical way the influence of some parameters, but also in
which cases some components are specifically important to be taken into account. For instance,
the resonant component is useless when the loading component is inertial because the frequency
ratios are much lower than one, –m π 1 and –n π 1. It implies that the eigenfrequencies are much
smaller than the peak frequency of the waves in absolute value and the resonant peaks thus fall
in a zone where Sp0,mn (Âm) and Sp0,mn (Ân) are extremely small because these functions exhibit
an exponential decay in such a low frequency range. This is the reason why one or both resonant
peaks disappear in Figure 5.3-(a) and Figure 5.3-(b). The loading component is also leading over
the resonant one when the m-th and n-th natural frequencies are far away from each other, as
shown in Figure 5.3. The opposite occurs when they are close to each other as in Figure 5.4. The
interaction of the resonant peaks appear to be conditioned upon the damping ratios as well in this
figure. The smaller the damping ratios, the sharper but also the more distinct the resonant peaks.

On the other hand, similar remarks can be formulated for the statistics obtained through the
proposed decompositions and through the numerical integration. They are displayed in Figure
5.5 and they coincide quite well, except in the shaded area where a more important discrepancy
is observed. This is to be expected because one of the natural frequencies is close to the peak
frequency of the waves in this region, meaning that Assumption (ii) is actually not respected.
Nevertheless, the errors remain reasonable thanks to the multiplicative factor Lmn which ensures
that the loading component passes by zero when –n = 1, and thus does not grow unbounded.
Overall, the proximity of the natural frequencies and the smallness of the damping ratios are
necessary conditions to observe a burst in the resonant component, see Figure 5.5-(a), but this is
not su�cient otherwise Figure 5.5-(b), (c) and (d) would exhibit a similar feature. In fact, the
resonance in the m-th and n-th modes additionally needs to be activated by the loading but this is
not the case when the loading component is inertial. Apart from that, the loading component also
tends towards zero (resp. a non-zero constant value) when –n is far below one (resp. far above
one) because –m and thus Hm (± Êp) = (⁄m û Êp)≠1 are fixed but Ân increases (resp. decreases).
This eigenfrequency eventually leads over Êp in H

ú
n (± Êp) = (⁄n û Êp)≠1 which is hence dropping

to zero (resp. stabilizing at a constant value).
It is however not possible to conclude on the influence that these e�ects might have on the nodal

results without referring to the correlation coe�cients. Being dimensionless, they allow to assess
the importance of taking the covariances of the modal state responses into account in relation to
their variances. Indeed, they read

flq0,mn = �q0,mn
�q0,mm�q0,nn

(5.35)

for the m-th and n-th modal state responses. Based on the proposed decomposition of the modal
state variances and covariances, the correlation coe�cient can first be written

fl̃q0,mn = �r0,mn + �¸0,mn
�r0,mm + �¸0,mm


�r0,nn + �¸0,nn

(5.36)

and can then be estimated as the sum of a resonant and a loading component as well by using a
similar derivation as in [13]:

fl̃q0,mn = “r0flr0,mn + “¸0fl¸0,mn (5.37)
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Figure 5.3: Spectral densities of the m-th and n-th modal state responses for all (m, n) pairs
indicated by the green lines when Pa = (1 + 0.2ÿ̇), Ps = (ÿ̇ ≠ 0.2), Ê1 = 0.1 rad/s, Ê2 = 6

rad/s, ›1 = 5 % and ›2 = 5 %.
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Figure 5.4: Spectral densities of the 2nd and 4th modal state responses when Pa = (1 + 0.2ÿ̇),
Ps = (ÿ̇ ≠ 0.2), Ê1 = 4 rad/s and Ê2 = 4.5 rad/s.
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where
“r0 = 1

Ò
1 + r

≠1
0,m

Ò
1 + r

≠1
0,n

and “¸0 = 1


1 + r0,m


1 + r0,n
(5.38)

can be seen as a resonant and a loading weighting factors. They are related to the resonant-to-
loading ratios

r0,m = �r0,mm

�¸0,mm
and r0,n = �r0,nn

�¸0,nn
(5.39)

which are dimensionless and belong to the interval [0, +Œ[ . If the responses are fully resonant in
both modes, i.e. r0,m ∫ 1 and r0,n ∫ 1 , “r0 tends towards unity and “¸0 tends towards zero. On
the contrary, if the loading component is leading in both modes, i.e. r0,m π 1 and r0,n π 1, “r0
tends towards zero and “¸0 tends towards unity.

Substituting the appropriate components of the modal state variances and covariances into the
general definition of the correlation coe�cients

fl(.),mn =
�(.),mnÒ

�(.),mm�(.),nn

(5.40)

then yields
flr0,mn = �r0,mn

�r0,mm�r0,nn
and fl¸0,mn = �¸0,mn

�¸0,mm�¸0,nn
(5.41)

for the resonant and the loading components. The loading coe�cient is unfortunately not easily
interpretable unless the response is quasi-static in both modes. In this event, it boils down to the
expression derived in [13] where it simply corresponds to the correlation coe�cient of the m-th and
n-th modal state forces, fl¸0,mn = flp,mn.

Meanwhile, after some reformulations and manipulations, the resonant component is interest-
ingly written as

flr0,mn = Èmn [�mn (Âm) Smn + �mn (Ân) Snm] (5.42)

where
Èmn = ÿ̇

Ô
‚m‚n

⁄m ≠ ⁄ú
n

(5.43)

is a resonant interaction indicator. As shown in Figure 5.6 which illustrates the contours of its
real and imaginary parts when ›jm = ›jn = › with m and n being even numbers, the value of
this indicator actually increases if the resonant peaks are interacting. The crests of the first and
the second plots are represented by white lines and are accordingly reached when the minima in
the imaginary parts and the real parts, respectively, of the m-th and the n-th frequency response
functions are aligned. Mathematically speaking, the equations of these lines respectively read

’ = 0 and ’ = ± › (5.44)

where
’ = Ân ≠ Âm

Ân + Âm
(5.45)

is a dimensionless measure of the relative distance between the resonant peaks.
Besides, the smaller the damping ratios, the sharper the resonant peaks, and thus the narrower

the zone over which they blend. This is indicated in the figures by the faster decrease of the
indicator with respect to ’ when › tends towards zero. At last, the resonant part of the correlation
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coe�cient also increases if the values of the coherence function

�mn (Ê) = Sp0,mn (Ê)
Ò

Sp0,mm (Ê) Sp0,nn (Ê)
(5.46)

at Ê = Âm and Ê = Ân or the spectral ratios

Smn =
Û

Sp0,nn (Âm)
Sp0,nn (Ân) and Snm =

Û
Sp0,mm (Ân)
Sp0,mm (Âm) (5.47)

grow as well. On the opposite, the coherence function and the spectral ratios drop to zero if the
forces in two modes are not coherent or do not contain any energy in the frequency bands associated
to the resonance of these modes.
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Figure 5.6: Real and imaginary parts of the resonant factor. White lines represent the crests
of the contour plots. Below, the m-th and n-th frequency response functions obtained for a

few sets of parameters are represented.
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Chapter 6

Covariances, Including

Frequency-Dependency

6.1 Introduction and Preliminary Considerations

In Chapter 4, the second decoupling strategy allowed to express the spectral densities of the modal
state forces as the sum of the leading order function

Sq1,mn (Ê) = DmDnGd,mn (Ê) Sp,mn (Ê) (6.1)

and the first order correction

�Sq1,mn (Ê) =
2Mÿ

k=1
DmDnDkGd,mnk (Ê) Jo,mk (Ê) Sp,kn (Ê) (6.2)

where
Gd,mn (Ê) = Hd,m (Ê) Hú

d,n (Ê) (6.3)

and
Gd,mnk (Ê) = Hd,m (Ê) Hú

d,n (Ê) Hd,k (Ê) (6.4)

are the structural kernels. The integration of these spectral densities is tackled with the help of the
Multiple Timescale Spectral Analysis in this chapter, in order to rely on as few modal projections
of the state forces as possible and to eventually speed up the computation.

Although they make use of the concepts that have already been introduced in Chapter 5, the
decompositions of the spectral densities and the second moments are a bit more involved in this
chapter, mathematically speaking. This is because the elements of the modal state matrices are now
frequency dependent and the first order corrections contain many more terms. Explanations are
provided when these two features lead to a significant modification of the previous developments.
It is however not convenient to illustrate them by introducing a minimalistic loading spectrum
anymore as it would require to arbitrarily define a lot of other parameters. Thus, the mathematical
details regarding the preceding notions and results are deliberately kept short. For their better
understanding, the reader is referred to Chapter 5.

In the following, the distinctness of the resonant and the loading peaks found in the integrands
at stake is first ensured by formulating a number of assumptions in Section 6.2. As before, these
peaks can then be sequentially targeted, in Section 6.3 and Section 6.4, to yield simple expressions
for the two main components of the spectral densities and the second moments, which are again
identified as resonant and loading.
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6.2 Formulation of the Necessary Assumptions

In the present configuration, the separation of the peaks in the spectral densities of the modal state
responses is conditioned upon the following list of assumptions, which can be associated to the
existence of a few small parameters again.

(i) The spectral densities of the modal state forces and the elements of the modal state
matrices are varying smoothly and moderately over the width of the resonant peaks.
In other words, the derivatives of these functions are small enough to maintain the
asymptoticness of their Taylor series expansion near the natural frequencies of the
structure. More formally, these conditions read

(Ê ≠ Âk)i
ˆ

i
ÊSp,mn (Âk) π Sp,mn (Âk) (6.5)

and
(Ê ≠ Âk)i

ˆ
i
ÊAmn (Âk) π Amn (Âk) (6.6)

and
(Ê ≠ Âk)i

ˆ
i
ÊBmn (Âk) π Bmn (Âk) (6.7)

for all possible combinations of m, n and k indices and for Ê taking values in an interval
centered at Âk (the location of the k-th pole on the real axis) and extending over a
range which is proportional to ‚k (the imaginary part of the k-th eigenfrequency). This
latter parameter decreases together with the corresponding damping ratio. According
to Figure 4.1, the smaller it is, the sharper the corresponding peak and the narrower
the zone where the functions are not supposed to change too much. In these equations,
the symbol ˆ

i
Ê also represents the i-th derivative with respect to the circular frequency.

(ii) The spectral densities of the modal state forces reach their maximum value at a circular
frequency which is designated by Êp and is significantly di�erent from the natural
frequencies of the structure. This hypothesis is formalized by acknowledging that the
frequency ratios

–k = Êp

|Âk| (6.8)

with k œ [1, ..., 2M ] are either much lower, either much greater than one. In the former
case, the k-th mode is excited in its background regime by the loading while, in the
latter case, the loading activates its inertial regime.

(iii) The elements of the modal state matrices are almost constant in the zones where the
spectral densities of the modal state forces are fluctuating a lot, i.e. when the circular
frequency is getting close to the peak frequency of the modal state forces. In a formal
way, it reads

(Ê û Êp)i
ˆ

i
ÊAmn (± Êp) π Amn (± Êp) (6.9)

and
(Ê û Êp)i

ˆ
i
ÊBmn (± Êp) π Bmn (± Êp) (6.10)

with Ê taking values in the interval centered at ± Êp and spread over the surrounding
area. Its extent is complicated to define in a general sense because it does not scale
with any structural parameter but it is typically wider than the resonant peaks.

Under these conditions, Sq1,mn (Ê) and �Sq1,mn (Ê) can be decomposed into two main contributions
as follows

S̃q1,mn (Ê) = Sr1,mn (Ê) + S¸1,mn (Ê) (6.11)
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and
�S̃q1,mn (Ê) = �Sr1,mn (Ê) + �S¸1,mn (Ê) (6.12)

by using the Multiple Timescale Spectral Analysis. These approximate functions are designated
by a tilde symbol. The first terms provide a local approximation of the initial functions over the
peaks that are coming from the structural kernels. They are called resonant and labeled by a r

subscript. Meanwhile, the second terms approximate locally the initial functions over the peaks
that are due to the spectral densities of the modal state forces. They are said loading-related and
marked by a ¸ subscript.

The Multiple Timescale Spectral Analysis requires them to be su�ciently accurate over the
respective zones of interest, to be integrable in the far field, and to be simple enough so that they
can be integrated in an explicit way. Under these conditions, the method is known to yield a similar
decomposition for approximating the second moments with a controllable discrepancy. They are
consequently expected to read

�̃q1,mn = �r1,mn + �¸1,mn (6.13)

and
��̃q1,mn = ��r1,mn + ��¸1,mn (6.14)

where the resonant and the loading contributions are indicated by the r and ¸ subscripts again.
They are intended to be given by means of simple formulas whose expressions are provided in
Section 6.3 and Section 6.4, respectively. Although they are easy to understand and to interpret,
they are unfortunately not so brief and are therefore not shown here as in the previous chapters.

6.3 Derivation of the Resonant Component

Starting with the resonant component, the peaks of concern are known to be caused by the poles of
the frequency response functions, which enter into the definition of the structural kernels. Instead
of being given by their product as in Equation (6.3) and Equation (6.4), the structural kernels can
alternatively be expanded in partial fractions. They thus read

Gd,mn (Ê) = Bmm (Ê)
Cmn(Ê) Hd,m (Ê) + Bú

nn (Ê)
Cú

nm (Ê)Hú
d,n (Ê) (6.15)

with
Cmn (Ê) = Amm (Ê) Bú

nn (Ê) + Aú
nn (Ê) Bmm (Ê) = Cú

nm (Ê) (6.16)

and

Gd,mnk (Ê) = B2
kk (Ê) Hd,k (Ê)

Ckn (Ê) Emk (Ê) ≠ B2
mm (Ê) Hd,m (Ê)
Cmn (Ê) Emk (Ê) +

Bú2
nn (Ê) Hú

d,n (Ê)
Cú

nm (Ê) Cú
nk (Ê) (6.17)

with
Emk (Ê) = Amm (Ê) Bkk (Ê) ≠ Akk (Ê) Bmm (Ê) (6.18)

provided that the multiplicity of each pole is equal to one. Equation (6.17) is therefore not valid
when k = m. This is however not much of a problem because Gd,mnk (Ê) will subsequently be
multiplied by Jo,mk (Ê), which is actually equal to zero in this event.

As a consequence of the partial fraction expansion, each term of the sums in Equation (6.15)
and Equation (6.17) contains a single frequency response function, e.g. Hd,k (Ê), and thus a single
pole which can be zoomed in on by introducing an appropriate stretched coordinate, e.g. Ê =
Âk (1 + Á÷). Invoking Assumption (i), the spectral densities of the modal state forces and the
elements of the modal state matrices can then be evaluated at the corresponding eigenfrequency
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and replaced by these constant values on the region spanned by the strained coordinate. For the
record, the diagonal elements of the modal state matrices are given by

Akk (Âk) = ⁄k and Bkk (Âk) = ÿ̇ (6.19)

at these specific positions, as indicated in Section 4.3.
The spectral densities can therefore be estimated by

Sr1,mn (Ê) = ≠DmDn

5
Sp,mn (Âm)
ÿ̇Cmn(Âm) Hm (Ê) ≠ Sp,mn (Ân)

ÿ̇Cmn(Ân) Hú
n (Ê)

6
(6.20)

and

�Sr1,mn (Ê) = DmDn

2Mÿ

k=1
k ”=m

Dk

5Jo,mk (Âm) Sp,kn (Âm)
Cmn (Âm) Emk (Âm) Hm (Ê)

≠ Jo,mk (Ân) Sp,kn (Ân)
Cú

nm (Ân) Cú
nk (Ân) H

ú
n (Ê) ≠Jo,mk (Âk) Sp,kn (Âk)

Emk (Âk) Ckn (Âk) Hk (Ê)
6

(6.21)

over the width of the resonant peaks with

Hk (Ê) =
3 1

⁄k ≠ Ê

4
(6.22)

being an approximation of the frequency response function. It is actually defined as the frequency
response function obtained with the first decoupling strategy, except that the eigenvalue is now the
solution of another eigenvalue problem, EVP-� instead of EVP-0. Given that its integral yields

+Œ⁄

≠Œ

Hk (Ê) dÊ = ÿ̇fi
⁄ (⁄k)
|⁄ (⁄k)| (6.23)

by applying the residue theorem, the local approximations derived in Equation (6.20) and Equation
(6.21) are su�ciently simple, locally accurate and seemingly integrable to meet the requirements of
the Multiple Timescale Spectral Analysis. In consequence, they finally provide the explicit formulas

�r1,mn = ÿ̇fiDmDn

5
Sp,mn (Âm)
ÿ̇Cmn(Âm) + Sp,mn (Ân)

ÿ̇Cmn(Ân)

6
(6.24)

and

��r1,mn = ÿ̇fiDmDn

2Mÿ

k=1
k ”=m

Dk

5Jo,mk (Âm) Sp,kn (Âm)
Cmn (Âm) Emk (Âm)

+Jo,mk (Ân) Sp,kn (Ân)
Cú

nm (Ân) Cú
nk (Ân) ≠ Jo,mk (Âk) Sp,kn (Âk)

Emk (Âk) Ckn (Âk)

D

(6.25)

for the resonant components of the second order statistics.

6.4 Derivation of the Loading Component

As it is recommended by the procedure detailled in the introduction, the local approximations
derived in Equation (6.20) and Equation (6.21) are subtracted from the exact spectral densities
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found in Equation (6.1) and Equation (6.2) in order to define the residuals

Ŝq1,mn (Ê) = Sq1,mn (Ê) ≠ Sr1,mn (Ê) (6.26)

and
�Ŝq1,mn (Ê) = �Sq1,mn (Ê) ≠ �Sr1,mn (Ê) (6.27)

which do no longer contain any significant contribution near the poles of the frequency response
functions. Up to this point, �q1,mn and ��q1,mn can be totally recovered by complementing the
resonant components presented in Equation (6.24) and Equation (6.25) with the respective integrals
of the two residuals introduced hereabove. In this section, however, a simple but approximate
formula is sought for these additional contributions.

Given that the remaining peaks in the residuals are generated by the spectral densities of the
modal state forces, they are located at a frequency which is close to the peak frequency of the
loading in absolute value. Focusing on the positive frequency range first, the change of coordinate
Ê = Êp (1 + Á÷) is introduced to center the corresponding peak at the abscissa ÷ = 0 and to zoom
in on the area of interest by means of an appropriate small number.

As mentioned earlier, this peak usually extends over a relatively wide zone. Under Assumption
(iii), the elements of the modal state matrices can be calculated at the position ÷ = 0 and substituted
by these constant values over the whole area of interest. The same rationale is also supposed to
hold for the elements of the dynamical flexibility matrix. Nevertheless, this approach cannot be
satisfactorily applied to the frequency response functions. At first, they thus read

H¸,k (÷) = 1
Akk (0) + ÿ̇Êp (1 + Á÷) Bkk (0) (6.28)

when they are expressed with respect to the strained coordinates.
Once the frequency dependency of the modal state coe�cients is ignored, the real and the

imaginary parts of the resulting functions can adequately be approached by the following monomials

Ÿ
Ë
H̃¸,k (÷)

È
=

3 1
1 + Á÷

4—k

Ÿ [H¸,k (0)] (6.29)

and

⁄
Ë
H̃¸,k (÷)

È
=

3 1
1 + Á÷

42—k

⁄ [H¸,k (0)] (6.30)

where

—k = –k

–k ≠ 1 (6.31)

is equal to 0 and 1 in the two limit cases, –k π 1 and –k ∫ 1, which can respectively be encountered
according to Assumption (ii). These approximate frequency response functions have been tailored
to be equal to the original functions at the peak frequency of the waves, i.e. when Ê = Êp or
equivalently ÷ = 0. Likewise, they have also been customized to exhibit the same decreasing
trend in logarithmic scales when the evolution of the structural properties with the frequency is
disregarded.

Under these conditions, the resonant approximations of the spectral densities are readily shown
to be negligible in the region spanned by the strained coordinates if Sp,mn (Âm) π Sp,mn (Êp) and
Sp,mn (Ân) π Sp,mn (Êp). These conditions are supposed to be verified when the ratios –m and –n

are either much lower, either much greater than one on the basis that the spectral densities of the
modal state forces decrease rapidly on both sides of their peaks. Otherwise, the loading component
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drops down to zero because the contributions provided by Sq1,mn (Ê) and Sr1,mn (Ê) are of the same
order of magnitude but of opposite sign. As it allows to account for these remarks while reducing
the complexity of the formulations, the multiplicative term

Lmn =
A

1 ≠ Sp,mn (Âm)
Sp,mn (Êp)

B A

1 ≠ Sp,mn (Ân)
Sp,mn (Êp)

B

(6.32)

is introduced to replace the resonant approximations of the spectral densities into the equations.
This reasoning is however more di�cult to justify clearly now that the elements of the modal state
matrices are depending on the frequencies as well. For further explanations, the reader is invited
to go back to the previous chapter.

Implementing the same procedure for the peak positioned in the negative frequency range with
another but similar stretching, Ê = ≠Êp (1 + Á÷), the local approximations of the residuals over
the peaks associated to the spectral densities of the modal state forces finally read

S
(±)
¸1,mn (Ê) = DmDnLmn

4ÿ

l=0

5
(± Êp)—

(l)
mn G(l)

mn (± Êp) S(l)
p,mn (Ê)

6
(6.33)

and

�S
(±)
¸1,mn (Ê) = DmDnLmn

2Mÿ

k=1
Dk

8ÿ

l=1

5
(± Êp)—

(l)
mnk G(l)

mnk (± Êp) Jo,mk (± Êp) S(l)
p,mnk (Ê)

6
(6.34)

in the initial coordinates. Because of the projection in a complex basis, the real and imaginary
parts of the spectral densities have lost their symmetry properties. Their values are no longer the
same or the opposite, respectively, for similar absolute frequencies located in either the positive,
either the negative frequency range. Therefore, the symbols (+) and (≠) have to be selected in
line with the sign of the considered circular frequency as before. Alternatively, this idea can also
be formalized by using the same mathematical trick as in the previous chapter, Section 5.4.

When integrated, the functions

S(l)
p,mn (Ê) = Ê

≠—
(l)
mnSp,mn (Ê) and S(l)

p,mnk (Ê) = Ê
≠—

(l)
mnkSp,kn (Ê) (6.35)

yield

� (l)(±)
p,mn = ±

±Œ⁄

0

S(l)
p,mn (Ê) and � (l)(±)

p,mnk = ±
±Œ⁄

0

S(l)
p,mnk (Ê) (6.36)

which can be referred to as the spectral (fractional moments) of order ≠—
(i)
mn and the ≠—

(i)
mni of the

m-th and n-th modal state forces.
In the end, integrating the local approximations of the residuals as well thus provides some

explicit expressions for the loading components of the second order statistics. Indeed, they are
given by

�¸1,mn = DmDnLmn

4ÿ

l=1

5
(+ Êp)—

(l)
mn G(l)

mn (+ Êp) � (l)(+)
p,mn + (≠ Êp)—

(l)
mn G(l)

mn (≠ Êp) � (l)(≠)
p,mn

6
(6.37)
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Table 6.1: Definitions for Equations (5.30), (5.31) and (5.34)

l —
(l)
mnk G(l)

mnk (Ê)
1 —m + —n + —k Ÿ [H¸,m (Ê)] Ÿ

Ë
Hú

¸,n (Ê)
È

Ÿ [H¸,k (Ê)]
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È

⁄ [H¸,k (Ê)]
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È

Ÿ [H¸,k (Ê)]
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È

Ÿ [H¸,k (Ê)]
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Ë
Hú

¸,n (Ê)
È

⁄ [H¸,k (Ê)]
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È
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(6.38)

respectively. Interestingly enough, Equation (6.36) can alternatively be written

� (l)(±)
p,mn = ±

Nÿ

i=1

Nÿ

j=1
„im„

ú
in

±Œ⁄

0

Ê
≠—

(l)
mnSf,ij (Ê) dÊ (6.39)

and

� (l)(±)
p,mnk = ±

Nÿ

i=1

Nÿ

j=1
„ik„

ú
in

±Œ⁄

0

Ê
≠—

(l)
mnkSf,ij (Ê) dÊ (6.40)

when the modal decomposition of the spectral densities from Equation (4.23) is reintroduced,
showing that the integration can actually be performed in the nodal basis, before the modal pro-
jection, in order to avoid doing so at each integration point with the spectral densities of the nodal
state loadings. For each of these terms, the modal projections required to compute the loading
components are therefore reduced to none.

6.5 Specialization to Former Approximations

In order to verify somehow the consistency of the expressions proposed in this chapter, they are
shown to degenerate into the expressions that have formerly been developed in more restrictive
circumstances. It is quite straightforward for the background components since fixing —m = —n =
—k = 0 and Êp = 0 is su�cient to recover the expression of Davenport. For the resonant component,
however, it is a little bit more complicated and the additional assumptions formulated in the
previous chapter, in [13], and in [11] are thus implemented the one after the other in the following,
starting from Equation (6.24) and Equation (6.25).
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1. The frequency-dependency of the hydroelastic matrices is disregarded.

In this event, the o�-diagonal entries of the modal state matrices are nil. Thus, Equation (6.25)
directly drops. Besides, the diagonal elements of the modal state matrices are also given by the
constant values

Akk = ⁄k and Bkk = ÿ̇ (6.41)

over the whole range of circular frequencies. Substituting these coe�cients into Equation (6.24)
yields

Cmn = ≠ÿ̇ (⁄m ≠ ⁄
ú
n) = Cú

nm (6.42)

and thus
�r1,mn = ÿ̇fi

DmDn

⁄m ≠ ⁄ú
n

[Sp,mn (Âm) + Sp,mn (Ân)] (6.43)

which corresponds well to the resonant component of the covariances between the m-th and n-th
modal state responses obtained in Chapter 5. Meanwhile, the corrective terms readily disappear
because the o�-diagonal elements of the dynamical flexibility matrix are now strictly equal to zero.

2. The o�-diagonal terms of the modal damping matrix are negligible.

Given that the top and the bottom parts of the complex eigenmodes can be related by

◊m =
C

„m

ÿ̇⁄m„m

D

(6.44)

where „m is a vector of size N , the modal state matrices can actually be expanded as
I

◊|
mA◊m = „|

mK„m + ⁄
2
m„|

mM„m

◊|
mB◊m = „|

mC„m + 2ÿ̇⁄m„|
mM„m

(6.45)

where ◊|
mA◊m = ⁄mD

≠1
m and ◊|

mB◊m = ÿ̇D
≠1
m .

Then, under the assumption that has just been introduced, the sti�ness, the mass and the
damping matrices are simultaneously diagonalized by being projected into the basis formed by the
top parts of the complex eigenmodes. As a consequence, it yields

I
Dm = ⁄m

!
km + ⁄

2
mmm

"≠1

0 = km + ÿ̇⁄mcm ≠ ⁄
2
mmm

(6.46)

for the normalization coe�cients, where the modal properties

km = „|
mK„m ; mm = „|

mM„m and cm = „|
mC„m (6.47)

are respectively referred to as the modal sti�nesses, masses and damping coe�cients.

3. The damping ratios are much smaller than one, ›jm π 1 and ›jn π 1.

By truncating the above equations at leading order in ›jm and ›jn , the natural frequencies and the
damping ratios of the undamped structure read

Êjm =
Û

km

mm
(6.48)
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and
›jm = cm

2
Ô

kmmm
(6.49)

respectively. Given that the m and n indices are both odd, doing so with Equation (6.43) as well
yields

�r1,mn = fi

4kmkn

ÊjmÊjn

(›jmÊjm + ›jnÊjn) + ÿ̇ (Êjm ≠ Êjn) [Sp,mn (Êjm) + Sp,mn (Êjn)] (6.50)

for the resonant component of the modal state covariances.

4. The damping ratios are the same in both modes, ›m = ›n = ›.

Under this condition, the covariance reads

�r1,mn = fi

4kmkn

3
› ≠ ÿ̇’

›2 + ’2

4 3
ÊmÊn

Êm + Ên

4
[Sp,mn (Êm) + Sp,mn (Ên)] (6.51)

where the parameter
’ = Ên ≠ Êm

Ên + Êm
(6.52)

as defined in [11] is introduced. This dimensionless number measures the relative distance between
the two natural frequencies.

5. The natural frequencies are close to each other, Ên = Êm (1 + 2’) with ’ π 1.

The covariance is finally expressed by

�r1,mn = fi

4kmkn

3
› ≠ ÿ̇’

›2 + ’2

4 3
Êm + Ên

2

4 3
Sp,mn (Êm) + Sp,mn (Ên)

2

4
(6.53)

as in [11]. However, by contrast with these previous developments, the arithmetic mean between
the cross-spectral densities comes out from the equations and are not due to further arbitrary
simplifications.

6. The indices m and n are equal to each other.

At last, the resonant component of the variance

�r1,mm = fiÊjm

4›k
2
jm

Sp,mm (Êjm) (6.54)

is also well recovered [14].

All in all, the demonstration provided hereabove confirms that the formulas de-
rived in this thesis are in fact more general and can be used in an even broader
domain of application than before.
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Chapter 7

Applications

This chapter tackles the stochastic analysis of multi-degree-of-freedom structures subjected to hy-
drodynamic loads with the methodologies developed in this thesis and aims at validating them.
Given that the first application is very detailled, the second one is deliberately kept short.

7.1 Bergsøysund Bridge

The first example deals with a simplified and adapted version of the Bergsøysund Bridge. This
bridge is located in Norway and is one of the longest end-anchored floating bridges in the world.
With its total length of 933 m, it crosses a 300-m deep strait. It is currently regarded by the
Norwegian Public Road Administration as an inspiration for the very long floating bridges that
they are planning to build to complete their impressive E39 Coastal Highway Route project. The
dynamic behavior of this bridge has therefore been studied in many publications over the past
years. In particular, K. A. Kvåle et al. performed the stochastic analysis of this specific bridge as
explained in Section 4.3. These authors are gratefully acknowledged for having provided us with
the material, the code, and the data associated to their work as it constituted the starting point
for evaluating the accuracy and the e�ciency of the approaches proposed in the previous chapters.

To start, the validity of the two decoupling strategies presented in Chapter 4 is assessed. To do
so, the spectral densities and the second moments of the modal state responses are computed as
explained in Section 4.4 and Section 4.5. These approximations are then to be compared with the
spectral densities and the second moments of reference which are obtained by using the expressions
presented in Section 4.3. These results are all supposed to match provided that the frequency
sensitivity of the hydrodynamic matrices is negligible in the first scenario, or limited in the second
scenario.

The decompositions derived with the help of the Multiple Timescale Spectral Analysis for the
spectral densities and the second moments of the modal state responses, in Chapter 5 and Chapter
6, are then validated as well. In both scenarios, the resonant contributions are displayed in green
while the loading contributions are drawn in yellow, orange or red, depending on whether they
are referring to an inertial, a mixed or a background case. At start, the errors originating from
the approximations and the decompositions are analyzed the one after the other but they are
eventually examined as a whole when the spectral densities and the second moments of the nodal
state responses are reconstructed.

To be clear, Table 7.1 and Table 7.2 contain a summary of the spectral densities and the
statistics that are going to be shown in the sequel, along with the equation numbers, the line
styles, and the various figures they are associated to.

As shown in Figure 7.1, the Bergsøysund Bridge is composed of 7 pontoons made of concrete.
They are linked together and to the shore by steel truss segments of approximately 105 meters in
length. As indicated in Kvåle’s paper, the water depth reaches 100 m or more at the locations of
all but one of the pontoons. They are thus considered as being subjected to deep water waves.
Thanks to the absence of mooring, the dynamics of this bridge are likely to be correctly described
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by means of the linear equations of motion introduced in Section 4.2. For the record, they read
Ë
K (Ê) + ÿ̇ÊC (Ê) ≠ Ê

2M (Ê)
È

x (Ê) = f (Ê) (7.1)

where K (Ê) = Ks, C (Ê) = Cs + Ch (Ê), and M (Ê) = Ms + Mh (Ê) are the global hydroelastic
matrices of the structure. Except for the sti�ness matrix, the damping and the mass matrices are
composed of a static and a hydrodynamic contribution which are respectively denoted by the s and
the h subscripts.

In the following, a low-dimensional model is used for the superstructure instead of the Abaqus
model employed by Kvåle and his coworkers. It allows to tackle the analysis of the bridge with a
limited number of modes and to better understand how they interact with each other as it includes
the horizontal degrees-of-freedom only. Given that the pontoons are almost aligned with respect to
the y axis, these movements are regarded as the sway (x), the surge (y), and the yaw (Ï) responses
of the pontoons – see Figure 7.1. The sti�ness and the mass matrices of the steel truss segments are
thus built in these global coordinates with BeamZ, the in-house finite element software created by
Prof. Denoël. They are then combined with the buoyancy and the inertia of the pontoons delivered
by Abaqus in order to form the static matrices, Ks and Ms.

For the sake of simplicity, the deck of the bridge is represented by equivalent beam elements.
Their properties are listed in Table 7.3. Despite being realistic, they have been chosen to illustrate
the capabilities of both the background and the inertial components in capturing the loading-related
features of the responses. For the same reason, the hydrodynamic matrices and the hydrodynamic
forces are defined as in Kvåle’s paper but using as the one-dimensional wave spectral density a
two-parameter Pierson-Moskovitz spectrum

Spm (Ê) = 5hs

16Êp

A
Ê

5
p

Ê5

B

exp
A

≠5
4

Ê
4
p

Ê4

B

(7.2)

with hs = 2.4 m being the significant wave height and Êp = 2.2 rad/s being the peak wave frequency,
as introduced in Chapter 1. The wave period is therefore equal to Tp = 2.85 seconds. A spreading
parameter of 3 is also selected, meaning that the waves are short-crested. The correlations between
the loads applied on di�erent pontoons can hence be neglected. Otherwise, the spectral densities
of the forces might exhibit some rapid oscillations which cannot theoretically be handled by the
Multiple Timescale Spectral Analysis for the moment, see Assumption (i) in Chapter 5 and Chapter
6.

As a consequence of these specific choices, a few natural frequencies are below, close to, or above
the peak frequency of the loading. They are obtained together with the damping ratios by solving
the eigenproblem

ÿ̇A (Âm) ◊m = ⁄mB (Âm) ◊m (7.3)

for the eigenmodes ◊m and the eigenvalues ⁄m = Âm+ÿ̇‚m with the appropriate set of state matrices
first, and second by identifying them as

Êjm = |⁄m| and ›jm = ⁄ [⁄m] /|⁄m| (7.4)

after a simple algebraic manipulation of Equation (4.13). In the first scenario, the state matrices
are considered as being constant with respect to the circular frequencies and replaced by A (Ê0)
and B (Ê0) where the dominant frequency Ê0 is set equal to the peak frequency of the waves. In
the second scenario, however, the frequency dependent nature of the state matrices is kept as is.
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0

(b) (c)

(a)

Figure 7.1: (a) Picture of the Bergsøysund Bridge [107]; (b) Top view of the Bergsøysund
Bridge [83]; (c) Typical evolution of the hydrodynamic mass and damping elements along the

circular frequencies [15].

Table 7.1: Spectral Densities – Legend for the following figures.

Scenario 0 Scenario 1 Scenario 2

Ultimate

Reference

Numerical

Solution

Sq0,mn (Ê) Sq1,mn (Ê) �Sq1,mn (Ê)

Eq. (4.19) Eq. (4.31) Eq. (4.47) Eq. (4.48)

Asymptotic

Approximation

Sq2,mn (Ê)

MTSA

Decomposition

S̃q0,mn (Ê) S̃q1,mn (Ê) �S̃q1,mn (Ê)

Eq. (4.46) Eq. (5.5) Eq. (6.11) Eq. (6.12)

Leading

Contribution

Sq1,mn (Ê)

Resonant

Contribution

Sr0,mn (Ê) Sr1,mn (Ê) �Sr1,mn (Ê)

Eq. (4.47) Eq. (5.19) Eq. (6.20) Eq. (6.21)

First

Correction

�Sq1,mn (Ê)

Loading

Contribution

S¸0,mn (Ê) S¸1,mn (Ê) �S¸1,mn (Ê)

Eq. (4.48) Eq. (5.30) Eq. (6.33) Eq. (6.34)

Auto-spectrum Figure 7.4 Auto-spectrum Figure 7.3 Figure 7.5 Figure 7.6

Co-spectrum Figure 7.9 Co-spectrum Figure 7.8 Figure 7.9 Figure 7.9

Quad-spectrum Figure 7.10 Quad-spectrum Figure 7.8 Figure 7.10 Figure 7.10
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Table 7.2: Second Moments – Legend for the following figures.

Scenario 1 Scenario 2

Numerical

Solution

�q0,mn �q2,mn

Eq. (4.33) Eq. (4.53)

�q1,mn ��q1,mn

Eq. (4.51) Eq. (4.52)

MTSA

Decomposition

�̃q0,mn �̃q2,mn

Eq. (5.6) Eq. (6.13) + Eq. (6.14)

Resonant

Contribution

�r0,mn �r1,mn ��r1,mn

Eq. (5.20) Eq. (6.24) Eq. (6.25)

Loading

Contribution

�¸0,mn �¸1,mn ��¸1,mn

Eq. (5.34) Eq. (6.37) Eq. (6.38)

Table 7.3: Parameters of the model.

Name Value Unit
Segment Length 105 m
Inertia Moment 12.36 m4

Young Modulus 2.1010 N/m2

Cross-Section 0.6 m2

Density of Steel 7850 kg/m3

Significant Wave Height 2.4 m
Peak Wave Frequency 2.2 rad/s

Spreading Wave Constant 3 -

Figure 7.2: Speedup with MTSA.
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The resulting natural frequencies and damping ratios are listed in Table 7.4, next to the associ-
ated mode shapes. These modal parameters are equal to the reference values in the second scenario.
Meanwhile, they are almost systematically overestimated in the first scenario because the added
masses are depleted, i.e. Mij (Ê0 = Êp) < Mij (Ê), and the damping coe�cients are amplified, i.e.
Cij (Ê0 = Êp) > Cij (Ê), over a broad frequency range. The only exceptions concern the damping
ratios associated to the 5th, 6th and 7th modes for which the mass elements Mij (Ê0 = Êp) are
nearly unchanged in relation to Mij (Êjm) and the damping coe�cients Cij (Ê0 = Êp) are smaller
than Cij (Êjm). These observations are in accordance with the typical evolution of the mass and
the damping entries along the circular frequencies, which is schematically represented in Figure
7.1-(c).

Thanks to the proposed decompositions, these modifications of the damping ratios are clearly
shown to be responsible for the reduction and the augmentation of the resonant contributions in
the approximate spectral densities and second moments obtained in the first scenario, with respect
to the reference ones.

The attenuation e�ects are however exclusively observed in the higher modes (8th to 15th) but
not in the lower ones (1th to 4th) because they are responding in the inertial regime only and their
resonant regimes are simply not activated by the loading, see the yellow patches in the 1th to 4th

graph of Figure 7.3. As a consequence, the resonant peaks of the reference auto- and cross-spectral
densities associated to the higher modes respectively vanish in the first scenario, see the light blue
lines versus the dark blue lines in the 8th to 15th graphs of Figure 7.3 and Figure 7.4, or in the
last rows of Figure 7.8 and Figure 7.9-7.10. Please notice that the full scale values of the vertical
axes are not always the same for a given pair of graphs. The smallest of the two values is thus
represented by an horizontal grey line on the companion graph to ease their comparison.

In parallel to these disappearances, the resonant components of the variances and the corre-
lations relative to the higher modes are smaller in the first scenario than in the second, see the
color repartition in the respective stacks of Figure 7.7-(b) and Figure 7.7-(c), or the top right parts
of Figure 7.11-(a) and Figure 7.11-(k), respectively. This is also the reason why the errors on
these results are more important in the first scenario, see the gaps between the light and dark blue
symbols in Figure 7.7-(a), and the locations of the darker spots in Figure 7.11-(f).

Regarding the magnification e�ects, all but the last of the above remarks can just be reversed
and applied to the 5th, the 6th and the 7th modes. They appear to be milder because the dom-
inant frequency is closer to their natural frequencies. Thus, the modal parameters are closer to
the reference values. But, given that the dominant frequency is equal to the peak frequency, As-
sumption (ii) is not respected for these modal state responses. It implies that the decompositions
of their spectal densities and their second moments are less accurate for these few modes, see the
discrepancies between the stacks and the light blue line in the shaded area of Figure 7.7-(b), and
the errors in the cross-shaped zone of Figure 7.11-(c). In particular, the variance of the 5th modal
response is substantially undervalued whereas the variances of the 6th and the 7th modal responses
are significantly larger than the exact ones.

Being the most contributing modes, the balance between the decreasing and the increasing
e�ects eventually tips in favor of the latter. This is quite straightforward to understand for the sway
(x) and the surge (y) motions because they are almost not responding in the high frequency range.
They are hence mainly subject to the latter changes and they are consequently overestimated,
see the di�erences between the light blue dots and the dark blue lines in the first and the second
columns of Figure 7.13 and Figure 7.14. The yaw (z) responses, however, are a�ected by both
types of modifications. The peaks of their spectral densities are simultaneously flattened in the
high frequencies and sharpened below. But globally, their variances are overvalued as well, see the
same lines as before in the third columns of Figure 7.13 and Figure 7.14.

All in all, the errors are principally due to the implementation of the decoupling strategy in
the first scenario because of how it impacts the modal parameters. Meanwhile, the validity of
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the formulas derived in Chapter 5 with the Multiple Timescale Spectral Analysis is confirmed
by looking at the good agreement between the spectral densities and the second statistics of the
modal state responses that they provide and the approximated ones for all types and combinations
of responses (inertial in yellow, mixed in orange, background in red, and resonant in green), see
the light blue dots and lines in Figure 7.3 and Figure 7.8, the light blue dots and circles in Figure
7.7, and the smallness of the errors in Figure 7.11-(c).

Moreover, although the correlations of the modal state responses are often related to the in-
teractions between the resonance in two di�erent modes and neglected provided that their natural
frequencies are su�ciently distant from each other, as shown in Figure 7.11-(e), they appear to be
significantly influenced by the loading components, see Figure 7.11-(d). As indicated in Section 5.5,
they are particularly important when the forces in two di�erent modes are coherent, which happens
when their mode shapes are similar. The 1st and 8th modes, for instance, are strongly correlated
as they are both symmetric, they change sign at mid-length and they possess two half waves. On
all of these subfigures, the coe�cients are divided into five categories and said partly inertial in
the bottom-left corners, partly background in the top-right corners, and partly mixed in the two
remaining corners, bottom-right and top-left, while the loading and resonant peaks interact in the
cross-shaped areas. Last but not least, it seems interesting to notice that the diagonal elements
in greyscale colors refer to the weighting factors “r and “¸ in Figure 7.11. The same comments
obviously hold in the second scenario.

As shown by the matching of the dashed and the solid dark blue lines in Figure 7.4, 7.9 and 7.10,
the reproduction of the resonant peaks by the approximate spectral densities is actually greatly
improved in the second scenario. It means that the frequency sensitivity of the hydrodynamic
matrices is not really negligible, otherwise the first scenario would provide better results, but it is
indeed limited. Truncating the series expansion of the spectral densities at first order is therefore
fully justified. Beyond that, it appears that the series can even be stopped before in the example at
hand and this is hence what is done afterwards when reconstructing the spectral densities and the
second moments of the nodal state responses. Indeed, be it for the auto-spectral densities of the
modal state responses in Figure 7.4 or for the variances in Figure 7.7-(c), the first order corrections,
in pink, are most often negligible in relation to the leading order contributions, in purple. In the
first few modes, they even take the results away from the exact value which is represented by a thin
line. The smallness of these contributions is even more pronounced for the cross-spectral densities.
This is the reason why the first order correlation coe�cients are not illustrated in Figure 7.11.

But before that, the decompositions provided in Chapter 6 for the leading order and the first
order spectral densities are compared to the approximations discussed above in order to be vali-
dated, no matter if they are going to be neglected afterwards. Overall, they fit su�ciently well to
conclude that the formulas developed with the Multiple Timescale Spectral Analysis are adequate
in all of the cases treated so far, see the dotted and the solid lines of the same colors in Figure 7.4,
7.9 and 7.10.

As a result, the variances and the covariances of the modal state responses are correctly esti-
mated again, unless the natural frequencies of the corresponding modes approach the peak frequency
of the waves, see the dark blue symbols in Figure 7.7-(a), the similarity between the stacks and the
horizontal lines in Figure 7.7-(c), and the few errors in the cross-shaped area of Figure 7.11-(m).

In the end, the spectral densities and the second moments of the nodal responses are more
accurate in the second scenario, see the purple dotted lines and the dark blue lines in Figure
7.13 and Figure 7.14, although the analysis does not take much longer than in the first scenario,
provided that the first order corrections are omitted, see Figure 7.2. The computational time is
divided by 20 at least and this ratio further decreases when the model contains more degrees-of-
freedom. The decoupling strategies and the semi-analytical formulas proposed in this thesis are
therefore providing an interesting balance between precision and e�ciency.
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Table 7.4: Modal analysis of the Bersøysund Bridge.

Scenario 1 Scenario 2

Mode Shape

jm Êjm fjm ›jm Êjm fjm ›jm

Unit [rad/s] [Hz] [%] [rad/s] [Hz] [%]

1 0.27 0.04 16.5 0.25 0.04 0.01

2 0.42 0.06 10.1 0.38 0.06 0.12

3 0.68 0.11 5.93 0.62 0.10 1.08

4 0.88 0.14 5.27 0.78 0.12 2.43

5 1.32 0.21 3.64 1.23 0.19 5.05

6 1.77 0.28 2.78 1.75 0.28 3.86

7 2.07 0.33 2.19 2.06 0.32 2.43

8 2.73 0.43 5.58 2.68 0.42 4.13

9 3.21 0.51 2.84 3.12 0.49 1.16

10 3.75 0.59 2.65 3.59 0.57 0.71

11 4.32 0.68 2.51 4.08 0.64 0.43

12 4.85 0.77 2.38 4.54 0.72 0.25

13 5.33 0.85 2.28 4.96 0.78 0.24

14 5.38 0.85 2.56 4.87 0.77 0.15

15 5.77 0.92 2.36 5.28 0.84 0.18
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Figure 7.3: Scenario 1 – Auto-spectral densities of the modal state responses associated to
the jm-th modes, with m being an even number. See the legend in Table 7.1.
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Figure 7.4: Reference & Scenario 2 – Auto-spectral densities of the modal state responses
associated to the jm-th modes, with m being an even number. See the legend in Table 7.1.
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Figure 7.5: Scenario 2 – Leading order auto-spectral densities of the modal state responses
associated to the jm-th modes, with m being an even number. See the legend in Table 7.1.
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Figure 7.10: Scenario 2 – Quad-spectral densities of the modal state responses associated to
the jm-th modes, with m being an even number. See the legend in Table 7.1.
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Figure 7.13: Auto-spectral densities and variances of the responses computed at the locations
of the pontoons in both scenarios. Grey lines indicate the positions of the natural frequencies.

See the legends in Table 7.1 and Table 7.2.
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Figure 7.14: Auto-spectral densities and variances of the responses obtained at the locations
of the pontoons in both scenarios. Grey lines indicate the positions of the natural frequencies.

See the legends in Table 7.1 and Table 7.2.
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7.2 Bjørnafjorden Bridge

The Bjørnafjorden Bridge is a floating arch bridge as well. It is approximately 5 km long and
so is its radius of curvature. It is supported by 46 steel pontoons of 58 ◊ 10 m, whose layout is
represented in Figure 7.15. The hydrodynamic behavior of this bridge is currently studied by the
Norwegian Public Road Administration in the context of the E39 Coastal Highway Project. It is
actually one of the possible future constructions that were evoked in the previous section. It has
therefore been the subject of many recent publications, and in particular the latest one [108] to
which the reader is referred for further details about the geometries of the elements, the properties
of the materials, etc. Aksel Fenerci is sincerely thanked for having given us access to the static and
the hydrodynamic matrices, as well as the spectral densities of the wave loads associated to the
model that he and his colleagues created at the Norwegian University of Science and Technology.

1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49

Figure 7.15: Artistic view and technical drawings of the Bjørnafjorden Bridge [108].

The standard deviations of the pontoon motions are reported in Figure 7.16 for a given sea
state, hs = 2.4 m and Êp = 0.93 rad/s (Tp = 6.75 s). They are computed following the same
procedure as in Section 7.1. The only di�erence concerns the origin of the structural matrices,
which come from Abaqus instead of BeamZ. Otherwise, the dominant frequency is set equal to the
peak frequency of the waves in the first scenario and the asymptotic series expansion is stopped
at leading order in the second scenario. For each of these two scenarios, the standard deviations
obtained through the numerical integration of the approximate spectral densities or through the
proposed decompositions of the second statistics are represented by blue circles and red crosses in
either the first, either the second column of Figure 7.16, respectively, whereas the reference results
are designated by blue plus symbols. A few natural frequencies and damping ratios are also listed
in Table 7.5 in order to provide a glimpse into the dynamical properties of the structure.
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Table 7.5: Modal analysis of the Bjørnafjorden Bridge.

Scenario 1 Scenario 2
Mode Type

H = horizontal
V=vertical

jm Êjm fjm ›jm Êjm fjm ›jm

Unit [rad/s] [Hz] [%] [rad/s] [Hz] [%]
1 0.054 0.009 92.87 0.053 0.009 0.752 H
2 0.102 0.016 30.23 0.102 0.016 0.453 H
3 0.181 0.029 16.23 0.182 0.029 0.320 H
4 0.262 0.042 9.066 0.262 0.041 0.308 H
5 0.380 0.060 6.729 0.379 0.060 0.398 H
6 0.447 0.071 4.548 0.447 0.071 0.511 H
7 0.543 0.086 3.539 0.542 0.086 0.769 H
8 0.644 0.102 3.358 0.641 0.102 1.240 H
9 0.700 0.111 2.545 0.698 0.111 1.361 H
10 0.792 0.126 2.181 0.791 0.126 1.588 H
11 0.825 0.131 2.266 0.824 0.132 1.781 H
12 0.947 0.151 5.524 0.949 0.151 5.407 V
13 0.962 0.153 5.227 0.965 0.153 5.573 V
14 0.967 0.154 1.873 0.966 0.153 1.983 H
15 0.999 0.159 18.56 1.039 0.165 4.826 H

Overall, the good agreement between the various results presented in Figure 7.16 confirms again
the validity of the methodologies proposed in this thesis. In particular, the statistics of the sway
(x) and the heave (z) motions are very well reproduced in the first scenario. The approximations
are however less precise for the other degrees-of-freedom and especially for the roll (Ïz) motion. In
this specific case, the approximate standard deviations are also less closely fitted by the proposed
decomposition. Instead of being neglected, the frequency dependency of the hydrodynamic matrices
is partially taken into account in the second scenario. It is shown to improve the accuracy of
the approximations for all but the sway (x) motions. The second decoupling strategy and the
subsequent decompositions derived for the spectral densities and the second moments with the
Multiple Timescale Spectral Analysis were therefore worth being considered and developed in this
thesis.

In the framework of a joint publication at the 41st International Conference on Ocean, O�shore
& Artic Engineering, Aksel Fenerci also used the formulas and the codes developed in this thesis
in order to calculate the statistics of the responses obtained under many di�erent sea states and
eventually estimate their long-term extreme distributions [52]. Then, he compared them to the
outcomes of the conventional spectral approach that he usually adopts. It indicated that, even
though some discrepancies were observed when using the Multiple Timescale Spectral Analysis,
these errors attenuate when computing the long-term extremes. In addition, they were shown to
be sensitive to changes in the peak period but not in the significant wave height. This was to be
expected because the former parameter is the only one which is supposed to influence the accuracy
of the Multiple Timescale Spectral Analysis, through Assumption (ii).

These results were however referring to a case in which the frequency sensitivity of the hydrody-
namic matrices is completely neglected. A further collaboration with Aksel Fenerci and Ole Øiseth
is planned for the near future. It will aim at tackling such a long-term analysis by using the second
decoupling strategy and the associated decompositions in order to take the frequency dependent
nature of the fluid-structure interactions into account as well.
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Figure 7.16: Standard deviations of the pontoon motions.
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CONCLUSION

Contributions and Limitations

In Part 1, the second and third order responses of a linear system with a single degree-of-
freedom, subjected to several versions of the Morison wave forces, are investigated.

Regarding the second statistical moments of the response, in Chapter 2, a new way of deriving
their resonant component is proposed and compared to the usual one, which is used for example
in [12, 36, 13, 11, 10]. It consists in expanding the structural kernels in partial fractions. This
is the first time such a local approximation technique is employed in the history of the Multiple
Timescale Spectral Analysis. Overall, both approaches provide the same final expressions for the
resonant components of the second order moments but not for the local approximations of the
power spectral densities, and thus not for the residual functions either. It is then demonstrated
that the new residual function is more amenable to being simplified in the vicinity of the loading
peaks, without the need for extra assumptions. It is therefore considered in the sequel to derive two
di�erent expressions for the inertial components, depending on whether the power spectral density
of the loading is exponentially small near the origin or not.

The conditions for using the first formulation are consequently more restrictive but, interest-
ingly enough, this expression eventually depends on the integral of a function which is totally
independent of the structural characteristics. This is unfortunately not the case with the second
formulation. Nevertheless, the function to be integrated does no longer exhibit peaks at the poles
of the structural kernel, meaning that the number of integration points can anyway be reduced at
these locations. As a next step, unified formulas are developed for the so-called loading compo-
nents, i.e. background and inertial, to be treated as a single unit. They are eventually validated and
verified against the integration of the response spectra obtained under a linearized, a quadratized
and a non-polynomial wave loading, whose power spectral density is based on analytical definitions
or numerical simulations.

Regarding the third statistical moments of the response, several components are formulated for
the first time in Chapter 3, see Figure C. They depend on the values of the response bispectrum
which are located along a few lines of the two dimensional domain only. Globally, it means that the
order of integration is decreased by one at least when using these expressions. They are therefore
extremely e�cient in estimating the third central moments, and thus the skewness, of an oscillator’s
response under both a background and an inertial loading, whose bispectrum contains a real part,
and possibly an imaginary part as well, which was hitherto always ignored.

Since the wave load models that are currently available always result in a real-valued bispec-
trum, the validations and the verifications of the new formulations proposed in Chapter 3 are only
conducted for the contributions that are not associated to a complex-valued bispectrum of loading.
Finally, the results obtained for di�erent definitions of this bispectrum highlight the fact that it
cannot be simplified on the basis that the turbulence intensity is small when the loading is inertial,
contrary to what is usually done in a wind engineering context where the loading is quasi-static.
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In Part 2, the second order responses of a multi-degree-of-freedom system are examined.
Besides, the loading of the waves is supposed to be linear but to include fluid-structure interaction
forces. These e�ects are hence transcribed in the equations of motion by frequency-dependent
sti�ness, damping and mass matrices.

Due to these specific features, the equations of motion cannot be decoupled in a satisfactory
way, unless additional conditions as regards to the frequency sensitivity of the matrices are met.
Two decoupling strategies are thus proposed in Chapter 4. They are respectively expected to work
well provided that the frequency dependency of the matrices result in a negligibly or a slightly
coupled set of modal state responses.

Their two-by-two power spectral densities are consequently made independent of one another in
both scenarios. In the latter, their expression are however more involved, mathematically speaking.
This is because of two reasons. First, the diagonal elements of the modal state matrices, which enter
into the definition of the frequency response functions, are no longer constant. Second, in order
to partially account for the modal coupling, the leading order term, which depends on only two
frequency response functions, has to be complemented by a first order correction, which depends
on all combinations of three frequency response functions. But, apart from occasionally replacing
the diagonal elements of the modal state matrices with constant values, the main contributions to
the modal state variances and covariances of the modal state responses are derived in a similar
fashion, regardless of whether they are related to the first, in Chapter 5, or the second, in Chapter
6, decoupling strategy.

The resonant components are expressed by using the new local approximation technique intro-
duced in Chapter 2. As a result, the resonant components require to project the spectral densities
of the forces at the natural frequencies of the structure only. The loading components, in turn, are
uniformly determined by approximating the two, or three, frequency response functions found in
the structural kernels by monomials. As a consequence, the loading components do not involve any
modal projection of the loading spectra. At last, the expressions given in Chapter 5 and Chapter
6 are respectively validated by being applied on a minimalistic example and by being reduced to
the formulas derived under more restrictive assumptions in [12, 13, 11].

Overall, the spectral densities and the second moments of the modal and the nodal responses
obtained after each step, first with the decoupled approximations and second with the suggested
decompositions, are eventually computed to verify these developments on two realistic floating
bridges. As it is to be expected, the first decoupling strategy is however less precise than the
second whose use is therefore recommended. Except for the solution of an iterative eigenvalue
problem, it does not cost much more to be implemented if the correction terms do not provide
a significant improvement of the accuracy and are thus discarded. In this event, the statistics
are shown to be computed 20 to 30 times faster than through the numerical integration of the
corresponding spectra in both scenarios.

The limitations of the expressions proposed in this thesis are naturally related to the conditions
that need to be fulfilled in order to allow for a successful application of the Multiple Timescale
Spectral Analysis. They are listed in the beginning of each chapter with such a derivation, in
Section 2.2, 3.3, 5.2 and 6.2. In essence, they ensure that (i) the loading spectra evolve slowly at
the peaks of the structural kernels, the so-called resonant peaks, and (ii) the frequencies at which
these resonant peaks occur are significantly di�erent from those associated with the peaks of the
loading spectra.
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Nevertheless, the transgression of the second condition is shown to produce larger discrepancies,
of course, but these errors are mitigated by the introduction of a new multiplicative factor in
the expressions of the loading components, which consequently decrease the closer (a) the peak
frequencies of the structure and the loading, and (b) the values of the loading spectra at these peak
frequencies. If the loading spectrum is completely flat, indeed, the sole non-zero component is in
e�ect the resonant one. In a perturbation perspective, this multiplicative factor seems to act as if
the limit cases of the background and the inertial components were matched.

Future Perspectives, see White Boxes in Figure C

This feature is implemented for the second-order statistics but not for the third-order statistics yet,
since their loading components are not expressed by means of a unified function. Similarly, none
of their components have been expressed for the response of a system with frequency dependent
parameters, and/or with multiple degrees of freedom. This could be the subject of future develop-
ments. Meanwhile, the response of a single-degree-of-freedom system can actually be formulated
in state space as well and is thus expressed in the exact same way as the responses of a multi-
degree-of-freedom system. The components derived for the second order statistics in the second
part of this thesis can therefore be applied without modification to compute the variance of such
an oscillator whose parameters might as well depend on the frequency.

In parallel, there is also a whole other branch of the literature which concerns the structural non-
linearities and which is still in the same status as before. For the moment, the background resonant
decomposition of the second, third and fourth statistical moments of an oscillator’s response to a
bu�eting wind loading with a structural velocity feedback has already been studied. Regarding the
inertial components, they have been derived for the variance of the response in a similar context,
except that the oscillator is subjected to a wave loading. The inertial components of higher order
statistics, the frequency dependent nature of the parameters and the correlations between multiple
degrees-of-freedom could hence be explored in the future as well.
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Appendix A

Simple Expression of the Loading Spectra

In this thesis, the loading processes are deemed to be zero-mean, stationary over a given time
interval and Gaussian. Under such conditions, they are completely described, in a probabilistic
sense, by the matrix Sf (Ê) which gathers the cross-spectral densities of all i-th and j-th nodal
forces, Sf,ij (Ê). In brief, they are typically obtained by using a wave elevation spectrum whose
unified expression reads

Sw (Ê) =
A

Ê
5
p

Ê5

B

exp
A

≠5
4

Ê
4
p

Ê4

B

(7.5)

and whose maximum is reached at Êp in the positive frequency range [61]. This equation is then
commonly multiplied by some filters, which include for instance the influence of directional spread-
ing e�ects, spatial correlations, and wave elevation-to-force amplitude operators.

However, these frequency-dependent e�ects can first be discarded to get a simple expression
for the spectral densities of the forces which aims at illustrating the mathematical developments
presented in Chapter 5. As a result, the spectral densities of the forces read

Sf (Ê) = Fa |Sw (Ê)| + ÿ̇FsSw (Ê)

where the coe�cients in the matrices Fa and Fs are chosen as constant, real and such that Fa = F|
a

and Fs = ≠F|
s in order to ensure that they verify the following properties

I
Ÿ [Sf,mn (Ê)] = +Ÿ [Sf,mn (≠Ê)]
⁄ [Sf,mn (Ê)] = ≠⁄ [Sf,mn (≠Ê)]

and Sf,mn (Ê) = S
ú
f,mn (Ê) (7.6)

according to [105]. In particular, the auto-spectral densities are real and positive over the whole
range of circular frequencies, as it is expected for any real loading process.

After projection into the modal basis, it thus yields

Sp0 (Ê) = Pa |Sw (Ê)| + ÿ̇PsSw (Ê) (7.7)

where
Pa = �|

0Fa�ú
0 and Ps = �|

0Fs�ú
0 (7.8)

are now filled with complex entries, such that Pa = P†
a and Ps = ≠P†

s . It implies that the symmetry
properties listed hereabove do not stand for the generalized cross-spectral densities because their
real and imaginary parts respectively read

I
Ÿ

#
Sp0 (Ê)

$
= Ÿ [Pa] |Sw (Ê)| ≠ ⁄ [Ps] Sw (Ê)

⁄
#
Sp0 (Ê)

$
= ⁄ [Pa] |Sw (Ê)| + Ÿ [Ps] Sw (Ê)

(7.9)

and are given by the sum of symmetric and anti-symmetric functions of the circular frequencies.
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Nomenclature

ÿ̇ = imaginary unit

$t $ = dimensional time variable

Ê = dimensional circular frequency

· = dimensionless time variable

� = dimensionless circular frequency

÷ = dimensional stretched coordinate

� = dimensionless stretched coordinate

Á = arbitrary small number

Ê0 = natural frequency of the oscillator in Part 1

Ê0 = predominant frequency of the response in Part 2

Êp = maximum of the wave elevation spectrum in the positive frequency range

k = sti�ness of the oscillator

c = viscosity of the oscillator

m = e�ective mass of the oscillator

ms = mass of the oscillator itself

ma = added mass of the moving fluid

km = inertia force coe�cient

kd = drag force coe�cient

uc = constant current speed

hs = significant wave height

tr = time duration of reference

ur = water velocity of reference

xr = structural response of reference

⁄u = turbulence intensity

›s = stuctural damping ratio

›a = added damping ratio
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Ÿu = loading ratio

–‚ = frequency ratio

Ê(.) = peak frequency of the (.) process, see below

S(.) (...) = power spectral density of the (.) process, see below

B(.) (..., ...) = bispectrum of the (.) process, see below

‡
2
(.) = second central moment of the (.) process, see below

—(.) = third central moment of the (.) process, see below

“(.) = skewness coe�cient of the (.) process, see below

h (t) = water wave elevation

u (t) = water velocity fluctuation

fm (t) = inertia wave force

fd (t) = drag wave force

f (t) = Morison wave force

x (t) = displacement of the oscillator

ẋ (t) = velocity of the oscillator

ẍ (t) = acceleration of the oscillator

‚(·) = nondimensional water velocity fluctuation

Ïd (·) = alternative nondimensional drag force

Ïf (·) = simplified nondimensional drag force

Ïp (·) = polynomialized nondimensional drag force

‰(·) = nondimensional response of the oscillator

‰
Õ(·) = nondimensional velocity of the oscillator

‰
ÕÕ(·) = nondimensional acceleration of the oscillator

‡
2
Í = resonant component of ‡

2
‰

‡
2
Î = inertial component of ‡

2
‰ if –‚ > 1

‡
2
Î = background component of ‡

2
‰ if –‚ < 1
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SÍ (�) = resonant component of S‰(�)

SÎ (�) = inertial component of S‰(�) if –‚ > 1

SÎ (�) = background component of S‰(�) if –‚ < 1

‡
2
r = resonant component of ‡

2
x

‡
2
i = inertial component of ‡

2
x

‡
2
b = background component of ‡

2
x

Sr (Ê) = resonant component of Sx(Ê)

Si (Ê) = inertial component of Sx(Ê)

Sb (Ê) = background component of Sx(Ê)

H(.) (...) = frequency response function

Gs (�) = structural kernel at second order

Gb (�1,2) = structural kernel at third order

p1 = first degree coe�cient of the polynomialization

p2 = second degree coe�cient of the polynomialization

P0 = zeroth degree coe�cient of the Padé approximant

P2 = second degree coe�cient of the Padé approximant

‡
2s

Ï
= approximate spectral moment of Ï(·)

‡
2s

f
= approximate spectral moment of f(t)

CÏ = dimensionless structural kernel coe�cient

Cf = dimensional structural kernel coe�cient

—bbb = tri-background component of Ÿ ◊ Ÿ ⁄ ◊ ⁄ ≠ —‰

—Ÿ[brr] = background bi-resonant component of Ÿ ◊ Ÿ ≠ —‰

—⁄[brr] = background bi-resonant component of ⁄ ◊ ⁄ ≠ —‰

—rr = global bi-resonant component of Ÿ ◊ Ÿ ⁄ ◊ ⁄ ≠ —‰

—Ÿ[rii] = resonant bi-inertial component of Ÿ ◊ Ÿ ≠ —‰
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—⁄[rii] = resonant bi-inertial component of ⁄ ◊ ⁄ ≠ —‰

Ks = static sti�ness matrix

Cs = static damping matrix

Ms = static mass matrix

Kh (Ê) = hydrodynamic sti�ness matrix

Ch (Ê) = hydrodynamic damping matrix

Mh (Ê) = hydrodynamic mass matrix

K (Ê) = hydroelastic sti�ness matrix

C (Ê) = hydroelastic damping matrix

M (Ê) = hydroelastic mass matrix

K0 = hydroelastic sti�ness matrix at Ê0

C0 = hydroelastic damping matrix at Ê0

M0 = hydroelastic mass matrix at Ê0

A (Ê) = first state matrix

B (Ê) = second state matrix

A0 = first state matrix at Ê0

B0 = second state matrix at Ê0

�0 = matrix of eigenmodes (EVP-0)

�0 = top part of the eigenmodes (EVP-0)

�0 = matrix of eigenfrequencies (EVP-0)

D = normalization constants (EVP-0)

H (Ê) = matrix of frequency response functions (EVP-0)

� = matrix of eigenmodes (EVP-�)
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� = top part of the eigenmodes (EVP-�)

� = matrix of eigenfrequencies (EVP-�)

D = normalization constants (EVP-�)

A (Ê) = first generalized state matrix

B (Ê) = second generalized state matrix

J (Ê) = dynamical flexibility matrix

H (Ê) = matrix of frequency response functions

J o (Ê) = o�-diagonal dynamical flexibility matrix

J d (Ê) = diagonal dynamical flexibility matrix

Hd (Ê) = diagonal frequency response matrix

S(.) (Ê) = power spectral density matrix of (.), see below

�(.) = variance and covariance matrix of (.), see below

f (Ê) = nodal forces

g (Ê) = nodal state forces

pı (Ê) = modal state forces

xı (Ê) = nodal responses

ẋı (Ê) = nodal response derivatives

yı (Ê) = nodal state responses

qı (Ê) = modal state responses

ı æ ÿ = reference results

ı æ 0 = approximation in (⇢Ê) scenario

ı æ 1 = leading order approximation

ı æ 2 = first order approximation

�Sq1 (Ê) = corrective terms of the power spectral densities

��q1 (Ê) = corrective terms of the second central moments
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Sw (Ê) = wave elevation spectrum, see Appendix A

Fa,mn = constant antimetric coe�cient, see Appendix A

Fs,mn = constant symetric coe�cient, see Appendix A

Pa,mn = generalized antimetric coe�cient, see Appendix A

Ps,mn = generalized symetric coe�cient, see Appendix A

m = index for the modal basis matrices and vectors

n = index for the modal basis matrices and vectors

k = index for the modal basis matrices and vectors

i = index for the nodal basis matrices and vectors

j = index for the nodal basis matrices and vectors

M = number of modal responses

N = number of nodal responses

⁄m = m-th eigenfrequency

Âm = real part of ⁄m

‚m = imaginary part of ⁄m

–m = m-th frequency ratio

Êjm = jm-th natural frequency

›jm = jm-th damping ratio

Gmn (Ê) = structural kernel in (⇢Ê) scenario

Gd,mn (Ê) = leading order structural kernel

Gd,mnk (Ê) = first order structural kernel

Sr0,mn (Ê) = resonant component of the power spectral density

S¸0,mn (Ê) = loading component of the power spectral density

�r0,mn = resonant component of the second central moment

�¸0,mn = loading component of the second central moment
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Lmn = multiplicative factor

—
(l)
mn = asymptotic slope of the structural kernel

—m, —n = asymptotic slope of the transfer functions

�(l)(±)
p0,mn = spectral moment of order —

(l)
mn

G(l)
mn (Ê) = structural kernel approximation

S(l)
p0,mn (Ê) = loading spectrum approximation

Lmn = multiplicative factor

—
(l)
mnk = asymptotic slope of the structural kernel

—m, —n, —k = asymptotic slope of the transfer functions

G(l)
mnk (Ê) = structural kernel approximation

S(l)
p,mnk (Ê) = loading spectrum approximation

�(l)(±)
p,mnk = spectral moment of order —

(l)
mnk

flq0,mn = correlation coe�cient of the modal state responses

flr0,mn = resonant component of the correlation coe�cient

fl¸0,mn = loading component of the correlation coe�cient

“r0 = resonant weighting factor

“¸0 = loading weighting factor

r0,m = resonant-to-loading ratio

Èmn = resonant interaction indicator

’mn = distance between Êjm and Êjn

�mn = coherence function

Smn = spectral ratio
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