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Abstract

This work presents a new approach to design an electrical network which, when coupled to a struc-
ture through an array of piezoelectric transducers, provides multimodal vibration mitigation. The
characteristics of the network are specified in terms of modal properties. On the one hand, the
electrical resonance frequencies are chosen to be close to those of the targeted set of structural
modes. On the other hand, the electrical mode shapes are selected to maximize the electromechan-
ical coupling between the mechanical and electrical modes while guaranteeing the passivity of the
network. The effectiveness of this modal-based synthesis is demonstrated using a free-free beam
and a fully clamped plate.

Keywords: vibration mitigation, piezoelectric damping, multimodal vibration absorber, passive
control, electrical network, electromechanical analogy

1. Introduction

In several engineering applications, flexible and lightly-damped structures are more and more
common but are plagued by harmful high-amplitude vibrations. Piezoelectric shunt damping such
as proposed by Hagood and von Flotow [1] and Wu [2] constitutes an attractive solution to this
problem because of its compact and potentially lightweight character. In this approach, one or
several piezoelectric transducers bonded to a structure convert part of their mechanical energy to
electrical energy via the piezoelectric effect. This energy is then dissipated by electrical elements
in a passive circuit connecting the electrodes of the transducer. Several types of such circuits were
reviewed in [3].

The approaches in [1, 2] can be used to mitigate a single resonant mode. This may become
a limitation if the excitation is broadband and if multiple modes respond to it. Approaches that
provide multimodal damping using a single piezoelectric transducer connected to a circuit with
multiple branches were proposed, see, e.g. [4–7] for an overview. While using a single transducer
makes up for a potentially compact solution, its placement on the structure may limit the perfor-
mance in terms of vibration reduction of some modes. From this standpoint, it is desirable to use
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multiple transducers distributed over the structure to ensure sufficient electromechanical coupling
with all the targeted modes. However, finding an electrical circuit that interconnects multiple
piezoelectric transducers and optimally damps multiple modes is a challenging task.

Dell’Isola and Vidoli [8] used piezoelectric actuators uniformly distributed over a truss beam
and designed an electrical transmission line with similar wavespeed as a target mechanical wave
speed, opening the possibility for efficient electrical dissipation of the mechanical energy. Vidoli
and Dell’Isola [9] then studied the spectral properties of the operators governing the dynamics
of a beam and characterized the coupling existing between mechanical and electrical modes. An
important conclusion of their work was that the mechanical and electrical modal characteristics
should coincide in order to obtain strong coupling. This led Alessandroni et al [10] to find elec-
trical circuits analog to beams and plates, i.e., having identical resonance frequencies and mode
shapes. They also derived optimal resistances to efficiently damp one targeted mode. Maurini et
al [11] studied different circuit topologies and showed that one of them could provide multimodal
damping of a beam. Porfiri et al [12] synthesized a passive circuit analog to a vibrating beam made
only of inductors, capacitors and ideal transformers. The theoretical concepts presented in these
works were experimentally validated on rods [13], beams [14] and plates [15, 16]. Reviews on this
approach can be found in [17, 18]. Control approaches exploiting multiple piezoelectric transducers
are also used in the field of metamaterials to create tunable bandgaps [19] and space-time wave
localization [20].

The aforementioned works that leverage electrical analogs used a homogenized model of a
simple structure, later discretized with finite differences in order to derive a circuit with lumped
elements being analog to the structure. Real-life structures may be more complex. This is what
motivated Darleux et al [16, 18] to develop a library of elemental electrical cells analog to various
elemental structures. By assembling these cells into a network in a similar way to that in which
their mechanical counterparts make up a complex structure, it is possible to create a network analog
to that structure. This approach potentially requires a large number of cells and transducers.

In a slightly different spirit, Giorgio et al [21] proposed a generic approach, where an electrical
network was tuned based on the finite element model of a structure. The idea developed therein
was to find a transformation of the electrical degrees of freedom of the network that makes the
piezoelectric coupling matrix nearly diagonal in order to consider mechanical and electrical modes
by pairs, thereby allowing a tuning based on the classical resistive-inductive shunt formulas [2].
This method was numerically verified and experimentally validated. However, it has two potential
drawbacks. The first one is that it requires to solve a quadratic system of N2

s equations, where Ns

is the number of modes to be controlled. For such systems, an iterative numerical solver is needed
which may not always converge to a satisfactory solution. The second issue is that the number
of piezoelectric transducers needs to be equal to the number of targeted mechanical modes, which
somewhat limits the flexibility of this approach.

The goal of the present paper is to propose a procedure for synthesizing an electrical network to
be used for multimodal piezoelectric damping based on the modal properties of the host structure.
The proposed approach specifies the characteristics of the resonant electrical modes of the network
while requiring that the network is realizable using passive electrical elements. Specifically, by
matching the electrical resonance frequencies to those of a set of targeted mechanical modes, and
by analytically optimizing the electrical mode shapes, it is possible to derive the nodal admittance
matrix of the network allowing to efficiently mitigate the targeted mechanical resonances. The
proposed method, termed modal-based synthesis, is non-iterative and can accommodate a different
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number of transducers and targeted modes. It yields electrical matrices governing the behavior of
the synthesized network. The topology and passive components making up the network are not
explicitly derived herein, but the obtained matrices could potentially be exploited to specify them.

This article is organized as follows. The basics of piezoelectric shunt damping are first briefly
reviewed in Section 2. An electrical network aiming to provide multimodal vibration damping is
introduced in Section 3, and the dynamics of the coupled system are analyzed. The electromechan-
ical interaction between a mechanical mode and its electrical counterpart is described in terms of
coupling factors. The actual design of the electrical network is undertaken in Section 4. Limitations
on the electrical modal characteristics are imposed by the passivity requirement on the network.
Under these constraints, the electrical modal characteristics are optimized and the network is syn-
thesized. The approach is numerically demonstrated on a free-free beam and a fully clamped plate
in Section 5. Conclusions on the present work are finally drawn in Section 6.

2. Piezoelectric shunt damping
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Figure 1: Schematic representation of the electromechanical system (a) and FRF of the structure (b) when the
electrodes of the transducer are short-circuited (—) and when they are connected to a parallel RL shunt circuit
(—: Kc = 0.01, —: Kc = 0.05, —: Kc = 0.1).

Fig. 1a depicts a single-degree-of-freedom oscillator connected to a piezoelectric transducer
whose electrodes are connected to a parallel RL shunt circuit, as proposed by Wu [2]. The system
is governed by the following equations

{
mẍ+ kscx+ γψ̇ = f

Cε
pψ̈ +Gψ̇ +Bψ − γẋ = 0

, (1)

wherem is the structural mass, ksc = k+kp is the structural stiffness with short-circuited transducer
(k being the stiffness of the structure without transducer, and kp the stiffness of the transducer
when it is short-circuited), γ is a coupling constant, Cε

p is the piezoelectric capacitance at constant
strain, and G = 1/R and B = 1/L are the conductance (inverse of the resistance R) and reluctance
(inverse of the inductance L) of the shunt circuit, respectively [21, 22]. x is the displacement of the
structure, f is the external forcing, and ψ =

∫
V dt (where V is the voltage across the electrodes

of the transducer) is the flux linkage. From the parameters in Eq. (1), a short-circuit resonance
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frequency ωsc (when ψ = 0) and a dimensionless quantity called the effective electromechanical
coupling factor (EEMCF) [23] Kc can be defined as

ω2
sc =

ksc
m
, K2

c =
γ2

Cε
pksc

. (2)

The EEMCF assesses the coupling between the mechanical and electrical dynamics. The resistance
and inductance of the shunt circuit may be tuned in order to reduce the maximum amplitude of
vibration of the mechanical oscillator under harmonic excitation. Generally, this requires to know
the parameters Cε

p , ωsc and Kc. For instance, using the tuning rules from Yamada et al [22],

B =
(2−K2

c )ω2
scC

ε
p

2
, G =

√
3K2

c

2
ωscC

ε
p . (3)

In general K2
c � 1, and thus B/Cε

p ≈ ω2
sc, i.e., the electrical resonance frequency is very close to

the short-circuit mechanical one. The amplitude of the frequency response function (FRF) of the
structure with this shunt circuit is shown in Fig. 1b for various values of the EEMCF. Clearly, the
stronger the coupling, the better the performance in terms of vibration attenuation.

The purpose of this paper is to propose a method able to extend this passive control strategy
to potentially complex structures having multiple modes to be damped and multiple piezoelectric
transducers.

3. Dynamics of the electromechanical system

In order to achieve multimodal damping with multiple piezoelectric transducers, a properly
tuned interconnecting network can be electrically connected to these transducers, as shown in
Fig. 2. In this section, it is assumed that the network has known electrical characteristics, and an
analysis of its coupling with the resonant modes of the structure is carried out. This will highlight
the importance of the modal characteristics of the overall network obtained by combining the
electrical properties of the interconnecting network together with those of the transducers. These
modal characteristics will then be used as design variables in the next section in order to synthesize
the network.

3.1. Governing equations

The dynamics of a structure with N degrees of freedom and with P piezoelectric transducers
can be described by the following system [23]

{
Mẍ + Kscx + Γpψ̇p = f

ΓTp ẋ−Cε
pψ̈p = q̇p

, (4)

where M and Ksc are the structural mass and stiffness (with short-circuited transducers) matrices,
Γp is a piezoelectric coupling matrix and Cε

p is the capacitance matrix of the transducers at constant
strain. The vectors x, f , ψp and qp represent the generalized mechanical degrees of freedom, the
associated vector of generalized loading, the vector of flux linkages across the transducers and
charges flowing out of them (considered positive if they flow out of the ungrounded electrode of
the transducer), respectively.
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Figure 2: Schematic of a structure (in gray) with multiple piezoelectric transducers (in orange) connected to an
electrical network.

An electrical network can be electrically connected to the piezoelectric transducers in order to
control multiple resonances. It is assumed that this interconnecting network is governed by the
following equations

Ceψ̈+ Gψ̇+ Bψ = q̇, (5)

where Ce, G and B are capacitance, conductance and reluctance matrices of the interconnecting
network, respectively. The vector of flux linkages

ψT =
[
ψT

p ψT
i

]
, (6)

describes the flux linkages of the P ports to be connected to the piezoelectric transducers ψp

and I possible internal electrical degrees of freedom ψi. In total, the number of these degrees of
freedom is noted Ne = P + I. The vector q then describes the charges flowing into the associated
ports. Connecting the network to the transducers imposes the charges flowing in the ports of the
interconnecting network connected to the piezoelectric transducers to be equal to those flowing out
of the transducers, as shown in Fig. 2, leading to the relation

q̇ = Epq̇p (7)

where Ep is a localization matrix given by

ET
p =

[
IP×P 0P×I

]
, (8)

I is the identity matrix and 0 is the zero matrix. The ports associated to internal degrees of
freedom are not fed with an external current (q̇i = 0). According to Eq. (6), the flux linkages of
the ports connected to the piezoelectric transducers are also given by

ψp = ET
pψ. (9)

Upon connecting the network governed by Eq. (5) to the transducers of the piezoelectric structure,
the governing equations in Eq. (4) become, using Eqs. (7) and (9),

{
Mẍ + Kscx + ΓpE

T
p ψ̇ = f(

Ce + EpC
ε
pE

T
p

)
ψ̈+ Gψ̇+ Bψ−EpΓ

T
p ẋ = 0

, (10)
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which describe the dynamics of the structure coupled to the electrical network. Specifically, the
second set of equations describes the dynamics of the overall network. In the sequel, the capacitance
matrix of the overall network will be noted C for brevity, i.e.

C = Ce + EpC
ε
pE

T
p . (11)

3.2. Mechanical and electrical modes

The dynamics of the uncoupled (Γp = 0) mechanical and electrical systems are considered
herein.

The mechanical modes with short-circuited transducers are defined by the generalized eigen-
value problem [24]

KscΦsc = MΦscΩ
2
sc, Ω2

sc =



ω2
sc,1

. . .

ω2
sc,N


 , (12)

where Φsc is the mechanical mode shapes matrix and Ω2
sc is a diagonal matrix whose entries

are the squared natural frequencies of the structure. The modes verify a series of orthogonality
relationships, and are usually mass-normalized, i.e.,

ΦT
scMΦsc = I, ΦT

scKscΦsc = Ω2
sc. (13)

In a similar way, electrical modes of the lossless network (G = 0) can be defined by the following
equation:

BΦe = CΦeΩ
2
e, Ω2

e =



ω2
e,1

. . .

ω2
e,Ne


 , (14)

where Φe is the electrical mode shapes matrix and Ω2
e is a diagonal matrix whose entries are the

squared natural frequencies of the network. The mode shapes also verify orthogonality properties
and can be capacitance-normalized

ΦT
e CΦe = I, ΦT

e BΦe = Ω2
e. (15)

It is also assumed that the electrical conductance matrix is such that the mode shapes also respect
the same kind of orthogonality relations

ΦT
e GΦe = 2ZeΩe, Ze =



ζe,1

. . .

ζe,Ne


 , (16)

where Ze is a diagonal matrix containing the electrical modal damping ratios. With the modal-
based synthesis proposed in this work, this assumption will always be true. For electrical analogs
such as those mentioned in the introduction however, this might not be the case unless resistors
are properly localized inside the network [11, 12, 25].

6



3.3. Modal coupling

Assuming that the kth electrical resonance frequency is close to the rth mechanical one, and for
forcing frequencies near them, the dynamics of the mechanical and electrical systems are assumed
to be dominated by their associated uncoupled modes, i.e.,

x ≈ φsc,rηsc,r, ψ ≈ φe,kηe,k, (17)

where ηsc,r and ηe,k are mechanical and electrical modal coordinates, respectively, φsc,r is the rth

column ofΦsc andφe,k is the kth column ofΦe. Inserting this ansatz into Eq. (10), premultiplying

them by φT
sc,r and φT

e,k and accounting for Eqs. (13), (15) and (16), one gets the reduced system

{
η̈sc,r + ω2

sc,rηsc,r + γrkη̇e,k = φT
sc,rf

η̈e,k + 2ζe,kωe,kη̇e,k + ω2
e,kηe,k − γrkη̇sc,r = 0

, (18)

where
γrk = φT

sc,rΓpE
T
pφe,k (19)

is a modal electromechanical coupling coefficient between mechanical mode r and electrical mode
k. Eq. (17) is a central assumption of this paper. It can be used to accurately describe the
uncoupled systems in a certain frequency range, and the coupled system can be well-approximated
by retaining in Eq. (18) the modal coupling coefficient defined in Eq. (19). A similar hypothesis was
made in [10] using the eigenfunctions of the spatial differential operators of the uncoupled systems.
Noting the similarity between Eq. (1) and Eq. (18), an EEMCF can be defined by analogy to
Eq. (2) as

K̂2
c,rk =

γ2rk
ω2
sc,r

. (20)

4. Design of an electrical network

The goal of this section is to find optimal electrical modal parameters for the network and to
deduce its electrical capacitance, conductance and reluctance matrices from Eqs. (15) and (16).
Similarly to what has been explained in Section 2, the natural frequencies of the network should
be close to those of a targeted set of structural modes [9]. The choice of the electrical mode shapes
is less straightforward. As in Section 2, it is desirable from a vibration reduction performance
perspective to maximize the EEMCF given in Eq. (20). With Eq. (19), it is thus sought to maximize
the amplitude of the electrical mode shapes at the piezoelectric transducers. Their amplitude is
however limited by passivity constraints, as shall be seen.

4.1. Passivity

The passivity of the network is set as a design requirement in this work. Passive control has the
advantage of guaranteeing the stability of the controlled system (because a passive system can only
store or dissipate energy), and theoretically does not need external power sources for operation.
It will be shown that this requirement places limits on the attainable modal characteristics, which
in turn limits the performance of the passive control system. The electrical modal characteristics
can be optimized under the passivity constraints, and these optimal characteristics can finally be
used to synthesize the electrical network.
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Using the Laplace transform of Eq. (10), the governing equations can also be expressed in the
frequency domain by {

H(s)x + sΓpE
T
pψ = f

Y(s)ψ−EpΓ
T
p x = 0

, (21)

where s is the Laplace variable,
H(s) = Ms2 + Ksc (22)

is the dynamic stiffness matrix [24], and

Y(s) = sC + G +
1

s
B (23)

is the nodal admittance matrix [26].
According to Gannett and Chua [27], the nodal admittance matrix given in Eq. (23) must fulfill

the conditions

(i) Y(s) has no poles in {s ∈ C|<(s) > 0} (< denotes the real part operator),

(ii) Y(σ) is a real matrix for σ ∈ R+,

(iii) Y(s) +YH(s) is positive semidefinite in {s ∈ C|<(s) > 0} (superscript H denotes Hermitian
transposition),

(iv) The network associated to Y is controllable,

in order to be the admittance matrix of a passive network (i.e., realizable using passive capacitors,
resistors, inductors and ideal transformers). According to Eq. (23), Y(s) has one simple pole at
s = 0 (for a nonzero reluctance matrix), so Condition (i) is satisfied. Condition (ii) is satisfied
since C, G and B are real matrices. Condition (iv) is also verified, because all the electrical states
are controllable and observable for an admittance matrix of the form of Eq. (23). Now, since C,
G and B are also symmetric matrices, using Eq. (23), Condition (iii) becomes

Y(σ + jω) + YH(σ + jω) = 2σC + 2G +
2σ

σ2 + ω2
B � 0, (24)

where � 0 indicates that the matrix is positive semidefinite. For σ > 0 and ω ∈ R, this matrix is
positive semidefinite if C, G and B are positive semidefinite themselves, which gives the criteria
to satisfy Condition (iii). Because of Eqs. (15) and (16), the matrices C, G and B are guaranteed
to be positive semidefinite, which eventually ensures the passivity of the overall network.

Now, one must consider that the piezoelectric transducers are integrated into the overall net-
work associated with the matrix C. The capacitance matrix Ce of the interconnecting network
is obtained by removing the contribution of the piezoelectric capacitance from C, as indicated by
Eq. (11). Thus, if Ce is the capacitance matrix of a passive interconnecting network, it must satisfy

Ce = C−EpC
ε
pE

T
p � 0. (25)

A positive semidefinite matrix has positive eigenvalues, and a necessary (but not sufficient) condi-
tion for this is that the determinant of this matrix (being equal to the product of the eigenvalues)
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must be positive. C will be designed to be invertible (and thus positive definite). The determinant
of Ce is then given by

det
(
C−EpC

ε
pE

T
p

)
= det

(
C1/2

)
det
(
I−C−1/2EpC

ε
pE

T
pC
−1/2) det

(
C1/2

)

= det
(
I−

(
Cε

p

)1/2
ET

pC
−1Ep

(
Cε

p

)1/2)
det (C)

= det
((

Cε
p

)−1 −ET
pC
−1Ep

)
det (C) det

(
Cε

p

) , (26)

where the fact that the determinant of a product of matrices is the product of their determinants
has been used, as well as the Weinstein-Aronszajn formula ([28], Equation (5.47)). Since both C
and Cε

p are positive definite, a necessary condition for the positive semidefiniteness of Ce is thus

(
Cε

p

)−1 −ET
pΦeΦ

T
e Ep � 0. (27)

If the modal amplitudes ΦT
e Ep are initially zero, this condition will be satisfied because Cε

p is
itself positive definite. Increasing gradually these modal amplitudes will affect continuously the
eigenvalues of the matrix in Eq. (27), up to the point where one of them reaches zero. Increasing
the amplitudes beyond this point, the matrix will no longer be positive semidefinite, and the
interconnecting network will no longer be passive.

4.2. Optimal electrical mode shapes

Eq. (27) constrains the amplitude of the electrical mode shapes but leaves freedom on their
actual shape. However, some choices yield better electromechanical coupling factors than others.
The purpose of this subsection is to provide an expression for the set of electrical mode shapes
maximizing the modal electromechanical coupling coefficients.

4.2.1. Optimization for a single mode

It is first considered that the network targets a single mode of the structure. To simplify the
exposition, the electrical mode shape at the piezoelectric transducers is made dimensionless by the
transformation

ϕp =
(
Cε

p

)1/2
ET

pφe =
(
Cε

p

)1/2
φp. (28)

Inserting this relation into Eq. (27) yields

(
Cε

p

)−1 −
(
Cε

p

)−1/2
ϕpϕ

T
p

(
Cε

p

)−1/2 � 0. (29)

The positive semidefinite character is not altered by a pre- and postmultiplication by
(
Cε

p

)1/2
,

thus,
I−ϕpϕ

T
p � 0. (30)

It is useful to point out here that if A is any n × n matrix with eigenvalues λ1, · · · , λn, the
eigenvalues of I−A are 1−λ1, · · · , 1−λn. Eq. (30) is therefore satisfied if the dimensionless mode
shape satisfies

|ϕp| ≤ 1. (31)

Now, the EEMCF defined in Eq. (20) is maximized if the modal electromechanical coupling
coefficient defined in Eq. (19) is itself maximized, leading to the following constrained optimization
problem

Maximize
ϕp

φT
sc,rΓp

(
Cε

p

)−1/2
ϕp

Subject to ϕT
pϕp ≤ 1

. (32)
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The admissible solution to this optimization problem can be found as

ϕ?
p =

1√
φT

sc,rΓp
(
Cε

p

)−1
ΓTpφsc,r

(
Cε

p

)−1/2
ΓTpφsc,r, (33)

and the associated optimal capacitance-normalized mode shape at the piezoelectric transducers is
retrieved with Eq. (28) as

φ?
p =

1√
φT

sc,rΓp
(
Cε

p

)−1
ΓTpφsc,r

(
Cε

p

)−1
ΓTpφsc,r. (34)

4.2.2. Optimization for multiple modes

In order for the network to mitigate Ns structural resonances, it is assumed that the dimen-
sionless electrical mode shapes are simply scaled versions of their optimal counterparts in the
single-mode case, i.e.,

Φp =
[
ϕp,1 · · · ϕp,Ns

]
= Φ

?
pDp =

[
ϕ?

p,1 · · · ϕ?
p,Ns

]


dp,1

. . .

dp,Ns


 , (35)

where dp,k is the positive scaling factor associated to electrical mode k. This assumption allows
for a drastic simplification of the optimization problem in the multimodal case, but it may result
in a suboptimal network. Given the complexity of the problem at hand, it is deemed a reasonable
solution by the authors. In order to satisfy the passivity constraints (Eq. (27)), these scaling factors
must be chosen such that

I−Φ?
pD

2
p

(
Φ

?
p

)T
� 0. (36)

To determine them, a set of positive relative scaling factors dp,k can be chosen arbitrarily. Their
magnitude does not matter, but their relative magnitude can be set so as to put more control
authority on specific modes at the expense of control authority on other modes. The actual scaling
factors are obtained by multiplication by a scalar factor α

Dp = α



dp,1

. . .

dp,Ns


 = αDp, (37)

which can be determined to enforce the passivity constraints. From Eq. (36), it should satisfy

α ≤ 1√
λMax

(
Φ

?
pD

2
p

(
Φ

?
p

)T)
, (38)

where λMax(·) is the maximum eigenvalue of the matrix at hand. The capacitance-normalized
mode shapes at the piezoelectric transducers can finally be retrieved as

Φp =
(
Cε

p

)−1/2
Φp = α

(
Cε

p

)−1/2
Φ

?
pDp. (39)
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The mode shapes obtained this way are proportional to α. Eqs. (19) and (20) then imply that the
EEMCF itself is proportional to α. Hence, the inequality in Eq. (38) should ideally be an equality
to maximize the amplitude of the electrical modes at the piezoelectric transducers and thus the
coupling.

It should be pointed out that if the piezoelectric patches are all identical, Cε
p is proportional

to the identity matrix. ΓTpΦsc can be seen as modal strains in the transducers, and the electrical
mode shapes Φp are proportional to them, according to Eq. (34) in this case. Hence, the network
is an analog of the structure, because it features identical resonance frequencies and mode shapes,
as in [10] (but the scaling factors make the electrical mode shapes in Eq. (39) a scaled version of
their mechanical counterparts).

4.3. Optimal electrical frequencies and damping ratios

In order to fully specify the characteristics of the network, its natural frequencies and associated
damping ratios should also be prescribed. These modal characteristics can simply be tuned by using
Eq. (3) with the characteristics of the system in Eq. (18), i.e., by replacing Cε

p by one, ωsc by ωsc,r,

Kc by K̂c,rk, B by ω2
e,k and G by 2ζe,kωe,k. The optimal frequency and damping ratio for electrical

mode k are thus given by

ω2
e,k =

(2− K̂2
c,rk)ω2

sc,r

2
, ζe,k =

√
3

2

√√√√ K̂2
c,rk

2− K̂2
c,rk

, (40)

respectively.

4.4. Network synthesis

Now that all the modal characteristics are specified, the capacitance, conductance and reluc-
tance matrices of the network can be computed so as to satisfy Eqs. (15) and (16). Depending on
the number of transducers P compared to the number of targeted modes Ns, different cases must
be considered.

4.4.1. Full-rank electrical mode shapes matrix

The case P = Ns with full-rank Φp is the simplest, because the matrix Φe = Φp is square and
non-singular. The electrical matrices can then be obtained from the inversion of Eqs. (15) and (16)

C = Φ−Te Φ−1e , G = 2Φ−Te ZeΩeΦ
−1
e , B = Φ−Te Ω2

eΦ
−1
e . (41)

4.4.2. Row-deficient electrical mode shapes matrix

If P < Ns, there are less transducers than targeted structural modes, and the matrix Φp has
more columns than rows. It could also be that P ≥ Ns but Φp is rank-deficient. In both cases,
this mathematically translates to rank (Φp) < Ns, and internal degrees of freedom ψi should be
introduced. The minimal number of internal degrees of freedom required to make the problem
well-posed is I = Ns − rank (Φp). The mode shapes on these degrees of freedom Φi should be
specified in order to obtain a mode shape matrix of rank Ns

Φe =

[
Φp

Φi

]
, (42)
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and the electrical matrices can then be obtained with Eq. (41). As long as the electrical mode
shape matrix is non-singular, the mode shapes on the internal degrees of freedom can be chosen
arbitrarily without affecting the performance of the network. A practical choice to ensure the
non-singularity of the mode shape matrix could be to chose Φi = WT , where W contains the
orthogonal basis of the kernel of Φp, i.e.,

ΦpW = 0, WTW = I. (43)

If the rank of (Φp) is P , Eq. (41) can be used to synthesize the electrical matrices.

4.4.3. Column-deficient electrical mode shapes matrix

If P > Ns, there are more transducers than targeted structural modes, and the matrixΦe = Φp

has more rows than columns. More generally, the rank of Φe may be smaller than P . Compliance
with Eqs. (15) and (16) leads to an underconstrained problem. This leaves some freedom on the
choice of the other electrical mode shapes of the network (while keeping in mind the passivity
requirements). Another simple way to enforce Eqs. (15) and (16) is to choose

C = Φe

(
ΦT

eΦe

)−2
ΦT

e + VDV V
T , G = Φe

(
ΦT

eΦe

)−1
2ZeΩe

(
ΦT

eΦe

)−1
ΦT

e ,

B = Φe

(
ΦT

eΦe

)−1
Ω2

e

(
ΦT

eΦe

)−1
ΦT

e , (44)

where DV is a diagonal matrix, and V contains the orthogonal basis of the kernel of ΦT
e , i.e.,

ΦT
e V = 0, VTV = I. (45)

DV does not affect the electromechanical coupling with the targeted modes, but has to be chosen
such that Eq. (25) is satisfied. The projection of this equation on the subspace spanned by Φe

satisfies the equation, and that on V yields the condition

DV −VTEpC
ε
pE

T
pV � 0. (46)

The choice of DV to satisfy this condition is not unique. In an attempt to reduce the number of
electrical components needed for the network, one can try to make the capacitance matrix C as
close as possible to the piezoelectric capacitance matrix EpC

ε
pE

T
p . Imposing an equality of these

matrices in the subspace spanned by V yields

VTEpC
ε
pE

T
pV = VTCV = VTVDV V

TV = DV , (47)

on account of Equations (44) and (43). This choice of DV satisfies Eq. (46), since the involved
matrix is 0.

4.5. Design procedure

The proposed design procedure is summarized in Fig. 3: from a set of targeted modes and
associated scaling factors reflecting the desired control authority on these modes, the electrical
matrices of the network can be obtained. Given the central role played by modal properties in this
approach, it is named modal-based synthesis.
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System characteristics: Cε
p, ΦT

scΓp, Ωsc

Modes to be controlled r(k) and associated scaling factors dp,k (k = 1, · · · , Ns)

Optimal dimensionless mode shapes ϕ?
p,k

Eq. (33)

Scaling factors for passivity dp,k
Eqs. (37) and (38)

Electrical mode shapes Φp

Eq. (39)

Electromechanical coupling γrk
and K̂2

c,rk, with ET
pΦe = Φp

Eqs. (19) and (20)

Modal characteristics Ωe and Ze

Eq. (40)

rank (Φp) 5 Ns ?

rank (Φp) = Ns

Φe = Φp

rank (Φp) < Ns

Compute W
Eq. (43)

ΦT
e =

[
ΦT

p W

]

rank (Φe) 5 P ?

rank (Φe) = P

Electrical matrices C
(and Ce), G and B

Eq. (41)

rank (Φe) < P

Compute V and DV

Eqs. (45) and (47)

Electrical matrices C
(and Ce), G and B

Eq. (44)

k
=

1,···
,N

s
k
=

1,···
,N

s

Figure 3: Flowchart of the proposed modal-based synthesis.

5. Numerical examples

5.1. Free-free beam

The free-free beam in [14] is the first example used to demonstrate the modal-based approach
and to compare it to methods based on electrical analogs. The beam is composed of twenty
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identical cells where a pair of thin piezoelectric patches symmetrically bonded to the structure and
electrically connected in parallel can be used to damp the vibrations of the beam. The beam was
modeled using the finite element method [23] with ten elements per cell. This yielded the matrices
M, Ksc and Γp.

5.1.1. Damping of the first four modes

A network targeting the first four flexible modes of the beam was synthesized with the modal-
based method described in Figure 3, choosing unit scaling factors for each mode (dp,k = 1, k =
1, 2, 3, 4). Since there are twenty transducers and four targeted modes, P = 20 and Ns = 4, that is,
rank(Φp) = Ns < P . The FRF of the beam transversely excited at one end and whose transverse
displacement is measured at the other end is shown in Fig. 4. It is observed that the electrical
network can very effectively damp out the resonant vibrations of the four targeted modes.
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Figure 4: Velocity FRF of the beam with short-circuited patches (—), with the network synthesized with the modal-
based approach (—).

5.1.2. Relative scaling factors

The influence of the relative scaling factors can also be studied. To make things easier to
understand, the piezoelectric structure is simplified by grouping the twenty pairs of patches into
two groups of ten adjacent pairs of patches and connecting the groups in parallel, implying P = 2
and thus rank(Φp) = P < Ns. A first network can be synthesized with unit relative scaling factors
(dp,k = 1, k = 1, 2, 3, 4). The resulting FRF is shown in Fig. 5. Compared to Fig. 4, the parallel
connection of the patches has reduced the control authority of the network, especially on mode
4. This can be understood by the fact that the parallel connection of the patches makes this
mode almost unobservable and uncontrollable because of charge cancellation. This baseline case
is compared in Fig. 6 to every other investigated case studied hereafter in terms of attenuation on
each mode.

In an attempt to improve the control authority over mode 1, one may set dp,1 = 2 while leaving
the other relative scaling factors unchanged. In doing so, Fig. 5 shows that the vibration reduction
on mode 1 can be improved by 2dB, but this is done at the expense of vibration reduction on the
other modes (by approximately 4dB for all of them). Thus, the relative scaling factors can be used
to favor vibration mitigation over some modes, as expected. The vibration reduction improvement
on mode 1 can be maximized if mode 3 is left uncontrolled. In this case, a further 1dB can be
obtained on mode 1.
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Figure 5: Velocity FRF of the beam with grouped patches connected to a network synthesized with the modal-
based approach: [dp,1, dp,2, dp,3, dp,4] = [1, 1, 1, 1] (—), [dp,1, dp,2, dp,3, dp,4] = [2, 1, 1, 1] (—), [dp,1, dp,2, dp,3, dp,4] =
[2, 1, 0, 1] (—), [dp,1, dp,2, dp,3, dp,4] = [2, 2, 1, 1] (-·-) and [dp,1, dp,2, dp,3, dp,4] = [2, 2, 2, 1] (-·-).
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Figure 6: Relative attenuation (compared to the baseline case) on each mode: [dp,1, dp,2, dp,3, dp,4] = [1, 1, 1, 1] (�),
[dp,1, dp,2, dp,3, dp,4] = [2, 1, 1, 1] (�), [dp,1, dp,2, dp,3, dp,4] = [2, 1, 0, 1] (�), [dp,1, dp,2, dp,3, dp,4] = [2, 2, 1, 1] (�) and
[dp,1, dp,2, dp,3, dp,4] = [2, 2, 2, 1] (�).

In addition to improving performance on mode 1, mode 2 can also be emphasized by choosing
dp,1 = dp,2 = 2 while leaving the other relative scaling factors equal to one. In this case, Fig. 5 in-
dicates that the vibration reduction on mode 2 can be improved without affecting the performance
on other modes. While this might seem in contradiction with the previous observation, this result
can be understood by looking at the modal assurance criterion of the optimal dimensionless electri-

cal mode shapes

∣∣∣∣
(
Φ

?
p

)T
Φ

?
p

∣∣∣∣
2

(auto MAC), indicating how correlated these modes are [18]. The

dimensionless mode shapes and auto MAC matrix are featured in Fig. 7, which clearly shows that
modes are similar by pairs, as viewed by the connected patches: mode 1 is similar to mode 3 and
mode 2 is similar to mode 4. These mode pairs are also orthogonal to each other. Hence, the scaling

factors dp,1 and dp,2 affect orthogonal directions and thus different eigenvalues of Φ
?
pD

2
p

(
Φ

?
p

)T
.

When dp,2 was equal to one, the largest eigenvalue was the one associated to dp,1. Increasing dp,2
up to two does not change this fact, and according to Eq. (38) α stays identical, and so do dp,1,
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dp,3 and dp,4, while dp,2 increases (because dp,2 increases). Thus, performance on mode 2 (or mode
4) can be improved without affecting mode 1, 3 and 4 (or mode 2) up to some point.
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Figure 7: Optimal dimensionless mode shape 1 (a), 2 (b), 3 (c), 4 (d) and auto MAC of the optimal dimensionless
electrical mode shapes (e).

A final example where mode 3 is also emphasized is shown in Fig. 5, where dp,1 = dp,2 = dp,3 = 2
and dp,4 = 1. In this case, performance of mode 1 is affected as expected, because the dimensionless
electrical modes 1 and 3 are not orthogonal. Performance on modes 2 and 4 is also affected because

the maximum eigenvalue of Φ
?
pD

2
p

(
Φ

?
p

)T
has increased and thus α has decreased. Finally, setting

all the relative scaling factors equal to 2 would be identical to setting them to 1.
This analysis showed that the relative scaling factors can indeed be used to balance the control

authority over the modes, but they have to be assigned with care. The most significant scaling factor

is the one which affects the largest eigenvalue of Φ
?
pD

2
p

(
Φ

?
p

)T
. Orthogonality of the dimensionless

electrical mode shapes can be assessed with the auto MAC in order to guide the choice of these
scaling factors and to understand the trends in the resulting FRFs. In general, starting by setting
them all equal to one would be advisable, and fine-tuning of these factors is possible if the analysis
is made cautiously.

5.1.3. Comparison with an analog electrical network

An electrical cell having dynamics analog to those of the mechanical cell was proposed by Porfiri
et al [12]; it is shown in Fig. 8b. The electrical matrices of this cell can be built as

Cc =




0
0
1
0
0




2Cε
p




0
0
1
0
0




T

, Gc =




−a
1
−1
0
0




1

R




−a
1
−1
0
0




T

+




0
0
−1
a
1




1

R




0
0
−1
a
1




T

, Bc =




1
0
0
−1
0




1

L




1
0
0
−1
0




T

, (48)

using the same ordering in the degrees of freedom as in Fig. 8b [26]. The localization matrix in this
cell is ET

p,c =
[
0 0 1 0 0

]
in this case. The characteristics of the electrical cell are reported in

Table 1, where the resistance was optimally tuned to the first mode. The matrices of the overall
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network C, G, B and Ep can then be built by standard finite element assembly procedures [24].
The analog network features the same resonance frequencies and mode shapes as the beam. When
the two systems are coupled via the piezoelectric patches, as shown in Fig. 8a, broadband damping
in the structure is achieved.

(a)

0/2

1

0/2

1

k2,4k2,1

k2,5k2,2 ' 'k2,3

2� Y
?

!

(b)

Figure 8: Schematic representation of a free-free beam (in gray) coupled to an electrical network (in white) through
piezoelectric patches (in orange) (a) and electrical cell analog to the mechanical cell (b).

Parameter Cε
p R L a

Value 21.96nF 57.5Ω 161.1mH 1

Table 1: Characteristics of the electrical cell.
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Figure 9: Velocity FRF of the beam with short-circuited patches (—), with a network assembled from analog electrical
cells [14] (—) and with a network synthesized with the modal-based approach (—).

Fig. 9 indicates that the modal-based approach yields a more accurate tuning of the electrical
network with respect to the H∞ norm. However, unlike the analog network based on elementary
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cells, the electrical matrices do not have a band structure, which means that there may exist a
large number of interconnections in the network. Thus, the network obtained with the proposed
approach may potentially be more difficult to realize practically.

It should be pointed out that since the piezoelectric patches are all identical, the network
synthesized with the modal-based approach is also an analog of the structure in a prescribed
frequency band, because it features identical resonance frequencies and mode shapes as the targeted
ones. This is confirmed in Fig. 10, where the first four piezoelectric modal strain shapes and the
first four electrical mode shapes obtained with either method are displayed (the patch are numbered
according to their position, from one end of the beam to the other).
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Figure 10: Modal strain in the piezoelectric transducers (-+-), electrical mode shapes of a network assembled from
analog electrical cells [14] (-�-) and electrical mode shapes of a network synthesized with the modal-based approach
(-×-): mode 1 (a), 2 (b), 3 (c) and 4 (d).

5.2. Fully clamped plate

The second example is the fully clamped plate depicted in Fig. 11a [21]. Five pairs of piezo-
electric patches are bonded symmetrically on either side of the plate, each pair being electrically
connected in parallel. The finite element model of the piezoelectric structure in Fig. 11b was devel-
oped in SAMCEF (see [29] for implementation details) and a reduced-order model was imported
in MATLAB. The Craig-Bampton technique was used with twenty retained modes [24]. The plate
is subjected to a pointwise force located on a node of the finite element mesh at 41% of the plate
length and 30% of the plate width from the lower left corner in Fig. 11, in order to make it as close
as possible to what was used in [21]. Besides that, the characteristics of the system were identical
to those reported therein.

The driving-point FRF of the plate coupled to the electrical network obtained with a modal-
based synthesis targeting the first five modes of the plate is shown in Fig. 12. In this case, P = 5
and Ns = 5, and rank(Φp) = Ns = P . Identical scaling factors for the five modes were used. As
for the beam, the electrical network can very effectively damp out the resonant vibrations of the
targeted modes.
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(a)

*

(b)

Figure 11: Schematic representation of a fully clamped plate (in gray) excited by a point force (in red) to which are
bonded piezoelectric patches (in orange) (a) and finite element mesh of the plate (b).

The method in [21] was also used to synthesize an electrical network. The cornerstone of that
method is to find an orthogonal transformation matrix U for the P = Ns electrical degrees of
freedom such that ψ = Uχ (where χ are the transformed electrical degrees of freedom). The
matrix U is aimed to make the transformed piezoelectric coupling matrix as close as possible
to a diagonal matrix. The unknowns of this problem are the N2

s entries of U. A system of
N2

s quadratic equations is built to impose the orthogonality of U and the optimal closeness of
the transformed coupling matrix to a diagonal matrix. It can be solved numerically to find the
unknowns. Similarly to that method, the present paper uses a transformation of the electrical
degrees of freedom with the electrical modes, ψ = Φeηe, but the matrix Φe does not need to be
orthogonal. It is not explicitly set to diagonalize the piezoelectric coupling matrix, and it can be
computed directly. Moreover, the modal-based method does not require the number of controlled
modes Ns to be equal to the number of transducers P . Fig. 12 reveals that the performance of
the resulting network is found to be almost identical to that of our approach. Despite the marked
implementation differences between the methods, they both aim at optimally using the control
capability offered by the transducers, which makes this result quite expectable in the end.
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Figure 12: Velocity FRF of the plate with short-circuited patches (—), with a network synthesized with the method
in [21] (—) and with a network synthesized with the modal-based approach (-·-).

A network targeting more modes than the number of piezoelectric patches was also designed.
In order mitigate the vibration between 0 and 1000Hz, the first twelve modes with identical scaling
factors were considered, resulting in P = 5 and Ns = 12, hence rank(Φp) = P < Ns. The
network performance is compared against that of the network targeting five modes in Fig. 13.
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While vibration mitigation is less effective for the first few modes, the higher-frequency modes are
now damped with the exception of the 7th, 9th and 10th modes. This is explained by the fact that
the electromechanical coupling that the patches have with these modes is rather low, as shown
in Fig. 14. In this plot, the EEMCFs were obtained by considering the resonance frequencies of
the plate when all the patches are shorted, and when all the patches are in open-circuit. Better
mitigation results could be obtained with more patches or with optimally-located patches.
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Figure 13: Velocity FRF of the plate with short-circuited patches (—) and with a network synthesized with the
modal-based approach targeting the first five (-·-) and twelve (—) modes.
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Figure 14: EEMCF of the first fifteen modes of the plate obtained by short- and open-circuiting all the patches.

6. Conclusion

Aiming to provide a simple and systematic design strategy to mitigate multiple resonances of
complex structures, this work leveraged the concept of passive electrical networks interconnecting
piezoelectric transducers. The core idea is to tailor the modal properties of the electrical network.
Specifically, the key original aspect of this study is to guarantee the passivity of the network
interconnecting the transducers through mathematical inequalities involving the electrical mode
shapes and the capacitance matrix of the transducers at constant strain. The second originality is
then to optimize the modal shapes for the maximization of the modal electromechanical coupling
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coefficients. Eventually, the matrices governing the behavior of the electrical network in the physical
domain can be retrieved from the knowledge of the modal properties by simple inversions.

This modal-based synthesis was illustrated using two examples, namely a free-free beam and
a fully clamped plate. In both cases, effective broadband damping could be obtained with perfor-
mance comparable to that of the state-of-the-art approaches.

This work opens up interesting perspectives. A first one concerns the practical realization of
the electrical network, i.e., to find the actual electrical components to implement it. An alternative
and attractive solution is to resort to microcontrollers as in, e.g., [21, 30], for which virtually any
admittance can be implemented. A second perspective would be to study how the design choices
(such as the scaling factors and electrical mode shapes on the internal degrees of freedom) impact
the topology, number of components and component values of the network. Finally, this approach
could also be experimentally validated for broadband damping of real-world structures, such as,
e.g., bladed assemblies.

Supplementary material

Supplementary material for this article can be found in [31].
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