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1 RESEARCH PROBLEM 

Lung cancer is one of the deadliest form of cancer in 

Europe, being the first and second cause of cancer 

death respectively for men and women (Ferlay et al., 

2018). 

This high death toll has to be blamed on the lack 

of obvious symptoms in the early stages of the illness, 

during which surgery has to be performed in order to 

give high chances of recovery to the patient (The 

National Lung Screening Trial Research Team, 

2011). Current diagnostic methods tend to be 

expensive, cumbersome, slow and requiring rare, 

qualified personnel. This often means that screening 

is costly and difficult to organise at a large scale. 

Asymptomatic subjects and people in remote areas 

are rarely tested overall, leading to late discovery of 

the cancer and poor survival chances (Silvestri et al., 

2016; Westeel et al., 2007). 

There is therefore a need for a diagnostic method 

that could be used remotely while being simple 

enough to be used with little prior formation. Ideally, 

that method would also be cheap enough to be widely 

deployed, and non-invasive for simplicity. 

An interesting technology would be gas sensor 

arrays. Already widely used in a variety of sectors 

(food industry, odour characterization, environmental 

monitoring), they have gained interest as an 

experimental medical diagnostic method. 

This thesis is part of the PATHACOV (Pathacov 

project, 2020) research project, funded by Interreg 

France-Wallonie-Vlaanderen. This project aims a gas 

sensor array to serve as a screening apparatus to 

detect early stage lung cancer.  

2 OUTLINE OF OBJECTIVES 

This thesis aims at creating and testing a sensor array 

in order to build a benchmark on which one can 

compare the discriminative power of different arrays. 

In order to achieve this, several tasks will be 

performed simultaneously:  

The first is the establishment of a standardized 

test method of the metrological characteristics of 

commercial thick film sensors as well as experimental 

ones, and their qualities within a sensor network. 

The second is the integration of experimental 

sensors into a prototype gas sensor array ("electronic 

nose") consistent with the framework of the Pathacov 

project. 

The third is the validation of the test method with 

the prototype electronic nose, which requires the 

reproducible synthesis of reference gas mixtures. The 

concentrations of volatile organic compounds (VOC) 

that characterize the breath of a cancer patient are in 

very low concentrations (part-per-billion (ppb) to 

part-per-million (ppm) level), and a specific reliable 

method has to be developed to reach those 

concentrations. It is also planned to use real breath 

from healthy persons and cancer patients as validation 

of the benchmark’s conclusions. 

The last task is about the processing and analysis 

of data and the identification and classification of 

samples in order to obtain a measurement of the 

array’s discriminatory power. Each sensor has to be 

characterized and the power of each version of the 

sensor array evaluated on a common benchmark. This 

enables iterative improvement of the tested devices. 

3 STATE OF THE ART 

3.1 Cancer Biomarkers in Breath 

Breath has several rather unusual characteristics 

as a gas sample: temperature close to the body’s, 

increased carbon dioxide content, saturated in 

humidity, and most interestingly it contains a 

complex mixture of Volatile Organic Compounds 

(VOCs) in the ppb to ppm-level concentration. 

Variations in this mix can be linked with metabolism 

alterations and pathologies, including cancer. 



Therefore, it has been hypothesized that some of these 

VOCs are lung cancer biomarkers. 

The vast majority of supposed VOC cancer 

biomarkers are also present in a healthy person’s 

breath, but in different concentrations. While afflicted 

by metabolic disorders or various illnesses, ratios 

change and sometimes new VOC markers appear. 

Cells normally produce a certain number of reactive 

oxygen species (ROS) as by-products of 

mitochondrial metabolism, inducing oxidative stress 

that is managed by anti-oxidant mechanisms. The 

presence of these ROS creates VOCs by reacting with 

organic material in the cytoplasm (Aksenov et al., 

2012). 

Cancer cells have an over-active metabolism that 

create a large quantity of ROS (which can leak in and 

out of a cell) and a hypoxic environment. Without 

oxygen, cancer cells continue to create energy by 

glycolysis, acidifying the environment and draining 

more glucose than normal cells (Warburg effect). 

Genetic mutations causing the build-up of 

Cytochrome p450 and other oxidase enzymes have 

been linked with tobacco and lung cancer, and as they 

react with ROS, they tend to change the ratios in 

emitted VOCs (Filipiak et al., 2016). 

Mechanics linking breath’s VOCs composition 

and health status aren’t clearly understood. What is 

known so far is that the “volatilome” (the ensemble 

of VOCs in breath) isn’t entirely due to the cancer 

cells alone, as in-situ cancer tissues do not emit the 

same signature as the cells in culture, regardless of the 

culture medium (Pesesse, 2019). It is probable that 

the VOCs signature is mainly influenced by the 

reaction of healthy cells to the presence of the cancer 

cells in the body (Capuano et al., 2015; Huang et al., 

2018). It is unknown if the phenomenon is localised 

around the afflicted tissues, or if a greater share of 

body cells reacts to the cancer presence. Interestingly, 

it has been shown that the cancerous lung can be 

distinguished from the other (cancer-free) lung by its 

volatilome on the same patient (Capuano et al., 2015). 

The first objective of the state of the art for this 

project was to find out what kind of VOCs were 

characteristic of a “healthy patient” or a “cancer 

patient” breath, and in which concentrations VOCs 

were observed. The best way to do so was to make a 

full inventory of gas chromatography mass 

spectrometry (GC-MS) studies aiming at cancer 

breath characterization. About 42 articles from 1985 

to 2019 were selected and synthesized into a grid 

grouping biomarkers by frequency of citation as 

potential biomarkers. The number of publications 

increased exponentially over the prospected 34 years: 

more than two-third of the publications appeared after 

2010, hence the rather small number of publications 

on this specific subject.  

Studies on the identification of cancer 

biomarkers are widely divergent, although it is 

possible to identify certain trends and identify the best 

candidates. This review was the basis for the selection 

of VOCs for use in the benchmark’s synthetic 

atmospheres. The sources of contamination for the 

most cited biomarkers are varied and frequently 

encountered on a daily basis, adding a certain level of 

incertitude to the conclusions, as patient’s breath can 

be contaminated by exposure to those sources.  

On the matter of lung cancer detection, it is 

important to note that there is no consensus on which 

VOCs are linked to cancer presence, since there 

haven’t been two independent studies with the same 

results, as observed by Jia (Jia et al., 2019) and during 

this literature review. The vast majority of studies 

include less than 100 people, as illustrated below 

(Figure 1). The biggest study included 484 people 

(lung cancer patients and controls included), and the 

smallest as few as 8 people. The mean number of 

subjects was 131, and the median 89. 

A lot of studies concentrate on the hypothesis that 

cancer cells are the origin of the volatilomic 

difference of cancer patients (Wang et al., 2014), 

including in-vitro cancer cell cultures studies (Chen 

et al., 2007; Jia et al., 2019; Thriumani et al., 2018). 

Since most of the published results seem to conclude 

that this hypothesis isn’t to be followed, it was 

decided not to consider results from in-vitro-only 

studies. 

The most frequently cited compounds are as 

follows: 

• With 10 occurrences each (amongst the 42 

selected articles), the most cited compounds are 2-

butanone (or methyl-ethyl-ketone), isoprene and 1-

propanol. 

• Hexanal has 9 occurrences. 

• Ethylbenzene and acetone were cited 8 times 

each. 

• Pentane and 2-Propanol were cited 7 times 

each. 

• Benzene, hexane and decane were cited 6 

times each. 

• Toluene, propanal, nonanal, styrene, heptanal 

and ethanol were cited 5 times each.  



11 compounds were cited 4 times, 9 compounds were 

cited 3 times, and more than 181 compounds were 

cited 2 times or less. This last category was not 

studied any further, as the relevance of each 

compound was likely to be very low. 

Nevertheless, the review proved itself useful to 

diminish the number of potentially interesting VOCs 

to choose from. A variety of putative biomarkers was 

chosen with an educated guess from the list, with the 

intention to use them during lab testing. Main 

choosing criterions were: short half-life in the body, 

not closely linked to cigarette usage, found as relevant 

for studies cumulating a large number of test subjects, 

not found to be exclusively exogenous, not highly 

correlated with physical activity. 

From the previously cited compounds, 4 have 

been picked as interesting. The compounds are: 2-

butanone, decane, 2-pentanone, dodecane. 

To complete our testing toolbox, several other 

compounds were acquired. The purpose of these 

supplementary compounds is to observe their 

influence on the tested device’s ability to correctly 

identify “sick” breath from “healthy” breath. Among 

them, compounds frequently found in breath, likely 

confounders (smoking-related compounds for 

example), or possible biomarkers that are also likely 

to be exogenous. The compounds are: Pentane, 1-

Propanol, Methanol, Ethanol, 2-Pentanone, Acetone, 

Heptanal, Hexanal, Benzaldehyde. 

3.2 Gas Sensor Array 

A gas sensor array (GSA) aims at qualifying (and 

sometimes quantifying) mixes of gases. Since it’s 

been historically used to detect odours and the general 

working principle is inspired from the olfactory 

system, the term electronic nose (e-nose) is often used 

to name that kind of sensor arrays, even if what the 

“nose” detects isn’t necessarily odorant compounds 

(Romain et al., 2002). For example, carbon monoxide 

and methane are odourless molecules, but can be 

detected by metal oxide gas sensors. 

The particularity of an e-nose is that its working 

principle relies on the non-specificity of its sensors: 

such a system will not identify what compounds are 

in a gas sample (like a GC-MS would), but will look 

at the general imprint the whole mixture makes on 

each sensor. A GSA can recognize mixes of several 

hundreds of compounds at a time and tell them apart. 

On a single measurement, it is highly probable 

that several sensors will react to a single compound, 

and that several compounds will react at the same 

time on a single sensor. Since each sensor has a 

different sensitivity, the response of the whole array 

will be characteristic to the mixture’s composition. 

The “imprint” of the mix will therefore be a vector 

composed of the response of each sensor in the array. 

That vector will enable to identify the mix by 

comparison with a reference set of previously 

measured reference mixes, and therefore qualify it – 

e.g. healthy or sick, coffee or tea, pleasant or 

unpleasant – depending on what we aim to do 

(Gardner & Bartlett, 1999). 

GSA are composed of at least the same 4 types of 

elements (Gardner & Bartlett, 1999): 
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Figure 1a : Number of publications by sample pool, including controls. The majority of them have less than 100 

people. Figure 1b : Number of publications by sample pool, lung cancer patients only. We notice than more 

than two third of the publications had access to only 75 patients or less. The low statistical significance of the 

results is always cautiously noted by the authors, calling for larger sized experiments. 



• A sample treatment system, storing and 

putting the samples in contact with the array, and in 

some cases having a form of pre-concentration or pre-

treatment of the sample. It can be as simple as a tube 

with a mouthpiece, in the case of inline analysis, or as 

complex as a sorption/thermal desorption system. 

• The sensor array itself, usually composed of 4 

to 32 sensors housed in one (or several) chamber(s). 

Usually, they are of a single type (e.g. metal oxide 

semiconductor sensors (MOS)) but the model and/or 

the working temperature varies, giving the sensors 

different sensitivity ranges. 

• A signal treatment system, which converts the 

analogic output of the sensors to a numeric output 

interpretable by the processing unit. 

• A processing unit. Basically a computer that 

will pilot the other units, collect and register the data 

from the sensors, process them and display the results 

to the user accordingly to its user-created protocol. 

Most reported methods managed a good 

discrimination of lung cancer with sensor arrays, 

some even managed to isolate specific mutations of 

cancer using the breathprint (Shlomi et al., 2017). 

However, not unlike GCMS studies on cancer 

volatilome, the samples of population for cancer 

discrimination by GSA in literature are rather small 

(usually, 20-100 patients, half of them being controls, 

with some exceptions having up to 300 patients) and 

further researches are needed. 

3.3 Breath Sampling and VOCs 

In breath, VOCs are exogenous (environmental 

contamination) or endogenous (produced by the 

metabolism) in origin. For disease detection, 

endogenous compounds are more likely to be 

interesting. To understand how to sample breath 

correctly, it is important to study the factors 

influencing its composition. 

Exposure to VOCs in ambient air can result in 

durable contamination of the breath. The rate of 

removal of VOCs from the body depend on initial 

concentration of VOCs in the air, the duration of 

exposure, the solubility in blood and lipid tissues, and 

physiology. Some studies have shown that the 

inspired VOCs are partially retained by the body, 

depending on their affinity for fatty tissues and blood, 

and can be exhaled later on (Jia et al., 2019). 

During sampling, different parameters have been 

reported to influence VOCs concentration in 

literature. 

Sampled part of breath: the first part of the breath 

is often “dead-space” air that is different in 

composition to alveolar air – end-of-breath air is in 

close contact with blood and lung tissues, and often 

regarded as more interesting to sample (Doran et al., 

2017). Using capnography as a method of fractioning 

breath samples is possible, and envisioned in this PhD 

thesis. 

Ventilation rhythm: breath holding tends to rise 

the concentration of some VOC species, and 

hyperventilation seems to have the opposite effect. 

This is likely related to the time needed for alveolar 

air to reach an equilibrium with the blood (Boshier et 

al., 2011; Herbig et al., 2008). It is possible to ask the 

patient to blow at a given rhythm to moderate this 

effect. 

Heartbeat rate (HR) and blood pressure: since the 

vascular system is closely linked to the lungs, the 

behaviour of the heart is an important factor, as a 

greater blood flow can expose a greater amount of 

dissolved VOC to the air-blood interface. Isoprene, 

for example, has been shown to be linked with 

heartbeat rate (Karl et al., 2001). In a similar manner, 

airway resistance has been shown to increase isoprene 

levels (Sukul et al., 2017). It is therefore important to 

ensure HR is stable during sampling. Stress and effort 

can raise HR, an acclimation time should be respected 

before sampling to give the patient some time to reach 

as stable HR. 

Contamination from sampling materials is a 

concern. Ideally, sampling tools should be made in 

inert materials such as Teflon, stainless steel or glass. 

Contamination of the apparatus by bacteria and saliva 

should be avoided (Doran et al., 2017). Using 

bacterial filters and inert materials is an easily 

implementable solution.  

Age and gender of the patient: Some compounds 

like ammonia increase in concentration with age, and 

several VOCs seem to be gender specific, although 

data are conflicting (Horváth et al., 2017; Jia et al., 

2019). McWilliams et al. has shown that gender 

played a minor role in the discrimination capacity of 

their gas sensor array, female patients being less 

likely to be correctly classified by the breath-sensing 

device (McWilliams et al., 2015). In most studies, the 

studied groups of people are matched in age and 

gender repartition to ensure no false conclusions are 

drawn from the study. However, as lung cancer has a 

lower incidence with women, studies often report 

having fewer women patients included. 

Diet: one should note that diet might have a 

lasting influence on breathprint, whether or not 

fasting is involved before sampling (Doran et al., 

2017; Horváth et al., 2017; Jia et al., 2019). As this 

aspect is unavoidable in practice, the best approach 

would be to take note of the patient’s diet and observe 

the variation on the subject on a long period of time. 



A 4h nothing-by-mouth policy can also be 

implemented to moderate the effects. The device 

should, ideally, not be affected in its classification 

performances if its design is robust enough. 

Smoking: cigarette smoke contains several 

hundreds of VOCs, and seems to be affecting a 

number of metabolic pathways, such as those linked 

with oxidative stress, that influence the breathprint 

further. Smokers, former smokers and non-smokers 

can be accurately identified with sensor arrays 

(Horváth et al., 2017). Effects of smoking can be 

moderated with a 12h no-smoking policy. Smoking 

as a risk-increaser could also be used in the decision 

algorithm of the device, smoking markers becoming 

an additional information instead of an interference. 

Other diseases: a large number of medical 

conditions have a known effect on the breathprint 

(asthma, liver diseases, chronic obstructive 

pulmonary disease (COPD) to name a few) (Jia et al., 

2019). McWilliams et al has shown that a gas sensor 

array could discriminate COPD and lung cancer, 

without the COPD status of the patient playing a role 

in lung cancer discrimination (McWilliams et al., 

2015). Comorbidity can only be compensated by 

including a similar share of affected people in all 

studied groups. 

Medication: drugs have been investigated as a 

confounding factor. Any recent use of drugs with 

anti-inflammatory effect or causing dilatation of the 

airways should be recorded before sampling (Horvath 

et al., 2009). 

Histology: Different type of cancer, and different 

affected zones in the lung, seem to give different 

breathprint. E-noses managed to discriminate 

between stages in the past with good accuracy, but on 

small sample populations (Barash et al., 2012; Broza 

& Haick, 2013; Peled et al., 2012). It is unfortunately 

impossible to confirm presently if this level of 

discrimination is attainable on larger sample 

populations. Such precision is not mandatory for a 

screening device as envisioned by the project.   

Human genotype and/or habitat of subject: an 

international study has looked into international 

variations in breath VOCs, which are important to 

consider while building a device that has to be usable 

around the world. Their study showed significant 

differences and classification accuracy between 

Latvian and Chinese patients (Amal et al., 2013). It is 

however difficult to determine what is the direct 

cause of the observed difference from the reported 

data. Diet is a responsible cause as likely as genotype 

or other environmental factors. Sampling people of 

varying genotypes living in a similar environment 

could give some insight on this matter. 

Time (diurnal cycle, seasons…) has an influence 

of its own, and also because it influences the sampling 

conditions (humidity in winter and summer differs, 

time of day changes the time from last meal…). Most 

studies avoid this influence by sampling in a stable, 

controlled environment at a defined pace. However, 

mobile sampling devices should also be assessed for 

robustness. There have been several studies regarding 

VOCs measurement in real time, and we know for 

example that acetone levels in breath slowly increases 

during the night (de Lacy Costello et al., 2014). 

Sampling at the same time of the day should moderate 

the effects of diurnal variability. Prolonged study of 

the control group should give some insight on the 

general time-related variability. 

Mental status: general happiness, depression or 

mental illnesses can cause metabolic variations. 

There have been several studies exploring the 

discrimination of schizophrenia patients from 

controls with breath sampling, showing that there 

seems to be higher levels of ethane linked with 

oxidative stress in people with the disorder (Ross et 

al., 2011). 

If some of the previous effects can be avoided or 

moderated with careful sampling, others are simply 

unavoidable. Fortunately, GSA’s are able to overlook 

some interfering compounds thanks to careful array 

conception and multivariate analysis. Main 

confounding factors can be identified during the 

patient’s interview and possibly compensated during 

data treatment. 

Evaluating the sensitivity and the specificity of a 

screening test is a well-treated subject in literature, 

with a number of statistical tools designed to help 

researchers calculate the adequate sample size. The 

size of “sick” and “control” groups can be estimated 

based on several values: the prevalence of the disease 

(fraction of the general population that can be 

affected), the confidence level, the desired precision 

of the estimation (the maximum difference between 

the estimation and the true value) and the estimated 

sensitivity and specificity (from previous studies or 

clinical expertise). For a screening tool, sensitivity 

has to be high, but a lower degree of specificity can 

be tolerated (Bujang & Adnan, 2016; Hajian-Tilaki, 

2014). 

4 METHODOLOGY 

4.1 Sensor Array 



In order to establish a benchmark, a prototype sensor 

array is needed. The device needs to be usable for 

breath technically sensing to stay relevant. 

The prototype should therefore have the 

following characteristics: 

- Quick sensor response, to keep the analysis time 

as short as possible. 

- CO2 sensor included. It can be used for 

capnography and easy signal treatment. This also 

enables the automatic selection of the wanted 

part of the exhalation (see 3.4 Breath Sampling 

and VOCs), as CO2 levels tend to rise toward the 

end of the breath. 

- Small volume sensor chamber, as this avoids 

dilution of samples, provides quicker signal 

stabilisation, and keeps the design compact and 

lightweight. 

- Temperature/humidity measurement and sensor 

chamber heating for temperature regulation: as 

breath is water-saturated at about 37°C, rising the 

temperature of the system and monitoring these 

parameters guarantees the absence of 

condensation. Water in the system could remove 

some chemical species from the gas phase, which 

would alter responses from sensors. Also, MOS 

sensors are known to be sensitive to humidity. 

- Contamination avoidance: all materials in 

contact with the samples should be non-emissive 

and resistant to chemical alterations. Stainless 

steel or PTFE are preferred. Devices that cannot 

be made in those materials will be placed down 

flow from the sensor chamber. 

- Flow monitoring: a flow control device (for 

instance a rotameter) and pump are placed 

downflow to ensure constant flow from the 

sample’s storage (FEP sampling bag). Offline 

analysis of collected samples was found to be 

easier to obtain a stable signal from, and was 

chosen as the preferred way of operation. 

By comparing the characteristics supplied by the 

manufacturers, a varied range of sensors was acquired 

for evaluation. During the first tests, the Figaro 

Engineering TGS® 2603, Umwelt Sensor Technik® 

G3530, G1430, G2530, G8530 and Winsen® MP901 

sensors were assembled on the prototype. To measure 

temperature and humidity, a Bosh BME680 sensor 

was placed in the sensor chamber. This last sensor 

also includes a thin film MOS sensor. 

For the carbon dioxide sensor, high sensitivity 

and short response time were preferred for 

capnography. It is also necessary to have a sensor 

operating in the range 0-6% CO2 content. Therefore, 

the Sprint-IR infrared (GGS®) sensor was selected. 

The electronic part is built around a Teensy® 3.5 

(PJRC) card (Figure 2). Data is sent to a computer 

which records and displays in real time the graphs of 

the parameters (conductance of the sensors, oxygen, 

carbon dioxide, temperature, and humidity values). 

 

 

4.2 Gaseous samples 

4.2.1 Synthesis 

To test the discrimination power of an 

experimental device, it is necessary to create samples 

to be analyzed by it. Those samples should be as close 

as possible to real breath in composition while being 

sound logistically and reproducibility-wise. 

Figure 3 : Prototype of breath sensing gas sensor array used 

for benchmark building, nicknamed SAMBRE_1 

Figure 2: General setup for gas samples synthesis and GSA 

testing 



One of the challenge in making breath-like mixes 

for volatolomics is the concentration range, which 

requires accurate dilution of compounds down to the 

part per billion (ppb) level. A usual approach, chosen 

for this project, consists in the insertion of a few 

microliters of the liquid compounds in a gas sampling 

bag filled with a known volume of air (Figure 3), the 

gas volume of the vaporized compounds diluted in the 

air allows to reach ppm-level concentrations. 

Volatilization of VOCs is ensured by heating the bag 

for 30 minutes at 60°C. The obtained mix is then fed 

into a system using Mass Flow Controllers (MFC) 

diluting the mix further down to the ppb level. In this 

project, the final sample is stored for a short time in 

another gas sampling bag before usage. Storage is 

made at elevated temperature (40°C) to avoid any 

condensation. 

Humidification of the gas samples is made by 

routing a fraction of the dilution air with MFCs to 

bubblers. As shown on figure 3, most of the dilution 

setup is kept at elevated temperature. 

Canisters of CO2 enriched air are used as dilution 

air and pre-made VOC mix canisters (Westfalen®) 

are used to provide background VOC interfering 

compounds (ppm level) to the dilution unit. 

4.2.2 Gas Chromatography 

In order to confirm the composition of the 

samples given to the gas sensor array, and evaluate 

the reproducibility of the dilution method, a reference 

method is needed: thermal desorption gas 

chromatography mass spectrometry (TD-GC-MS) 

has been taken as the method of choice, as it is the 

most commonly used method for volatilome analysis 

in literature. 

A Trace GC oven and DSQII mass spectrometer 

(Thermo Fisher Scientific®) is coupled with a TD-

100xr (Markes®) thermal desorber to analyze 

Tenax® TA packed cartridges. Bags are connected to 

the cartridges and emptied with a GilAir Plus 

Personal (Sensidyne®) sampling pump. To ensure 

good separation, a VOC-specialized capillary column 

is used (Rxi®-624Sil MS, 0.25mm ID 1.4um 60m, 

Restek®).  

The samples are analyzed using the following GC 

oven program: hold 50°C for 5min, 10°C/min to 

180°C, 6°C/min to 205°C, hold 205°C for 5min.   

Quantitative analysis is made after calibration on 

four compounds (pentanone, heptanal, decane, 

toluene). Calibration is made using standard-spiked 

cartridges on three different concentrations with three 

replications each. The concentration range for the 

calibration is based on the likely amounts of a single 

VOC biomarker found in a 2L breath sample 

according to literature (10ppb to 1ppm). Using a 

linear regression model from the peak areas for each 

compound, following samples can be quantified and 

in-bag concentration can be calculated. Compounds 

without a calibration line are measured in toluene 

equivalent. For every gas bag sample processed by 

the GSA, a duplicate is created to be adsorbed on a 

cartridge and analyzed in parallel. 

4.3 Sensor Characterization 

This step corresponds to the metrological 

analysis of the sensors both individually and within a 

network. Since some of the tested sensors will be 

prototypal in nature, characteristics such as response 

time, limit of detection, recovery time and 

sensitivities to different compounds are evaluated. 

The effect of variables – i.e. absolute humidity, VOC 

content (propanol, pentanone, heptanal, decane were 

chosen for this part), and O2/CO2 ratio – is studied for 

each sensor. 

With a large number of parameters and possible 

second order effects between variables, it is necessary 

to reduce the number of experiments to make the 

analysis technically affordable. One of the best 

methods is to use an experimental design that will 

find the experiments providing the maximum amount 

of information in as few steps as possible. 

The interpretation of the results of the 

experimental design (with Design of Experiment 

(DoE) modelling and Principal Component Analysis 

(PCA)) made it possible to assess the sensitivity of 

the sensors to the parameters. The interaction 

between parameters and the reproducibility of the 

experiment are also assessed. 

DoE experience plan are synthesized and 

analysed using R code (FrF2 and DoE.base packages 

are used).  

Correlation between sensors is evaluated. This is 

an important aspect of the analysis as a sensor highly 

correlated to another sensor bring no new information 

of the sample. This often suggests that the sensor is 

redundant and could be swapped for another model, 

improving the general performance of the array. 

4.4 Gas Sensor Array Benchmark 

4.4.1 Benchmarking 

To evaluate how well a Gas Sensor Array can 

distinguish between two mixtures, the most 

straightforward way is to expose the array to two 

populations of the mixtures, and observe how well it 



is possible to class the individuals using multivariate 

analysis. 

The synthetic mixtures should have common 

points which may vary slightly to simulate a real 

breath population (varying absolute humidity and 

CO2 concentration, different interfering compounds, 

varying VOC concentrations). The goal is to identify 

the extent to which the network is able to separate two 

given populations of mixtures (resolution) despite 

some heterogeneities. The mixtures are always 

created in a reproducible way, and all benchmarked 

devices measure statistically similar samples. 

The dataset obtained from the GSA’s is split into 

two: one is used to train a classification model, the 

second to test it (4.4.4 Multivariate Analysis).  

4.4.2 Human Breath Sampling 

Actual breath populations will also be used in the 

datasets, bringing the prototype as close as possible 

to actual field use. Sick breath populations will be 

provided by the university hospitals partners of the 

project, while healthy breath populations will be 

sampled among volunteers in the Arlon campus 

teams. 

Sampling is operated using a prototype device 

that stores the breath in a bag, kept at elevated 

temperature to avoid condensation effects. The device 

is currently being developed by one of the project’s 

teams and will be detailed in future articles. 

Sample bags are quickly processed by electronic 

noses and GC-MS in parallel, in a way similar to the 

synthetic atmospheres analysis detailed before.  

The experimental setting is the main source of 

concern when it comes to exogenous compounds. If 

the ideal sampling room is most likely void of any 

contamination, this approach is incompatible with the 

door-to-door diagnosis envisioned for the final 

device. The device should be able to differentiate 

categories of breath with an estimated degree of 

confidence regardless of the common interferences.  

Nevertheless, interferences from the environment 

should be investigated. The influence of the room on 

the classification should be studied by making 

repeated measurements on several subjects in varying 

environments. Repeated measurements of the breath 

of the same group of persons on several months 

should give some insight on the effects of variation of 

activities and habits on the measurements. Regarding 

confounders such as genotype, hormonal status or 

mental health, they will be considered as out of the 

scope of the thesis for the time being. Test subjects 

will be chosen within a homogeneous population for 

these aspects. However, a proper study of these 

aspects is advisable in the near future. 

A questionnaire covering aspects influencing the 

composition of exhaled air has also been designed: 

medical history, lifestyle and potential sources of 

contamination encountered in the past few days are 

treated. This data is used to understand the influence 

of confounding factors. Aside from the useful 

information, filling the questionnaire also gives some 

resting time to the patient. It is useful to let the patient 

breathe the air of the sampling room for several 

minutes to avoid exogenous contaminations, and 

reach a stable heartbeat rate. As it is impossible to 

control every confounding factor, we thrive to control 

what can be reliably controlled. Other factors are 

taken note of in order to observe their influence on the 

data. 

4.4.3 Pre-treatment and Data Visualization 

The sensors signal dataset is too plentiful to be 

used directly, and therefore needs to be pretreated. 

RStudio was used to create a program in R language, 

which process the data in a usable form. 

The first part of the code extracts the useful 

features. It can identify where the signal of interest 

starts, ends, and then computes various parameters 

(height of the signal’s plateau, area under the curve, 

start and end slopes) taking into account the baseline 

signal and smoothing the noise as needed using a 

moving average. Normalisation or Standardisation of 

the array’s signals may also be applied to improve 

classification. 

This pre-processed data is recorded and sent to 

another code which is responsible for Principal 

Component Analyses, data structure visualisation and 

multivariate analysis (Linear Discriminant Analysis 

for instance). 

Several functionalities can also be implemented 

at this stage, such as baseline drift compensation to 

compensate the progressive conductance shift of 

aging sensors. Humidity compensation can also be 

considered, using data from a recent humidity 

calibration of the sensors.  

4.4.4 Multivariate Analysis 

Considering the creation of a benchmark, pre-

treated dataset will be processed using multivariate 

analysis. 

Various methods will be tested to create a 

classification algorithm. Amongst the candidates are 

Neural Networks, k-Nearest-Neighbours, Linear 

Discriminant Analysis, Partial Least Squares, 

Random Forest and AdaBoost. These methods have 



been used previously in literature for GSA 

classification. It is however necessary to assess which 

one is the most interesting for our task. 

The dataset is split into two parts: one for the 

training of the classification model, and another for 

the validation of the algorithm’s classification 

performances. An external dataset is also used to 

validate the model, which evaluates how robust the 

classification is. Based on classification 

performances of a chosen method and characteristics 

of sensors, different GSAs will be compared. The 

classification error on the external dataset would be 

used as a metric of GSA performance. 

Since the benchmarking procedure is always the 

same for tested GSAs, it is possible to compare them 

and optimize them iteratively to create the best 

prototype possible. This will ensure final hospital 

field testing better chances of success.  

 

5 EXPECTED OUTCOME 
 

This PhD Thesis has several expected outcomes. 

Experiments on ppb-level dynamic gas dilutions and 

gas sensor array optimisation for VOC discrimination 

will constitute a base of knowledge for other projects 

studying VOCs at low concentrations. The 

benchmarking approach can also be used for other 

projects using GSAs. The produced data would have 

interesting features: comparison of lab-made 

“synthetic breath” and real patient breath, confusion 

factors and potential contaminations being taken into 

account, availability of large project-wise data. 

As a whole, this PhD Thesis is contributing to the 

creation of a portable screening device against lung 

cancer. Such a device could later be re-purposed to 

detect other health conditions, opening the way to 

new diagnostic methods. 

6 STAGE OF THE RESEARCH  

The thesis began on May 15, 2019 for a period of 4 

years. 

According to the state of the art research, the first 

reproducibility tests of atmospheres dilution for sub-

ppm concentrations have been made. A reproducible 

method has been established with less than 20% 

variation between days, for the worst case. 

A working prototype of GSA fitting the 

requirements has been assembled (SAMBRE_1), and 

tested using synthetic atmospheres. Commercial 

sensors have been characterized and the first sets of 

synthetic atmospheres have been processed for 

classification. Code on pre-processing, DoE and PCA 

are operational and have been tested on several 

datasets from SAMBRE_1. 

The next steps will start in the coming months: 

real breath sample pool collection and analysis, in-

depth analysis of DoE outputs, creation of the code 

for automatic multivariate analysis of datasets, first 

tests with prototype sensors and new versions of 

SAMBRE, comparison of classification 

performances. 
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