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3 ABSTRACT: Experimental ion mobility−mass spectrometry (IM−MS)
4 results are often correlated to three-dimensional structures based on
5 theoretical chemistry calculations. The bottleneck of this approach is the
6 need for accurate values, both experimentally and theoretically predicted.
7 Here, we continue the development of the trend-based analyses to extract
8 structural information from experimental IM−MS data sets. The
9 experimental collision cross-sections (CCSs) of synthetic systems such as
10 homopolymers and small ionic clusters are investigated in terms of CCS
11 trends as a function of the number of repetitive units (e.g., degree of
12 polymerization (DP) for homopolymers) and for each detected charge state. Then, we computed the projected areas of expanding
13 but perfectly defined geometric objects using an in-house software called MoShade. The shapes were modeled using computer-aided
14 design software where we considered only geometric factors: no atoms, mass, chemical potentials, or interactions were taken into
15 consideration to make the method orthogonal to classical methods for 3D shape assessments using time-consuming computational
16 chemistry. Our modeled shape evolutions favorably compared to experimentally obtained CCS trends, meaning that the apparent
17 volume or envelope of homogeneously distributed mass effectively modeled the ion−drift gas interactions as sampled by IM−MS.
18 The CCSs of convex shapes could be directly related to their surface area. More importantly, this relationship seems to hold even for
19 moderately concave shapes, such as those obtained by geometry-optimized structures of ions from conventional computational
20 chemistry methods. Theoretical sets of expanding beads-on-a-string shapes allowed extracting accurate bead and string dimensions
21 for two homopolymers, without modeling any chemical interactions.

22 KEYWORDS: ion mobility−mass spectrometry, synthetic polymers, structure interpretation, collision cross-section fitting, MoShade

23 ■ INTRODUCTION

24 Ion mobility−mass spectrometry (IM−MS) is being increas-
25 ingly used for structural characterization of small molecules,1−5

26 biomolecule folds,6−10 or even synthetic polymer folds in the
27 gas phase.11−16 The two-dimensional shape information
28 obtained from IM−MS as reduced ion mobility (K0) or
29 collision cross-section (CCS) does not offer atomic level
30 structural characterizations. Therefore, theoretical chemistry
31 calculations are usually coupled to the IM−MS experiments.
32 Density functional theory (DFT), molecular mechanics (MM),
33 molecular dynamics (MD), or different couplings of these
34 structure calculation methods are applied to provide detailed
35 three-dimensional structures from the experimentally deter-
36 mined CCS.5,13−15,17−21 The best experiment−theory CCS
37 value agreement22 (often empirically fixed at ≤5% deviation) is
38 then used as the criterion to choose the three-dimensional
39 structure(s) representing the ion shape sampled by IM−MS.
40 Structural interpretations can then be undertaken.
41 The interpretation of CCS trends over larger mass ranges or
42 charge state ranges constitutes a different approach to
43 interpreting structural and physicochemical information from
44 IM−MS data.9,16,23−26 If multiple charge states can be
45 obtained, multiple CCS trends as a function of the mass or
46 the charge state can be used for interpretation. One of the
47 benefits of this methodology is that it can be independent of

48accurate CCS values, given that CCS trends represent changes
49in CCS rather than absolute CCS interpretations. Such
50interpretations can then for example also be performed on
51raw data.16,23 This creates an interpretation strategy focused on
52experimental data, which allows obtaining physicochemical
53interpretations on multiple ions at once without having to
54calculate atomic fine structures for every single data point
55aligning on a CCS trend.
56Given the structural homogeneity of synthetic (homo)-
57polymers, they constitute the ideal systems to explore these
58CCS trend-based methodologies over large mass and charge
59state ranges. They also allow building empirical interpretations
60based on polymer-to-polymer comparisons.16,23 Similarly,
61artificial intelligence and deep learning approaches are gaining
62in popularity to build databases from experimental data trend
63analyses.27−29

64Here, we continue the development of the CCS trend
65analysis, by adding the structural shape dimension, in addition
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66 to the physicochemical dimension,16,25,26 to the interpretation.
67 For this purpose, we based our study on cation adducts of
68 synthetic polymers where many data points can be generated
69 (by increasing the polymer chain length, degree of polymer-
70 ization, DP) without changing the essence of the interactions
71 of the polymer−cation complexes. Aside from the chemically
72 homogeneously growing structures of synthetic (homo)-
73 polymers, a set of anionic tetrahydric clusters of iron(III),
74 i.e., [FeCl3H(CH2)nCO2]

−, with a heterogeneous core (iron,
75 chlorine, and linear carboxylate) and homogeneous ligand
76 growth (length of the carboxylate alkyl chain) was also used as
77 a model system. Their experimental trends of the CCS
78 evolutions as a function of repetitive units are then interpreted
79 through a fitting method.9,16,23 Experimental fit parameters16,23

80 were favorably compared to the fit parameters obtained from
81 CCS trends of modeled geometric objects growing in different
82 dimensions, which are perfectly defined and controlled.
83 Modeled CCS evolutions are obtained through a new in-
84 house CCS calculation program named MoShade. Our
85 MoShade calculations are purely geometric shape-based
86 analyses with no 3D structures from theoretical chemistry
87 intervening in the process (i.e., not resolved at the atomic level
88 and without mass considerations). Shape geometries defining
89 the fit parameters (CCS evolutions) can be extracted and
90 conclusions, which could also be applicable to other systems
91 than the studied models, are found.

92 ■ MATERIALS AND METHODS

93 Polymers, [FeCl3H(CH2)nCO2]
− Clusters, and Ion

94 Mobility−Mass Spectrometry. A Synapt G2 HDMS
95 (Waters, UK) equipped with an electrospray ionization source
96 (ESI) was used to perform IM−MS experiments. Poly-
97 (ethylene oxide) PEO and poly(ethoxyphosphate) PEtP were
98 measured in positive ion mode. [FeCl3H(CH2)nCO2]

− clusters
99 were measured in negative ion mode. Details can be found in
100 the Supporting Information 1.
101 MoShade. MoShade is written in C++ and GPLv2-
102 licensed. It is cross-platform compiled for Linux and Windows
103 (64-bit). MoShade is a multithreaded, terminal-based (or
104 command prompt) program. The shape inputs are stereo-
105 lithography .stl or composite .gm files, allowing purely
106 theoretical geometric objects or .stl-converted (e.g., using

107VMD’s QuickSurf representation30) ions or molecules to be
108computed by MoShade. MoShade computes the volume, the
109surface area, and the projected surface area (interpreted later as
110CCS in arbitrary units) of a shape. MoShade also calculates the
111ratio of the surface area and the CCS as well as the minimum
112and maximum CCS values from all projection angles, which
113can be printed out (optional). A concavity factor is also
114provided by computing the ratio between the sum of the reflex
115angles and the sum of all angles, taken at the edges of each
116contiguous and concatenated triangle. Its value ranges from 0
117(perfectly convex shape) to 1. Our concavity factor depends on
118the number of triangles and cannot be compared between
119shapes having different numbers of triangles. However, this
120method does not require to define a shape factor by comparing
121the surface of the effective molecular shape to the surface of its
122corresponding convex envelope.31

123MoShade can be compiled (on Linux) with or without a
124graphical visualization interface (using VTK or FLTK). The
125graphical visualization allows identifying unconnected triangles
126or even holes in the input structures, which could possibly
127yield incorrect results or increase the duration of the
128calculation through the loss of calculation optimizations.
129The calculations were performed using optimized integrals
130and using n = 15 samples, representing N = 900 projection
131calculations (N = (2n)2; for explanations, see section below).
132They were sufficient for yielding invariable MoShade results;
133verified by calculating N = 3600 projections (n = 30) for
134several structures.
135A complete demonstration of the mathematics for (any)
136concave shapes can be found in the dedicated Supporting
137Information file (Supporting Information 2). Additional
138developments for convex shapes are also developed.
139MoShade (and nutil library) can be downloaded at the
140following links: https://cadxfem.org/svn/cadxfem/moshade/,
141https://cadxfem.org/svn/cadxfem/nutil/, and https://github.
142com/JeanRNH/MoShade/releases.
143MoShade Mathematical Background. In brief, MoSh-
144ade calculates the projected area of the shape by sampling its
145orientation. A short description of the software and its
146mathematical background can be found in the Supporting
147Information 1.

Figure 1. Collision cross-section (CCS) as a function of the degree of polymerization (DP) of poly(ethylene oxide) (PEO). The charge states
range from 3+ to 9+ using sodium cation adducts. The dotted lines represent the CCS evolution fits (eq 1), and the pow fit parameter of each fit is
given.
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148 MoShade Input Preparation and MoShade Automa-
149 tor. The model structure input geometries (.stl files) were
150 prepared using Autodesk 123D Design 14.2.2, free computer-
151 aided design (CAD) software. Free software MoShade
152 Automator (licensed GPLv2+), written in FreePascal (Object
153 Pascal) using Lazarus, is a cross-platform (Linux and Windows
154 64-bit) graphical user interface for creating batch files of
155 multiple structure inputs. It can also pilot MoShade by
156 running, pausing, or stopping the execution of MoShade
157 between inputs of multiple batch files.
158 MoShade Automator can be downloaded at the following
159 link: https://github.com/JeanRNH/MoShadeAutomator/
160 releases.
161 Theoretical PEO Structure Pool. The PEO calculations,
162 based on conventional computational chemistry, were
163 performed on PEO DP = 14 with 1 or 2 sodium cations.
164 The structures were generated using both MM2 and MMFF94
165 force fields implemented in Chem3D Pro v.11.0. Structure
166 optimizations after heat annealing to 300 K were performed. A
167 pool of PEO structures was generated by intermediately
168 stopping the calculation and saving the current structure.
169 VMD30 1.9.2 yielded conform .stl files for MoShade
170 calculations (“QuickSurf” shape representation, resolution:
171 1.0, radius scale: 1.0, density isovalue: 0.3, grid spacing: 1.0).
172 Theoretical Molecular Dynamics on Carboxylates.
173 MD simulations were performed on butanoate, hexanoate,
174 octanoate, decanoate, and dodecanoate carboxylates without
175 adding the FeCl3 core to the structure. A total of 4000
176 structures were recorded over 100 ns at 500 K using the
177 AMBER94 force field32 (implemented in Abalone v.1.8.94).

178 ■ RESULTS AND DISCUSSIONS
179 Experimental IM−MS Evolution Pow Fitting Parame-
180 ters for a Chemically Homogeneously Growing System:

f1 181 PEO Polymers. Figure 1 plots the experimental CCS as a
182 function of the degree of polymerization (DP; converted from
183 the mass-to-charge m/z ratio) of PEO (5000 g/mol). The
184 CCS of highly charged polymer ions is generally increasing
185 with increasing DP and charge state (e.g., [PEO + 4Na+]4+ to
186 [PEO + 9Na+]9+). In different DP regions, the CCS decreases,
187 while the DP still increases (e.g., [PEO + 4Na+]4+ 93 < DP <
188 100 and 130 < DP < 140). During these disruptions in the
189 generally increasing CCS evolutions, the three-dimensional
190 structures of the polymer complexes rearrange as a result of a
191 decreased Coulomb repulsion induced by an increase in the
192 charge solvation (i.e., increase in the monomeric unit/Na+

193 ratio). After having undergone several structural rearrange-
194 ments, the higher charge states merge with the most compact
195 CCS evolution (i.e., the common trend line12,13,16,23), here
196 represented by the [PEO + 3Na+]3+ complexes above DP 100.
197 The CCS evolutions before and after the structural
198 rearrangements can be fitted using eq 1.23 In this study, we
199 focused on the pow parameter. As we showed, it contains the
200 shape information on the complexes. Interpretations on the
201 parameter A are the focus of a specifically dedicated paper.16

202 When fitting the CCS evolutions,16,23 the pow fit parameters of
203 the polymer−cation complexes are found to roughly range
204 from around 0.55 to 0.95.

Ω = ·A DPpow
205 (1)

206 where Ω represents the CCS, DP represents the degree of
207 polymerization, and A and pow are the fitting parameters (as
208 developed in another paper from our group23). Since DP is

209directly related to the polymer mass (m), eq 2 derives from eq
2101

Ω = ′·A mpow
211(2)

212Application to Systems with a Chemically Heteroge-
213neous Core: [FeCl3H(CH2)nCO2]

− Clusters. The exper-
214imental pow fitting parameter has also been estimated for a set
215of iron(III) [FeCl3H(CH2)nCO2]

− clusters with different alkyl
216chain lengths (i.e., n = 1, 2, 3, 5, 7, 11) corresponding to
217ethanoate, propanoate, butanoate, hexanoate, octanoate, and
218 f2dodecanoate chains. Figure 2 plots the experimental CCS of

219[FeCl3H(CH2)nCO2]
− as a function of the number of −CH2−

220units of the carboxylate ligands. This model system stands in
221opposition to synthetic polymers. Indeed, the synthetic
222(homo)polymers grow by adding chemically identical mono-
223mer units to their homogeneous monomer chain. The
224[FeCl3H(CH2)nCO2]

− clusters, however, exhibit a very
225heterogeneous chemical composition with their iron and
226chlorine core and the alkyl ligand chain. The chosen cluster
227series nevertheless grows by chemically identical increments,
228i.e., −CH2− entities. This model system can therefore expand
229the application of the CCS trend-based analysis to a larger
230range of molecules than polymers and biomolecules.9,16,23−26

231In contrast to the PEO CCS trends (Figure 1), the
232[FeCl3X]

− clusters (Figure 2) evolve monotonically, exhibiting
233no structure or shape rearrangement within the screened
234carboxylate ligand sizes (or masses). Since the number of the
235monomeric units is small within the model of these clusters,
236the contribution of FeCl3 (nonrepetitive ion core) on the CCS
237cannot be neglected. Therefore, the pow fitting parameter has
238been evaluated from eq 3, which is a generalization of eq 2. Eq
2393 adds a CCS offset to eq 2

Ω = ′· +A m cpow
240(3)

241In eq 3, the parameter c is added to take the heterogeneity of
242the FeCl3 core compared to the carboxylate ligand into

Figure 2. Collision cross-section (CCS) as a function of the −CH2−
count (i.e., n) of [FeCl3H(CH2)nCO2]

− clusters, depicted [FeCl3X]
−

(schematic representation on top). The dotted line represents the fit
(eq 3) of the CCS evolution. The pow fitting parameter is given in the
figure. The TW,2ryCCSN2 values have been obtained by CCS calibration
of the Synapt G2 HDMS (TWIMS instrument) using published CCS
values of polyalanine anions in N2

33 (secondary calibration from
TWIMS values34).
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243 account. The constant c represents the starting point of the
244 CCS evolution of the cluster ions, i.e., a CCS offset due to the
245 ion core. Note that the c parameter for the PEO model should
246 tend to zero, since the PEO end-chains (i.e., CH3O− and −H)
247 have a negligible impact on the CCS evolution of large PEO
248 ions. Therefore, the generalized eq 3 can be simplified to eq 2
249 for the PEO model. A pow fitting parameter of 0.96 ± 0.04 is
250 observed for the [FeCl3H(CH2)nCO2]

− cluster model. This
251 pow parameter is almost equal to 1, meaning that eq 3 is
252 quasilinear.
253 Predicted Theoretical Pow Fitting Parameters from
254 Precise Geometric Structure Evolutions. The aim of the
255 CCS modeling using MoShade is to investigate CCS
256 evolutions of simple geometric shapes whose dimensions are
257 perfectly tuned and controlled. From these shapes, controlled
258 shape elongations and deformations are undertaken to study
259 their effects on the CCS evolutions. In order to generate such
260 model shapes, shapes were designed using computer-aided
261 design software with no theoretical chemistry a priori
262 intervening (e.g., no interaction potentials or atoms modeling),
263 highlighting then the geometrical effects on CCS evolutions.
264 The known shape dimensions allow calculating the shape
265 volume, which relates to the experimental polymer DP values
266 and enables our experiment−theory comparison. Additionally,
267 MoShade calculates projections of the shapes without
268 modeling any drift gas particles (i.e., no interactions with gas

269particles or any preferential orientations within an IMS cell),
270similarly to the projection approximation (PA) model31,35−37

271but for purely geometric objects. Indeed, our calculations take
272into account neither the mass nor the ion−drift gas particle
273interactions. Nevertheless, the obtained MoshadeCCS values are
274related to an underlying apparent volume, i.e., the envelope of
275the ion−drift gas interactions as represented by the geometric
276object itself, as sensed by IM−MS.
277 t1Table 1 summarizes the different shapes that were analyzed:
278spheres, cylinders, and combinations of spheres and cylinders
279(ball-cylinder). The shape deformations, such as diameter
280increases, cylinder elongations, or a uniform (isotropic) scaling
281of the entire shape, describe each considered case.
282Pow Parameter for Simple Shapes: Spheres and
283Cylinders. Three shapes have been considered as simple
284shapes: spheres, cylinders with spherical ends, and cylinders
285with plain level ends. For cylinders, the influence of the ratio
286between the diameter (D) and the length (L) on the pow
287parameter has been monitored.
288First, we consider the case of a perfect sphere whose
289diameter increases. As expected in the literature,23,38,39 the
290CCS evolution of spheres results in pow = 2/3 (or ∼0.66,
291Table 1, Figure S2a). This can be demonstrated mathemati-
292cally from a simplified equation for a solid of revolution where
293only one degree of freedom θ remains (eq 4; see the
294development of eq S1), the projected area is constant and is

Table 1. Shape Descriptions and Shape Deformations Used to Calculate CCS Values and Trends Using MoShadee

aBD represents the ball diameter, CD is the cylinder diameter, and CL represents the cylinder length. bThe dimensions are provided in arbitrary
units. cThe pow parameter is given with its 95% confidence interval (pow ± 95% confidence interval). dThe schemes are provided from the starting
shape (on the left) to the final shape (on the right). eThe shape variations were sampled as described in the “Dimensions” column. The number of
shapes sampled for each shape evolution is also provided by the index (i). The pow parameters were extracted from fitting (eq 1) the plots of the
CCS as a function of the shape volume. The volume was calculated using the geometry dimensions, taking into account the volume overlaps
between two overlapping shapes (e.g. for ball-cylinder shapes), and was controlled using MoShade volume calculations. Schemes of the sampled
shape evolutions are given, and the CCS plots can be found in the Supporting Information 1 (Figures S3 and S4). Additional shapes are
mathematically treated in the text.
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295 given by eq 5. This then yields the average cross-section given
296 by eq 6 (based on eq S1).
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299 where Sp is the projected area of a sphere for a given
300 orientation and D is its diameter.
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302 where ̅Sp is the average projected area (or average cross-
303 section).

304 In addition, the volume of the sphere is given by π=V D
6

3

.

305 In our case, the volume is proportional to the mass V ∝ m so

306 that D ∝ m1/3, and therefore, ̅ ∝S mp
2/3 (cf., eq 6). This

307 relation is also found using MoShade calculations of perfect
308 spheres with increasing diameter. By comparing the theoretical
309 and experimental pow values, the growing spheres describe the
310 envelope of the ion−drift gas particle interactions of the
311 common trend line (Figure 1 [PEO + 3Na+]3+). This is in
312 agreement with the expected globular shapes of PEO at high
313 DP values and low Coulomb repulsion.
314 When considering a cylinder with spherical ends, the
315 projected area again depends only on the angle θ, given that
316 it is also a solid of revolution (eq 4 or eq S1). The
317 contributions of the spherical and the cylinder parts can be
318 decoupled for the determination of the projected area, since
319 the cylindrical part does not shadow the spherical ends
320 differently as if they were a simple sphere. The description of
321 the two semispherical ends is identical with the case of a simple
322 sphere (see above). For the cylindrical part, a term in cos θ
323 needs to be added in order to take into account the slope with
324 respect to the projection plane (eq 7).

θ π θ= +S
D
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4
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2

325 (7)

326 where Sp(θ) is the projected area dependent on the angle θ,
327 and D and L are the cylinder diameter and length, respectively.

328 Given the volume π π= +V LD D
6 4

3 2

of the shape, the

329 average projected area (average cross-section) yields eq 8
330 (based on eq 4 or eq S1).
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332 If we consider an isotropic growth of this cylinder (i.e., D/L
333 ratio is constant), one can assume that D ∝ L ∝ m1/3 since V ∝

334 m still holds, and therefore, ̅ ∝S mp
2/3. Identical to the case of

335 simple spheres, pow = 2/3 is expected for an isotropic growth
336 of cylindrical objects with spherical ends. This statement can in
337 fact be extended to all convex shapes with isotropic growth.

338However, different cases must be considered for cylinders
339subjected to anisotropic growth. First, if the cylinder with
340spherical ends increases in length without increasing in
341diameter (i.e., D/L ratio decreases when the object grows),
342one finds a linear relation between the average cross-section

343and the mass: D = constant and L ∝ m; therefore, ̅ ∝S mp . This

344also holds for cylinders with plain level ends whose length
345increases at constant diameter (Table 1, Figure S2b). The
346elongating cylinder either yields pow = 0.91 or can be fitted
347with a linear function. Such structures are well represented by
348the highly charged ions ([PEO + 8Na+]8+ and [PEO +
3499Na+]9+, cf. Figure 1). Second, if the diameter increases for a
350constant length (i.e., D/L ratio increases when the object
351grows), the behavior is more complex: L = constant and D ∝

352m1/2, therefore yielding ̅ ∝S mp
1/2 if the diameter D is small

353with respect to L. Such shapes are represented by [PEO +
3544Na+]4+ ions (cf. Figure 1). However, if L is small with respect

355to D, then D ∝ m1/3, and therefore, ̅ ∝S mp
2/3. This case

356resembles a distorted sphere. The pow parameter should
357therefore be comprised between 1/2 and 2/3 for these cases.
358For cylinders with plain level ends whose diameter D increases
359for a constant length L (i.e., D/L ratio increases when the
360object grows), an intermediate pow value of around 0.80 can be
361found if L is small with respect to D (Table 1, Figure S2c).
362This would correspond to the CCS trend of [PEO + 7Na+]7+

363sampled in Figure 1. Nevertheless, the fit yielding 0.80 for
364cylinder diameter variations is highly influenced by CCS values
365at large volumes (L is small with respect to D). If the diameter
366D is small with respect to L, pow parameters that are smaller
367than 0.66 can be found (pow = 0.57; Table 1, Figure S2d).
368Such pow values would then correspond to [PEO + 4 Na+]4+

369and [PEO + 5Na+]5+ complexes.
370Finally, we can consider the effect of the thickness of a
371hollow sphere. If the increase in size is isotropic (increase in
372diameter and in thickness), it is the same procedure as for a
373simple sphere: only the volume V changes. However, if
374considering that the thickness of the sphere stays constant
375(e.g., fullerenes40,41), the volume becomes proportional to its
376surface and to the thickness e (considered very small). The
377average projected area (cross-section) of a simple sphere still

378holds π̅ =Sp
D
4

2

(eq 8), with V = πD2e so that D ∝ m1/2 and

379therefore ̅ ∝S mp . This is the same behavior as a cylinder of

380constant diameter that increases in length. It is therefore
381impossible to discriminate both cases by just comparing the
382exponent (of the “mass” variable) of the CCS evolution fit as a
383function of the mass.
384Pow Parameter for Composite Shapes: Ball-Cylinders.
385Regarding composite shapes (sphere with cylinder), several
386size parameters can be varied. We considered the relative ball
387or cylinder diameters as well as only the cylinder length and a
388uniform scaling of the entire shape.
389For increasing ball diameters in ball-cylinder shapes, a pow
390parameter of 0.655 is found (Table 1, Figure S3a). This result
391was expected, as the cylinder becomes increasingly negligible
392with the large growing sphere at high volumes, thus evolving
393like a sphere (0.66). However, the power fit is again highly
394influenced by the larger CCS values at large volume values.
395When fitting at small ball diameters, pow values of 0.60 can be
396reached (Table 1, Figure S3b). In this case, the cylinder and
397the sphere have almost identical diameters, and the shape
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398 resembles a cylinder. Indeed, values smaller than 0.66 were
399 found for cylinder diameter variations when D was small with
400 respect to L (small CCS values; Table 1, Figure S2d). This
401 ball-cylinder value can thus be explained solely on the basis of
402 its spherical and cylindrical components and can be predicted.
403 When uniformly scaling a ball-cylinder shape (isotropic
404 growth), the pow parameters reach 0.67. Identical pow values
405 were found for all the ball-cylinder scaling series with different
406 initial cylinder lengths, even for cylinder lengths surpassing the
407 ball diameter (Table 1, Figure S3c). Given the experimental
408 errors on the experimental fit parameters (Figure 1), this result
409 indicates that IM−MS would be unable to differentiate a
410 sphere with increasing diameter (Figure S2a), a ball-cylinder
411 shape with a large and increasing sphere diameter (Figure
412 S3a), or a ball-cylinder shape with a uniform and isotropic
413 volume increase (Figure S3c). Similar to the conclusions
414 drawn on convex shapes, IM−MS would then only be sensitive
415 (i.e., different pow values) to anisotropic shape growths.
416 Finally, we analyzed the effect of a cylinder length increase of
417 a ball-cylinder shape on the CCS evolution (Table 1, Figure
418 S3d). Not surprisingly, this resulted in a linear CCS evolution
419 as a function of the volume, similar to an elongating cylinder.
420 The coupled sphere does only account for an offset in CCS or
421 volume, given that its dimensions are kept unchanged. Such
422 shapes could be related to the model [FeCl3H(CH2)nCO2]

−

423 cluster ions, where the FeCl3 core corresponds to the ball
424 segment of the object and the carboxylate ligands varying in
425 length correspond to the elongating cylinder segment of the
426 ball-cylinder object. As observed in Figure 2, the [FeCl3X]

−

427 complexes lead to this expected linear CCS−ligand growth
428 relation, with a CCS offset due to the FeCl3 core of the ion (eq
429 3). Using conventional MD simulations, we modeled
430 carboxylate ions (without the FeCl3 core) and calculated
431 their (median) distance variations with the increasing −CH2−
432 units (calculated as the difference between an xth CH2 unit and
433 the first C from the carboxylate group Cx − C1). The
434 cylindrical-like growth of FeCl3−carboxylate suggested by the
435 IM−MS data is supported by the theoretical Cx − C1 distances
436 (see Figure S5). The Cx − C1 trend suggests that the
437 increasing number of −CH2− units follows a cylindrical
438 growth, in good agreement with MoShade predictions, with a
439 slight deviation for longer chains. This deviation might be an
440 artifact of the MD calculation (a linear experimental trend of
441 1/K0 vs the number of −CH2− units was observed in the
442 literature42), which also does not take into account the FeCl3
443 core.
444 For polymers, a similar trend is expected for high charge
445 states where several monomers bearing cation charges are
446 subjected to strong Coulomb repulsions (cylinder segment of
447 the ball-cylinder shape), and other monomers form a cation-
448 solvating globule with little Coulomb repulsion (ball segment
449 of the ball-cylinder shape).

t2 450 Table 2 summarizes the results of the MoShade-obtained
451 pow ranges for the evolutions of simple and composite shape
452 deformations.
453 Tipping Points in the CCS Evolutions. Aside from the
454 gradual increase in the CCS described by the CCS trends that
455 can be fitted using eqs 1 to 3, the CCS vs DP plots also show
456 deviations from these CCS trends (Figure 1). Such CCS
457 deviations are often referred to as DP ranges where structural
458 rearrangements of the ions occur. A nonexhaustive shape
459 model is represented in Table S3. Here, we induced angle
460 variations between composite ball-cylinder shapes (three balls

461and two cylinders), which were able to capture a decrease in
462CCS for constant volumes. Future modeling attempts focusing
463on the structural rearrangements could include reducing the
464length of one cylinder segment while increasing the diameter
465of one ball segment.
466Relation between Surface Area and CCS. Perfectly
467Convex Shapes and Theory. Owing to the well-defined and
468known geometries, different relations between the CCS and
469geometry parameters can be tested. One recurring relation that
470stands out is the relation between the (geometric) surface area
471of the shape and its CCS. Indeed, the geometric surface area
472equals 4 × CCS (eq 9). This can be mathematically
473demonstrated for perfectly convex shapes (spheres, cylinders;
474see eqs S6 to S10 in the Supporting Information 2 and
475Cauchy’s theorem43,44). Therefore, the ratio between surface
476area and CCS (S/CCS ratio) acts as a descriptor of the
477structure concavity.

̅ = = ·S
S

S
4
or 4 CCSp

478(9)

479where S is the area of the shape and ̅Sp or CCS is the average
480cross-section.
481Even if this relation can only be mathematically demon-
482strated for perfectly convex structures43,44 but not for concave
483structures, it seems nevertheless also valid for the above-
484analyzed composite ball-cylinder shapes (Table 1). These
485shapes begin to exhibit concavities but still yield surface-to-
486CCS ratios S/CCS ≤ 4.06 (calculated from results obtained
487using Moshade).
488Shapes with Concavities: Application to Theoretical
489Predicted Structures of PEO. The CCS evolutions of the
490spheres, cylinders, and ball-cylinder shapes, which are all
491adequate with the S = 4·CCS relation, describe the “natural”
492CCS evolution of polymer ions when following one given
493charge state as a function of the DP (i.e., CCS trends16,23).
494This relation could then be used to facilitate the structure
495screening in conventional computational chemistry methods.
496In order to check its applicability, we generated a pool of
497theoretical [PEODP=14 + 1Na+]1+ and [PEODP=14 + 2Na+]2+

498structures (see Materials and Methods section for more
499information). Owing to the lack of Coulomb repulsion,39 the
500shapes of the 1+ complexes (i.e., [PEODP=14 + 1Na+]1+) are

Table 2. Summary of the Shape Evolutions Correlated to
Their Pow Rangea

pow shape evolutions

<0.66 −cylinders with spherical or plain level ends: diameter increase at
constant length with CD < CL

−ball-cylinders: ball diameter increase with BD < CL
∼0.66 −spheres: diameter increase

−cylinders with spherical ends: isotropic growth
−cylinders with spherical ends: diameter increase at constant length
with CL < CD

−ball-cylinders: ball diameter increase with CL < BD
−ball-cylinders: isotropic growth
−isotropic growth

∼0.80 −cylinders with plain level ends: diameter increase at constant
length with CL < CD

≥0.90 −hollow sphere of constant thickness: diameter increase
−cylinders with spherical or plain level ends: length increase at
constant diameter

−ball-cylinders: cylinder length increase
aSee text for more detailed pow values.
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501 globular, and the three-dimensional representation (volume
502 envelope) should yield S/CCS ratios close to 4. We sampled
503 two globular shapes (from optimized structures) of [PEODP=14
504 + 1Na+]1+ and one shape considered as aberrant, which was
505 manually distorted (elongated; i.e., a nonoptimized structure).
506 The globular shapes yielded S/CCS = 4.07, whereas the
507 elongated shape yielded S/CCS = 4.13 (Table S1). The
508 globular shapes leading to S/CCS values closest to 4 can thus
509 be correlated to the energy-optimized structure geometries.
510 Out of the 18 sampled structures for [PEODP=14 + 2Na+]2+

511 (Table S1), the three most stable structures (shapes 1, 4, and
f3 512 10 in Figure 3) exhibited the lowest S/CCS ratio, while ratios

513 larger than 4 were observed for nonoptimized structures.
514 Shapes 1 and 4 led to S/CCS = 4.09, and shape 10 led to S/
515 CCS = 4.08.

516 Interestingly, even if the shapes extracted from conventional
517 computational chemistry structures of PEO exhibit numerous
518 concavities, the S/CCS ratios closest to 4 are found for their
519 most stable structures. Therefore, it seems that the S/CCS
520 ratio calculation could be a new tool for rapid structure
521 screening in conventional computational chemistry methods as
522 long as the shapes are not too concave. The limitations of
523 structure filtering using the S/CCS ratio due to concavities
524 nevertheless still need to be explored in more detail.
525 It should still be noted that the S/CCS relation is in fact
526 independent of the CCS evolution and can therefore be used
527 for single data point analysis. Indeed, one can calculate a S/
528 CCS ratio for any structure, outgrowing the starting point of
529 polymer ions and the need to sample CCS evolutions instead
530 of single-point absolute CCS values. In this case, experimental
531 CCS measurements must then be accurate39,45 to be able to
532 deduce their correct surface area. Structural elucidations could
533 then be performed by matching experimentally deduced
534 surface areas with a set of surface areas obtained from a
535 theoretical predicted structure pool, which obliviates the
536 calculation of theoretical CCS values. However, the theoretical
537 inspected surface area should be accurately represented by the
538 modeled 3D structures (e.g., by their electron density
539 isosurfaces46) in order for them to pass the structure filter.
540 Structure pools could then be “randomly” generated using
541 computational chemistry methods13,14,47−49 without the need
542 for precise knowledge of experimental/simulation (ion or
543 bath) temperatures. When finding suitable structures (using eq
544 9, S = 4·CCS), the effective experimental ion temperature
545 could then be retraced.
546 CCS Evolution of the Highest-Charge-Density Ions:
547 Beads on a String. Besides following the CCS evolutions of
548 fixed charge states as a function of the DP, CCS evolutions
549 when varying the charge states can also be analyzed. The
550 literature predicts through theoretical chemistry that the

551highest charge states have a “beads-on-a-string” conforma-
552tion.13,14 The beads-on-a-string conformation is made out of
553monomer beads each solvating a cation and of monomer
554strings spacing the beads to reduce Coulomb repulsion. To test
555this structure hypothesis in our case, we created a CCS
556evolution, which is not based on a single fixed charge state by
557experimentally considering only the first detected ion of each
558charge state. In other words, we will consider only the first ion
559of each charge state series, which therefore bears the highest
560charge density. Their CCS values are used to generated a new
561CCS−DP trend, according to the charge state, for a given
562polymer. This CCS evolution can then be represented by a
563structure evolution of beads on a string where every new
564complex has an additional “bead-string” unit (or segment) for
565solvating the additional cation and Coulomb repulsion (see
566 f4Figure 4b).
567In order to experimentally sample the first complexes of
568multiple charge states, PEO polymers were analyzed at small
569DP values, covering DP 8 to ∼70 (750 and 2000 g/mol
570samples; Figure 4a). Fitting this CCS evolution yields a pow
571value of around 0.93. It can also be fitted using a linear fit
572function, which yields a slope of 13.9 (based on eq 2). Eq 3,
573i.e., eq 2 with a CCS offset, could also be used to take into
574consideration CCS contributions from the chain ends,
575especially for the smallest PEO polymer ions.
576Modeled beads-on-a-string shapes, with different bead
577diameters and cylinder lengths or cylinder diameters, also
578yield linear CCS evolutions as a function of the volume. It
579should be noted that these structures do not follow the S = 4·
580CCS relation described in eq 9 (S/CCS ≈ 4.10−4.40), given
581their increased concavity. Shape variations that both followed
582eq 9 and exhibited linear CCS evolutions could be associated
583to elongating cylinders (convex shapes, see discussion above).
584Nevertheless, we still considered the beads-on-a-string
585structures as suggested by computational chemistry, given
586that our MoShade calculations can only yield “coarse grain”
587information on the volume envelope of the ion−drift gas
588particle interactions and may falsely discard beads-on-a-string
589fine-structures at the atomic level.
590When comparing bead-string units with identical volume but
591different cylinder dimensions (Figure 4c, “BD 8 CD 3 CL 6”
592and “BD 8 CD 2.12 CL 12”), the CCS values change and the
593slope changes. Thus, only specific (nonaberrant) bead-string
594dimensions can lead to these specific slope values. Never-
595theless, the cylinder diameter can be changed with only a
596negligible effect on the slope (Figure 4c, “BD 20 CD n” with n
597= 3 or 6 and CL = 3, 6, or 12). The cylinder length, which
598spaces each bead, and the bead diameter, leading to volume
599and CCS jumps, are the main parameters influencing the
600slopes. The beads-on-a-string linear evolution can thus be
601compared to the MoShade-obtained “coarse grain” cylinder
602elongations where the bead diameter defines the cylinder
603diameter and the string length defines the cylinder elongation.
604When extracting the same CCS evolution (first complex of
605each charge state) for a different polymer, poly-
606(ethoxyphosphate) PEtP (Figure 4; PEtP scheme in Figure
607S1), a pow value of 0.98 can be attained. The slope of the linear
608fit yields a value of 35.3. The ratio of the PEtP and PEO slope
609values can then be calculated (PEtP/PEO slope ratio = 2.54;
610 t3Table 3). Similar ratios can be calculated for all modeled
611beads-on-a-string CCS evolution slopes (Table S2), and
612matching experimental and theoretical ratios can be found.
613Two ratios of modeled beads-on-a-string shapes resulted in

Figure 3. Shapes of [PEODP=14 + 2Na+]2+ (represented in two
different viewing angles) leading to the lowest S/CCS ratios out of all
the 18 sampled shapes (see Table S1). Shapes 1 and 4 yield S/CCS =
4.09, and shape 10 yields S/CCS = 4.08. Their underlying structures
correspond to optimized or nearly optimized structures using the
MM2 and MMFF94 force fields.
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614 close correlations with the experimental PEtP/PEO slope ratio
615 (Table 3). The only difference in the two modeled shape
616 evolutions is the cylinder diameter of the beads on a string, as
617 expected due to its lesser influence on the slope. We are thus

618able to provide relative bead-string dimensions of PEO

619compared to the PEtP bead-string units (or vice versa). PEO

620should thus exhibit a bead diameter of 20 if PEtP exhibits a

621bead diameter of 8 (in arbitrary units). The cylinder length
622should be doubled when going from PEtP to PEO.

623Knowing these relations between the envelope dimensions

624of PEO and PEtP, theoretical chemistry modeling methods

625(MM, MD, DFT···) could find enhanced hypotheses or

626interaction potential descriptions for structure calculations.

627The considered number of PEO monomer units needs to fill

628up the given volume (or envelope) and if volume corrections

629need to be performed, proportional corrections need also to be

630applied to the PEtP volume envelope. The missing dimension,

631i.e., the cylinder diameter, which only plays a minor role in the

632CCS evolution, will then be intrinsically defined through the

633width of the monomer units making up the string segment. We

634are hence able to give precise volume dimensions of the

635polymer ions without modeling any chemical interactions or
636atoms.

Figure 4. Comparison of the experimental CCS−DP plots considering only the lowest m/z (or DP/z) adduct of each charge state of sodiated PEO
and PEtP ions with the theoretical CCS−volume plots from computer-aided design software-constructed shapes computed using MoShade. (a)
Black markers depict the CCS evolution of PEO. The red markers represent the first PEO complex of each charge state, with the red plain line
representing its linear fit function. This non-charge-state-based CCS evolution equates a series of the highest-charged complexes. The blue markers
depict the same series for PEtP polymers (see Figure S1), with its linear fit function depicted as blue dotted line. (b) Describes the modeled shape
evolutions of such complexes: each considered complex is made up of an additional bead-string unit (or segment). (c) Plot of the MoShade CCS
(in arbitrary units) as a function of the volume of different beads-on-a-string shapes. The linear fit coefficients and the coefficient of determination
are given for the different fits. BD represents the ball diameter, CD represents the cylinder diameter, and CL represents the cylinder length.

Table 3. Slopes of the Linear Fits (b) of Modeled Beads-on-
a-String Shapes (See Figure 4c) and of Experimental PEtP
and PEO Evolutions of Every First Complex of Each Charge
State (See Figure 4a)a

bead-string unit (BD−CD−CL) b (slope) b8−3−6/b20−3−12; b8−3−6/
b20−6−12

8−3−6 0.190
20−3−12 0.075 2.531
20−6−12 0.076 2.512
polymer b (slope) bPEtP/bPEO
PEtP 35.349
PEO 13.934 2.537

aThe ratios of the modeled shapes are in close agreement with the
experimental slope ratio of PEtP/PEO. Table S2 lists all the modeled
shapes with all the calculated slope ratios. Bead diameter, cylinder
diameter, and cylinder length are abbreviated as BD, CD, and CL,
respectively.
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637 ■ CONCLUSIONS AND PROSPECTS

638 The aim of this study was to link experimental CCS evolutions
639 with the increase of repeating units to potential geometric
640 shape evolutions of the considered ions, without the use of
641 computational chemistry (for structural elucidation and CCS
642 calculation) and without requiring accurate measured or
643 absolute CCS values. We present a new orthogonal method
644 for relating experimental IM−MS measurements to theoretical
645 shape interpretations, without atomistic considerations. New
646 software named MoShade allowed calculating CCS values of
647 (mesh-represented) shapes through projection calculations,
648 which yield the volume envelope of the ion−drift gas particle
649 interactions. Our MoShade calculations are purely geometric
650 shape-based analyses. No atoms or chemical interactions were
651 modeled.
652 While we showed in a separate paper that the parameter A of
653 the CCS fit equation CCS = A·Xpow (or CCS = A·Xpow+c with X
654 being the number of repetitive units) contains physicochemical
655 information of the analyzed systems,16,23 we showed here that
656 the pow parameter contains structural shape information
657 accessible through IM−MS.
658 Basic shape geometries and shape variations were
659 mathematically considered or computationally modeled. The
660 modeled shape dimension variations yielded theoretical CCS
661 trends, which were also fitted using power fit functions.
662 Through comparisons between the experimental and mathe-
663 matically obtained/modeled pow parameters, we were able to
664 extract several shape evolutions which fitted with experimen-
665 tally obtained CCS evolutions (summary in Table 2).
666 Generally, an isotropic growth of shapes should always
667 exhibit a 2/3 pow value, as can be mathematically
668 demonstrated. IM−MS CCS evolutions (pow values) for
669 such shape evolutions are thus indistinguishable. Nonisotropi-
670 cally growing cylinders, cylinders with plain or spherical ends,
671 and composite ball-cylinder shape evolutions were modeled,
672 and theoretical pow parameter values were obtained. The
673 models hold for both chemically homogeneously growing
674 synthetic polymers as well as for chemically heterogeneous
675 small cluster ions. A decrease in CCS, such as those observed
676 during structural rearrangements, could be obtained by angle
677 variations between composite ball-cylinder shapes.
678 Moreover, we suggested investigating the relation S/CCS =
679 4 as a potential structure filter in more detail. This relationship
680 between the CCS and the geometric surface area holds for
681 perfectly convex shapes. Validated first using the structures
682 from structure evolutions of the CCS trend analysis, we found
683 that energy-optimized structures of ions yielded a closer match
684 to S/CCS = 4 than to nonoptimized structures. This relation
685 could then potentially act as a structure filter for conventional
686 computational chemistry methods, even for nonpolymeric
687 systems as it is applicable to absolute CCS values39,45 without
688 the need for CCS evolutions. In other words, this relation can
689 also be used for single data point analysis.
690 Finally, we investigated literature-advocated beads-on-a-
691 string shapes.13,14 We were able to extract precise shape
692 dimensions of the bead-string units for two polymer systems
693 (PEtP, PEO) without modeling any chemical interactions.
694 Given that the number of monomer units making up the
695 beads-on-a-string shape volume is known (MS identification),
696 theoretical chemistry interaction potentials could be refined
697 using the here-developed CCS trend and shape interpretation
698 methodology.

699The next step in the development of the CCS trend analysis
700could now focus on more heterogeneously growing systems,
701where the apparent densities16,23 change during the shape
702growth.
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Materials and Methods 

Polymers. 

Poly(ethylene oxide) PEO (CH3O-PEO-H) polymers (Figure S1) were bought from Sigma-

Aldrich (St. Louis, USA). Average molar masses of the samples were 750, 2000 and 5000 

g/mol. Poly(2-ethoxy-1,3,2-dioxaphospholane 2-oxide) PEtP (or poly(ethoxyphosphate), 

Figure S1) was synthesized according to literature.1,2 

  

Figure S1: Poly(ethylene oxide) PEO (left) and poly(2-ethoxy-1,3,2-dioxaphospholane 2-

oxide) or poly(ethoxyphosphate) PEtP polymer (right) 

 

Polymer Ion Mobility-Mass Spectrometry. 

The polymer samples were dissolved in pure methanol (Biosolve) spiked with sodium 

cations (NaCl salt) to obtain concentrations of around 10-6 to 5´10-6 M in polymer-sodium 

complexes. 

The samples were infused into a traveling wave ion mobility mass spectrometer (Synapt 

G2 HDMS from Waters, UK) equipped with an electrospray ionization source (ESI) used 

in positive mode. The capillary voltage was set to 3 kV, the sampling cone voltage was set 

to 40 V and the extraction cone was 4 V. The desolvation gas flow was 500 L/h. The source 

and desolvation temperatures were set to 100 °C and 200 °C, respectively. The trap 

collision energy and the transfer collision energy (CE) were set to 4 V and 2 V, 
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respectively. The trap bias was 45 V. The IMS wave height was 40 V and the wave speed 

was set to 1200 m/s. The trap argon gas flow was 2 mL/min, the helium gas flow was 180 

mL/min, and the nitrogen pressure in the IM cell was set to 2.6 mbar. 

In order to convert drift times into CCS values, a CCS calibration procedure was followed3, 

using reference values obtained in He to calibrate N2 T-Wave measurements4–9. IM-MS 

data were interpreted using Waters’ MassLynx 4.1 software. The arrival time distribution 

(ATD) peaks were fitted using PeakFit v.4.11 to extract accurate drift times. Data 

processing was performed using Excel 2011 and IgorPro 6.37. 

 

[FeCl3H(CH2)nCO2]- clusters Ion Mobility-Mass Spectrometry. 

Ferric(III) chloride, FeCl3, were bought from Sigma-Aldrich (St. Louis, USA). Carboxylic 

acid used in this study (i.e., acetic acid, propanoic acid, butanoic acid, hexanoic acid, 

octanoic acid and dodecanoic acid were kindly provided by Professor L. Delaude and 

Professor A. Demonceau from the Laboratory of Catalysis (University of Liege). FeCl3 

were solubilized in methanol from Sigma-Aldrich (St. Louis, USA). Acetic acid, propanoic 

acid, butanoic acid were solubilized in water while hexanoic acid, octanoic acid and 

dodecanoic acid were solubilized in methanol. Solution of FeCl3 and one carboxylic acid 

(one solution for each carboxylic acid) were prepared in 50% methanol solution to reach a 

final concentration of 5 and 50 µM, respectively. 

The clusters were infused in the same ion mobility mass spectrometer as the polymer 

samples. The capillary voltage was set to -2.2 kV, the sampling cone voltage was set to 

-30 V and the extraction cone was -3 V. The desolvation gas flow was 500 L/h. The source 

and desolvation temperatures were set to 150 °C and 200 °C, respectively. The trap bias 
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was 35 V. The IMS wave height was 40 V and the wave speed was set to 2100 m/s. The 

nitrogen pressure in the IMS cell was set to 2.58 mbar. The helium window (before TWIMS 

cell) was filled with helium at a pressure of 5.4×10-1 mbar and the TRAP and TRANSFER 

cells, placed before and after the TWIMS cell respectively, were filled with argon at a 

pressure of 2.5×10-1 mbar. The TWIMS instrument was calibrated in negative mode using 

polyalanine anions as calibrating substances. The TW, 1ryCCSN2 values were reported by 

Forsythe and coworkers10 (in N2), and were considered for this calibration to obtain the TW, 

2ryCCSN2 values  (secondary calibration from TWIMS values11) of [FeCl3H(CH2)nCO2]- 

clusters ions. 

 

MoShade mathematical background. 

In brief, MoShade calculates the projected area of the shape by sampling its orientation 

based on the angle q and the rotation around the axis f (Figure 1). Eq. S1 yields the average 

projected area .  is the integral of the cross-section (projected area) for each 

orientation (q,f), normalized (or weighted) by the probability to find the shape in one 

orientation or the other. This probability depends on the solid angle covered by an 

infinitesimal area on the unit sphere. This area is 2π cosq dq. The projected area is therefore 

integrated and divided by the integral of the probability density. Because of symmetries, 

we can restrict the computation of the average  to 1/4 of the total solid angle (sphere) 

covered by the variables (q,f). Eq. S1 can be rewritten as Eq. S2 because of symmetries, 

mainly because a shadow ‘from below’ has the same area as a shadow ‘from above’ for 

any given shape. 

Sp Sp

Sp
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  (S1) 

      (S2) 

 

Figure S2: Illustration of a shape projection (in red below the white/gray shape) as 

performed by MoShade. The angles q and rotation axis f describe the shape’s orientation 

and are sampled during the projection calculations. w is the angle in the (x,y) plane. The 

shape input is given as a mesh and the projected area is calculated as the sum of the 

projections of each of the mesh’s triangles (see text). 

 

If one wishes to use numerical integration instead of trying to integrate analytically, one 

may use Eq. S3 as simple quadrature of Eq. S2, with a uniform repartition of the N samples 

on . The n samples parameterizing a MoShade calculation hence 

lead to N=(2n)2. 
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To evaluate Sp (qi,fi), the surface of the shape must be decomposed into a mesh of simple 

geometrical elements (e.g. triangles or quads). Therefore MoShade uses mesh input files, 

where the shape is subdivided into small flat triangles (.stl files). The difficulty here is to 

compute the merged projected area for each triangle ‘at once’, i.e. by taking care of the 

shadowing of some triangles by others. MoShade therefore eliminates triangles that are not 

oriented adequately (see Supporting Information 2), and computes the intersection between 

the projection of each triangle and the current projected area for a given shape orientation 

(qi,fi), and adds only the ‘not already covered’ area, if it exists. 

However, directly using the quadrature in Eq. S3 yields numerical issues. Indeed, the result 

is inaccurate when integrating a constant cross-section coming from a spherical shape for 

instance. This bad behavior originates from the term in cosq. One could expect an exact 

result even with only one sample point in this case, as for any reasonably good quadrature 

such as Gaussian integration. To reach this goal (i.e. an exact result), the integration is 

optimized using a change of variables (see Supporting Information 2 for more details). The 

term cosq is cancelled in the integrand so that cosθ dθ is seen as constant. By changing 

, and by substituting the boundaries of the integral in Eq. S2 to their sinus, one 

obtains Eq. S4, which constitutes the optimized integration used by MoShade. Once again, 

the n samples parameterizing a MoShade calculation lead to N=(2n)2. 

   (S4) 

It should be noted that the change of variable works because the bounds of the integral are 

such that the application  is monotonous in the interval. 

θ = sin−1ψ

Sp =
1
π

Sp sin
−1ψ ,φ( )dψ dφ

0

1

∫
0

π
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Nπ
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Results and Discussions 

 

Figure S3: Plots of the Collision Cross-Section (CCS) calculated using MoShade as a 

function of the shape volume. The fit functions of the CCS evolutions (arbitrary units) are 

either power functions or linear functions. The structures accompanying each plot represent 

a 

b 

c 

d 
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the smallest considered structure, an intermediate size structure (except for S2.d) and the 

largest structure of each series. The plots depict: S2.a a sphere with a growing diameter; 

S2.b a cylinder with an increasing cylinder length; S2.c a cylinder with an increasing 

cylinder diameter and S2.d an extract of S2.c at small CCS an volume values with a more 

appropriate fit weighted at smaller values (represented in red). Table 1 sums up the shape 

variations with the minimum and maximum dimensions, as well as the number of samples 

and the fit parameter values. 
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Figure S4: Plots of the Collision Cross-Section (CCS) calculated using MoShade as a 

function of the shape volume. The fit functions of the CCS evolutions (arbitrary units) are 

either power functions or linear functions. The structures accompanying each plot represent 

the smallest considered structure, an intermediate size structure (except for S3.b) and the 

a 

b 

c 

d 
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largest structure of each series. The plots depict composite ball-cylinder shapes: S3.a ball-

cylinder with a growing ball diameter; S3.b an extract of S3.a at small CCS an volume 

values with a more appropriate fit weighted at smaller values (represented in red); S3.c 

ball-cylinders with differing cylinder lengths which undergo a uniform isotropic shape 

increase/scaling; S3.d a ball-cylinder with an increasing cylinder length. Table 1 sums up 

the shape variations with the minimum and maximum dimensions, as well as the number 

of samples and the fit parameter values. 

 

 

Figure S5: Distance evolutions by -CH2- unit increments for the case of an ideal cylinder 

(in blue; linear evolution) and for MD-modeled carboxylate ions (without FeCl3 core; 

median distance calculated from 4000 structures extracted over 100 nanoseconds at 500 

K). The distance is calculated as the difference between an xth CH2 unit in the chain and 

the first C from the carboxylate group “Cx-C1”. 
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Table S1: Structure pools generated by MM2 and MMFF94 force fields implemented in 

Chem3D Pro v.11.0 with and without structure optimization. a. [PEODP=14 + 1Na+]1+ and 

b. [PEODP=14 + 2Na+]2+ structure candidates (represented in 2 different viewing angles). 

The structures pool is obtained by sampling different simulation temperatures. The last 

column of the table gives the value of the S/CCS ratio (S as the geometric surface area) of 

each structure, as calculated by MoShade (arbitrary units). The bold values represent the 

structures providing the best agreement with Eq. 9 (S = 4.CCS). These structures can be 

correlated to optimized structure geometries. 

  



S12 

 
Complex description Representation Ratio S / CCS 

[PEO14 + 1Na+]1+ 
a 1 4.07 
a 2 4.07 
a 3 4.13 

[PEO14 + 2Na+]2+ 

b 1 4.09 
b 2 4.14 
b 3 4.15 
b 4 4.09 
b 5 4.14 
b 6 4.16 
b 7 4.14 
b 8 4.27 
b 9 4.17 

b 10 4.08 
b 11 4.10 
b 12 4.17 
b 13 4.12 
b 14 4.13 
b 15 4.14 
b 16 4.19 
b 17 4.15 
b 18 4.13 

 

  

1 2 3 

1 2 3 
4 5 6 

7  8 9 1   2  3 

4 5 6 
7 8 9 

b  [PEO14 + 2Na+]2+ 

a  [PEO14 + 1Na+]1+ 

10 11 12 
13 14 15 

16 17 18 10 11 12 

13 14 15 
16 17 18 

Left view Right view 
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Table S2: Slopes of the linear fits (b) of the CCS plotted as a function of the volume of all 

the modeled beads on a string shapes (see Figure 4.c in the main article). The dimensions 

of the bead-string unit are given as descriptors. BD represents the ball diameter, CD 

represents the cylinder diameter and CL represents the cylinder length. The ratios leading 

to the best agreement with the experimental ratio between PEtP and PEO (see main text) 

are written in bold. 

Description 
BD – CD – CL 

 

8 
– 

3 
– 

6 

8 
–  

3 
– 

12
 

8 
– 

2.
12

 –
 1

2 

20
 –

 3
 –

 3
 

20
 –

 3
 –

 6
 

20
 –

 3
 –

 1
2 

20
 –

 6
 –

 3
 

20
 –

 6
 –

 6
 

20
 –

 6
 –

 1
2  

 Slope 
b b2 0.190 0.209 0.216 0.068 0.071 0.075 0.068 0.071 0.076 

 b1 b1/b2          
8 – 3 – 6 0.190  1 0.910 0.880 2.782 2.686 2.531 2.789 2.670 2.512 
8 – 3 – 12 0.209  1.099 1 0.967 3.058 2.951 2.782 3.065 2.934 2.761 
8 – 2.12 – 

12 0.216  1.136 1.034 1 3.161 3.051 2.876 3.169 3.033 2.854 

20 – 3 – 3 0.068  0.359 0.327 0.316 1 0.965 0.910 1.002 0.960 0.903 
20 – 3 – 6 0.071  0.372 0.339 0.328 1.036 1 0.942 1.038 0.994 0.935 
20 – 3 – 12 0.075  0.395 0.360 0.348 1.099 1.061 1 1.102 1.055 0.992 
20 – 6 – 3 0.068  0.359 0.326 0.316 0.998 0.963 0.908 1 0.957 0.901 
20 – 6 – 6 0.071  0.375 0.341 0.330 1.042 1.006 0.948 1.045 1 0.941 
20 – 6 – 12 0.076  0.398 0.362 0.350 1.108 1.069 1.008 1.110 1.063 1 
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Table S3: Composite Ball-Cylinder shapes constituted by 3 balls and 2 cylinders. The 

shape variation is made up of angle variations as shown in the Figure. The corresponding 

CCS values, calculated using MoShade, and their percentage variations are shown 

(calculated taking the shape with a 0° angle as reference). 

 

Angle g CCS 
(arbitrary units) 

CCS difference in % 
(reference taken at 0°) 

0° 1092 0.0 

15° 1095 -0.2 

30° 1092 0.1 

45° 1087 0.5 

60° 1089 0.3 

75° 1087 0.5 

90° 1086 0.5 

105° 1081 1.0 

120° 1073 1.8 

135° 1061 2.9 

150° 1031 5.7 

  

150° 

0° 

γ 
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Computation of an average cross-
section of 3D shapes 

The goal of this document is to set up formulae used to compute the average cross section 𝑆𝑝̅̅ ̅of various shapes. The 

“actual” cross section 𝑆𝑝(. . . ) is measured as the area of the projected shade onto the Oxy plane, when light comes 

from the z direction (from above), and obviously depends on the orientation of the shape with respect to the Oxy 

plane. The orientation depends on parameters (e.g. θ, ϕ, . ..). There are symmetries, though. For instance, the actual 

cross section does not change when one revolves the solid around the Oz direction, this helps in establishing a 

simplified numerical quadrature in cases where one cannot resort to explicit formulae. In what follows, we go from 

simple cases to the general case for concave solids. For convex solids, an explicit analytical result holds as shown 

below. 

1 For a revolving solid 

The choice of the orientation is generally made with only two degrees of freedom (as one rotation around the axis 

of symmetry of the solid does not change anything). In addition, as stated before, a revolution around a normal (Oz) 

of the projection plane does not change anything either. Remains only one degree of freedom. What is the probability 

to find the shape in one orientation or the other? It depends on the solid angle covered by an infinitesimal area on 

the unit sphere (which is the locus of tip the orientation vector). This in turn depends on the parametric representation 

used here. One may use θ as the elevation and ϕ as the azimuth: 

p(θ,ϕ) = {
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

 (S0) 

so that the infinitesimal surface related to a small variation in θ and ϕ is d
2𝑠 = cosθdϕdθ. 

As stated above, there is no change in the projection for a revolution around Oz , therefore one can integrate for  ϕ 

going from 0 to 2π to get the infinitesimal area for a small variation in θ only : we get d𝑠 = 2πcosθ𝑑θ. This is the 

“weight” or probability that the orientation of the solid is θ, for any value of ϕ. One should therefore integrate all 

the projected surfaces and divide the result by the integral of the probability density to get the average area. It yields 

(using symmetries to reduce the integration bounds to the minimal possible interval, that is, consider that a 

projection from above when θ is positive leads to the same contribution than a projection from below with a negative 

θ): 

𝑆𝑝̄ =
∫
𝜋 2⁄

−𝜋 2⁄ 𝑆𝑝(𝜃)⋅2𝜋cos𝜃𝑑𝜃

∫
𝜋 2⁄

−𝜋 2⁄ 2𝜋cos𝜃𝑑𝜃
=

1

2
∫
𝜋 2⁄

−𝜋 2⁄
𝑆𝑝(𝜃) ⋅ cos𝜃𝑑𝜃 = ∫

𝜋 2⁄

0
𝑆𝑝(𝜃) ⋅ cos𝜃𝑑𝜃 (S1) 

We now try to establish the average projection for two trivial cases. 

1.1 Case of a sphere 

In this case, the projected area (in absolute value) is constant and is given by 𝑆𝑝(θ) = π
𝐷2

4
. 

The average cross section is therefore given by: 

𝑆𝑝̄ = ∫ 𝜋
𝐷2

4
⋅ cos𝜃

𝜋 2⁄

0
𝑑𝜃 = 𝜋

𝐷2

4
             (S2) 

In addition; the volume is given by 𝑉 = π
𝐷3

6
, and its area is 𝑆 = π𝐷2. Therefore, the ratio between the area of the 

sphere and the average cross section is 4. 

What is of interest here is the behaviour of the mean projected surface with respect to the molecular mass m. In our 

case, 𝑉 ∝ 𝑚 so 𝐷 ∝ 𝑚1 3⁄ , and therefore 𝑆𝑝̄ ∝ 𝑚2 3⁄ . 

 

1.2 Case of a cylinder with spherical ends 

Here, the projected surface depends on the angle θ. For the spherical parts, same as previous paragraph because the 
two half spheres are present at the extremities, and are not “more” shadowed by the cylindrical part than if those 

were part of a simple sphere. For the cylindrical part, one should take a term in cosθ into account because of the 

slope with respect to the projection plane: 



𝑆𝑝(θ) = π
𝐷2

4
+ 𝐷𝐿cosθ              (S3) 

The volume is equal to 𝑉 = π
𝐷3

6
+ π

𝐷2

4
𝐿 in this case. 

The area of the exterior surface is 𝑆 = π(𝐷2 + 𝐷𝐿). 
We have therefore: 

𝑆𝑝̅̅ ̅ = ∫ (π
𝐷2

4
+ 𝐷𝐿cosθ)

π 2⁄

0
⋅ cosθ𝑑θ = π

𝐷2

4
+ 𝐷𝐿∫

π 2⁄

0

1+cos2θ

2
𝑑θ =

π

4
(𝐷2 + 𝐷𝐿)   (S4) 

In this case, 𝑉 ∝ 𝑚 still holds, so 𝐷 ∝ 𝐿 ∝ 𝑚1 3⁄ , and therefore 𝑆𝑝̄ ∝ 𝑚2 3⁄  if one considers that the increase of size 

is isotropic. Nothing really changes here with respect to the simpler spherical case, and it is so for every convex 

shape. However, if the cylinder increases in length without increase in the diameter (that means the aspect ration 

changes), D is a constant and 𝐿 ∝ 𝑚, therefore one finds that 𝑆𝑝̄ ∝ 𝑚! 

The average cross section is in fact proportional to the molecular mass in this case. 

If only the diameter increases, the behaviour is more complex: L is constant and 𝐷 ∝ 𝑚1 2⁄  therefore 𝑆𝑝̄ ∝ 𝑚1 2⁄  if 

the diameter D is small with respect to L, however 𝐷 ∝ 𝑚1 3⁄  and therefore 𝑆𝑝̄ ∝ 𝑚2 3⁄  if L is small with respect to 

D – a lesser common case. 

1.3 Case of a hollow sphere 

If the increase in size is isotropic, it is the same procedure than in 1.1; only the volume V changes. However, let us 

imagine that the thickness of the sphere is constant, so the volume becomes proportional to its surface and the 

thickness e (considered very small). 

𝑆𝑝̄ = 𝜋
𝐷2

4
                 (S5) 

, with 𝑉 = π𝐷2𝑒, so that 𝐷 ∝ 𝑚1 2⁄  and therefore 𝑆𝑝̄ ∝ 𝑚, which is the same behaviour as a cylinder of constant 

diameter that increases its length. It is therefore impossible to discriminate both cases just by comparing how the 

cross sections evolve with an increase in molecular mass. 



2 General case 

 
 

As a matter of fact, the case of a convex shape, therefore including the cases of the sphere and cylinder with 

hemispherical ends, has been explored in the past by Cauchy [1,2] and leads to the following remarkable identity: 

𝑆𝑝̄ =
𝑆

4
 

This allows to compute the average cross section at once, knowing the area of the solid, without having to compute 

any of the actual cross sections 𝑆𝑝(θ, . . . ). However, this is of no help when the shape is concave (non-convex). 

 

Let us consider an infinitesimally small patch 𝛿𝑆 located on the surface of the solid. Now, depending on the 

orientation(𝛼, 𝛽) of this patch, its projected area will is noted δ𝑆𝑝(α, β). One should note that (α, β) is an absolute 

orientation, i.e. when (α, β) = (0,0) the normal to the patch is horizontal, and its projected area is simply zero. Now 

the shape to which the patch belongs still has its orientation parametrized globally by (θ, ϕ), and in this setting, the 

patch has an additional shift (a constant local orientation with respect to the shape reference frame) given by (ξ, η), 
so that in fact (α, β) = (θ + ξ, ϕ + η). If the expression δ𝑆𝑝(α, β) is known, then we shall compute the average 

projected area. The choice of orientations here has three degrees of freedom. Again, as with the first example above, 

a rotation around a normal to the projection plane Oz does not change anything. There remains two degrees of 

freedom: one angle 𝛼 with respect to an axis in the projection plane, which defines an out-of-plane axis, and a 

rotation around the normal of the patch 𝛽.  What is the probability to find the shape in one orientation or the other? 

It is the portion of solid angle covered by infinitesimals on the unit sphere, as before: 2πcosα𝑑α. Obviously, the 

projected area does not depend on β, but we will keep the variable in the integration procedure in this case. We 

should therefore integrate all the projected surfaces and divide by the integral of the probability density to get the 

average cross section of the patch δ𝑆. It yields the following: 

𝛿𝑆𝑝̄ =
∫ ∫

𝜋 2⁄

−𝜋 2⁄ 𝛿
𝜋

−𝜋 𝑆𝑝(𝛼,𝛽)⋅2𝜋cos𝛼𝑑𝛼𝑑𝛽

∫ ∫
𝜋 2⁄

−𝜋 2⁄ 2
𝜋

−𝜋 𝜋cos𝛼𝑑𝛼𝑑𝛽
=

1

4𝜋
∫ ∫

𝜋 2⁄

−𝜋 2⁄
𝛿

𝜋

−𝜋
𝑆𝑝(𝛼, 𝛽) ⋅ cos𝛼𝑑𝛼𝑑𝛽    (S6) 



In fact, this patch will be shadowed at some point by another part of the shape. So, what is the expression of 

δ𝑆𝑝(α, β)? This expression may be expanded as δ𝑆𝑝(α, β) = δ𝑆𝑡𝑜𝑡(α, β) ⋅ 𝑉𝑖𝑠(α, β), where 𝑉𝑖𝑠(α, β) is the visibility 

of the patch with respect to the projection plane. 𝑉𝑖𝑠(α, β) is either equal to 1 if the patch is visible, or 0 otherwise. 

There are no intermediate values because the patch is infinitely small and therefore considered absolutely flat. The 

expression δ𝑆𝑡𝑜𝑡(α, β) refers to the projected area of the patch: δ𝑆𝑡𝑜𝑡(α, β) = δ𝑆sinα. 

 

In the case of a convex shape, the expression simplifies because 𝑉𝑖𝑠(θ, ϕ) = 1 if 0 ≤ α ≤ π 2⁄ , and 𝑉𝑖𝑠(α, β) = 0 

for α < 0. Therefore, the shading does actually occur on exactly one hemisphere, and the following simplification 

of Eq. S6 occurs: 

 

𝛿𝑆𝑝̄ =
1

4𝜋
∫ ∫

𝜋 2⁄

−𝜋 2⁄
𝑉𝑖𝑠

𝜋

−𝜋
(𝛼, 𝛽)𝛿𝑆 ⋅ sin𝛼 ⋅ cos𝛼𝑑𝛼𝑑𝛽 =

1

4𝜋
∫ ∫

𝜋 2⁄

0
𝛿

𝜋

−𝜋
𝑆 ⋅ sin𝛼 ⋅ cos𝛼𝑑𝛼𝑑𝛽 =

𝛿𝑆

4
 (S7) 

At the end, we have: 

𝛿𝑆𝑝̄ =
𝛿𝑆

4
                 (S8) 

Now; if one takes the integral over the whole surface of the shape to get the total projected area, one gets 

𝑆𝑝̄ = ∫ 𝛿𝑆𝑝̄𝑆
𝑑𝑆 =

1

4𝜋
∫ ∫ ∫ 𝛿𝑆 ⋅ sin𝛼 ⋅ cos𝛼𝑑𝑆

𝑆

𝜋 2⁄

0

𝜋

−𝜋
𝑑𝛼𝑑𝛽 =

1

4
∫ 𝛿𝑆
𝑆

𝑑𝑆 =
𝑆

4
     (S9) 

, thus the remarkable identity pointed out by Cauchy [1,2]: 

𝑆𝑝̅̅ ̅ =
𝑆

4
                (S10) 

Here, S is the area of the exterior surface of the shape. This holds only because the shadowing is predictable: exactly 

one half of the orientation hemisphere is shadowed for every small patch located on the shape, therefore the 

contribution of each one is constant and equal to one fourth its area. 

It should be noted that the global orientation of the shape (θ, ϕ) is not used here. Indeed, the expressions above 

holds for every patch on the surface, whatever its local orientation in the shape’s frame. Orienting a patch using 

(α, β) = (θ + ξ,ϕ + η) or (θ, ϕ) = (α − ξ, β − η) leads to identical results since the integrals are written on the 

whole hemisphere (therefore a shift in the angles does not change anything), and the visibility in that case depends 

only on the absolute orientation of the patch, i.e. (α, β). 
 

Now, what to do if the shape is not convex? The shadowing is not easily predictable anymore, and depends on the 

actual shape and its orientation. There is no way to get a simple expression of the visibility factor as in the previous 

case. In fact, one has to resort to numerical approximations to compute, in a global way, the average 𝑆𝑝̄. The 

difficulty here is to compute 𝑆𝑝(θ, ϕ) for any given orientation(θ, ϕ)of the shape. 



 
 

We are now dealing with the global orientation of the shape instead of individual patches, therefore the absolute 

orientation of a patch (α, β) = (θ + ξ,ϕ + η) will not be used here to avoid confusion. 

 

𝑆𝑝̅̅ ̅ =
∫ ∫

π 2⁄

−π 2⁄ 𝑆𝑝
π

−π (θ,ϕ)⋅2πcosθ𝑑θ𝑑ϕ

∫ ∫
π 2⁄

−π 2⁄ 2
π

−π πcosθ𝑑θ𝑑ϕ

=
1

4π
∫ ∫

π 2⁄

−π 2⁄
𝑆𝑝

π

−π
(𝜃, 𝜙) ⋅ 𝑐𝑜𝑠𝜃𝑑𝜃𝑑𝜙

  

                  (S11) 

If one wishes to use numerical integration instead of trying to integrate analytically as in the previous case, one may 

use the following simple quadrature that helps to approximate an integral as a discrete sum of evaluations of the 

integrand (e.g. the trapezoid rule): 

𝑆𝑝̅̅ ̅ =
1

4π
∫ ∫

π 2⁄

−π 2⁄
𝑆𝑝

π

−π
(θ, ϕ) ⋅ cosθ𝑑θ𝑑ϕ ≈

1

4π
∑𝑖

π2

2𝑁
𝑆𝑝(θ𝑖 , ϕ𝑖) ⋅ cosθ𝑖     (S12) 

, with an uniform distribution of the 4N samples on θ𝑖 , ϕ𝑖 ∈ [−
π

2
. . .

π

2
] × [−π. . . π]. 

In turn, to evaluate an approximation of 𝑆𝑝(θ𝑖, ϕ𝑖), the surface of the shape must be decomposed into a mesh of 

simple geometrical elements (e.g. triangles or quads). This decomposition is usually not difficult to obtain: most 3D 

modelling software include an option to output an STL file that is perfectly suited to this purpose. The difficulty 

here is to compute the merged projected area for each triangle “at once”, i.e. by taking care of the shadowing of 

some triangles by others. One should therefore eliminate triangles that are not oriented adequately (using e.g. back-

face culling), and compute the intersection between the projection of each triangle and the current projected area, 

and add only the “not already covered” area, if it exists. It seems a simple task, but most of the code of MoShade 

lies there, although no theoretical complexity hides in that procedure. The implementation is however quite complex 

because of the need to keep track of already shadowed portions while computing the total area of the shadow. It is 

outside the scope and length of this document to explain it in a more detailed fashion. 



3 Optimization of the numerical integration 

3.1 Symmetries 

Because of the symmetrical nature of the problem (a shadow “from below” has the same area as a shadow “from 

above” for any given shape as we consider “unsigned” or non-oriented measures of surfaces) , the following identity 

may be used to avoid computing twice the same terms in the discrete integral, by reducing the range of  the variable 

θ to include only positive values : 
1

4π
∫ ∫

π 2⁄

−π 2⁄
𝑆𝑝

π

−π
(θ, ϕ) ⋅ cosθ𝑑θ𝑑ϕ =

1

2π
∫ ∫

π 2⁄

0
𝑆𝑝

π

−π
(θ,ϕ) ⋅ cosθ𝑑θ𝑑ϕ     (S13) 

which in turn leads to 

𝑆𝑝̅̅ ̅ =
1

2π
∫ ∫

π 2⁄

0
𝑆𝑝

π

−π
(θ,ϕ) ⋅ cosθ𝑑θ𝑑ϕ ≈

1

2π
∑𝑖

π2

2𝑁
𝑆𝑝(θ𝑖 , ϕ𝑖) ⋅ cosθ𝑖      (S14) 

, with an uniform distribution of the (now) 2N samples on θ𝑖 , ϕ𝑖 ∈ [0. . .
π

2
] × [−π. . . π]. 

There is another symmetry for the variable ϕ: the projection is same when the part is rotated by π radians around 

this axis. The expression can therefore be modified further by replacing the first integral along a full circle to only 

span π radians (either – π/2 to π/2 or 0 to π - it is strictly equivalent): 
1

2π
∫ ∫

π 2⁄

0
𝑆𝑝

π

−π
(θ,ϕ) ⋅ cosθ𝑑θ𝑑ϕ =

1

π
∫ ∫

π 2⁄

0
𝑆𝑝

π

0
(θ, ϕ) ⋅ cosθ𝑑θ𝑑ϕ      (S15) 

which then leads to 

𝑆𝑝̅̅ ̅ =
1

π
∫ ∫

π 2⁄

0
𝑆𝑝

π

0
(θ, ϕ) ⋅ cosθ𝑑θ𝑑ϕ ≈

1

π
∑𝑖

π2

2𝑁
𝑆𝑝(θ𝑖 , ϕ𝑖) ⋅ cosθ𝑖      (S16) 

, with an uniform distribution of the (now) N samples on θ𝑖 , ϕ𝑖 ∈ [0. . .
π

2
] × [0. . . π]. 

3.2 Harmonic term in the integrals 

Now, the integrals used to compute the average cross section always contain a term in cosθ𝑑θ as in the following 

expression: 

∫
𝑏

𝑎
𝐹(θ) ⋅ cosθ𝑑θ ≈ ∑

𝑏−𝑎

𝑛
𝐹(θ𝑖) ⋅ cosθ𝑖𝑖            (S17) 

, with 0 ≤ 𝑎 < 𝑏 ≤ π 2⁄ , and n is the number of samples used in the quadrature. 

This term is such that when one uses a discrete integration quadrature to compute the average cross section for a 

sphere, the result is in fact depending on the number of samples, whereas for each sample, the cross section 𝐹(θ𝑖) 
is constant. This means that the integration quadrature is not even able to integrate a constant term exactly, which 

is not numerically sound. 

In order to overcome this, and have an exact result for obvious cases (similarly to a Gauss integration of a constant 

function giving obviously the exact value for any number of samples), one has to use a different integration 

quadrature via a change of variable so that the integrand is constant when the cross section is constant. In fact, this 

kind of change of integration quadrature leads to better convergence results in the general case as well, allowing to 

use less samples for a given accuracy, because the samples will be uniformly distributed in the “physical” space 

instead of the parametric space associated with the orientation angle. 

To achieve this, the term cosθ must be cancelled in the integrand so that cosθ𝑑θ is seen as a constant. Let us 

introduce the variable ψ = sinθ. Then, differentiating yields 𝑑ψ = cosθ𝑑θ which does the trick. Therefore, one 

should use the following change of variable:θ = sin−1ψ, and substitute the boundaries of the integral from a, b to 

sin𝑎, sin𝑏. Therefore, the integral from Eq. S17 becomes 

∫
𝑏

𝑎
𝐹(θ) ⋅ cosθ𝑑θ = ∫

sin𝑏

sin𝑎
𝐹(sin−1ψ)𝑑ψ ≈

sin𝑏−sin𝑎

𝑛
∑𝑖 𝐹(sin−1ψ𝑖)     (S18) 

, and this time, the uniform distribution of samples ψ𝑖 is made on the variable ψ , over the modified interval [sin 

a,sin b], instead of θ. 

 

In our case, we want to integrate the following expression (Eq. S16): 

𝑆𝑝̅̅ ̅ =
1

π
∫ ∫

π 2⁄

0
𝑆𝑝

π

0
(θ, ϕ) ⋅ cosθ𝑑θ𝑑ϕ, which can readily be transformed using the same change of variable: 

𝑆𝑝̅̅ ̅ =
1

π
∫ ∫

1

0
𝑆𝑝

π

0
(sin−1ψ,ϕ) ⋅ 𝑑ψ𝑑ϕ ≈

1

π
∑𝑖

π

𝑁
𝑆𝑝(sin

−1ψ𝑖 , ϕ𝑖)       (S19) 

Note that the change of variable works because the bounds of the integral are such that the application θ = sin−1ψis 

monotonous in that interval. 
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