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ci-dessus, j’ai eu la chance de collaborer avec d’autres superbes personnes :
Karma Dajani, Savinien Kreczman, Zuzana Masáková, Adeline Massuir et
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octroyé cette bourse doctorale. Cela m’a donné la chance de vivre cette fab-
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séjours de recherche mémorables. Par ailleurs, d’un point de vue personnel,
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INTRODUCTION

Mathematics is notably concerned with the study of numbers and the arith-
metic properties of these numbers in relation with the syntactical properties
of their representations by sequences of symbols (usually called digits). In
order to approach such questions, we first need to know how to represent
numbers since there are many ways to write them. Usually, numbers are
represented by words over an alphabet of digits with respect to a base. In
everyday life, the decimal representation is used, that is, the base elements
are the powers of 10. In computer science, the binary base is preferred for
some practical aspects. More generally, any integer b ≥ 2 can be considered
as a base. We then obtain words written over the alphabet {0, 1, . . . , b− 1}
called the base-b representations. Towards a general study, mathematicians
are interested in other various ways to represent numbers.

Two well-known generalizations of integer base representations are Can-
tor and real base representations. The former was introduced by Cantor in
1869 [Can69]. A Cantor representation of a real number x via a base se-
quence (bn)n∈N of integers greater than or equal to 2 is an infinite sequence
a0a1a2 · · · of non-negative integers such that

x =
∑
n∈N

an∏n
i=0 bi

.

If for each n ∈ N, the digit an belongs to the alphabet {0, 1 . . . , bn − 1} and
if infinitely many digits an are non-zero, then the series is called the Cantor
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series of x. Many studies are devoted to Cantor series, a large amount of
which are concerned with the digit frequencies; see [ER59, Gal76, KT84,
Rén56] to cite just a few. The latter was defined by Rényi in 1957 [Rén57]
and well understood since the pioneering work of Parry in 1960 [Par60]. A
representation of a real number x via a real base β > 1 is an infinite sequence
a0a1a2 · · · of non-negative integers such that

x =
∑
n∈N

an
βn+1

.

The digits an can be chosen by using several appropriate algorithms. Typi-
cally each point in [0, 1) has uncountably many representations [Sid03]. The
most commonly used algorithms are the greedy and lazy algorithms giving
rise respectively to the largest and the smallest representations in the lexi-
cographic order. Representations in a real base are extensively studied and
we can only cite a few of the many possible references [BM86, Lot02, Par60,
Sch80, IS09, Fro92, Sol94, FS10, KL98, Ped05, DK02b, DdVKL12, DK07].

This doctoral dissertation is dedicated to the investigation of series ex-
pansions of real numbers that are based on a sequence β = (βn)n∈N of real
numbers greater than 1 such that

∏
n∈N βn = +∞. We call such a base

sequence β a Cantor real base. A representation of a real number x via
a Cantor real base β = (βn)n∈N is an infinite sequence a0a1a2 · · · of non-
negative integers such that

x =
∑
n∈N

an∏n
i=0 βi

.

We talk about β-representations. In doing so, we generalize both represen-
tations of real numbers through Cantor series and real bases. The digits of
a β-representation can be chosen by using several appropriate algorithms.
As in the real base theory, in order to represent non-negative real numbers
smaller than or equal to xβ, where

xβ =
∑
n∈N

dβne − 1∏n
i=0 βi

,

we will consider the greedy algorithm and the lazy one. In the greedy algo-
rithm, each digit is chosen as the largest possible among 0, . . . , dβne − 1 at
position n. At the other extreme, the lazy algorithm picks the least possible
digit at each step. The so-obtained β-representations are respectively called
the greedy and lazy β-expansions.

The goal of this thesis centered at the study of β-representations is to
figure out if the properties of representations in real bases can be general-
ized while considering Cantor real bases. The framework of this doctoral
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dissertation encompasses several related but distinct domains, namely, nu-
meration systems, combinatorics on words, formal language theory, algebra,
dynamical systems, ergodic theory and number theory.

Note that these type of representations involving more than one base si-
multaneously and independently have recently aroused the interest of other
mathematicians [CD20, Li21, Neu21, KLZ21]. Each gives a different gener-
alization of representations via real bases and with different global interests.
These papers all present a generalization of Parry’s theorem [Par60] to their
respective frameworks. But so far, all the research was concentrated on
the symbolic properties of these representations. In this work, we also give
algebraic and dynamical properties which are nowhere else studied.

Throughout this text, in order to provide a clear presentation, we illus-
trate the concepts under consideration thanks to a number of examples. This
doctoral dissertation is articulated as follows.

In the first chapter, without attempting to provide an exhaustive de-
scription, we recall the necessary backgrounds for a clear understanding of
this work. We start with some algebraic structures and related conventions.
Then, we briefly introduce words, languages and automata. Next, we state
material about measure preserving dynamical systems. This chapter ends
with an entire section devoted to the key notion of representations of real
numbers in real bases. This section deals with an overview of the combina-
torial, algebraic and dynamical properties of β-representations. The goal is
to give the state of the art on β-representations by stating results which will
then be generalized (or not) in the subsequent chapters to the Cantor real
base framework in general or in the particular case of periodic Cantor real
bases, called alternate bases. Therefore, the stated results will not be “used”
to prove analogue ones for Cantor real bases but they are stated in order to
compare theories of real bases and Cantor real bases.

The second chapter aims at defining Cantor real bases and proving fun-
damental combinatorial properties of β-representations. We first give a char-
acterization of those infinite words a over the alphabet R≥0 for which there
exists a Cantor real base β such that valβ(a) = 1. Next, we introduce
the greedy algorithm and study the combinatorial properties of greedy β-
expansions, each of which extends existing results on representations in a
real base. In particular, we introduce the quasi-greedy β-expansion d∗β(1)
of 1 and show that d∗β(1) is the lexicographically greatest β-representation
not ending in 0ω of all real numbers in [0, 1]. We then prove a generalization
of Parry’s theorem [Par60] characterizing sequences of non-negative integers
that are the greedy β-representations of some real number in the interval
[0, 1). We end this section by introducing the notion of greedy β-shift and
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give a description of it in full generality. In the fourth section, the lazy al-
gorithm in real bases is generalized to the setting of Cantor real bases when
xβ < +∞. It is shown that the lazy β-expansions are obtained by “flipping”
the digits of the greedy β-expansions. As a consequence, combinatorial prop-
erties of the previous section are “flipped” to the lazy framework. Then, we
show that the same “flip” permits us to go from the quasi-greedy β-expansion
to a quasi-lazy one. Consequently, a Parry-like criterion characterizing se-
quences of non-negative integers that are the lazy β-expansions of some real
number in (xβ − 1, xβ] is proved. Moreover, we define and study a lazy β-
shift. Note that lazy real base expansions have been widely studied in terms
of dynamics and, to the best of our knowledge, not really in terms of com-
binatorics. Hence, since real bases are particular cases of Cantor real bases,
this section also gives a new study of lazy β-expansions for real bases β > 1.

In the third chapter, we focus on the combinatorial properties of periodic
Cantor real bases

β = (β0, . . . , βp−1, β0, . . . , βp−1, . . .),

which we call alternate bases. Note the importance of these particular Cantor
real bases since they will also be central for the next two chapters. In both
the greedy and lazy cases, we are able to give more precise results than
in the general framework of Cantor real bases. In particular, generalizing
Parry’s result [Par60], we obtain a characterization of the greedy β-expansion
of 1 among all β-representations of 1. Moreover, generalizing a result of
Bertrand-Mathis [BM86], we show that for any alternate base β, the greedy
β-shift is sofic, that is, its factors form a language that is accepted by a finite
automaton, if and only if all quasi-greedy β(i)-expansions of 1 are ultimately
periodic, where

β(i) = (βi, . . . , βp−1, β0, . . . , βp−1, . . .)

is the ith shift of the Cantor real base β. Since real bases β > 1 determining
sofic β-shifts are called Parry numbers, we call Parry alternate bases the
alternate bases such that all quasi-greedy β(i)-expansions of 1 are ultimately
periodic. Using the “flip” from greedy to lazy β-expansions, analogue results
are proved for lazy β-expansions. In particular, we prove that an alternate
base β is a Parry alternate base if and only if all quasi-lazy β(i)-expansions
of xβ(i) − 1 are ultimately periodic. Moreover, we show that the alternate
base β is a Parry alternate base if and only if the lazy β-shift is sofic.

The fourth chapter deals with some algebraic properties of alternate base
expansions. In the real base case, an algebraic description of Parry numbers
β > 1 is not obvious. It is known that the set of Parry numbers includes
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Pisot numbers, that is, algebraic integers greater than 1 with Galois con-
jugates inside the unit circle [Ber77], and that this statement cannot be
reversed. The first aim of this chapter is to give such algebraic properties
of Parry alternate bases. In particular, we show a necessary condition for
an alternate base β = (β0, . . . , βp−1, β0, . . . , βp−1, . . .) to be a Parry one is

that the product β =
∏p−1
i=0 βi is an algebraic integer and all of the bases

β0, . . . , βp−1 belong to the algebraic field Q(β). On the other hand, we also
give a sufficient condition: if β is a Pisot number and β0, . . . , βp−1 ∈ Q(β),
then β is a Parry alternate base. The importance of the class of Pisot bases in
connection to automata was pointed out also by Frougny [Fro92] who showed
that normalization in a real base β > 1 which maps any β-representation of
a real number in [0, 1) to its greedy β-expansion is computable by a finite
Büchi automaton if β is a Pisot number. The second aim of this chapter
is to provide an analogue of Frougny’s result concerning greedy and lazy
normalizations in alternate bases. We show that given an alternate base
β = (β0, . . . , βp−1, β0, . . . , βp−1, . . .) such that β =

∏p−1
i=0 βi is a Pisot num-

ber and β0, . . . , βp−1 ∈ Q(β), the greedy and lazy normalization functions
are computable by finite Büchi automata, and furthermore, we effectively
construct such automata. An important tool in our proofs is the spectrum
of numeration systems associated with alternate bases. Its definition shows
that one needs to consider the spectrum of β =

∏p−1
i=0 βi with a more general

alphabet of non-integer digits. Hence, we first study the spectrum in the
general framework of a complex base δ such that |δ| > 1 with an alphabet
A ⊂ C, which is defined as

XA(δ) = {
n∑
i=0

aiδ
i : n ∈ N, ai ∈ A}.

The notion of spectrum was originally introduced by Erdős, Joó and Ko-
mornik for a base δ ∈ (1, 2) and an alphabet of the form A = {0, 1, . . . ,m}
[EJK90]. Topological properties of the spectrum determine many of the
arithmetical aspects of the numeration system; see [FP18]. One of the main
problems in the study of spectra is to describe bases which give spectra
without accumulation points in dependence on the alphabet. For the case of
real bases and symmetric integer alphabets, a complete characterization was
given by Akiyama and Komornik [AK13] and Feng [Fen16]. In this chapter,
as an analogy to the results of [FP18], we prove that the set of representa-
tions of zero in a complex base δ such that |δ| > 1 and an alphabet A of
complex number is accepted by a finite Büchi automaton if and only if the
spectrum XA(δ) has no accumulation point. Next, we deduce an analogue in
the alternate base case. This result makes use of a Büchi automaton called
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the zero automaton which generalizes that defined by Frougny [Fro92] and
which is intimately linked with the Büchi automata computing the greedy
and lazy normalization functions in alternate bases.

The fifth chapter is concerned with the dynamical properties of alternate
base expansions. We know that, considering a real base β > 1, an interesting
feature of greedy and lazy β-expansions is that they can be dynamically
generated by iterating respectively the so-called greedy β-transformation

Tβ : [0, 1)→ [0, 1), x 7→ βx− bβxc ,

and lazy β-transformation

Lβ : (xβ − 1, xβ]→ (xβ − 1, xβ], x 7→ βx− dβx− xβe ,

where xβ = dβe−1
β−1 . Thus it is natural to wonder if, given an alternate base

β, one can find an alternate greedy transformation Tβ and an alternate
lazy transformation Lβ, iterations of which generate the greedy and lazy
β-expansions respectively. This will be the focus of this final chapter. More-
over, in the real base case, the dynamical properties of Tβ and Lβ are now
well understood since the seminal works of Rényi and Parry; for example,
see [DK02b]. Hence, the aim of this chapter is to describe the measure the-
oretical dynamical behaviors of such transformations Tβ and Lβ. We first
prove the existence of a unique absolutely continuous Tβ-invariant measure
(with respect to an extended Lebesgue measure, called the p-Lebesgue mea-
sure where p is the period of the alternate base β). We then show that this
unique measure is in fact equivalent to the p-Lebesgue measure and that the
corresponding dynamical system is ergodic and has entropy 1

p log(β) where

β =
∏p−1
i=0 βi. Using tools from ergodic theory, we are able to exhibit an

explicit expression of the density function of this invariant measure and to
compute the frequencies of letters in the greedy β-expansions. Furthermore,
we show that the dynamical system underlying the greedy β-expansion is
measure theoretically isomorphic to the dynamical system underlying the
lazy β-expansion as well as to the dynamical systems underlying natural
greedy an lazy generalizations of the so-called β-shift. As a consequence, the
four transformations have the same dynamical behavior. Another interesting
property of alternate base expansions is that when every p-terms are written
as one fraction, then one is able to rewrite the involved series in the form

x =
∑
n∈N

dn
βn+1

,
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with β =
∏p−1
i=0 βi and dn belonging to the fixed digit set of real numbers

Dig(β) =
{ p−1∑
i=0

ciβi+1 · · ·βp−1 : ∀i ∈ [[0, p− 1]], ci ∈ {0, 1, . . . , dβie − 1}
}
.

This algebraic operation transforms the considered alternate base expansion
to a representation over a general digit set in base β. This is a particular case
of Pedicini’s extension of real base representations while considering general
digit sets [Ped05]. We give a sufficient condition for the representations
over Dig(β) obtained by grouping p by p the terms of the greedy and lazy β-
expansions to be respectively the greedy and lazy β-expansions over the digit
set Dig(β). Next, by the greedy and lazy generalizations of Parry’s theorem
given in Chapter 2, not all p-tuples of letters can appear in the greedy and
lazy β-expansions of real numbers in [0, 1) and (xβ − 1, xβ] respectively.
Hence, in the last section of the chapter, we construct two subsets of the
digit set Dig(β) by using respectively the greedy and lazy admissible p-
tuples. Then, we prove that the β-representations obtained by grouping
p by p the terms of the greedy and lazy β-expansions of real numbers in
[0, 1) and (xβ − 1, xβ] are respectively the greedy and lazy ones over these
particular digit sets.

This study will finish with several perspectives for future research con-
tinuing the work accomplished during this doctoral research.

As a final comment to this introduction, I would like to mention that,
in order to create a coherent whole, this dissertation present the contents of
four of my papers. However, during these four years of doctoral studies, I
also considered other problems giving me the opportunity to write five more
papers. The interested reader can find my list of publications in the next
pages.
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CHAPTER

1

PRELIMINARIES

This chapter gives the basic notions that are needed for the comprehension
of this work.

First, we recall some usual notion of algebraic structures and we introduce
the conventions and notation used in the subsequent chapters. Next, we recap
the definitions from combinatorics on words and automata theory. Then, in
order to study the representations of real numbers in real bases, namely the
β-representations, some basics on measure and ergodic theory are recalled.

Forthwith, the β-representations are defined, studied combinatorics-wise
with also an overview on the associated normalization function and then
studied in terms of dynamics. The goal of this summary is to know which
properties we will look at in the other chapters for Cantor real bases and
alternate bases.

Notions from Sections 1.1 and 1.2 must be understood before starting
reading this work. Then, the reader can consult these preliminaries when
studying the other chapters of this book. More precisely, Chapters 2 and 3
need preliminaries from Section 1.4.1. Groundwork from Sections 1.4.2
and 1.4.3 is required for Chapter 4 and Sections 1.3, 1.4.4 and 1.4.5 are
related to Chapter 5.

For further readings on the main discussed topics, we refer the interested
reader to [BR10, FS10, Lot97, Lot02, Rig14] for more on combinatorics on
words and [BG97, DK21, DK02a, Fur81] for more on ergodic theory.
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1.1 Algebraic structures and related conventions

In this text, we let N be the set of non-negative integers and for any m ∈ N
and any � ∈ {<,≤, >,≥}, we let N�m denote the set {n ∈ N : n � m}.
Moreover, for any integers i and j satisfying i ≤ j, the interval of integers
{i, i+ 1, . . . , j} is denoted [[i, j]]. We make the convention that if i > j then
[[i, j]] is the empty set. Moreover, for all i ∈ N, [[i,+∞]] denotes the set of
integers greater than or equal to i, that is, [[i,+∞]] = N≥i.

Similarly, we let Z,Q,R and C be the sets of all integer, rational, real
and complex numbers respectively. For any � ∈ {<,≤, >,≥}, analogously
to the set N�m, we define Z�m, Q�m, R�m and C�m for m ∈ Z,Q,R and C
respectively.

Given a non-negative integer n and a positive integer p, n modulo p,
denoted n mod p is the remainder of the Euclidean division of n by p.

We let d·e : R→ Z and b·c : R→ Z denote the ceiling function and floor
function respectively defined for all x ∈ R by dxe = inf{z ∈ Z : z ≥ x} and
bxc = sup{z ∈ Z : z ≤ x}. The fractional function {·} : R→ [0, 1) is defined
for all x ∈ R by {x} = x− bxc.

We make use of the common notions of monoid, ring, field, subring and
subfield. With the classical addition and multiplication of numbers, the set
Z is a ring and the sets Q,R and C are fields.

We briefly recall additional algebraic definitions needed for this work.

Definition 1.1.1. Let K be a commutative ring. The ring of polynomials
with coefficients in K is denoted K[x]. A monic polynomial is a polynomial
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in K[x] whose leading coefficient is 1. For n ∈ N≥1, the ring of polynomials
in n indeterminates with coefficients in K is denoted K[x1, . . . , xn].

Definition 1.1.2. An algebraic number is a complex number that is a zero
of a monic polynomial with coefficients in Q. The minimal polynomial of an
algebraic number β is the monic polynomial of minimal degree having coef-
ficients in Q and annihilated by β. The minimal polynomial of an algebraic
number β is irreducible over Q and its degree is the degree of the algebraic
number β. Zeros of the same irreducible polynomial over Q are distinct and
are said to be Galois conjugates. An algebraic number is an algebraic integer
if it is a zero of a monic polynomial in Z[x].

It can be shown that the minimal polynomial of an algebraic integer also
has integer coefficients.

Proposition 1.1.3. The set of all algebraic integers is a subring of C.

Definition 1.1.4. The smallest subfield of the field C containing Q and a
complex number β is denoted by Q(β).

Example 1.1.5. If β is an algebraic number of degree d then the field Q(β)
is of the form

Q(β) =
{ d−1∑
i=0

aiβ
i : ai ∈ Q

}
.

Definition 1.1.6. A monoid morphism is a function f : K → K′ from a
monoid (K, ·K, 1K) into a monoid (K′, ·K′ , 1K′) such that f(1K) = 1K′ and
for all k1, k2 ∈ K, f(k1 ·K k2) = f(k1) ·K′ f(k2). A monoid isomorphism is
a bijective monoid morphism. A ring morphism is a function f : K → K′
from a ring (K, ·K,+K, 0K, 1K) to a ring (K′, ·K′ ,+K′ , 0K′ , 1K′) such that for
all k1, k2 ∈ K, f(k1 ·Kk2) = f(k1) ·K′ f(k2) and f(k1 +Kk2) = f(k1)+K′ f(k2).
A ring isomorphism is a bijective ring morphism. In the following, when the
context is clear, we simply talk about morphism and isomorphism.

Definition 1.1.7. Let β be an algebraic number of degree d and let β2, . . . , βd
be its Galois conjugates (we set β1 = β). Then for all k ∈ [[1, d]], the fields
Q(β) and Q(βk) are isomorphic by the isomorphism

ψk : Q(β)→ Q(βk),

d−1∑
n=0

anβ
n 7→

d−1∑
n=0

an(βk)
n.
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Proposition 1.1.8. Let β be an algebraic number of degree d, β2, . . . , βd be
its Galois conjugates (we set β1 = β) and ψ1, . . . , ψd be the corresponding
isomorphisms. For all x ∈ Q(β), we have

∏d
k=1 ψk(x) ∈ Q. Moreover,

whenever x is an algebraic integer in Q(β), then
∏d
k=1 ψk(x) is an integer.

Important classes of algebraic integers that we will deal with are Pisot
and Perron numbers.

Definition 1.1.9. A Pisot number is an algebraic integer β > 1 whose
Galois conjugates all have modulus less than 1. A Perron number is an
algebraic integer β > 1 whose Galois conjugates all have modulus less than
|β|.

Obviously, every Pisot number is a Perron number. Moreover, every
integer is a Pisot number and a rational number which is not an integer is
never an algebraic integer.

Example 1.1.10. Consider the real number (1 +
√

5)/2. This real number
will widely be used in the examples of this dissertation. It is called the
Golden ratio and is denoted ϕ. The Golden ratio ϕ is a Pisot number since
its minimal polynomial is x2 − x − 1 and its Galois conjugate is the real
number (1−

√
5)/2 of modulus less than 1.

Example 1.1.11. The smallest Pisot number is given by the positive zero
of the polynomial x3 − x− 1, that is β ' 1.3247.

Example 1.1.12. Consider the real number β > 1 satisfying β6 = β5 + 1,
that is β ' 1.2852. This number is a Perron number but it is not a Pisot
number since two of its Galois conjugates have modulus greater than 1.

1.2 Words, languages and automata

We now define backgrounds related with combinatorics on words that are
needed for this dissertation.

Definition 1.2.1. An alphabet is a non-empty finite or infinite set, whose
elements are called letters. A finite (resp., infinite) word over an alphabet A
is a finite (resp., infinite) sequence of letters in A. The empty word , denoted
by ε, is the empty sequence.
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The length of a finite word w, denoted by |w|, is the number of letters
contained in w. The length of an infinite word is set to +∞.

If w is a non-empty (finite or infinite) word, then the letters of w are
indexed from 0, that is, for any n ∈ [[0, |w|−1]], we let wn denote its (n+1)st

letter.
The set of finite (resp., non-empty finite, infinite) words over an alphabet

A is denoted by A∗ (resp., A+, AN ).
A language over an alphabet A is a subset of A∗. An ω-languages over

an alphabet A is a subset of AN.

Example 1.2.2. Let A = {a, b, · · · , x, y, z} be the Latin (or Roman) alpha-
bet. The finite word w = numeration has length |w| = 10.

An alphabet A composed of two letters is usually called a binary alphabet .
In this text, while working with alphabets made of non-negative integers, we
usually make no distinction between the symbols 0, 1, 2, . . . and the integers
they represent.

Example 1.2.3. Let A = {0, 1} be the alphabet composed of the two letters
0 and 1. Consider the finite word w = 0110 over A. Its length is |w| = 4 and
its second letter is w1 = 1.

We introduce two useful operations on words which will be largely used
in this text.

Definition 1.2.4. Let A be an alphabet. The shift operator on the infinite
words over A, denoted σA, is defined by

σA : AN → AN, a0a1a2 · · · 7→ a1a2a3 · · · .

Whenever there is no ambiguity on the alphabet, we drop the subscript and
write σ.

Definition 1.2.5. Let A be an alphabet, u be a finite word and v be a
finite or infinite word. The concatenation of u and v, denoted by uv, is the
word w defined by wn = un for all n ∈ [[0, |u| − 1]] and wn = vn−|u| for
all n ∈ [[|u|, |u| + |v| − 1]]. The concatenation of words is associative. In
particular, the set A∗ equipped with the concatenation restricted on A∗×A∗
is a monoid with ε as neutral element.

For a finite word u over A and a non-negative integer n, we let un denote
the concatenation of n copies of u, which is inductively defined by u0 = ε
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and un+1 = unu for all n ∈ N.
We let uω define the infinite word made of the concatenation of infinitely

many copies of u. An infinite word w ∈ AN is said to be ultimately periodic
if there exist finite words u and v over A with v 6= ε such that w = uvω.
Moreover, the word w is called (purely) periodic if u = ε, that is w = vω.

Example 1.2.6. Over the binary alphabet A = {0, 1}, the concatenation of
the words 0110 and 1001 gives the word 01101001. We have (01)2 = 0101 and
(01)ω = 010101 · · · . The words (01)ω and 0(01)ω are respectively periodic
and ultimately periodic.

Definition 1.2.7. Let L and M be two languages over the alphabet A. The
concatenation of L and M is the language LM = {uv : u ∈ L, v ∈ M}. For
all n ∈ N, we let Ln denote the concatenation of n copies of L defined by

Ln = {u(1) · · ·u(n) : u(i) ∈ L for all i ∈ [[1, n]]}.

We let Lω denote the ω-language made of the concatenation of infinitely
many copies of words in L.

Remark 1.2.8. In this work, for all n ∈ N, we sometimes summarize the
concatenation of the n words u(0), u(1), . . . , u(n−1) by

∏n−1
k=0 u

(k). Moreover,
considering alphabets A0, . . . , An−1, in order to avoid any confusion with the
Cartesian product

∏n−1
k=0 Ak containing n-tuples, we write

⊗n−1
k=0 Ak for the

set of words w of length n with wk ∈ Ak for all k ∈ [[0, n − 1]]. We extend
the notation

⊗
for infinite words.

We now introduce the notions of factors, prefixes and suffixes of words.

Definition 1.2.9. Let w be a word over an alphabet A. A factor of w is a
finite word u such that there exist i and j in [[0, |w| − 1]] satisfying i ≤ j and
u = wi · · ·wj , in which case w is called the factor of w starting at position i
and ending at position j. We let Fac(w) be the set of all factors of w.

Definition 1.2.10. A prefix of a word w is a factor starting at position 0.
The prefix of length n of w with n ≤ |w|, denoted Prefn(w), is the factor
w0 · · ·wn−1. We let Pref(w) be the set of all prefixes of w. A suffix of a
finite word w is a factor ending at position |w| − 1. We let Suff(w) be the
set of all suffixes of w. We extend the definition of suffixes to infinite words
as follows: a suffix of an infinite word w is an infinite word v ∈ AN such that
there exists u ∈ Pref(w) satisfying w = uv.
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Example 1.2.11. Consider the word w = numeration. The words num,
rat and on are respectively a prefix, a factor and a suffix of w.

Notions of factor, prefix and suffix of words can be extended to languages
and ω-language as follows.

Definition 1.2.12. Considering a language (resp., an ω-language) L over
A, the set of finite factors of elements in L is denoted Fac(L). Moreover, let
Pref(L) (resp., Suff(L)) denote the set of the prefixes (resp., suffixes) of its
words.

We now endow AN with a distance. This gives rise to the concept of
convergence of sequences of words.

Definition 1.2.13. Let u, v ∈ AN. We let Λ(u, v) denote the longest com-
mon prefix of u and v. Note that |Λ(u, v)| is the smallest index where the
two words u and v differ, that is

|Λ(u, v)| = inf{i ∈ N : ui 6= vi}.

The (prefix) distance between u and v is defined by 2−|Λ(u,v)| if u 6= v and 0
otherwise.

A sequence (un)n∈N of infinite words over the alphabet A converges to the
infinite word v ∈ AN if the distance between un and v tends to 0 whenever
n tends to +∞. We write limn→+∞ un = v.

Example 1.2.14. Consider the sequence (un)n∈N of infinite words over
{0, 1} defined by un = 0(01)n0ω. The distance between u1 = 0010ω and
u2 = 001010ω equals 2−4. Moreover, we have limn→+∞ un = 0(01)ω.

We are now able to define the well-known Thue-Morse word [Thu12,
Mor21] as the limit of a sequence of finite words. Note that the Thue-Morse
word has many other equivalent definitions. This one is chosen based on its
use in the subsequent chapters.

Definition 1.2.15. Consider the monoid morphism · : {a, b}∗ → {a, b}∗
defined by a = b and b = a. Let (un)n∈N be the sequence of finite words over
the binary alphabet {a, b} defined as follows:{

u0 = a

un = un−1un−1, ∀n ≥ 1.
(1.1)
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The Thue-Morse word over {a, b} is the infinite word

lim
n→+∞

un = abbabaab · · · .

If an alphabet A is endowed with a total order, the sets of words A∗ and
AN can be ordered as follows1.

Definition 1.2.16. Let (A,<) be a totally ordered alphabet. If u and v are
two finite words over A, the word u is lexicographically less than v, which
is denoted u <lex v, either if u is a strict prefix of v or if there exists ` ∈
[[0,min{|u|, |v|} − 1]] such that un = vn for all n ∈ [[0, `− 1]] and u` < v`. We
write u ≤lex v if either u <lex v or u = v. The lexicographic order is extended
to the set of infinite words over A as follows: if u and v are two infinite words
over A, u <lex v if there exists n ∈ N≥1 such that Prefn(u) <lex Prefn(v).

Example 1.2.17. Over the binary alphabet, we have (10)ω <lex 110ω. Over
the Latin alphabet A = {a, b, · · · , x, y, z}, the lexicographic order is the or-
der used in the dictionary2. The word numeration comes before system
in the lexicographical order (and so in the dictionary), that is we have
numeration <lex system.

Automata are in some way the simplest model of computation. In the
remaining of this section, we recall the definitions and properties needed all
along this work.

Definition 1.2.18. A deterministic automaton is a 5-tuple

A = (Q, i, F,A,E)

where Q is a non-empty set, called the set of states, i is a distinguished
element of Q, called the initial state, F ⊆ Q is the set of final states, A is
an alphabet and E : Q×A→ Q is the (partial) transition function.

A deterministic automaton is finite if its set of states is finite and the
alphabet is finite.

A path in A is a sequence of states q0, . . . , qn with n ∈ N≥1 and a label
a0a1 · · · an−1 such that for all k ∈ [[1, n]], we have E(qk−1, ak−1) = qk. The
path is initial (resp., final) if q0 = i (resp., qn ∈ F ). If a path is both initial

1An other order on A∗ (not used in this work) is also widely studied in combinatorics
on words, namely the radix or genealogic order.

2Actually, the lexicographic order is the order used in the dictionary if special symbols
like accents and dashes are omitted.
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q0 q1

1
0 0

1

Figure 1.1: A deterministic finite automaton accepting the binary words
having an even number of 1.

and final, it is called an accepting path in A. A state q is accessible if there
exists an initial path ending in q. Similarly, a state q is co-accessible if there
exists a final path starting in q.

A finite word w over A is accepted by A if there exists in A an accepting
path labeled by w. The set of words accepted by A is the language accepted
by A.

Deterministic automata can be represented by oriented labeled graphs
as follows: nodes are states, the initial state is designated by an incoming
arrow, the final states are designated by doubly-framed nodes and for all
states p and q and all letters a such that E(p, a) = q, there exists an arrow
from p to q labeled by a.

Example 1.2.19. Consider the deterministic finite automaton

A = ({q0, q1}, q0, {q0}, {0, 1}, E)

where the transition function E is given by E(q0, 0) = q0, E(q0, 1) = q1,
E(q1, 0) = q1 and E(q1, 1) = q0. The automaton A is depicted in Figure 1.1.
This automaton accepts the set of binary words having an even number of 1.

A generalization of deterministic automata are the non-deterministic
ones.

Definition 1.2.20. A non-deterministic automaton is a 5-tuple A =
(Q, I, F,A,E) where Q,F and A are defined as in a deterministic automaton,
I ⊆ Q is a non-empty set, called the set of initial states, E ⊆ Q× A×Q is
a non-empty set, called the transition relation.

The differences between deterministic and non-deterministic automata
are the following ones: in a non-deterministic automaton, there may exist
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several initial states and there may exist several transitions with the same
label outgoing from a state.

The notions previously defined for deterministic automata (such as paths,
accepted words, accepted language, representations by oriented graphs,...)
can be generalized to non-deterministic automata.

Remark 1.2.21. Since the Cartesian product A × B of two alphabets A
and B is still an alphabet, a deterministic automaton can be defined over
the alphabet A×B. In that case, a transition is labeled by a pair of letters
[ ab ] ∈ A×B. Such an automaton is called a 2-tape automaton.

Since a deterministic automaton is a particular non-deterministic au-
tomaton, one could think that there are more languages accepted by non-
deterministic automata than are by deterministic automata, but the follow-
ing proposition shows that this is actually not the case.

Proposition 1.2.22. A language is accepted by a finite non-deterministic
automaton if and only if it is accepted by a finite deterministic automaton.

We now introduce the central notion of regular languages.

Definition 1.2.23. A language is regular if it is accepted by a (deterministic
or non-deterministic) finite automaton.

Büchi [Büc60] in 1960, and Muller [Mul63] not much later in 1963, ex-
tended the notion of automata in order to accept sets of infinite words. Büchi
automata are thoroughly studied in [PP04].

Definition 1.2.24. Büchi automata are defined as non-deterministic au-
tomata except for the acceptance criterion which has to be adapted in order
to deal with infinite words: an infinite word is accepted if it labels a path
going infinitely many times through final states. A Büchi automaton is finite
if its set of states is finite and the alphabet is finite.

Note that the main difference between the theory of classical automata
and that of Büchi automata is that an analogue of Proposition 1.2.22 does
not hold.

Example 1.2.25. The Büchi automaton depicted in Figure 1.2 accepts
the ω-language of infinite binary words over the alphabet {a, b} contain-
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a, b

b

b

Figure 1.2: A Büchi automaton.

ing finitely many a’s. No deterministic Büchi automaton accepts this ω-
language.

Regular languages and ω-languages accepted by finite Büchi automata
can be characterized in terms of an equivalence relation.

Definition 1.2.26. If L is a language or an ω-language over A and u ∈ A∗,
we set

u−1L = {v ∈ Suff(L) : uv ∈ L}.

Two finite words u, v ∈ A∗ are right congruent with respect to L, written
u ∼L v, if u−1L = v−1L. Right congruent words u, v ∈ A∗ are also said
equivalent for the equivalence relation ∼L.

Theorem 1.2.27. A language (resp., an ω-language) L is regular (resp.,
accepted by a finite Büchi automaton) if and only if the equivalence relation
∼L has only finitely many equivalence classes.

We end this section by introducing the product of automata in order
to state that the intersection of regular languages is a regular language,
and similarly, that the intersection of ω-languages accepted by finite Büchi
automata is an ω-language accepted by a finite Büchi automaton.

Definition 1.2.28. Consider two automata (resp., Büchi automata) A1 =
(Q1, I1, F1, A1, E1) and A2 = (Q2, I2, F2, A2, E2). The product of A1 and A2

is the automaton (resp., Büchi automaton) A1 ×A2 = (Q, I, F,A,E) where
Q = Q1 × Q2, I = I1 × I2, F = F1 × F2, A = A1 × A2 and the transition
relation E ⊆ Q×A×Q is defined by(

(q1, q2), (a1, a2), (q′1, q
′
2)
)
∈ E ⇐⇒ (q1, a1, q

′
1) ∈ E1 and (q2, a2, q

′
2) ∈ E2.

Proposition 1.2.29. Let L1 and L2 denote respectively the languages (resp.,
ω-languages) accepted by the finite automata (resp., Büchi automata) A1
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and A2. The language (resp., ω-language) L1 ∩ L2 is accepted by the finite
automaton (resp., Büchi automaton) A1 ×A2.

1.3 Measure preserving dynamical systems

In this section, we introduce some basics on measure theory. In the next
section, the real base expansions will be studied combinatorics-wise and then
dynamics-wise. Hence, all the subsequent definitions will be illustrated in
Section 1.4.4. Moreover, Chapter 5 is devoted to the study of the dynamical
properties of one of the main object of this dissertation, namely the alternate
bases.

Definition 1.3.1. Let X be a set. The set made of all subsets of X is
denoted P(X). A collection F ⊆ P(X) is a σ-algebra over X such that
X ∈ F and that is closed under complementation and countable unions.
The pair (X,F) is called a measurable space. The members of F are called
measurable sets.

Example 1.3.2. Let X be a set. The collections {∅, X} and P(X) are
σ-algebras over X.

Definition 1.3.3. Let X be a set and S be a collection of subsets of X. The
smallest σ-algebra containing all sets of S is called the σ-algebra generated
by S and is denoted σ(S).

Example 1.3.4. Let X be a set and A be a subset of X, the collection
{∅, A,Ac, X} is the σ-algebra generated by {A}.

An important σ-algebra for this work is the Borel σ-algebra.

Definition 1.3.5. A topological space is a set X together with a collection
C of subsets of X such that ∅ ∈ C, X ∈ C and closed under countable unions
and finite intersections. The elements of C are called open sets and the
collection C is called a topology on X.

Definition 1.3.6. Let X be a topological space. The σ-algebra generated
by all open sets is the Borel σ-algebra over X and is denoted B(X). An
element B ∈ B(X) is called a Borel set.

In this text, we will mostly deal with the Euclidean topology on real
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numbers and Borel σ-algebras over intervals of real numbers.

We now define a measure over a set and an associated σ-algebra. Roughly,
a measure on a set is a number intuitively interpreted as its size. In this sense,
a measure is a generalization of the concepts of length, area, and volume.

Definition 1.3.7. Let X be a set and F be a σ-algebra over X. A map
µ : F → [0,+∞] is a measure over F if µ(∅) = 0 and for any sequence
(Bk)k∈N of pairwise disjoint sets in F , we have

µ

(⋃
k∈N

Bk

)
=
∑
k∈N

µ(Bk).

If moreover µ(X) = 1 then µ is called a probability measure over F .

Definition 1.3.8. A measure space is a triplet (X,F , µ) where X is a set,
F is a σ-algebra over X and µ is a measure on F . If moreover µ(X) = 1
then the triplet (X,F , µ) is called a probability space.

Definition 1.3.9. Let (X,F , µ) be a measure space. A subset A of X is
µ-negligible if there exists a set B ∈ F such that A ⊆ B and µ(B) = 0.
The measure µ is called complete if every negligible set is an element of
the σ-algebra F . A property over X holds µ-almost-everywhere, shortened
by µ-a.e., if the set of elements for which the property does not hold is
µ-negligible.

A particularly important example of measure is the Lebesgue measure
on Rd, which assigns the usual volume to subsets of Rd. For instance, the
Lebesgue measure of an interval [a, b) of real numbers is its usual length b−a.
In order to define this measure, we need to introduce outer measures.

Definition 1.3.10. Let X be a set. A map µ∗ : P(X) → [0,+∞) ∪ {+∞}
is an outer measure over X if µ∗(∅) = 0, µ∗(A) ≤ µ∗(B) for all sets A ⊆ B
and

µ∗

(⋃
k∈N

Ak

)
≤
∑
k∈N

µ(Ak)

for all sequence (Ak)k∈N of subsets of X.

Definition 1.3.11. Let X be a set and µ∗ be an outer measure over X. A
set B is measurable for the outer measure µ∗ if for each subset A of X, we
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have
µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc).

Proposition 1.3.12. Let X be a set and µ∗ be an outer measure over X.
The set of measurable sets for the outer measure µ∗ form a σ-algebra. More-
over, the restriction of the outer measure µ∗ to the σ-algebra of measurable
sets for µ∗ defines a complete measure.

We are now ready to construct the Lebesgue measure.

Definition 1.3.13. Let d be a positive integer. A d-dimensional interval of
Rd is a set of the form I =

∏d
i=1[ai, bi] where ai ≤ bi for all i ∈ [[1, d]] and its

volume is defined by

Vol(I) =
d∏
i=1

(bi − ai).

Let A be a subset of Rd and let CA be the collection of all sequences (Ak)k∈N of
d-dimensional intervals such that A ⊆

⋃
k∈NAk. The Lebesgue outer measure

λ∗ is defined by

λ∗ : P(Rd)→ [0,+∞], A 7→ inf
{∑
k∈N

Vol(Ak) : (Ak)k∈N ∈ CA
}
.

The restriction of the outer Lebesgue measure λ∗ to the σ-algebra of mea-
surable sets for λ∗ is called the Lebesgue measure and is denoted λ.

In Chapter 5, the Lebesgue measure will play a considerable role. As said
in the following result, every Borel set is λ∗-measurable.

Proposition 1.3.14. The Lebesgue measure over Rd is a complete measure
defined over the Borel sets in B(Rd).

Two measures over the same measurable space can be compared.

Definition 1.3.15. Let µ and ν be two measures over the same measurable
space (X,F). The measure µ is absolutely continuous with respect to ν if for
all B ∈ F , ν(B) = 0 implies µ(B) = 0. The measures µ and ν are equivalent
if they are absolutely continuous with respect to each other. In particular,
a measure on B(X) with X ⊆ R is absolutely continuous if it is absolutely
continuous with respect to the Lebesgue measure λ restricted to B(X). On
the contrary, the measures µ and ν are mutually singular if there exist two
sets A,B ∈ F such that A ∩B = ∅, A ∪B = X and µ(A) = 0 = ν(B).
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Let us now define measurable and integrable maps.

Definition 1.3.16. Let (X,FX) and (Y,FY ) be measurable spaces. A map
T : X → Y is measurable if for all B ∈ FY , then

T−1(B) = {x ∈ X : T (x) ∈ B}

belongs to FX .

Definition 1.3.17. Let (X,F , µ) be a measure space. A simple non-negative
function is a function of the form

∑n
j=1 ajχBj where n ∈ N, a1, . . . , an ≥ 0,

B1, . . . , Bn ∈ F and χB1 , . . . , χBn are the characteristic functions of the sets
B1, . . . , Bn respectively. The set of simple non-negative functions is denoted
S+(X,F). The integral of f =

∑n
j=1 ajχBj ∈ S+(X,F) with respect to µ,

denoted
∫
fdµ, is defined by∫

f dµ =
n∑
j=1

ajµ(Bj).

The integral of a measurable map f : X → [0,+∞] with respect to µ is
defined by ∫

f dµ = sup
{∫

g dµ : g ∈ S+(X,F) and g ≤ f
}
.

Let f : X → [−∞,+∞] be a measurable map. If the positive part of f defined
by

f+(x) =

{
f(x) if f(x) ≥ 0,

0 otherwise

and the negative part of f defined by

f−(x) =

{
−f(x) if f(x) ≤ 0,

0 otherwise

are such that
∫
f+ dµ < +∞ and

∫
f− dµ < +∞, then f is called µ-integrable

(or simply integrable) and its integral with respect to µ is defined by∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Let f : X → [−∞,+∞] be a measurable map and B ∈ F . Then f is said
integrable over B if fχB is integrable and in this case, the integral of f over
B is denoted

∫
B fdµ and is defined by∫

B
f dµ =

∫
fχB dµ.
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Theorem 1.3.18 (Radon-Nikodym). Let µ and ν be two probability mea-
sures over the same measurable space (X,F) such that µ is absolutely contin-
uous with respect to ν. Then there exists a ν-integrable map f : X 7→ [0,+∞)
such that for all B ∈ F , µ(B) =

∫
B f dν. Moreover, the map f is ν-a.e.

unique.

Definition 1.3.19. The unique map f designated by Radon-Nikodym’s the-
orem is called the density function of the measure µ with respect to ν and
is usually denoted dµ

dν .

Let us define some properties of measurable maps.

Definition 1.3.20. For a measurable space (X,F), a measurable transfor-
mation T : X → X and a measure µ on F , the map T is non-singular with
respect to µ if for all B ∈ F , µ(B) = 0 if and only if µ(T−1(B)) = 0.

We can now define dynamical systems in terms of a stronger character-
ization of measurable maps than being non-singular and then study their
properties.

Definition 1.3.21. For a measurable space (X,F), a measurable transfor-
mation T : X → X and a measure µ on F , the measure µ is T -invariant ,
or equivalently, the transformation T : X → X is measure preserving with
respect to µ, if for all B ∈ F , we have µ(T−1(B)) = µ(B).

Definition 1.3.22. A (measure preserving) dynamical system is a quadru-
ple (X,F , µ, T ) where (X,F , µ) is a probability space and T : X → X is a
measure-preserving transformation with respect to µ.

Theorem 1.3.23 (Poincaré’s Recurrence Theorem). Let (X,F , µ, T ) be a
dynamical system and B be a set in F . If µ(B) > 0 then for µ-almost every
point x ∈ B, there exists k ≥ 1 such that T k(x) ∈ B.

Remark 1.3.24. Throughout the text, for a subset A of X, the notation
F ∩A where F is a σ-algebra designates the σ-algebra {B∩A : B ∈ F} over
A.

Definition 1.3.25. Two dynamical systems (X,FX , µX , TX) and (Y,FY ,
µY , TY ) are (measure preservingly) isomorphic if there exist M ∈ FX and
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N ∈ FY with

µX(M) = µY (N) = 0

and

TX(X \M) ⊆ X \M and TY (Y \N) ⊆ Y \N,

and if there exists a bijective map

ψ : X \M → Y \N

which is bimeasurable with respect to the σ-algebras FX ∩ (X \ M) and
FY ∩ (Y \N) and such that for all B ∈ FY ∩ (Y \N),

µY (B) = µX(ψ−1(B)), (1.2)

and finally, such that for all x ∈ X \M ,

ψ(TX(x)) = TY (ψ(x)).

When (1.2) is satisfied for all B ∈ FY , we write µY = µX ◦ ψ−1. Figures 1.3
and 1.4 symbolically depict a measure preservingly isomorphism.

We now introduce the notion of ergodicity.

Definition 1.3.26. A dynamical system (X,F , µ, T ) is ergodic if for all
B ∈ F , T−1(B) = B implies µ(B) ∈ {0, 1}.

Roughly speaking we call a dynamical system (X,F , µ, T ) ergodic if it is
impossible to divide X into two pieces A and B (each with positive prob-
ability) such that T acts on each piece separately. A non-ergodic map is
symbolically depicted in Figure 1.5.

Theorem 1.3.27 (The ergodic theorem). Let (X,F , µ, T ) be a dynamical
system. For any µ-integrable map f : X → R, the limit

lim
n→+∞

1

n

n−1∑
i=0

f(T i(x)) = f∗(x)

exists µ-a.e. and we have f∗ ◦ T = f∗ µ-a.e. and
∫
X f dµ =

∫
X f
∗ dµ. If

moreover the dynamical system (X,F , µ, T ) is ergodic, then f∗ is a constant
µ-a.e. and f∗ =

∫
X f dµ.
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X Y

A

µX(A)

B

ψ

µY (B)

Figure 1.3: The isomorphism from (X,FX , µX , TX) to (Y,FY , µY , TY ) gives
µX(A) = µY (B) where B ∈ FY and A = ψ−1(B).

X Y

•x

•
TX(x)

TX

• y

ψ

•
TY (y)

TY

ψ

Figure 1.4: A commutative diagram given by an isomorphism from
(X,FX , µX , TX) to (Y,FY , µY , TY ).

Theorem 1.3.28. Suppose that µ1, µ2 are probability measures on (X,F),
and T : X → X is a measure-preserving ergodic transformation with respect
to both µ1 and µ2. Then either µ1 = µ2 or µ1 and µ2 are mutually singular
with respect to each other.

Definition 1.3.29. A dynamical system (X,F , µ, T ) is exact if⋂
n∈N{T−n(B) : B ∈ F} only contains sets of measure 0 or 1.

Clearly, any exact dynamical system is ergodic. Moreover, if a dynami-
cal system (X,F , µ, T ) is exact, then for all n ∈ N≥1, the dynamical system
(X,F , µ, Tn) is ergodic.
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A B

x

T (x)

T 2(x)

y

T (y)

T 2(y)

Figure 1.5: A non-ergodic map.

The subsequent definition introduces a notion, called the measure theo-
retical entropy of a transformation, reflecting the average amount of infor-
mation gained by a transformation in a dynamical system. Randomness of
information in a system was first studied by Shannon in 1948 [Sha48].

Definition 1.3.30. Let (X,F , µ, T ) be a dynamical system. Let I be a finite
or countable index set. A partition for X is a collection P = {Pi : i ∈ I} of
measurable sets of X such that µ(Pi) > 0 for all i ∈ I, µ(Pi ∩ Pj) = 0 for all
i 6= j and µ(

⋃
i∈I Pi) = µ(X). When I is finite, the entropy of the partition

P is given by

H(P ) = −
∑
i∈I

µ(Pi) log(µ(Pi)).

Given such a partition P = {Pi : i ∈ I} of X, for all n ∈ N, the partition
defined by

{Pi0 ∩ T−1Pi1 ∩ · · · ∩ T−(n−1)Pin−1 : i0, . . . in−1 ∈ I}

is denoted
∨n−1
i=0 T

−iP . The entropy of the transformation T with respect to
µ and the partition P is given by

hµ(P, T ) = lim
n→+∞

1

n
Hµ

(
n−1∨
i=0

T−iP

)
.
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Finally, the (measure theoretic) entropy of the transformation T is given by

hµ(T ) = sup
P
hµ(P, T )

where the supremum is taken over all finite partitions P of X.

Proposition 1.3.31. Entropy is an isomorphism invariant.

To end this section, we define the induced systems and give a result about
their entropy.

Definition 1.3.32. Let (X,F , µ, T ) be a dynamical system and B be a set
of F such that µ(B) > 0. For x ∈ B, define the first return time of x to B,
denoted r(x), by

r(x) = inf{n ≥ 1 : Tn(x) ∈ B}.

Consider the σ-algebra F ∩ B on B and define the measure µB and the
induced transformation TB by

µB(A) =
µ(A)

µ(B)
, for A ∈ F ∩B,

and

TB : B → B, x 7→ T r(x)(x), for x ∈ B

respectively. Then (B,F ∩B,µB, TB) is a dynamical system, which is called
the dynamical system induced by B.

Note that in the previous definition, we have that r(x) is finite µ-a.e.
on B by Poincaré’s Recurrence Theorem 1.3.23. The induced dynamical
system inherits many nice properties of the original system. For example
TB is measure preserving with respect to µB. If the original system is er-
godic, then the induced system is also ergodic. The converse holds true if
µ(
⋃
n∈N T

−n(B)) = 1. Moreover, a famous result of Abramov [Abr59] relates
the entropy of the original system with the entropy of the induced system.

Theorem 1.3.33 (Abramov’s formula). Let (X,F , µ, T ) be a dynamical sys-
tem, B be a set of F such that µ(B) > 0 and (B,F ∩ B,µB, TB) the corre-
sponding induced system. We have

hµ(T ) = µ(B)hµB (TB).
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1.4 An overview of β-representations

Generalizing integer base representations, and more particularly the decimal
and binary ones, the β-expansions are introduced in the next section and
then studied all along the remaining part of this chapter.

1.4.1 Combinatorics of β-representations

Representations of real numbers in real bases were introduced by Rényi in
1957 [Rén57] and well understood since the pioneering work of Parry in
1960 [Par60].

Definition 1.4.1. A real base is a real number β greater than 1. We define
the value map valβ : (R≥0)N → R≥0 by

valβ(a) =
∑
i∈N

ai
βi+1

for any infinite sequence a over R≥0, provided that the series converges. A
β-representation of a non-negative real number x is an infinite sequence a
over N such that valβ(a) = x.

There may exist more than one β-representation of the same real number.
Between all of them, one plays a crucial role, called the greedy one.

Definition 1.4.2. For x ∈ [0, 1], define a β-representation of x thanks to
the greedy algorithm: set r−1 = x and let, for all n ∈ N,

an = bβ rn−1c and rn = {β rn−1}.

The obtained β-representation is called the greedy β-expansion of x, or simply
the β-expansion of x, and is denoted dβ(x). For all x ∈ [0, 1], the β-expansion
of x is an infinite word over the alphabet [[0, bβc]]. This algorithm is called
greedy since at each step it takes the largest possible digit. Indeed, if the
first N digits of the β-expansion of x are given by a0, . . . , aN−1, then the
next digit aN is the greatest integer such that

N∑
n=0

an
βn+1

≤ x.

Example 1.4.3. We have d3(1) = 30ω, dϕ(1) = 110ω, dϕ(3−
√

5) = 10010ω

and dϕ2(1) = 21ω.



22 Chapter 1. Preliminaries

In the following, the combinatorial properties of the β-expansions are
recalled. We refer the reader to [Lot02, Chapter 7] for a survey. From now
on, let β > 1 be a base.

Proposition 1.4.4. For each infinite sequence a of non-negative integers
and all x ∈ [0, 1], we have a = dβ(x) if and only if valβ(a) = x and for all
` ∈ N,

+∞∑
i=`+1

ai
βi+1

<
1

β`+1
.

Proposition 1.4.5. The β-expansion of a real number x ∈ [0, 1] is the great-
est of all β-representations of x with respect to the lexicographic order.

Proposition 1.4.6. The function dβ : [0, 1] → [[0, bβc]]N, x 7→ dβ(x) is in-
creasing: for all x, y ∈ [0, 1], x < y ⇐⇒ dβ(x) <lex dβ(y).

Proposition 1.4.7. Let α and β be two real numbers greater than 1. Then
α < β if and only if dα(1) < dβ(1).

The β-expansion of 1 plays a special role in the theory of β-expansions.

Proposition 1.4.8. The β-expansion of 1 is never purely periodic.

A β-representation is said to be finite if it ends with infinitely many zeros
and infinite otherwise. If a β-representation is finite, we usually omit to write
the tail of zeros. When dβ(1) is finite, we modify it in order to have an infinite
β-representation of 1 that is lexicographically maximal among all infinite β-
representations of 1. As it will be seen later on, this new β-representation of
1 reveals its importance.

Definition 1.4.9. Let d∗β(1) denote the quasi-greedy β-expansion of 1 de-
fined as follows:

d∗β(1) =


dβ(1) if dβ(1) is infinite

(a0 · · · a`−2(a`−1 − 1))ω if dβ(1) = a0 · · · a`−1 with ` ∈ N≥1

and a`−1 6= 0.

Example 1.4.10. Resuming Example 1.4.3, we get d∗3(1) = 2ω, d∗ϕ(1) =
(10)ω and d∗ϕ2(1) = 21ω.
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Definition 1.4.11. A real number β > 1 is a Parry number if dβ(1) is
ultimately periodic (equivalently, if d∗β(1) is ultimately periodic). Further, if
dβ(1) is finite, then we say that β is a simple Parry number.

Remark 1.4.12. An algebraic description of Parry numbers is not obvious.
However, some links with Perron and Pisot number are known: any Pisot
number is a Parry number [Ber77, Sch80], any Parry number is a Perron
number (see for example [Fab95]) and neither of the statements can be re-
versed. Moreover, every quadratic Parry number is a Pisot number [Bas02].
More detailed information on Galois conjugates of a Parry number β was
given by Solomyak [Sol94].

The following example illustrates the existence of Parry but non-Pisot
numbers.

Example 1.4.13. The polynomial x4− 3x3− 2x2− 3 has the two real zeros
β ' 3.6164 and γ ' −1.0968 and two complex zeros with modulus less than
1. Hence, the real number β is a non-Pisot number. However, it is easily
checked that dβ(1) = 32030ω. So β is a Parry number.

Definition 1.4.14. The set Dβ is the set of β-expansions of real numbers in
the interval [0, 1) and the set Sβ is the topological closure of Dβ with respect
to the prefix distance of infinite words:

Dβ = {dβ(x) : x ∈ [0, 1)} and Sβ = Dβ.

In 1960, Parry [Par60] characterized those infinite words over N that
belong to Dβ thanks to the quasi-greedy β-expansion of 1. Such infinite
words are sometimes called β-admissible sequences. The advantage of this
characterization is that it is a purely combinatorial criterion on the sequences.

Theorem 1.4.15 (Parry’s theorem, [Par60]). Let a be an infinite sequence
of non-negative integers. Then a ∈ Dβ if and only if σn(a) <lex d

∗
β(1) for all

n ∈ N.

Corollary 1.4.16. Let a be an infinite sequence of non-negative integers.
Then a ∈ Sβ if and only if σn(a) ≤lex d

∗
β(1) for all n ∈ N.

Corollary 1.4.17. Let a be an infinite sequence of non-negative integers
such that a0 ≥ 1, an ≤ a0 for all n ≥ 1 and a 6= 10ω. Then there exists a
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unique real number β > 1 such that
∑

i∈N
ai
βi+1 = 1. Furthermore, a = dβ(1)

if and only if σn(a) < a for all n ∈ N≥1.

We now turn to the β-shift. To do so, let us recall the needed definitions.

Definition 1.4.18. Let A be an alphabet. A subset of AN is a subshift of
AN if it is shift-invariant and closed with respect to the topology induced by
the prefix distance. Let S ⊆ AN be a subshift, I(S) = A+ \ Fac(S) be the
set of factors avoided by S and X(S) be the set of words of I(S) which have
no proper factors in I(S). A subshift S ⊆ AN is sofic if X(S) is regular, or
equivalently if the language Fac(S) is regular. A subshift S ⊆ AN is of finite
type if X(S) is finite.

In view of Corollary 1.4.16, the subset Sβ of [[0, bβc]]N is a subshift, which
we call the β-shift . The properties of Dβ and Sβ are recalled in the following.

Proposition 1.4.19. Let d∗β(1) = t0t1t2 · · · . We have Dβ = Y ω where

Y = {t0 · · · tn−1a : n ∈ N, a ∈ [[0, tn − 1]]}.

Theorem 1.4.20 ([IT74]). The β-shift Sβ is of finite type if and only if β
is a simple Parry number.

Theorem 1.4.21 (Bertrand-Mathis’ theorem, [BM86]). The β-shift Sβ is
sofic if and only if β is a Parry number.

Let us describe the automaton, given in the proof of Bertrand-Mathis’
theorem, accepting Fac(Sβ) when β is a Parry number.

Definition 1.4.22. Suppose that d∗β(1) is ultimately periodic and denote

d∗β(1) = t0 · · · tm−1

(
tm · · · tm+n−1

)ω
.

Let Aβ be the deterministic finite automaton defined as follows and depicted
in Figure 1.6. The set of states is Q =

{
qi : i ∈ [[0,m+ n− 1]]

}
. The initial

state is q0 and all states are final. The alphabet is [[0, bβc]] and the (partial)
transition function E : Q × [[0, bβc]] → Q of the automaton Aβ is defined as
follows. For each i ∈ [[0,m+ n− 1]], we have

E(qi, ti) =

{
qi+1 if i 6= m+ n− 1

qm else
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q0 q1 q2 qm−2 qm−1

qmqm+k−1

0, . . . , t0−1

0, . . . , t1−1

. . . . . . . . .

0, . . . , t2−1

t0 t1 t2 tm−3 tm−2

0, . . . , tm−1−1

. . . . . . . . . tmtm+n−2

0, . . . , tm−1

0, . . . , tm+n−1−1
tm−1

tm+n−1

Figure 1.6: The automaton Aβ for d∗β(1) = t0 · · · tm−1

(
tm · · · tm+n−1

)ω
.

q0 q1

0
1

0

q0 q1

0, 1 1
2

0

Figure 1.7: The automata Aϕ (left) and Aϕ2 (right).

and for all s ∈ [[0, ti − 1]], we have E(qi, s) = q0.

Example 1.4.23. From Examples 1.4.3 and 1.4.10, we already know that
the Golden ratio ϕ is a simple Parry number and its square ϕ2 is a non-simple
Parry number. The automata Aϕ and Aϕ2 are depicted in Figure 1.7.

Remark 1.4.24. For any Parry number β, the automaton Aβ can be seen as
a Büchi automaton accepting infinite words. In that case, it is easy to see that
the corresponding accepted ω-language is exactly the β-shift Sβ. Moreover,
we can modify this Büchi automaton in order to accept Dβ. Suppose that the
Büchi automaton Aβ had been constructed by considering the quasi-greedy
β-expansion of 1 as non-purely periodic, that is, if d∗β(1) is purely periodic of
period length ` it suffices to consider the first letter as the preperiod and the
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q0 q1 q2

0

1
0

1

0

q0 q1

0, 1 1
2

0

Figure 1.8: Büchi automata accepting Dϕ (left) and Dϕ2 (right).

next ` ones as the period. By taking only the initial state q0 as unique final
state, we obtain a Büchi automaton accepting Dβ (see [BR10, Proposition
2.3.4]).

Example 1.4.25. The automata Aϕ and Aϕ2 from Figure 1.7 can be seen
as Büchi automata accepting Sϕ and Sϕ2 respectively. Moreover, Büchi
automata accepting Dϕ and Dϕ2 are depicted in Figure 1.8.

1.4.2 Spectrum and set of β-representations of 0

Considering a real base β > 1 and an alphabet of integers, one could ask
if the set of infinite words having value 0 in base β can be the ω-language
accepted by a finite Büchi automaton. This question reveals its importance,
especially when the question of normalization (introduced in the next section)
arises. This set of infinite words is intimately linked with a discrete set
of real numbers called spectrum. Spectra were introduced by Erdős, Joo
and Komornik in 1990 [EJK90] and have been gaining interest in recent
years [AK13, Fen16, FP18, HMV18, Váv21].

In this context, we work with alphabets of integer digits. Hence, we
extend the definition of β-representations of non-negative real numbers (see
Definition 1.4.1) to the set of sequences over Z. That is, we allow negative
integer digits.

Definition 1.4.26. For a real number β > 1 and d ∈ N, we let Z(β, d)
denote the set of β-representations of zero over the alphabet [[−d, d]]:

Z(β, d) = {a ∈ [[−d, d]]N :
∑
n∈N

an
βn+1

= 0}.

The d-spectrum of β is the set

Xd(β) = {
`−1∑
n=0

anβ
`−1−n : ` ∈ N, a0, a1, . . . , a`−1 ∈ [[−d, d]]}.
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0 1 2 3 4 5−1−2−3−4−5

Figure 1.9: The 1-spectrum of ϕ.

Example 1.4.27. The 1-spectrum of ϕ in the neighbourhood of 0, namely
X1(ϕ) ∩ [−5.5, 5.5], is depicted in Figure 1.9.

Definition 1.4.28. Let X be a topological space and Y ⊆ X. A point
x ∈ X is an accumulation point of the set Y if every open neighborhood of
x contains at least one point from Y distinct from x.

The following theorem linking these two sets was proved in [FP18].

Theorem 1.4.29. Let β > 1 and d ∈ N. Then Z(β, d) is accepted by a finite
Büchi automaton if and only if the spectrum Xd(β) has no accumulation
point in R.

The next result is due to Akiyama and Komornik [AK13] and Feng [Fen16].

Theorem 1.4.30. Let β > 1 and d ∈ N. The spectrum Xd(β) has an
accumulation point in R if and only if β − 1 < d and β is not a Pisot
number.

The following result is a direct consequence of Theorems 1.4.29 and 1.4.30,
as noticed in [FP18].

Theorem 1.4.31. Let β > 1. The following assertions are equivalent.

1. The set Z(β, d) is accepted by a finite Büchi automaton for all d ≥ 0.

2. The set Z(β, d) is accepted by a finite Büchi automaton for one d ≥
dβe − 1.

3. β is a Pisot number.

1.4.3 Normalization in real bases

A question on β-expansions that has raised a lot of interest all along the years
is to characterize the real bases for which the normalization is computable
by a finite 2-tape Büchi automaton.
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Definition 1.4.32. Let A be an arbitrary alphabet of integer digits. The
normalization νβ,A in base β over the alphabet A is the partial function
which maps any β-representation over A of a real number x ∈ [0, 1) onto
dβ(x).

This function νβ,A is partial since, depending on the alphabet A, a word
over A can have a value not in [0, 1).

Definition 1.4.33. Let A be an arbitrary alphabet of integer digits. A
2-tape Büchi automaton accepting the set

{(u, v) ∈ (A× [[0, dβe − 1]])N : valβ(u) ∈ [0, 1), v = νβ,A(u)}

is called a normalizer .

A normalizer can be constructed thanks to a Büchi automaton accept-
ing the set of β-representations of 0 over the smallest symmetric alphabet
containing A. We now describe the construction of a well-known Büchi au-
tomaton accepting Z(β, d), called the zero automaton, and recall the related
results.

Definition 1.4.34. For any positive integer d, we define the zero automaton
in base β over the alphabet [[−d, d]] by Z(β, d) = (Qd, 0, Qd, [[−d, d]], E) where

Qd = Xd(β) ∩ [− d
β−1 ,

d
β−1 ]

and for all s, t ∈ Xd(β) and all a ∈ Z, there is a transition

s
a−−→ t if and only if t = βs+ a. (1.3)

Proposition 1.4.35. The zero automaton Z(β, d) accepts the set Z(β, d).

Example 1.4.36. The zero automaton in base ϕ over the alphabet [[−1, 1]]
is depicted in Figure 1.10. For example, the infinite words 1(10)ω and 101ω

(where 1 designates the digit −1) are accepted by the Büchi automaton
Z(ϕ, 1). Therefore, the infinite words 1(10)ω and 101ω have value 0 in base
ϕ.

The zero automaton Z(β, d) is the key element to build a normalizer.
Hence, in order to understand when there exists a finite normalizer, we state
the following result which is an improvement of the result from [FS10] about
the finiteness of Z(β, d).
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0 1−1 ϕ− 1−ϕ+ 1

ϕ−ϕ

0

1−1 −1

0

−1

1

0

1

00

−11

Figure 1.10: The zero automaton Z(ϕ, 1).

Theorem 1.4.37. The following conditions are equivalent.

(i) The zero automaton Z(β, d) is finite for every d ≥ 0.

(ii) The zero automaton Z(β, d) is finite for one d ≥ dβe − 1.

(iii) β is a Pisot number.

In order to get this revised result (compared to the one in [FS10]) it is
sufficient to prove the following result.

Proposition 1.4.38. The zero automaton Z(β, dβe−1) is finite if and only
if β is Pisot.

Proof. The condition is sufficient by [FS10]. The condition is necessary since
if the zero automaton Z(β, dβe − 1) is finite then the set Z(β, dβe − 1) is
accepted by a finite Büchi automaton and we get by Theorem 1.4.31 that β
is a Pisot number. �

The second step is the construction of a converter.

Definition 1.4.39. Consider two finite alphabets of integers A and C and
let d = max

a∈A,c∈C
|a− c|. We define the converter of β from A to C by

C(β,A× C) = (Qd, 0, Qd, A× C,E′)

where the transitions E′ are defined as follows. Let s, t ∈ Qd and a ∈ A,
c ∈ C, we define

s
[ ab ]

−−−−−−→
C(β,A×C)

t if and only if s
a−c−−−−→
Z(β,d)

t.
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Proposition 1.4.40. The converter C(β,A× C) accepts the set

{(u, v) ∈ (A× C)N : valβ(u) = valβ(v)}.

Example 1.4.41. Using the zero automaton in base ϕ over the alphabet
[[−1, 1]] depicted in Figure 1.10, we obtain the converter C(β, {0, 1}2) depicted
in Figure 1.11.

By Theorem 1.4.37, if β is a Pisot number then the converter C(β,A×C)
is finite for all finite alphabets A and C. Moreover, since every Pisot number
is Parry, by Remark 1.4.24, there exists a finite Büchi automaton accepting

AN ×Dβ = {(u, v) ∈ (A×Aβ)N : ∃x ∈ [0, 1), v = dβ(x)}.

Then, by computing the product of C(β,A × Aβ) and this finite Büchi au-
tomaton we obtain a finite normalizer.

In particular, we get the following result.

Theorem 1.4.42. If β is a Pisot number then, for any finite alphabet A of
integers, the normalization in base β > 1 over the alphabet A is computable
by a finite 2-tape Büchi automaton.

Example 1.4.43. We continue Examples 1.4.25, 1.4.36 and 1.4.41. By com-
puting the product of the converter C(ϕ, {0, 1}2) and the Büchi automaton
accepting {0, 1}N×Dϕ (obtained by modifying the Büchi automaton accept-
ing Dϕ), we obtain the normalizer in base ϕ depicted in Figure 1.12 (where
only the accessible and co-accessible states are drawn). For example, the
pair of words

[
001ω
10ω

]
is accepted by the normalizer depicted in Figure 1.12.

Therefore, we get νϕ,{0,1}(001ω) = 10ω.

1.4.4 Dynamics of β-expansions

Real base expansions have also been studied through a dynamical point of
view. This section is devoted to the study of their associated dynamical
systems. We refer the reader to [DK21] for more details.

Definition 1.4.44. The greedy β-transformation, denoted Tβ, is defined by

Tβ : [0, 1)→ [0, 1), x 7→ βx− bβxc .

The greedy β-expansion of a real number x ∈ [0, 1) can be obtained by
setting dβ(x) = a0a1a2 · · · with an = bβTnβ (x)c for all n ∈ N.
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Figure 1.11: The converter C(ϕ, {0, 1}2).

0, q0 0, q1 0, q2 −1, q1

−ϕ+ 1, q0 −1, q0 −ϕ+ 1, q2

−ϕ, q1 −ϕ, q0 −ϕ, q2

[ 0
0 ]

[ 1
1 ]

[ 0
1 ]

[ 0
0 ]

[ 1
1 ]

[ 0
0 ]

[ 0
1 ]

[ 1
0 ]

[ 0
0 ]

[ 1
1 ]

[ 0
0 ]

[ 1
0 ]

[ 1
0 ]

[ 1
0 ]

[ 1
1 ]

[ 1
0 ]

[ 1
1 ] [ 0

0 ]

[ 1
0 ]

[ 1
0 ]

[ 1
0 ]

Figure 1.12: The normalizer in base ϕ over the alphabet {0, 1}.
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0 1
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0 1

1

1
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Figure 1.13: The transformations Tϕ (left) and Tϕ2 (right).

0 1

1

1
ϕ

0 1

0 1

1

1
ϕ

0 1

0 1

1

1
ϕ

0 1

Figure 1.14: Three iterations of the map Tϕ on the real number 1
2 .

As illustrated in the following example, β-transformations are usually
represented by unit squares depicting the associated maps Tβ. In addition,
the diagonal is commonly represented in order to easily iterate the map.
Each branch of the β-transformation corresponds to a digit in [[0, dβe − 1]],
that is, for all n ∈ N and x ∈ [0, 1), if Tnβ (x) belongs to the preimage of the

(i+ 1)st branch of the map with i ∈ [[0, dβe − 1]], then the (n+ 1)st digit of
dβ(x) is i.

Example 1.4.45. The transformations Tϕ and Tϕ2 are depicted in Fig-
ure 1.13. Moreover, one can see in Figure 1.14 three iterations of the map
Tϕ on the real number 1

2 . Since the third step gives the value 1
2 again, we

get dϕ(1
2) = (010)ω.

A fundamental dynamical result is the following. This summarizes results
from [Par60, Rén57, Roh61].

Theorem 1.4.46. There exists a unique Tβ-invariant absolutely continu-
ous probability measure µβ on B([0, 1)). Furthermore, the measure µβ is
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equivalent to the Lebesgue measure on B([0, 1)) and the dynamical system
([0, 1),B([0, 1)), µβ, Tβ) is ergodic and has entropy log(β).

Remark 1.4.47. It follows from Theorem 1.4.46 that Tβ is non-singular
with respect to the Lebesgue measure.

Rényi [Rén57] proved the existence of the measure µβ from Theorem 1.4.46
and Gel’fond [Gel59] and Parry [Par60] independently gave the following ex-
plicit formula for the density function of this measure.

Theorem 1.4.48. The density function of the unique Tβ-invariant abso-
lutely continuous probability measure µβ on B([0, 1)) is given by

dµβ
dλ

: [0, 1)→ [0, 1), x 7→ 1

C

∑
n∈N

1

βn
χ[0,Tnβ (1))(x)

where C =
∫ 1

0

∑
x<Tnβ (1)

1
βndλ is a normalization constant.

One can give a link between the combinatorial and dynamical properties
of the greedy β-expansion. In fact, there exists an isomorphism between
the dynamical system associated with the β-transformation and the β-shift
Sβ. In order to give this result, let us define a σ-algebra over infinite words,
which will then be restricted to Sβ (see Remark 1.3.24).

Definition 1.4.49. For an alphabet A, we let CA denote the σ-algebra gen-
erated by the cylinders of the form

CA(a0, . . . , a`−1) = {w ∈ AN : w0 = a0, . . . , w`−1 = a`−1}

with ` ∈ N and a0, . . . , a`−1 ∈ A.

Theorem 1.4.50. The map ψβ : [0, 1)→ Sβ, x 7→ dβ(x) defines an isomor-
phism between the dynamical systems ([0, 1),B([0, 1)), µβ, Tβ) and
(Sβ, C[[0,dβe−1]] ∩ Sβ, µβ ◦ ψ−1

β , σ|Sβ ).

The β-transformation can be extended to a bigger interval than [0, 1).

Definition 1.4.51. Let

xβ =
dβe − 1

β − 1

be the greatest real number that has a β-representation over the alphabet
[[0, dβe − 1]].
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Figure 1.15: The extended transformations T ext
ϕ (left) and T ext

ϕ2 (right).

Clearly, we have xβ ≥ 1 and xβ = 1 if and only if β ∈ N≥2. In [DK02b],
the map Tβ was extended to the interval [0, xβ).

Definition 1.4.52. The extended greedy β-transformation, denoted T ext
β , is

defined by

T ext
β : [0, xβ)→ [0, xβ), x 7→

{
βx− bβxc if x ∈ [0, 1)

βx− (dβe − 1) if x ∈ [1, xβ).

Example 1.4.53. We continue Example 1.4.45. The extended greedy trans-
formations T ext

ϕ and T ext
ϕ2 are depicted in Figure 1.15.

Let us make some remarks.

Remark 1.4.54. For all x ∈
[ dβe−1

β , dβeβ
)
, the two cases of Definition 1.4.52

coincide since bβxc = dβe − 1. The extended β-transformation restricted
to the interval [0, 1) gives back the classical greedy β-transformation from
Definition 1.4.44. Moreover, for all x ∈ [0, xβ), there exists N ∈ N such that
for all n ≥ N , (T ext

β )n(x) ∈ [0, 1).

Remark 1.4.55. It is important to note that if β is an integer, then the
greedy β-expansion of 1 given in Section 1.4.1 is β0ω whereas the greedy
β-expansion of 1 given thanks to the extended greedy β-transformation is
(β − 1)ω (corresponding to the quasi-greedy of 1 in base β in Section 1.4.1).
Both definitions have their advantages in their area (combinatorics on words
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and dynamics) and a choice had been made in each theory.

Extending the measure µβ on the Borel σ-algebra B([0, xβ)) by

µext
β (B) = µβ(B ∩ [0, 1))

for all B ∈ B([0, xβ)), we get the following extension of Theorem 1.4.46.

Theorem 1.4.56. The extended measure µext
β is the unique T ext

β -invariant
probability measure absolutely continuous with respect to the Lebesgue mea-
sure on B([0, xβ)). Furthermore, the measure µext

β is equivalent to the Lebesgue

measure on B([0, xβ)) and the dynamical system ([0, xβ),B([0, xβ)), µext
β , T ext

β )
is ergodic and has entropy log(β).

In the greedy algorithm, one selects the largest digit among 0, 1, . . . , dβe−
1 at each step. Let us define the other extreme algorithm which chooses the
least digit at each step [EJK90].

Definition 1.4.57. For x ∈ (xβ − 1, xβ], define a β-representation of x
thanks to the lazy algorithm: if the first N digits of the expansion of a real
number x ∈ (xβ − 1, xβ] are given by a0, . . . , aN−1, then the next digit aN is
the least element in [[0, dβe − 1]] such that

N∑
n=0

an
βn+1

+
+∞∑

n=N+1

dβe − 1

βn+1
≥ x,

or equivalently,
N∑
n=0

an
βn+1

+
xβ
βN+1

≥ x.

The so-obtained β-representation is called the lazy β-expansion of x and is
denoted `β(x).

Dajani and Kraaikamp [DK02a] proved in 2002 that, as in the greedy case,
the lazy β-expansion can be dynamically generated by a transformation.

Definition 1.4.58. The lazy β-transformation, denoted Lβ, is defined by

Lβ : (xβ − 1, xβ]→ (xβ − 1, xβ], x 7→ βx− dβx− xβe .

For all x ∈ (xβ − 1, xβ], the lazy β-expansion of x can be obtained by
setting `β(x) = a0a1a2 · · · with an = dβLnβ(x)− xβe for all n ∈ N.
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Figure 1.16: The transformations Lϕ (left) and Lϕ2 (right).

Example 1.4.59. The lazy transformations Lϕ and Lϕ2 are depicted in
Figure 1.16.

Dajani and Kraaikamp [DK02b] proved that there is an isomorphism
between the greedy and the lazy β-transformations.

Theorem 1.4.60. The map φβ : [0, 1) → (xβ − 1, xβ], x 7→ xβ − x defines
an isomorphism between the dynamical systems

([0, 1),B([0, 1)), µβ, Tβ)

and

((xβ − 1, xβ],B((xβ − 1, xβ]), µβ ◦ φ−1
β , Lβ).

As a direct consequence of this property, an analogue of Theorem 1.4.46
is obtained for the lazy transformation on (xβ − 1, xβ].

Theorem 1.4.61. The measure µβ ◦ φ−1
β is the unique Lβ-invariant prob-

ability measure absolutely continuous with respect to the Lebesgue measure
on B((xβ − 1, xβ]). Furthermore, the measure µβ ◦ φ−1

β is equivalent to the
Lebesgue measure on B((xβ − 1, xβ]) and the dynamical system
((xβ − 1, xβ],B((xβ − 1, xβ]), µβ ◦φ−1

β , Lβ) is ergodic and has entropy log(β).

As in the greedy case, the lazy β-transformation Lβ can be extended to
the bigger interval (0, xβ] as follows.
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Figure 1.17: The extended transformations Lext
ϕ (left) and Lext

ϕ2 (right).

Definition 1.4.62. The extended lazy β-transformation, denoted Lext
β , is

defined by

Lext
β : (0, xβ]→ (0, xβ], x 7→

{
βx if x ∈ (0, xβ − 1]

βx− dβx− xβe if x ∈ (xβ − 1, xβ].

Remark 1.4.63. Observe that for all x ∈
(xβ−1

β ,
xβ
β

]
, the two cases of the

definition coincide since dβx− xβe = 0. Moreover, since Lext
β

(
(xβ−1, xβ]

)
=

(xβ − 1, xβ], the lazy transformation Lext
β can be restricted to the length-one

interval (xβ − 1, xβ]. This restriction gives back the lazy β-transformation
Lβ. Also note that for all x ∈ (0, xβ], there exists N ∈ N such that for all
n ≥ N , (Lext

β )n(x) ∈ (xβ − 1, xβ].

Example 1.4.64. The extended lazy transformations Lext
ϕ and Lext

ϕ2 are de-
picted in Figure 1.17.

Theorem 1.4.65. The map φext
β : [0, xβ) → (0, xβ], x 7→ xβ − x defines an

isomorphism between the dynamical systems

([0, xβ),B([0, xβ)), µext
β , T ext

β )

and
((0, xβ],B((0, xβ]), µext

β ◦ (φext
β )−1, Lext

β ).

Theorem 1.4.65 can be interpreted in Figures 1.15 and 1.17 as the rotation
symmetry of 180 degrees.
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As a direct consequence of Theorem 1.4.65, an analogue of Theorem 1.4.56
is obtained for the lazy transformation on (0, xβ].

1.4.5 β-Representations over a general digit set

A generalization of β-representations is obtained by considering infinite words
over arbitrary alphabets instead of the alphabet [[0, dβe − 1]]. This general-
ization was originally defined by Pedicini in 2005 [Ped05].

Definition 1.4.66. Consider an arbitrary finite set ∆ = {d0, d1, . . . , dm} ⊂
R where d0 < d1 < · · · < dm. Then a (β,∆)-representation of a real number
x in the interval [ d0

β−1 ,
dm
β−1) is an infinite sequence a0a1a2 · · · over ∆ such

that x =
∑

n∈N
an
βn+1 . Such a set ∆ is called an allowable digit set for β if

max
k∈[[0,m−1]]

(dk+1 − dk) ≤
dm − d0

β − 1
. (1.4)

In this case, every point in [ d0
β−1 ,

dm
β−1 ] has a (β,∆)-representation.

Considering an allowable digit set ∆ for β, the greedy and lazy (β,∆)-
representation can be defined. Let us start with the greedy one.

Definition 1.4.67. Let ∆ be an allowable digit set for β. The greedy
(β,∆)-expansion of a real number x ∈ [ d0

β−1 ,
dm
β−1) is defined recursively as

follows: if the first N digits of the greedy (β,∆)-expansion of x are given by
a0, . . . , aN−1, then the next digit aN is the greatest element in ∆ such that

N∑
n=0

an
βn+1

+
+∞∑

n=N+1

d0

βn+1
≤ x.

From a dynamical point of view, let us define the transformation associ-
ated with these expansions [DK07].

Definition 1.4.68. Let ∆ be an allowable digit set for β. The greedy (β,∆)-
transformation, denoted Tβ,∆, is defined by

Tβ,∆ : [ d0
β−1 ,

dm
β−1)→ [ d0

β−1 ,
dm
β−1),

x 7→

{
βx− dk if x ∈ [ d0

β−1 + dk−d0
β , d0

β−1 +
dk+1−d0

β ), k ∈ [[0,m− 1]],

βx− dm if x ∈ [ d0
β−1 + dm−d0

β , dmβ−1).
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Figure 1.18: The transformation Tϕ,∆ for ∆ = {0, 1, ϕ+1
ϕ , ϕ2}.

The greedy (β,∆)-expansion can also be obtained by iterating the greedy
(β,∆)-transformation as follows: for all n ∈ N, an is the greatest digit d in
∆ such that d

β +
∑+∞

k=1
d0
βk+1 ≤ Tnβ,∆(x).

Example 1.4.69. Consider the digit set ∆ = {0, 1, ϕ + 1
ϕ , ϕ

2}. It is eas-
ily checked that ∆ is an allowable digit set for ϕ. The greedy (ϕ,∆)-
transformation

Tϕ,∆ : [0, ϕ2

ϕ−1)→ [0, ϕ2

ϕ−1), x 7→


ϕx if x ∈ [0, 1

ϕ)

ϕx− 1 if x ∈ [ 1
ϕ , 1 + 1

ϕ2 )

ϕx− (ϕ+ 1
ϕ) if x ∈ [1 + 1

ϕ2 , ϕ)

ϕx− ϕ2 if x ∈ [ϕ, ϕ2

ϕ−1)

is depicted in Figure 1.18.

Similarly, if ∆ is an allowable digit set for β, then the other extreme
(β,∆)-representation can be defined.

Definition 1.4.70. Let ∆ be an allowable digit set for β. The lazy (β,∆)-
expansion of a real number x ∈ ( d0

β−1 ,
dm
β−1 ] is defined recursively as follows: if

the first N digits of the lazy (β,∆)-expansion of x are given by a0, . . . , aN−1,
then the next digit aN is the least element in ∆ such that

N∑
n=0

an
βn+1

+

+∞∑
n=N+1

dm
βn+1

≥ x.
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Figure 1.19: The transformation L
ϕ,∆̃

for ∆ = {0, 1, ϕ+ 1
ϕ , ϕ

2}.

From a dynamical point of view, the lazy (β,∆)-expansions can be gen-
erated by a transformation.

Definition 1.4.71. The lazy (β,∆)-transformation

Lβ,∆ : ( d0
β−1 ,

dm
β−1 ]→ ( d0

β−1 ,
dm
β−1 ],

x 7→

{
βx if x ∈ ( d0

β−1 ,
dm
β−1−

dm−d0
β ],

βx− dk if x ∈ ( dm
β−1−

dm−dk−1

β , dmβ−1−
dm−dk
β ], k ∈ [[1,m]].

The lazy (β,∆)-transformation can be used to obtain the digits of the
lazy (β,∆)-expansions: for all n ∈ N, an is the least digit d in ∆ such that
d
β +

∑+∞
k=1

dm
βk+1 ≥ Lnβ,∆(x).

The greedy and lazy (β,∆)-transformations can be linked as in the real
base expansions over the canonical alphabet [[0, dβe−1]] (see Theorem 1.4.60).

Proposition 1.4.72. If ∆ = {d0, d1, . . . , dm} ⊂ R where d0 < d1 < · · · <
dm is an allowable digit set for β > 1 then so is the set

∆̃ = {d̃m, d̃m−1, . . . , d̃0}

where for all k ∈ [[0,m]], d̃k = d0 + dm − dk.

Theorem 1.4.73. If ∆ is an allowable digit set for β > 1 then the map

φβ,∆ : [ d0
β−1 ,

dm
β−1)→ ( d0

β−1 ,
dm
β−1 ], x 7→ d0+dm

β−1 − x
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is a bicontinuous bijection satisfying L
β,∆̃
◦ φβ,∆ = φβ,∆ ◦ Tβ,∆.

Example 1.4.74. Consider the digit set ∆̃ where ∆ is the digit set from Ex-
ample 1.4.69. We get ∆̃ = {0, 1− 1

ϕ , ϕ, ϕ
2}. The lazy (ϕ, ∆̃)-transformation

L
ϕ,∆̃

: (0, ϕ2

ϕ−1 ]→ (0, ϕ2

ϕ−1 ], x 7→


ϕx if x ∈ (0, ϕ

ϕ−1 ]

ϕx− (1− 1
ϕ) if x ∈ ( ϕ

ϕ−1 ,
ϕ+3
ϕ ]

ϕx− ϕ if x ∈ (ϕ+3
ϕ , 2ϕ−1

ϕ−1 ]

ϕx− ϕ2 if x ∈ (2ϕ−1
ϕ−1 ,

ϕ2

ϕ−1 ]

is depicted in Figure 1.19. It is conjugated to the greedy (ϕ,∆)-transformation

Tϕ,∆ by φϕ,∆ : [0, ϕ2

ϕ−1)→ (0, ϕ2

ϕ−1 ], x 7→ ϕ2

ϕ−1 − x.





CHAPTER

2

COMBINATORIAL PROPERTIES
OF CANTOR REAL BASE

EXPANSIONS

In this chapter, we introduce and study series expansions of real numbers
with an arbitrary Cantor real base β = (βn)n∈N, which we call β-representa-
tions. In doing so, we generalize both representations of real numbers in real
bases and through Cantor series.

First, we focus on the greedy algorithm and we show fundamental prop-
erties of β-representations, each of which extends existing results on repre-
sentations in a real base recalled in Section 1.4.1. In particular, we prove a
generalization of Parry’s theorem characterizing sequences of non-negative
integers that are the greedy β-representations of some real number in the
interval [0, 1).

Next, we define the lazy algorithm and we study the combinatorial prop-
erties of the lazy expansions in Cantor real bases. To do so, we prove that
the lazy β-expansions can be obtained by “flipping” the digits of the greedy
ones. Hence, the combinatorial properties of the greedy β-expansions we just
obtained can be “flipped” to the lazy framework. In particular, a version of
Parry’s theorem in the lazy Cantor real base framework is proved.

The results presented in this chapter are from [CC21] and [Cis21]. Since
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this chapter generalizes the combinatorial properties of real base expansions
to the Cantor real base framework, Sections 1.1, 1.2 and 1.4.1 are needed
preliminaries for the good understanding of the contents of this chapter.
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2.1 Definition of Cantor bases

Definition 2.1.1. A Cantor real base, or simply a Cantor base, is a sequence
β = (βn)n∈N of real numbers greater than 1 such that

∏
n∈N βn = +∞.

Example 2.1.2. For all n ∈ N, let αn = 1 + 1
2n+1 and βn = 2 + 1

2n+1 . The
sequence α = (αn)n∈N is not a Cantor base since

∏
n∈N αn < +∞. In fact,

for all n ∈ N, we have 1 + 1
2n+1 ≤ exp

(
1

2n+1

)
so, for all N ∈ N, we get

N∏
n=0

αn ≤
N∏
n=0

exp
( 1

2n+1

)
= exp

( N∑
n=0

1

2n+1

)
where the series

∑
n∈N

1
2n+1 is a convergent geometric series. However, the

sequence β = (βn)n∈N is indeed a Cantor base since
∏
n∈N βn = +∞. In

fact, for all N ∈ N, we have
∏N
n=0 βn ≥

∏N
n=0 2.
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Proposition 2.1.3. Any sequence β = (βn)n∈N of real numbers greater than
1 that takes only finitely many values is a Cantor base.

Proof. Consider a sequence β = (βn)n∈N of real numbers greater than 1 that
takes only finitely many values. There exists a real number β > 1 occuring
infinitely many times in the sequence β. Then, we get

∏
n∈N βn = +∞. �

In particular, by the previous proposition, any sequence β = (β, β, . . .)
with β > 1 is a Cantor base.

Definition 2.1.4. The β-value (partial) map valβ : (R≥0)N → R≥0 is the
map defined by

valβ(a) =
∑
n∈N

an∏n
i=0 βi

(2.1)

for any infinite word a = a0a1a2 · · · over R≥0, provided that the series con-
verges. A β-representation of a non-negative real number x is an infinite
word a ∈ NN such that valβ(a) = x. So we ask that the digits of a β-
representation are non-negative integers.

If β = (β, β, . . .), then for all x ∈ [0, 1], a β-representation of x is a β-
representation of x as defined by Rényi [Rén57] (see Section 1.4.1). In this
case, we do not distinguish the notation β and β: we write valβ and we talk
about β-representations, as usual.

We will need to represent real numbers not only in a fixed Cantor base
β but also in all Cantor bases obtained by shifting β.

Definition 2.1.5. For all n ∈ N, the nth shift of the Cantor base β is
denoted β(n), that is, β(n) = (βn, βn+1, . . .). In particular, we have β(0) = β.

2.2 Representations of 1

The β-representations of 1 will be of interest in what follows, in particular the
greedy and the quasi-greedy expansions of 1 (see Sections 2.3.1 and 2.3.3).
We start our study by providing a characterization of those infinite words a
over the alphabet R≥0 for which there exists a Cantor real base β such that
valβ(a) = 1.

For any infinite word a over N satisfying some suitable conditions, the
equation valβ(a) = 1 admits a unique solution β > 1 (see Corollary 1.4.17).
This classical result remains true for non-negative real digits and weaker
conditions on the infinite word a.
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Lemma 2.2.1. Let a be an infinite word over R≥0 such that an ∈ O(nd) for
some d ∈ N. There exists a real base β such that valβ(a) = 1 if and only if∑

n∈N an > 1, in which case β is unique and β ≥ a0, and if moreover for all
n ∈ N, an ≤ a0, then β ≤ a0 + 1.

Proof. If
∑

n∈N an ≤ 1 then for all real bases β, valβ(a) < 1. Indeed, this is
obvious if a = 0ω, and else valβ(a) <

∑
n∈N an ≤ 1.

Now, suppose that
∑

n∈N an > 1. Let N ∈ N be such that
∑N

n=0 an > 1.
The function f : [0, 1) → R, x 7→

∑
n∈N anx

n+1 is well-defined, continu-
ous, increasing and such that f(0) = 0 and that for all x ∈ [0, 1), f(x) ≥∑N

n=0 anx
n+1. The function g : R → R, x 7→

∑N
n=0 anx

n+1 is continuous,
increasing and such that g(0) = 0 and g(1) > 1. Therefore, there exists a
unique x0 ∈ (0, 1) such that g(x0) = 1, and hence such that f(x0) ≥ 1. Now,
there exists a unique γ ∈ (0, x0] such that f(γ) = 1. By setting β = 1

γ ,

we get that β ≥ 1
x0

> 1 and valβ(a) = f
(

1
β

)
= 1. Moreover, β ≥ a0 for

otherwise f
(

1
β

)
> f

(
1
a0

)
≥ 1.

If moreover for all n ∈ N, an ≤ a0, then β ≤ a0 + 1 for otherwise we
would have

valβ(a) =
∑
n∈N

an
βn+1

< a0

∑
n∈N

1

(a0 + 1)n+1
= 1.

�

No upper bound on the growth order of the digits an is needed in order
to find a Cantor base β such that valβ(a) = 1.

Lemma 2.2.2. Let a be an infinite word over R≥0 such that
∑

n∈N an =
+∞. Then there exists a Cantor base β such that valβ(a) = 1.

Proof. First of all, observe that the hypothesis implies that a does not end
in 0ω and that

∏
n∈N(an + 1) = +∞.

We define two sequences of non-negative integers (nk)1≤k≤K and
(mk)1≤k≤K where K ∈ N ∪ {+∞}. The length K of these two sequences
is the number of zero blocks in a, that is, the factors of the form 0m which
are neither preceded nor followed by 0 in a. Two cases stand out: either
K ∈ N or K = +∞. We describe the two cases at once. In order to do so,
it should be understood that the parts of the definition where k > K should
just be ignored when K ∈ N. Let n1 denote the least n ∈ N such that an = 0
and let m1 denote the least m ∈ N such that an1+m > 0. Then for k ≥ 2,
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let nk denote the least integer n > nk−1 + mk−1 such that an = 0 and let
mk denote the least m ∈ N such that ank+m > 0. Thus, (nk)1≤k≤K is the
sequence of positions of appearance of the successive zero blocks in a and
(mk)1≤k≤K is the sequence of lengths of these blocks.

Next, for all k ∈ [[1,K]], we pick any αk in the interval (1, mk
√
ank+mk + 1).

For all n ∈ N, we define

βn =


an + 1 if n ∈ [[0, n1 − 1]] or n ∈

⋃K
k=1[[nk +mk + 1, nk+1 − 1]]

αk if n ∈ [[nk, nk +mk − 1]] for some k ∈ [[1,K]]
an+1
α
mk
k

if n = nk +mk for some k ∈ [[1,K]]

where we set nK+1 = +∞ if K ∈ N. In particular if K = 0, that is, if for all
n ∈ N, an > 0, then for all n ∈ N, βn = an + 1.

Let us show that in any case, the obtained sequence β = (βn)n∈N is such
that

∏
n∈N βn = +∞ and valβ(a) = 1. By construction,

∏
n∈N

βn =

n1−1∏
n=0

(an + 1) ·
K∏
k=1

αmkk · ank+mk+1

α
mk
k

·
nk+1−1∏

n=nk+mk+1

(an + 1)


=
∏
n∈N

(an + 1).

By induction we can show that

nk+mk∑
n=0

an∏n
i=0 βi

= 1− 1∏nk+mk
i=0 βi

for all k ∈ [[1,K]].

If K = +∞ then we obtain that valβ(a) = 1 by letting k tend to infinity.
Otherwise, K ∈ N. Set n0 = −1 and m0 = 0. By induction again, we can
show that

m∑
n=nK+mK+1

an∏n
i=nK+mK+1 βi

= 1− 1∏m
i=nK+mK+1 βi

for all m ∈ N.

By letting m tend to infinity, we get

valβ(nK+mK+1)(σnK+mK+1(a)) = 1.

Finally, we obtain

valβ(a) =

nK+mK∑
n=0

an∏n
i=0 βi

+

+∞∑
n=nK+mK+1

an∏n
i=0 βi
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= 1− 1∏nK+mK
i=0 βi

+
valβ(nK+mK+1)(σnK+mK+1(a))∏nK+mK

i=0 βi

= 1.

�

Proposition 2.2.3. Let a be an infinite word over R≥0. There exists a
Cantor base β such that valβ(a) = 1 if and only if

∑
n∈N an > 1.

Proof. Similarly to the proof of Lemma 2.2.1, the condition
∑

n∈N an > 1
is necessary. Now, suppose that

∑
n∈N an > 1. If

∑
n∈N an = +∞ then we

use Lemma 2.2.2. Otherwise, we have 1 <
∑

n∈N an < +∞ and we apply
Lemma 2.2.1. �

2.3 Greedy β-expansions

This section is concerned with the study of the greedy β-expansions of real
numbers smaller than or equal to 1. Properties of real base expansions from
Section 1.4.1 will be generalized to the Cantor base framework.

2.3.1 The greedy algorithm

Definition 2.3.1. For x ∈ [0, 1], a distinguished β-representation
εβ,0(x)εβ,1(x)εβ,2(x) · · · is computed thanks to the greedy algorithm:

• εβ,0(x) = bβ0xc and rβ,0(x) = β0x− εβ,0(x)

• εβ,n(x) = bβnrβ,n−1(x)c and rn = βnrβ,n−1(x)− εβ,n(x) for n ∈ N≥1.

The obtained β-representation of x is denoted by dβ(x) and is called the
greedy β-expansion of x. For all n ∈ N, the value rβ,n(x) belongs to the
interval [0, 1) and we call rβ,n(x) the (n + 1)st remainder of the greedy β-
expansion of x.

We write εn(x) and rn(x) instead of εβ,n(x) and rβ,n(x) when the context
is clear. The greedy β-expansion of 1 will play a special role. For the sake
of clarity, we let εn denote its digits instead of εn(1).

As previously mentioned, if β = (β, β, . . .), then for all x ∈ [0, 1], the
greedy β-expansion of x is equal to the usual greedy β-expansion of x as
defined by Rényi [Rén57] and we write indistinctly β or β.
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Remark 2.3.2. The first digit ε0(x) belongs to [[0, bβ0c]] and for all n ∈ N≥1,
the (n+ 1)st digit εn(x) belongs to [[0, dβne− 1]]. The letter bβ0c differs from
dβ0e − 1 only when β0 ∈ N≥2. Moreover, in that case, the letter bβ0c can
only appear at position 0 of the β-expansion of 1.

Example 2.3.3. If there exists n ∈ N such that βn is an integer (without
any restriction on the other βm), then dβ(n)(1) = βn0ω.

Definition 2.3.4. We let Aβ denote the (possibly infinite) alphabet
[[0, supn∈N(dβne − 1)]].

The digits of the β-expansions of real numbers in [0, 1] (resp. in [0, 1))
belongs to Aβ ∪ {bβ0c} (resp., Aβ). Note that, if the supremum is infinite,
the alphabet Aβ is made of all non-negative integers.

The algorithm is called greedy since at each step it chooses the largest
possible digit. Indeed, consider x ∈ [0, 1] and N ∈ N, and suppose that
the digits ε0(x), . . . , εN−1(x) are already known. Then the digit εN (x) is the

largest element of [[0, dβNe−1]] ([[0, bβ0c]] if N = 0) such that
∑N

n=0
εn(x)∏n
i=0 βi

≤
x. Thus

x =

N∑
n=0

εn(x)∏n
i=0 βi

+
rN (x)∏N
i=0 βi

where rN (x) ∈ [0, 1). Note that since1 a Cantor base satisfies
∏
n∈N βn =

+∞, the latter equality implies the convergence of the greedy algorithm and
that x = valβ(dβ(x)).

Example 2.3.5. Consider the sequence α (which is not a Cantor base)
from Example 2.1.2. If we perform the greedy algorithm on x = 1 for the
sequence α, we obtain the sequence of digits 10ω, which is clearly not an
α-representation of 1.

Example 2.3.6. Let α = 1+
√

13
2 and β = 5+

√
13

6 .

1. Consider β = (βn)n∈N the Cantor base where the infinite word β0β1β2 · · ·
is the Thue-Morse word over the alphabet {α, β} (see Definition 1.2.15),
that is, the Cantor base defined by

β = (α, β, β, α, β, α, α, β, . . .). (2.2)

1This is the reason why the condition
∏
n∈N βn = +∞ appears in the definition of a

Cantor base.
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The greedy β-expansion of 1
2 has 10001 as a prefix and dβ(65−18

√
13

6 ) =
10020ω. Moreover, we compute dβ(1) = 20010110ω, dβ(1)(1) = 1010110ω

and dβ(2)(1) = 110ω.

2. Consider β = (
√

13, α, β, α, β, α, β, . . .). It is easily checked that dβ(1) =
3(10)ω and that for all m ∈ N, dβ(2m+1)(1) = 2010ω and dβ(2m+2)(1) =
110ω.

Definition 2.3.7. We call an alternate base a periodic Cantor base

β = (β0, . . . , βp−1, β0, . . . , βp−1, . . .),

that is, a Cantor base for which there exists p ∈ N≥1 such that for all n ∈ N,
βn = βn+p. In this case we simply note β = (β0, . . . , βp−1) and the integer p
is called the length of the alternate base β.

In what follows, most examples will be alternate bases and Chapters 3, 4
and 5 will be specifically devoted to their study.

Example 2.3.8. Let β = (3, ϕ, ϕ) where ϕ still designates the Golden ratio
(1 +

√
5)/2. For all m ∈ N, we have dβ(3m)(1) = 30ω, dβ(3m+1)(1) = 110ω and

dβ(3m+2)(1) = 1(110)ω.

Example 2.3.9. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ). We have

dβ(−5+2
√

13
3 ) = 110ω and dβ(2+

√
13

9 ) = (10)ω. Moreover, the alternate base

β(1) equals the first shift of the Cantor base from the second item in Exam-
ple 2.3.6. We get dβ(1) = 2010ω and dβ(1)(1) = 110ω.

Note that both previous alternate bases will be running examples all
along this text.

2.3.2 First properties of greedy expansions

Let us show that the classical properties of the greedy β-expansion theory are
still valid for Cantor bases. Some are just an adaptation of the related proofs
in [Lot02] but for the sake of completeness the details are written. From now
on, unless otherwise stated, we consider a fixed Cantor base β = (βn)n∈N.

For all x ∈ [0, 1) and n ∈ N, we can express the digit εn(x) and remainder
rn(x) of the greedy β-expansion of x thanks to the βn-transformations from
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Definition 1.4.44:

εn(x) =
⌊
βn
(
Tβn−1 ◦ · · · ◦ Tβ0(x)

)⌋
and rn(x) = Tβn ◦ · · · ◦ Tβ0(x). (2.3)

Proposition 2.3.10. For all x ∈ [0, 1) and all n ∈ N, we have

σn ◦ dβ(x) = dβ(n) ◦ Tβn−1 ◦ · · · ◦ Tβ0(x).

Proof. This follows from (2.3). In fact, for all x ∈ [0, 1) and all n ∈ N, we
have σn ◦ dβ(x) = εβ,n(x)εβ,n+1(x) · · · where, for all m ∈ N,

εβ,n+m(x) =
⌊
βn+m

(
Tβn+m−1 ◦ · · · ◦ Tβ0(x)

)⌋
.

Let y denote Tβn−1 ◦ · · · ◦ Tβ0(x). We get

εβ,n+m(x) =
⌊
βn+m

(
Tβn+m−1 ◦ · · · ◦ Tβn(y)

)⌋
= εβ(n),m(y).

We obtain σn ◦ dβ(x) = dβ(n)(y). �

Definition 2.3.11. We let Dβ denote the subset of AN
β of all greedy β-

expansions of real numbers in the interval [0, 1):

Dβ = {dβ(x) : x ∈ [0, 1)}.

Infinite words in Dβ are said to be greedy β-admissible sequences.

As in the real base framework, a goal of this study is to characterize Dβ.

Lemma 2.3.12. For all infinite words a over N and all x ∈ [0, 1], a = dβ(x)
if and only if valβ(a) = x and for all k ∈ N,

+∞∑
n=k+1

an∏n
i=0 βi

<
1∏k
i=0 βi

. (2.4)

Proof. From the greedy algorithm, for all x ∈ [0, 1], valβ(dβ(x)) = x and for
all k ∈ N,(

+∞∑
n=k+1

εn(x)∏n
i=0 βi

)
k∏
i=0

βi =

(
x−

k∑
n=0

εn(x)∏n
i=0 βi

)
k∏
i=0

βi = rk(x) < 1.

Conversely, suppose that a is an infinite word over N such that valβ(a) = x
and such that for all k ∈ N, (2.4) holds. Let us show by induction that for
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all m ∈ N, am = εm(x). From (2.4) for k = 0, we get that x − a0
β0

< 1
β0

.
Thus, β0x − 1 < a0. Since a0

β0
≤ x, we get that a0 ≤ β0x. Therefore,

a0 = bβ0xc = ε0(x). Now, suppose that m ∈ N≥1 and that for n ∈ [[0,m−1]],
an = εn(x). Then

am +

(
+∞∑

n=m+1

an∏n
i=0 βi

)
m∏
i=0

βi = εm(x) + rm(x).

By using (2.4) for k = m, since rm(x) < 1, we obtain that am = εm(x). �

Proposition 2.3.13. Let a be a β-representation of some real number x in
[0, 1]. Then the following four assertions are equivalent.

1. The infinite word a is the greedy β-expansion of x.

2. For all n ∈ N≥1, valβ(n)(σn(a)) < 1.

3. The infinite word σ(a) belongs to Dβ(1).

4. For all n ∈ N≥1, σn(a) belongs to Dβ(n).

Proof. Since valβ(a) = x ∈ [0, 1], it follows from Lemma 2.3.12 that a =
dβ(x) if and only if for all k ∈ N, (2.4) holds. In order to obtain the equiv-
alences between the first three items, it suffices to note that the greedy
condition (2.4) can be rewritten as valβ(k+1)(σk+1(a)) < 1. Clearly (4) im-
plies (3). Finally we obtain that (3) implies (4) by iterating the implication
(1) =⇒ (3). �

Corollary 2.3.14. An infinite word a over N belongs to Dβ if and only if
for all n ∈ N, valβ(n)(σn(a)) < 1.

Proposition 2.3.15. The greedy β-expansion of a real number x ∈ [0, 1] is
lexicographically maximal among all β-representations of x.

Proof. Let x ∈ [0, 1] and a ∈ NN be a β-representation of x. Proceed by
contradiction and suppose that a >lex dβ(x). There exists k ∈ N such that
ε0(x) · · · εk−1(x) = a0 · · · ak−1 and ak > εk(x). Then

+∞∑
n=k

εn(x)∏n
i=0 βi

=

+∞∑
n=k

an∏n
i=0 βi

≥ εk(x) + 1∏k
i=0 βi

+
+∞∑

n=k+1

an∏n
i=0 βi
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and hence
+∞∑

n=k+1

εn(x)∏n
i=0 βi

≥ 1∏k
i=0 βi

which is impossible by Lemma 2.3.12. �

Remark 2.3.16. In this section, we made a choice of definition for the
greedy β-expansion of 1. This choice was motivated firstly by conserving the
same algorithm for the real numbers in [0, 1) and for the real number 1 and
secondly by Proposition 2.3.15 we have just established. In fact, an other
choice would have been to preserve the alphabet Aβ by avoiding the digit bβ0c
when β0 is an integer. However, in that case, when β0 ∈ N≥2, we would get
that the greedy expansion of 1 is (β0−1)dβ(1)(1) which is not lexicographically
maximal among all β-representations of 1 since β00ω >lex (β0 − 1)dβ(1)(1).
It is important to note that for the dynamical point of view in Chapter 5,
the other choice will be made. This will be motivated differently. Note that
this ambiguity with two possible definitions of the greedy β-expansion of
1 when β ∈ N≥2 already appears in the real base case as pointed out in
Remark 1.4.55.

Proposition 2.3.17. The function dβ : [0, 1] → (Aβ ∪ {bβ0c})N is increas-
ing:

∀x, y ∈ [0, 1], x < y ⇐⇒ dβ(x) <lex dβ(y).

Proof. Suppose that dβ(x) <lex dβ(y). There exists k ∈ N such that

ε0(x) · · · εk−1(x) = ε0(y) · · · εk−1(y)

and εk(x) < εk(y). By Lemma 2.3.12, we get

x =
∑
n∈N

εn(x)∏n
i=0 βi

<

k−1∑
n=0

εn(y)∏n
i=0 βi

+
εk(y)− 1∏k

i=0 βi
+

1∏k
i=0 βi

=

k∑
n=0

εn(y)∏n
i=0 βi

≤ y.

It follows immediately that x < y implies dβ(x) <lex dβ(y). �

Corollary 2.3.18. If a is an infinite word over N such that valβ(a) ≤ 1,
then a ≤lex dβ(1). In particular, dβ(1) is lexicographically maximal among
all β-representations of all real numbers in [0, 1].

Proof. Let a be an infinite word over N such that valβ(a) ≤ 1. By Proposi-
tions 2.3.15 and 2.3.17, a ≤lex dβ(valβ(a)) ≤lex dβ(1). �
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Recall the property of the greedy β-expansions stating that considering
two bases α and β, we have α < β if and only if dα(1) < dβ(1) (see Proposi-
tion 1.4.7). The following proposition provides a generalization of a weaker
version of this property to Cantor bases.

Proposition 2.3.19. Let α = (αn)n∈N and β = (βn)n∈N be two Cantor
bases such that for all n ∈ N,

∏n
i=0 αi ≤

∏n
i=0 βi. Then for all x ∈ [0, 1], we

have dα(x) ≤lex dβ(x).

Proof. Let x ∈ [0, 1] and suppose to the contrary that dα(x) >lex dβ(x).
Thus, there exists k ∈ N such that εα,0(x) · · · εα,k−1(x) = εβ,0(x) · · · εβ,k−1(x)
and εα,k(x) > εβ,k(x). From Lemma 2.3.12 and from the hypothesis, we ob-
tain that

x ≤
k−1∑
n=0

εα,n(x)∏n
i=0 βi

+
εα,k(x)− 1∏k

i=0 βi
+

+∞∑
n=k+1

εβ,n(x)∏n
i=0 βi

<

k∑
n=0

εα,n(x)∏n
i=0 βi

≤
k∑

n=0

εα,n(x)∏n
i=0 αi

≤ x,

a contradiction. �

Corollary 2.3.20. Let α = (αn)n∈N and β = (βn)n∈N be two Cantor bases
such that for all n ∈ N, αn ≤ βn. Then for all x ∈ [0, 1], we have dα(x) ≤lex

dβ(x).

It is not true that dα(1) <lex dβ(1) implies that for all n ∈ N,
∏n
i=0 αi ≤∏n

i=0 βi as the following example shows. The same example shows that the
lexicographic order on the Cantor bases is not sufficient either. Here, the
term lexicographic order refers to the following order: α < β whenever there
exists k ∈ N such that αn = βn for n ∈ [[0, k − 1]] and αk < βk.

Example 2.3.21. Let α = (2 +
√

3, 2) and β = (2 +
√

2, 5). Then dα(1) =
31ω and dβ(1) starts with the prefix 32, hence dα(1) <lex dβ(1).
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2.3.3 Quasi-greedy expansions

Definition 2.3.22. A β-representation is said to be finite if it ends with
infinitely many zeros, and infinite otherwise. The length of a finite β-
representation is the length of the longest prefix ending in a non-zero digit.

In this text, we usually omit to write the tail of zeros of finite β-representa-
tions. When the greedy β-expansion of 1 is finite, we show how to modify it
in order to obtain an infinite β-representation of 1 that is lexicographically
maximal among all infinite β-representations of 1.

Definition 2.3.23. The quasi-greedy β-expansion of 1 denoted by d∗β(1) is
defined recursively as follows:

d∗β(1) =


dβ(1) if dβ(1) is infinite

ε0 · · · εn−2(εn−1 − 1)d∗
β(n)(1) if dβ(1) = ε0 · · · εn−1

with n ∈ N≥1, εn−1 > 0.

(2.5)

By construction, the quasi-greedy β-expansion of 1 is an infinite word
over the alphabet Aβ.

When β = (β, β, . . .), we recover the usual definition of the quasi-greedy
β-expansion. In particular, it is easy to check that in this case, if dβ(1) =
ε0 · · · εn−1 with n ∈ N≥1 and εn−1 > 0, then the quasi-greedy expansion is
purely periodic and d∗β(1) = (ε0 . . . εn−2(εn−1 − 1))ω.

Example 2.3.24. Let β = (3, ϕ, ϕ) the alternate base already considered
in Example 2.3.8. Then we directly have that d∗

β(2)(1) = dβ(2)(1) = 1(110)ω.

In order to compute d∗β(1) and d∗
β(1)(1), we need to go through the definition

several times. We compute d∗β(1) = 2d∗
β(1)(1) = 210d∗β(1) = (210)ω and

d∗
β(1)(1) = 10d∗β(1) = 10(210)ω = (102)ω. The computation of d∗β(1) and

d∗
β(1)(1) can be interpreted thanks to Figure 2.1.

Example 2.3.25. Let β = (β0, . . . , βp−1) be an alternate base such that for
all i ∈ [[0, p− 1]], βi ∈ N≥2. Then for all i ∈ [[0, p− 1]], dβ(i)(1) = βi0

ω and

d∗
β(i)(1) = ((βi − 1) · · · (βp−1 − 1)(β0 − 1) . . . (βi−1 − 1))ω.

The recursive calls to the definition (2.5) are illustrated in Figure 2.2.
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d∗β(1) = 2 ︸ ︷︷ ︸
d∗
β(1)(1) = 10 ︸ ︷︷ ︸

Figure 2.1: Symbolic computation of d∗β(1) and d∗
β(1)(1) for β = (3, ϕ, ϕ).

d∗
β(i)(1) = (βi − 1) ︸ ︷︷ ︸

d∗
β(i+1)(1) = (βi+1 − 1) ︸ ︷︷ ︸

...

d∗
β(i−1)(1) = (βi−1 − 1) ︸ ︷︷ ︸

Figure 2.2: Symbolic computation of d∗
β(i)(1) for β = (β0, . . . , βp−1) ∈

(N≥2)N.

Remark 2.3.26. As explained in Remark 2.3.16, a choice was made for the
definition of dβ(1) when β0 ∈ N≥2. It is important to note that even if the
other choice were made, meaning by avoiding the letter bβ0c, the obtained
quasi-greedy β-expansion of 1 would coincide with that obtained with our
choice of definition of the greedy β-expansion of 1.

Contrary to the real base case, for arbitrary Cantor bases, when the
greedy expansion of 1 is finite, the quasi-greedy expansion of 1 can be not
purely periodic.

Example 2.3.27. Consider the alternate base β =
(

1+
√

13
2 , 5+

√
13

6

)
. In Ex-

ample 2.3.9, we computed dβ(1) = 201 and dβ(1)(1) = 11. Then d∗
β(1)(1) =

(10)ω and d∗β(1) = 200d∗
β(1)(1) = 200(10)ω. Figure 2.3 symbolically depicts

the computation of d∗β(1) and d∗
β(1)(1).
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d∗β(1) = 200 ︸ ︷︷ ︸
d∗
β(1)(1) = 10 ︸ ︷︷ ︸

Figure 2.3: Symbolic computation of d∗β(1) and d∗
β(1)(1) for β =(

1+
√

13
2 , 5+

√
13

6

)
.

Moreover, even if the greedy β-expansion is finite, the quasi-greedy
β-representation can be infinite not ultimately periodic. Suppose that dβ(1)
is finite and that an infinite quasi-greedy is involved during the computation
of d∗β(1). Let n ∈ N≥1 be the positive integer such that d∗

β(n)(1) is the in-

volved infinite expansion. Then d∗β(1) is ultimately periodic if and only if so
is d∗

β(n)(1).

Example 2.3.28. Consider the Cantor base β = (3, β, β, β, β, . . .) where
β =
√

6(2 +
√

6). We get dβ(1) = 3 and dβ(1)(1) = dβ(1) is infinite not ulti-
mately periodic since β is a non-Pisot quadratic number (see Remark 1.4.12).
Therefore, the quasi-greedy expansion d∗β(1) = 2d∗

β(1)(1) is not ultimately pe-

riodic.

Before using the quasi-greedy β-expansion of 1 in order to study the
greedy admissible sequences, let us prove that the so-defined quasi-greedy β-
expansion of 1 is a β-representation of 1 and is precisely the lexicographically
maximal infinite one.

Proposition 2.3.29. The quasi-greedy expansion d∗β(1) is a β-representation
of 1.

Proof. If d∗β(1) = dβ(1) the result is immediate. Thus, we suppose that
dβ(1) = ε0 · · · εn−1 with n ∈ N≥1 and εn−1 > 0 and

d∗β(1) = ε0 · · · εn−2(εn−1 − 1)d∗
β(n)(1).

We get

valβ(d∗β(1)) = valβ(ε0 · · · εn−2(εn−1 − 1)) +
valβ(n)(d∗

β(n)(1))∏n−1
k=0 βk



58 Chapter 2. Combinatorial properties of Cantor real base expansions

= 1− 1∏n−1
k=0 βk

+
valβ(n)(d∗

β(n)(1))∏n−1
k=0 βk

.

Hence, it is sufficient to now prove that valβ(n)(d∗
β(n)(1)) = 1. Again, if

d∗
β(n)(1) = dβ(n)(1) then it is immediate, otherwise, there exists m ∈ N≥1

such that

valβ(n)(d∗
β(n)(1)) = 1− 1∏m−1

k=0 βn+k

+
valβ(n+m)(d∗

β(n+m)(1))∏m−1
k=0 βn+k

.

We get

valβ(d∗β(1)) = 1− 1∏n+m−1
k=0 βk

+
valβ(n+m)(d∗

β(n+m)(1))∏n+m−1
k=0 βk

.

The result follows by iterating the reasoning since either we have an equality
at one step or we conclude since

∏
n∈N βn = +∞. �

Proposition 2.3.30. If a is an infinite word over N such that valβ(a) < 1,
then a <lex d

∗
β(1). Furthermore, d∗β(1) is lexicographically maximal among

all infinite β-representations of all real numbers in [0, 1].

Proof. If dβ(1) is infinite then the result follows from Corollary 2.3.18. Thus,
we suppose that there exists k ∈ N≥1 such that dβ(1) = ε0 · · · εk−1 and
εk−1 > 0.

First, let a ∈ NN be such that valβ(a) < 1 and suppose to the contrary
that a ≥lex d∗β(1). By Corollary 2.3.18, a <lex dβ(1). Then a0 · · · ak−2 =

ε0 · · · εk−2, ak−1 = εk−1 − 1 and σk(a) ≥lex d
∗
β(k)(1). Since

valβ(a) =
k−2∑
n=0

εn∏n
i=0 βi

+
εk−1 − 1∏k−1

i=0 βi
+

valβ(k)

(
σk(a)

)∏k−1
i=0 βi

= 1− 1∏k−1
i=0 βi

(
1− valβ(k)

(
σk(a)

))
,

we get that valβ(k)

(
σk(a)

)
< 1. By Corollary 2.3.18 again, σk(a) <lex

dβ(k)(1). Therefore dβ(k)(1) must be finite and we obtain that a = d∗β(1)
by iterating the reasoning. But then valβ(a) = 1, a contradiction.

We now turn to the second part. Suppose that a ∈ NN does not end in 0ω

and is such that valβ(a) ≤ 1. Our aim is to show that a ≤lex d
∗
β(1). We know

from Corollary 2.3.18 that a ≤lex dβ(1). Now, suppose to the contrary that
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a >lex d
∗
β(1). Then a0 · · · ak−2 = ε0 · · · εk−2, ak−1 = εk−1− 1, and σk(a) >lex

d∗
β(k)(1). As in the first part of the proof, we obtain that valβ(k)(σk(a)) ≤ 1

and that dβ(k)(1) must be finite. By iterating the reasoning, we obtain that
a = d∗β(1), a contradiction. �

2.3.4 Greedy admissible sequences

In this section, we generalize Theorem 1.4.15, namely Parry’s theorem, to
Cantor bases by characterizing greedy β-admissible sequences.

Lemma 2.3.31. Let a be an infinite word over N and for each n ∈ N, let
b(n) be a β(n)-representation of 1. Suppose that for all n ∈ N, σn(a) ≤lex b

(n).
Then for all k, l,m, n ∈ N with l ≥ 1, the following implication holds:

ak · · · ak+l−1 <lex b
(n)
m · · · b

(n)
m+l−1

=⇒ (2.6)

valβ(k)(ak · · · ak+l−1) ≤ valβ(k)(b(n)
m · · · b

(n)
m+l−1).

Consequently, for all k,m, n ∈ N, the following implication holds:

σk(a) <lex σ
m(b(n)) =⇒ valβ(k)(σk(a)) ≤ valβ(k)(σm(b(n))). (2.7)

Proof. Proceed by induction on l. The base case l = 1 is clear. Let l ≥ 2
and suppose that for all l′ < l and all k,m, n ∈ N, the implication (2.6) is

true. Now let k,m, n ∈ N and suppose that ak · · · ak+l−1 <lex b
(n)
m · · · b(n)

m+l−1.
Two cases are possible.

Case 1: ak = b
(n)
m . Then ak+1 · · · ak+l−1 <lex b

(n)
m+1 · · · b

(n)
m+l−1 and by

induction hypothesis, we obtain that

valβ(k+1)(ak+1 · · · ak+l−1) ≤ valβ(k+1)(b
(n)
m+1 · · · b

(n)
m+l−1).

Therefore

valβ(k)(ak · · · ak+l−1) =
ak
βk

+
valβ(k+1)(ak+1 · · · ak+l−1)

βk

≤ b
(n)
m

βk
+

valβ(k+1)(b
(n)
m+1 · · · b

(n)
m+l−1)

βk

= valβ(k)(b(n)
m · · · b

(n)
m+l−1).

Case 2: ak < b
(n)
m . Since σk+1(a) ≤lex b

(k+1) by hypothesis, we have

ak+1 · · · ak+l−1 ≤lex b
(k+1)
0 · · · b(k+1)

l−2 .
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By induction hypothesis,

valβ(k+1)(ak+1 · · · ak+l−1) ≤ valβ(k+1)(b
(k+1)
0 · · · b(k+1)

l−2 ) ≤ 1.

Then

valβ(k)(ak · · · ak+l−1) =
ak
βk

+
valβ(k+1)(ak+1 · · · ak+l−1)

βk

≤ b
(n)
m − 1

βk
+

valβ(k+1)(b
(k+1)
0 · · · b(k+1)

l−2 )

βk

≤ valβ(k)(b(n)
m · · · b

(n)
m+l−1).

Thus, the implication (2.6) is proved. The implication (2.7) immediately
follows. �

Lemma 2.3.32. Let a be an infinite word over N and for each n ∈ N, let
b(n) be a β(n)-representation of 1. Suppose that for all n ∈ N, σn(a) <lex b

(n).
Then for all n ∈ N, valβ(n)(σn(a)) < 1 unless there exists l ∈ N≥1 such that

• b(n) = b
(n)
0 · · · b

(n)
l−1 with b

(n)
l−1 > 0

• anan+1 · · · an+l−1 = b
(n)
0 · · · b

(n)
l−2(b

(n)
l−1 − 1)

• valβ(n+l)(σn+l(a)) = 1

in which case valβ(n)(σn(a)) = 1.

Proof. Let n ∈ N. By hypothesis, σn(a) <lex b
(n). So there exists l ∈ N≥1

such that an · · · an+l−2 = b
(n)
0 · · · b

(n)
l−2 and an+l−1 < b

(n)
l−1. By hypothesis, we

also have σn+l(a) <lex b
(n+l). We get from Lemma 2.3.31 that

valβ(n+l)(σn+l(a)) ≤ valβ(n+l)(b(n+l)) = 1.

Then

valβ(n)(σn(a)) = valβ(n)(an · · · an+l−2) +
an+l−1∏n+l−1
i=n βi

+
valβ(n+l)(σn+l(a))∏n+l−1

i=n βi

≤ valβ(n)(b
(n)
0 · · · b

(n)
l−2) +

b
(n)
l−1 − 1∏n+l−1
i=n βi

+
1∏n+l−1

i=n βi

= valβ(n)(b
(n)
0 · · · b

(n)
l−1)
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≤ 1.

Moreover, the equality holds throughout if and only if b(n) = b
(n)
0 · · · b

(n)
l−1,

an+l−1 = b
(n)
l−1 − 1 and valβ(n+l)(σn+l(a)) = 1. The conclusion follows. �

The following theorem generalizes Parry’s theorem for real bases.

Theorem 2.3.33. An infinite word a over N belongs to Dβ if and only if
for all n ∈ N, σn(a) <lex d

∗
β(n)(1).

Proof. In view of Corollary 2.3.14, it suffices to show that the following two
assertions are equivalent.

1. For all n ∈ N, valβ(n)(σn(a)) < 1.

2. For all n ∈ N, σn(a) <lex d
∗
β(n)(1).

The fact that (1) implies (2) follows from Proposition 2.3.30. Since any
quasi-greedy expansion of 1 is infinite, we obtain that (2) implies (1) by
Proposition 2.3.29 and Lemma 2.3.32. �

Example 2.3.34. Let β = (3, ϕ, ϕ) be the alternate base already studied
in Examples 2.3.8 and 2.3.24. The sequence a = 210(110)ω is the greedy
β-expansion of some x ∈ (0, 1). In fact, since d∗

β(0)(1) = (210)ω, d∗
β(1)(1) =

(102)ω and d∗
β(2)(1) = 1(110)ω, by Theorem 2.3.33, there exists x ∈ [0, 1)

such that a = dβ(x). We can compute that a = dβ(valβ(a)) = dβ
(

19+9
√

5
3(7+3

√
5)

)
.

We obtain a corollary characterizing the greedy β-expansions of a real
number x in the interval [0, 1] among all its β-representations.

Corollary 2.3.35. A β-representation a of some real number x ∈ [0, 1] is
its greedy β-expansion if and only if for all n ∈ N≥1, σn(a) <lex d

∗
β(n)(1).

Proof. Let a ∈ NN be such that valβ(a) ∈ [0, 1]. From Theorem 2.3.33, σ(a)
belongs to Dβ(1) if and only if for all n ∈ N≥1, σn(a) <lex d∗

β(n)(1). The

conclusion then follows from Proposition 2.3.13. �

Example 2.3.36. Consider β =
(

16+5
√

10
9 , 9

)
. Then dβ(1) = d∗β(1) =

34(27)ω, dβ(1)(1) = 90ω and d∗
β(1)(1) = 834(27)ω. For all m ∈ N≥1, we have
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σ2m(34(27)ω) <lex d
∗
β(1) and σ2m−1(34(27)ω) <lex d

∗
β(1)(1) as prescribed by

Corollary 2.3.35.

In comparison with the β-expansion theory, considering a Cantor base
β and an infinite word a over N, Corollary 2.3.35 does not give a purely
combinatorial condition to check whether a is the greedy β-expansion of 1.
We will see in Chapter 3 that even though an improvement of this result in
the context of alternate bases can be proved, a purely combinatorial condition
cannot exist.

2.3.5 The greedy β-shift

Definition 2.3.37. Let Sβ denote the topological closure of Dβ with respect
to the prefix distance of infinite words, that is, Sβ = Dβ.

Proposition 2.3.38. Let a, b ∈ Sβ.

1. If a <lex b then valβ(a) ≤ valβ(b).

2. If valβ(a) < valβ(b) then a <lex b.

Proof. Consider two sequences (a(n))n∈N and (b(n))n∈N of Dβ such that
limn→+∞ a

(n) = a and limn→+∞ b
(n) = b. Suppose that a <lex b. Then

there exists k ∈ N≥1 such that a0 · · · ak−1 = b0 · · · bk−1 and ak < bk. By
definition of the prefix distance, there exists N ∈ N such that for all n ≥
N , a

(n)
0 · · · a

(n)
k = a0 · · · ak and b

(n)
0 · · · b

(n)
k = b0 · · · bk. Therefore, for all

n ≥ N , we have a(n) <lex b
(n), and then by Proposition 2.3.17, valβ(a(n)) <

valβ(b(n)). Since the function valβ is continuous, by letting k tend to infinity,
we obtain valβ(a) ≤ valβ(b). This proves the first item. The second item
follows immediately. �

Thanks to the generalization of Parry’s theorem in Theorem 2.3.33, we
get the following combinatorial characterization of the set Sβ.

Proposition 2.3.39. An infinite word a over N belongs to Sβ if and only if
for all n ∈ N, σn(a) ≤lex d

∗
β(n)(1).

Proof. Suppose that a ∈ Sβ. Then there exists a sequence (a(k))k∈N of Dβ
converging to a. By Theorem 2.3.33, for all k, n ∈ N, we have σn(a(k)) <lex

d∗
β(n)(1). By letting k tend to infinity, we get that for all n ∈ N, σn(a) ≤lex

d∗
β(n)(1).
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Conversely, suppose that for all n ∈ N, σn(a) ≤lex d∗
β(n)(1). For each

k ∈ N, let a(k) = a0 · · · ak0ω. Then limk→+∞ a
(k) = a and for all k, n ∈ N,

σn(a(k)) ≤lex σ
n(a) ≤lex d

∗
β(n)(1). Since d∗

β(n)(1) is infinite, for all k, n ∈ N,

σn(a(k)) <lex d∗
β(n)(1). By Theorem 2.3.33, we deduce that for all k ∈ N,

a(k) ∈ Dβ. Therefore a ∈ Sβ. �

Corollary 2.3.40. For all a ∈ Sβ, we have σ(a) ∈ Sβ(1).

Example 2.3.41. Consider the alternate base β =
(

1+
√

13
2 , 5+

√
13

6

)
. Since

we have d∗β(1) = 200(10)ω and d∗
β(1)(1) = (10)ω, the infinite word 020ω

belongs to the set Sβ(1) . The infinite word σ(020ω) = 20ω belongs to the set
Sβ. However, it does not belong to the set Sβ(1) .

As illustrated in the previous example, the closed set Sβ is not shift-
invariant. Let us define another closed set which will be proved to be shift-
invariant.

Definition 2.3.42. We set

∆β =
⋃
n∈N

Dβ(n) and Σβ = ∆β.

Proposition 2.3.43. The sets ∆β and Σβ are both shift-invariant.

Proof. Let a be an infinite word over N and n ∈ N. It follows from Corol-
lary 2.3.14 that if a ∈ Dβ(n) then σ(a) ∈ Dβ(n+1) . Then, it is easily seen that
if a ∈ Sβ(n) then σ(a) ∈ Sβ(n+1) . �

In view of Proposition 2.3.43, the subset Σβ of AN
β is a subshift, which

we call the greedy β-shift .

Proposition 2.3.44. We have Fac(Sβ) = Fac(Dβ) = Fac(∆β) = Fac(Σβ).

Proof. By definition, we have Fac(Sβ) = Fac(Dβ), Fac(∆β) = Fac(Σβ) and
Fac(Dβ) ⊆ Fac(∆β). Let us show that Fac(Dβ) ⊇ Fac(∆β). Let f ∈
Fac(∆β). There exist n ∈ N and a ∈ Dβ(n) such that f ∈ Fac(a). It follows
from Corollary 2.3.14 that 0na belongs to Dβ. Therefore, f ∈ Fac(Dβ). �

We define sets of finite words Xβ,n for n ∈ N≥1 as follows.
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Definition 2.3.45. If d∗β(1) = t0t1 · · · then we let

Xβ,n = {t0 · · · tn−2s : s ∈ [[0, tn−1 − 1]]}.

Note that Xβ,n is empty if and only if tn−1 = 0.

Proposition 2.3.46. We have

Dβ =
⋃

n0∈N≥1

Xβ,n0

( ⋃
n1∈N≥1

Xβ(n0),n1

( ⋃
n2∈N≥1

Xβ(n0+n1),n2

(
· · ·

)))
.

Proof. For the sake of conciseness, we let Xβ denote the right-hand set of

the equality. For n ∈ N, write d∗
β(n)(1) = t

(n)
0 t

(n)
1 · · · .

Let a ∈ Dβ. By Theorem 2.3.33, for all n ∈ N, σn(a) < d∗
β(n)(1). In

particular, a < d∗β(1). Thus, there exist n0 ∈ N≥1 such that t
(0)
n0−1 > 0 and

s0 ∈ [[0, t
(0)
n0−1 − 1]] such that a = t0 · · · tn0−2s0σ

n0(a). Next, we also have

σn0(a) < d∗
β(n0)

(1). Then there exist n1 ∈ N≥1 such that t
(n0)
n1−1 > 0 and

s1 ∈ [[0, t
(n0)
n1−1− 1]] such that σn0(a) = t

(n0)
0 · · · t(n0)

n1−2s1σ
n0+n1(a). We get that

a ∈ Xβ by iterating the process.
Now, let a ∈ Xβ. Then there exists a sequence (nk)k∈N of N≥1 such

that a = u0u1u2 · · · where for all k ∈ N, uk ∈ X
β(n0+···nk−1),nk

. By Theo-

rem 2.3.33, in order to prove that a ∈ Dβ, it suffices to show that for all
n ∈ N, σn(a) <lex d

∗
β(n)(1). Let thus n ∈ N. There exist k ∈ N and finite

words x and y such that uk = xy, y 6= ε and σn(a) = yuk+1uk+2 · · · . Then
n = n0 + · · · + nk−1 + |x| and σn(a) <lex σ|x|

(
d∗
β(n0+···nk−1)

(1)
)
. If x = ε

then we obtain σn(a) <lex d
∗
β(n0+···nk−1)

(1) = d∗
β(n)(1). Otherwise it follows

from Corollary 2.3.35 that σ|x|
(
d
β(n0+···nk−1)(1)

)
<lex d∗

β(n0+···nk−1+|x|)
(1) =

d∗
β(n)(1), hence we get σn(a) <lex d

∗
β(n)(1) as well. �

Corollary 2.3.47. We have Dβ =
⋃

n∈N≥1

Xβ,nDβ(n).

Corollary 2.3.48. Any prefix of d∗β(1) belongs to Pref(Dβ).

Proof. Write d∗β(1) = t0t1t2 · · · and let n ∈ N≥1. Since d∗β(1) is infinite,
there exists k > n such that tk−1 > 0. Choose the least such k and let
s ∈ [[0, tk−1 − 1]]. Then t0 · · · tn−10k−n−1s belongs to Xβ,k. The conclusion
follows from Proposition 2.3.46. �
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Remark 2.3.49. The analogue of Definition 2.3.45 in the real base case
splits the definition of the set depending on the finiteness of the greedy β-
expansion of 1 (see for example [Lot02, Chapter 7]). In this text, for the sake
of simplicity in the proofs, we did not split in the same way since more than
one expansion is involved while computing greedy admissible β-expansions.

We get an equivalent definition of the quasi-greedy β-expansion of 1.

Proposition 2.3.50. We have

d∗β(1) = lim
x→1−

dβ(x). (2.8)

Proof. Let t0t1 · · · denote d∗β(1). By Corollary 2.3.48, for all n ∈ N, the word
t0 · · · tn−10ω is the greedy β-expansion of a real number xn ∈ [0, 1). For all
n ∈ N, we have xn+1 = xn + tn∏n

k=0 βk
. Hence, we have xn ≤ xn+1 for all

n ∈ N. There exists r ∈ [0, 1] such that limn→+∞ xn = r. We now prove
that r = 1. Suppose r < 1. For all x ∈ (r, 1), we have x > xn for all n ∈ N.
By Proposition 2.3.17, we have dβ(x) >lex t0 · · · tn−10ω for all n ∈ N. This is
absurd since by Theorem 2.3.33, we have dβ(x) < d∗β(1) = t0t1 · · · . Hence,
we have limn→+∞ xn = 1. Now, consider x ∈ [0, 1) and let N denote the
maximal index n ∈ N such that x ≥ xn. Let a denote a β(N)-representation
of (x − xN )

∏N−1
k=0 βk. The infinite word t0 · · · tN−1a, is a β-representation

of x. By Proposition 2.3.15, we have dβ(x) ≥lex t0 · · · tN−1a. Moreover, by
Theorem 2.3.33, we have dβ(x) <lex d∗β(1). We obtain that the length-N
prefix of dβ(x) is t0 · · · tN−1. Hence, the result follows. �

In Section 2.3.1, we made a choice of definition for the greedy β-expansion
of 1 and, in Section 2.3.3, we defined d∗β(1) accordingly. One could define
the quasi-greedy β-expansion of 1 immediately as (2.8).

2.4 Lazy β-expansions

This section is concerned with the combinatorial study of lazy β-expansions
of real numbers. Recall that the lazy real base expansions had been stud-
ied only in the dynamical point of view and not in the combinatorial one.
Therefore, even if both are somehow related, results of this section can be
considered as unprecedented.
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2.4.1 Definition of xβ

Let
⊗

n∈N[[0, dβne− 1]] denote the set of infinite words a ∈ AN
β such that, for

all n ∈ N, the letter an belongs to [[0, dβne − 1]] (see Remark 1.2.8). We now
define (if it exists) the greatest real number that has a β-representation in⊗

n∈N[[0, dβne − 1]].

Definition 2.4.1. Let

xβ =
∑
n∈N

dβne − 1∏n
k=0 βk

. (2.9)

Either this series converges or xβ = +∞. If xβ < +∞, then xβ is the
greatest real number that has a β-representation in

⊗
n∈N[[0, dβne − 1]].

Example 2.4.2. Consider the sequence β = (n+2
n+1)n∈N. The sequence β is

a Cantor base since
∏
n∈N

n+2
n+1 = +∞. We get

xβ =
∑
n∈N

1∏n
k=0

k+2
k+1

=
∑
n∈N

1

n+ 2
= +∞.

The following result gives a sufficient condition in order to have xβ < +∞.

Proposition 2.4.3. Any Cantor base β that takes only finitely many values
has a finite corresponding xβ.

Proof. Consider a Cantor base β that takes only finitely many values. There
exist m,M ∈ N such that for all n ∈ N, we have βm ≤ βn ≤ βM . We get

xβ =
∑
n∈N

dβne − 1∏n
k=0 βk

≤
∑
n∈N

dβMe − 1

(βm)n+1
=
dβMe − 1

βm − 1
.

�

Corollary 2.4.4. Any alternate base β has a finite corresponding xβ.

We now link the values xβ(n) and xβ(n+1) for all n ∈ N.

Proposition 2.4.5. Let n ∈ N. Suppose that xβ(n) < +∞. We have

xβ(n) =
xβ(n+1) + dβne − 1

βn
. (2.10)
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Proof. Let n ∈ N and suppose that xβ(n) < +∞. We have

xβ(n) =
∑
m∈N

dβn+me − 1∏m
k=0 βn+k

.

Therefore, we obtain

xβ(n) =
dβne − 1

βn
+

+∞∑
m=1

dβn+me − 1∏m
k=0 βn+k

=
dβne − 1

βn
+
xβ(n+1)

βn
.

The conclusion follows. �

Since the greedy algorithm converges on [0, 1] (see Section 2.3.1), it can
be easily seen that xβ ≥ 1. In fact, since dβ(1) belongs to the set of words⊗

n∈N[[0, dβne − 1]], we have

xβ =
∑
n∈N

dβne − 1∏n
k=0 βk

≥
∑
n∈N

εn(1)∏n
k=0 βk

= 1.

Lemma 2.4.6. We have xβ = 1 if and only if βn ∈ N≥2 for all n ∈ N.

Proof. By (2.10), we have xβ = 1 if and only if

1 =
xβ(1) + dβ0e − 1

β0
.

However, we have xβ(1) ≥ 1 so xβ(1) + dβ0e − 1 ≥ dβ0e. Hence, we get
xβ = 1 if and only if xβ(1) = 1 and dβ0e = β0. The conclusion follows by
induction. �

Example 2.4.7. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ) already

widely studied in Section 2.3. We get xβ = 5+7
√

13
18 ' 1.67 and xβ(1) =

2+
√

13
3 ' 1.86.

Example 2.4.8. 2 Let α, β > 1 and let β = (α, β, β, α, β, α, α, β, . . .) be the
Thue-Morse Cantor base on {α, β} defined as (2.2). For all n ≥ 1, let

xn =

2n−1∑
m=0

dβme − 1∏m
k=0 βk

.

2I thank Jean-Pierre Schneiders for suggesting the way to approximate the value of xβ
in this example.



68 Chapter 2. Combinatorial properties of Cantor real base expansions

We get xβ = limn→+∞ xn. Similarly, let β denote the Cantor base β =
(βn)n∈N where α = β and β = α. We get β = (β, α, α, β, α, β, β, α, . . .). For
all n ≥ 1, write

yn =

2n−1∑
m=0

⌈
βm

⌉
− 1∏m

k=0 βk
.

By definition of the Thue-Morse sequence (see Definition 1.2.15), for all n ∈ N
we have

(β2n , β2n+1, . . . , β2n+1−1) = (β0, β1, . . . , β2n−1).

Moreover, for all n ≥ 1, the sequence (β0, . . . , β2n−1) has the same number
of α and β. We get

∏2n−1
k=0 βk = (αβ)2n−1

. Hence, we have
x1 = dαe−1

α + dβe−1
αβ ,

y1 = dβe−1
β + dαe−1

βα ,

xn+1 = xn + 1

(αβ)2n−1 yn, ∀n ≥ 1

yn+1 = yn + 1

(αβ)2n−1 xn, ∀n ≥ 1.

That is, for all n ≥ 1, we have

vn+1 = Anvn

where,

vn =

(
xn
yn

)
and An =

(
1 1

(αβ)2n−1

1

(αβ)2n−1 1

)
.

For all n ≥ 1, the eigenvalues of the matrix An are 1+ 1

(αβ)2n−1 and 1− 1

(αβ)2n−1

of eigenvectors

(
1
1

)
and

(
1
−1

)
respectively. Moreover, we have

v1 = x1+y1
2

(
1
1

)
+ x1−y1

2

(
1
−1

)
.

We obtain

vn+1 = AnAn−1 · · ·A1v1

= x1+y1
2 AnAn−1 · · ·A1

(
1
1

)
+ x1−y1

2 AnAn−1 · · ·A1

(
1
−1

)
= x1+y1

2

n∏
k=1

(
1 + 1

(αβ)2k−1

)(1
1

)
+ x1−y1

2

n∏
k=1

(
1− 1

(αβ)2k−1

)( 1
−1

)
.
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Then, the value of xβ can be computed by

xβ = lim
n→+∞

xn = x1+y1
2

∏
k∈N≥1

(
1 + 1

(αβ)2k−1

)
+ x1−y1

2

∏
k∈N≥1

(
1− 1

(αβ)2k−1

)
.

We now study the first3 infinite product in the above formula. We have( ∏
k∈N≥1

(
1 + 1

(αβ)2k−1

))( ∏
k∈N≥1

(
1− 1

(αβ)2k−1

))
=
∏

k∈N≥1

((
1 + 1

(αβ)2k−1

)(
1− 1

(αβ)2k−1

))

=
+∞∏
k=2

(
1− 1

(αβ)2
k−1

)
.

Hence, we get ∏
k∈N≥1

(
1 + 1

(αβ)2k−1

)
=

1

1− 1
αβ

.

Then, the value of xβ can be computed by

xβ = x1+y1
2

( 1

1− 1
αβ

)
+ x1−y1

2

∏
k∈N≥1

(
1− 1

(αβ)2k−1

)
.

In particular, by considering the Cantor base from Example 2.3.6, a computer
approximation of

∏
k∈N≥1

(
1− 1

(αβ)2k−1

)
gives 0.627941. Hence, we get xβ '

1.73295.

2.4.2 The lazy algorithm

If xβ < +∞ the lazy β-expansions are defined. Hence, from now on, when
dealing with the lazy algorithm, we consider Cantor bases β = (βn)n∈N such
that xβ < +∞.

In the greedy algorithm, each digit is chosen as the largest possible at
the considered position. On the contrary, in the lazy algorithm, each digit is
chosen as the least possible at each step.

3Note that the infinite product
∏
k∈N≥1

(
1 − z2

k−1)
(which cannot be simplified in

general) is equal to the generating function of the sequence
(
(−1)tn

)
n∈N where t0t1t2 · · ·

is the Thue-Morse sequence over the alphabet {0, 1}.
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Definition 2.4.9. The lazy algorithm is defined as follows: for x ∈ (xβ −
1, xβ], if the first N digits of the lazy β-expansion of x are given by
ξβ,0, . . . , ξβ,N−1, then the next digit ξβ,N is the least element in [[0, dβNe−1]]
such that

N∑
n=0

ξβ,n∏n
k=0 βk

+

+∞∑
n=N+1

dβne − 1∏n
k=0 βk

≥ x,

or equivalently,
N∑
n=0

ξβ,n∏n
k=0 βk

+
xβ(N+1)∏N
k=0 βk

≥ x.

The lazy algorithm over (xβ − 1, xβ] can be equivalently defined as follows:

• ξβ,0(x) = dβ0x− xβ(1)e and sβ,0(x) = β0x− ξβ,0(x)

• ξβ,n(x) = dβnsβ,n−1(x)− xβ(n+1)e and sβ,n(x) = βnsβ,n−1(x)− ξβ,n(x)
for n ∈ N≥1.

The obtained β-representation of x ∈ (xβ − 1, xβ] is denoted by `β(x) and
is called the lazy β-expansion of x.

As before, if the context is clear, the index β in the writings ξβ,n(x) and
sβ,n(x) are omitted.

Example 2.4.10. We continue Examples 2.3.9 and 2.4.7. The first 5 digits

of `β(35−5
√

13
18 ) are 10212.

Any greedy β-expansions of real numbers in [0, 1) and lazy β-expansions
of real numbers in (xβ − 1, xβ] belong to AN

β and more precisely to the set
of words

⊗
n∈N[[0, dβne − 1]].

2.4.3 Flip greedy and get lazy

In this section greedy and lazy Cantor base expansions are compared.

Definition 2.4.11. Let θβ be the map defined by

θβ :
⊗
n∈N

[[0, dβne − 1]]→
⊗
n∈N

[[0, dβne − 1]],

a0a1 · · · 7→ (dβ0e − 1− a0)(dβ1e − 1− a1) · · · .
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The map θβ is continuous with respect to the topology induced by the
prefix distance, bijective and the inverse map θ−1

β is the map θβ itself. For
any infinite word a ∈

⊗
n∈N[[0, dβne − 1]], we get

valβ(θβ(a)) = xβ − valβ(a). (2.11)

Moreover, the map θβ is decreasing with respect to the lexicographic order,
that is, for all infinite words a and b in

⊗
n∈N[[0, dβne − 1]], we get

a <lex b ⇐⇒ θβ(a) >lex θβ(b). (2.12)

The map θβ is the key of the reasoning in order to link the greedy and the
lazy β-expansions. In fact, as shown in the following result, it will allow us
to “flip” the greedy expansions in order to get the lazy ones.

Proposition 2.4.12. For all x ∈ [0, 1) and all n ∈ N, we have ξβ,n(xβ−x) =
dβne − 1 − εβ,n(x) and sβ,n(xβ − x) = xβ(n+1) − rβ,n(x). In particular, we
get

`β(xβ − x) = θβ(dβ(x)).

Proof. Consider x ∈ [0, 1). We proceed by induction on n. By (2.10), we
have

ξβ,0(xβ − x) =dβ0(xβ − x)− xβ(1)e

= ddβ0e − 1− β0xe
= dβ0e − 1 + d−β0xe
= dβ0e − 1− bβ0xc
= dβ0e − 1− εβ,0(x).

Moreover, we get

sβ,0(xβ − x) =β0(xβ − x)− (dβ0e − 1− εβ,0(x))

=β0xβ − (dβ0e − 1)− (β0x− εβ,0(x))

=xβ(1) − rβ,0(x)

where (2.10) is used again in the last equality. By induction, for all n ∈ N≥1,
we have

ξβ,n(xβ − x) =dβnsβ,n−1(xβ − x)− xβ(n+1)e

=dβn(xβ(n) − rβ,n−1(xβ − x))− xβ(n+1)e

= ddβne − 1− βnrβ,n−1(xβ − x)e
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= dβne − 1− bβnrβ,n−1(xβ − x)c
= dβne − 1− εβ,n(x)

and

sβ,n(xβ − x) =βnsβ,n−1(xβ − x)− ξβ,n(xβ − x)

=βn(xβ(n) − rβ,n−1(x))− (dβne − 1− εβ,n(x))

=xβ(n+1) − rβ,n(x).

In particular, we can conclude that `β(xβ − x) = θβ(dβ(x)). �

Example 2.4.13. Let β = (1+
√

13
2 , 5+

√
13

6 ) be the alternate base considered
in Example 2.3.9. By Proposition 2.4.12, the lazy β-expansion of xβ −
−5+2

√
13

3 = 25−5
√

13
18 equals 10(21)ω since dβ(−5+2

√
13

3 ) = 11. This coincides
with Example 2.4.10.

Example 2.4.14. We continue Examples 2.3.6 and 2.4.8 where β is the
Thue-Morse Cantor base. By Proposition 2.4.12, the lazy β-expansion of
xβ − 1

2 ' 1.23295 has 11120 as a prefix since 10001 is a prefix of dβ(1
2).

2.4.4 First properties of lazy expansions

Thanks to Proposition 2.4.12 results from Section 2.3 on greedy β-expansions
will be translated in terms of lazy β-expansions. The differences between the
greedy and lazy β-expansions will be highlighted in the text.

Lemma 2.4.15. For all n ∈ N, we have

σn ◦ θβ = θβ(n) ◦ σn

on
⊗

n∈N[[0, dβne − 1]].

Proof. Consider n ∈ N and a ∈
⊗

n∈N[[0, dβne − 1]]. We have

σn ◦ θβ(a) = σn
(
(dβ0e − 1− a0)(dβ1e − 1− a1) · · ·

)
= (dβne − 1− an)(dβn+1e − 1− an+1) · · ·
= θβ(n)(anan+1 · · · )

= θβ(n) ◦ σn(a).

�
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Proposition 2.4.16. For all x ∈ (xβ − 1, xβ] and all n ∈ N, we have

σn(`β(x)) = `β(n)(sβ,n−1(x)).

Proof. This is a consequence of Proposition 2.4.12, Lemma 2.4.15 and Propo-
sition 2.3.10 since for all x ∈ (xβ − 1, xβ] we have

σn(`β(x)) = σn ◦ θβ(dβ(xβ − x))

= θβ(n) ◦ σn(dβ(xβ − x))

= θβ(n)(dβ(n)(rβ,n−1(xβ − x)))

= `β(n)(xβ(n) − rβ,n−1(xβ − x))

= `β(n)(sβ,n−1(x)).

�

Proposition 2.4.17. Let a be an infinite word over N and x ∈ (xβ− 1, xβ].
We have a = `β(x) if and only if a ∈

⊗
n∈N[[0, dβne − 1]], valβ(a) = x and

for all N ∈ N,
+∞∑

n=N+1

an∏n
k=0 βk

>
xβ(N+1) − 1∏N

k=0 βk
.

Proof. Consider a ∈ NN and x ∈ (xβ − 1, xβ]. By Proposition 2.4.12, we
have a = `β(x) if and only if a ∈

⊗
n∈N[[0, dβne−1]] and θβ(a) = dβ(xβ−x).

By Lemma 2.3.12, we get a = `β(x) if and only if a ∈
⊗

n∈N[[0, dβne − 1]],
valβ(θβ(a)) = xβ − x and for all N ∈ N,

+∞∑
n=N+1

dβne − 1− an∏n
k=0 βk

<
1∏N

k=0 βk
.

We conclude the proof by (2.11) and by definition of xβ(N+1) . �

Proposition 2.4.18. The lazy β-expansion of a real number x ∈ (xβ−1, xβ]
is lexicographically minimal among all β-representations of x in⊗

n∈N[[0, dβne − 1]].

Proof. Consider a real number x ∈ (xβ − 1, xβ] and an infinite word a ∈⊗
n∈N[[0, dβne − 1]] be a β-representation of x. Suppose that a <lex `β(x).

By (2.12), we get θβ(a) >lex θβ(`β(x)). By (2.11), θβ(a) is a β-representation
of xβ − x. Moreover, by Proposition 2.4.12 and since the inverse map θ−1

β
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is the map θβ itself, we have θβ(`β(x)) = dβ(xβ − x). This is absurd since,
by Proposition 2.3.15, dβ(xβ − x) is lexicographically maximal among all
β-representations of xβ − x. �

Note that, contrary to Proposition 2.3.15, it cannot be stated that “the
lazy β-expansion of a real number x ∈ (xβ − 1, xβ] is lexicographically min-
imal among all β-representations of x”. In fact, the alphabet of the β-
representations of x must be fixed as shown in the following example.

Example 2.4.19. Let β be the alternate base from Example 2.3.9 and con-
sider x = 8− 2

√
13. We have x ∈ (xβ − 1, xβ] and the lazy β-expansion of x

has 01 as a prefix. However, the infinite word 003330ω is a β-representation
of x and 003330ω <lex `β(x). This does not contradict Proposition 2.4.18
since the infinite word 003330ω does not belong to

⊗
n∈N[[0, dβne − 1]].

Proposition 2.4.20. The function `β : (xβ − 1, xβ]→ Aβ
N is increasing:

∀x, y ∈ (xβ − 1, xβ], x < y ⇐⇒ `β(x) <lex `β(y).

Proof. Consider x, y ∈ (xβ − 1, xβ]. By Propositions 2.3.17 and 2.4.12 and
by (2.12), we have

x < y ⇐⇒ xβ − x > xβ − y
⇐⇒ dβ(xβ − x) >lex dβ(xβ − y)

⇐⇒ θβ(`β(x)) >lex θβ(`β(y))

⇐⇒ `β(x) <lex `β(y).

�

Remark 2.4.21. Considering two Cantor bases α = (αn)n∈N and β =
(βn)n∈N such that for all n ∈ N,

∏n
i=0 αi ≤

∏n
i=0 βi, by Proposition 2.3.19,

we have dα(x) ≤lex dβ(x) for all x ∈ [0, 1). However, an analogous result
cannot be obtained for the lazy expansions. In fact, since the interval of
definition of the lazy expansions depends on the considered Cantor base, it
is not possible to state a result of the form “for all x ∈ I, we have `α(x) ≤lex

`β(x) (or `α(x) ≥lex `β(x))” where I is a fixed interval. Moreover, it is
neither correct to say “for all x ∈ [0, 1), we have `α(xα − x) ≤lex `β(xβ − x)
(or `α(xα − x) ≥lex `β(xα − x))”. Indeed, this can already be seen while
considering real bases, that is, β = (β, β, . . .) with β > 1, as illustrated in
Figure 2.4 (where the notation β, xβ and `β(·) are used instead of β, xβ and
`β(·)).
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β 2 11
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xβ
d2e−1
2−1 = 1
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5
−1
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−1
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`β(xβ − 1
2) 01ω 1221 · · · 1211 · · ·

Figure 2.4: Some lazy β-expansions when β = (β, β, . . .) with β > 1.

Remark 2.4.22. Note that, some results as Propositions 2.4.16 and 2.3.17
could also have been proved easily without any prerequisite from Section 2.3.
In this section, a choice has been made, that is, to use as much as possible
Proposition 2.4.12 and results from Section 2.3.

2.4.5 A word on the lazy expansion of xβ − 1

In Section 2.3, as explained in Remark 2.3.16, we made a choice of definition
for the greedy β-expansion of 1. One could have expected to define the lazy
β-expansion of xβ − 1 analogously, which is not done in Section 2.4.2. In
this section, we will define it and compare it with the greedy β-expansion of
1.

By definition of the lazy algorithm from Section 2.4.2, the digits are
picked as the smallest possible at each step. Hence, by extending the lazy
algorithm to the real number xβ − 1, we get that digit ξβ,0(xβ − 1) should
be the least element in [[0, dβ0e − 1]] such that

ξβ,0(xβ − 1)

β0
+
xβ(1)

β0
≥ xβ − 1.

By (2.10), we get that ξβ,0(xβ−1) = 0 satisfies the wanted inequality. Hence,
the first digit of `β(xβ−1) is 0 and its suffix starting at position 1 is the lazy

β(1)-expansion of β0(xβ−1) which, by (2.10), is equal to xβ(1) +dβ0e−1−β0

in [xβ(1) − 1, xβ(1)). That is,

`β(xβ − 1) = 0 `β(1)(xβ(1) + dβ0e − 1− β0).

By construction, we obtain that the lazy β-expansion of xβ − 1 is lexico-
graphically minimal among all β-representations of xβ−1 in

⊗
n∈N[[0, dβne−

1]]. This extends Proposition 2.4.18.
However, it is important to note that the equivalent definition of the lazy

algorithm over (xβ − 1, xβ] using the ceiling function, given in Section 2.4.2,
is not valid for the real number xβ − 1 when β0 ∈ N≥2. In fact, we have
dβ0(xβ − 1) − xβ(1)e = −1 where −1 cannot appear as a letter of a β-
representation. Hence, `β(xβ − 1) would have not been the image of dβ(1)
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by the map θβ when β0 is an integer since if β0 ∈ N≥2, we have dβ(1) =
β00ω whereas the first letter of `β(xβ − 1) is 0. However, if β0 /∈ N≥2, the
lazy algorithm using the ceiling function can be used in order to compute
the digits of `β(xβ − 1). As a consequence, it can be proved similarly to
Proposition 2.4.12 that in that case we have `β(xβ − 1) = θβ(dβ(1)).

As a conclusion, if we decided to define `β(xβ − 1), we would not have
been able to extend the algorithm with the ceilings from Section 2.4.2, and
moreover, we could not have given the property `β(xβ − 1) = θβ(dβ(1))
since we would have had to separate the statement into two cases: if β0 is
an integer or not. Therefore, to avoid this ambiguity, I have decided to no
longer work with `β(xβ − 1).

2.4.6 Quasi-lazy expansions

In this section, we define the quasi-lazy β-expansion of xβ − 1 in order
to obtain similar results from Section 2.3.4 for lazy expansions and more
precisely an analogue of Parry’s theorem characterizing the lazy expansions
of real numbers in (xβ − 1, xβ].

Proposition 2.4.23. The limit limx→(xβ−1)+ `β(x) exists and is equal to
θβ(d∗β(1)).

Proof. By Proposition 2.4.12 and by continuity of θβ, we get

lim
x→(xβ−1)+

`β(x) = lim
x→(xβ−1)+

θβ(dβ(xβ − x))

= θβ
(

lim
x→(xβ−1)+

dβ(xβ − x)
)

= θβ
(

lim
y→1−

dβ(y)
)

= θβ(d∗β(1))

where the last equality is due to Proposition 2.3.50. �

Definition 2.4.24. The quasi-lazy β-expansion of xβ−1 is the infinite word
defined as follows:

`∗β(xβ − 1) = lim
x→(xβ−1)+

`β(x). (2.13)

By Proposition 2.4.23, this limit exists and, similarly to Proposition 2.4.12,
the “flip” of the quasi-greedy β-expansions of 1 is the quasi-lazy β-expansion
of xβ − 1.
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Proposition 2.4.25. We have `∗β(xβ − 1) = θβ(d∗β(1)).

Proof. This is immediate by definition of the quasi-lazy β-expansion of xβ−1
and by Proposition 2.4.23. �

Example 2.4.26. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ). By
Example 2.3.27, we have d∗β(1) = 200(10)ω, d∗

β(1)(1) = (10)ω. Hence, by

Proposition 2.4.25, we get `∗β(xβ−1) = 012(02)ω and `β(1)(xβ(1)−1) = (02)ω.

Proposition 2.4.27. The quasi-lazy expansion `∗β(xβ−1) is a β-representa-
tion of xβ − 1.

Proof. This is direct by Propositions 2.4.25 and 2.3.29 and by (2.11). �

Note that, in comparison with the quasi-greedy β-expansion of 1 which
is always infinite, the quasi-lazy β-expansion of xβ − 1 can be either finite
or infinite.

Example 2.4.28. Consider an alternate base β = (β0, . . . , βp−1) such that
for all i ∈ [[0, p − 1]], βi ∈ N≥2. From Example 2.3.25, we get d∗

β(i)(1) =

((βi − 1) · · · (βp−1 − 1)(β0 − 1) · · · (βi−1 − 1))ω and since, by Lemma 2.4.6,
xβ(i) = 1 for all i ∈ [[0, p− 1]], we have `∗

β(i)(0) = 0ω.

The following result gives a necessary condition on the Cantor base β for
having a finite quasi-lazy β-expansion of xβ − 1.

Proposition 2.4.29. If the quasi-lazy β-expansion of xβ − 1 is finite of
length n ∈ N, then xβ(n) = 1.

Proof. Suppose that `∗β(xβ − 1) = `0 · · · `n−10ω with n ∈ N and `n−1 6= 0 (if
it exists, that is, if n 6= 0). By Proposition 2.4.25, we get that

d∗β(1) = (dβ0e − 1− `0) · · · (dβn−1e − 1− `n−1)(dβne − 1)(dβn+1e − 1) · · · .

However, by Proposition 2.3.39, we know that

σn(d∗β(1)) = (dβne − 1)(dβn+1e − 1) · · · ≤lex d
∗
β(n)(1).

Hence, we obtain that σn(d∗β(1)) = d∗
β(n)(1). We conclude that

xβ(n) = valβ(n)(σn(d∗β(1)))
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= valβ(n)(d∗
β(n)(1))

= 1

where the last equality is due to Proposition 2.3.29. �

Corollary 2.4.30. If the quasi-lazy β-expansion of xβ−1 is finite of length
n ∈ N, then βk ∈ N≥2 for all k ≥ n.

Proof. This immediately follows from Proposition 2.4.29 and Lemma 2.4.6.
�

As the following example shows, the necessary conditions given by the
previous proposition and corollary are not sufficient.

Example 2.4.31. Consider the Cantor base β = (4
3 , 2, 2, 2, 2, 2 · · · ). We

have xβ = 3
2 and xβ(n) = 1 for all n ≥ 1. However, we have d∗β(1) = (10)ω

and `∗β(xβ − 1) = (01)ω.

Definition 2.4.32. An infinite word w ∈
⊗

n∈N[[0, dβne − 1]] is said ulti-
mately maximal if there exists N ∈ N such that for all n ≥ N , we have
wn = dβne − 1.

Lemma 2.4.33. The infinite word `∗β(xβ−1) cannot be ultimately maximal.

Proof. This is a direct consequence of Proposition 2.4.25 since d∗β(1) is infi-
nite. �

We now prove that `∗β(xβ−1) is lexicographically smaller than all other β-
representations of real numbers in (xβ−1, xβ] belonging to

⊗
n∈N[[0, dβne−1]].

Proposition 2.4.34. If a is an infinite word in
⊗

n∈N[[0, dβne−1]] such that
valβ(a) ∈ (xβ − 1, xβ], then a >lex `

∗
β(xβ − 1).

Proof. Let a be an infinite word in
⊗

n∈N[[0, dβne − 1]] such that valβ(a) ∈
(xβ − 1, xβ]. Then θβ(a) is an infinite word over

⊗
n∈N[[0, dβne − 1]] and

by (2.11), we have valβ(θβ(a)) = xβ−valβ(a) ∈ [0, 1). By Proposition 2.3.30,
we get that θβ(a) <lex d∗β(1). Moreover, by Proposition 2.4.25, we have
d∗β(1) = θβ(`∗β(xβ − 1)). Hence, by (2.12), we conclude that a >lex `

∗
β(xβ −

1). �
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Note that, similarly to Proposition 2.4.18, Proposition 2.4.34 is weaker
than its analogous greedy one, that is, Proposition 2.3.30, since we fix the
alphabet of the β-representations. A stronger result cannot be stated as
illustrated in the next example.

Example 2.4.35. Continuing Examples 2.4.19 and 2.4.26, the infinite word
003330ω is a β-representation of 8−2

√
13. However 003330ω <lex 012(02)ω =

`∗β(xβ − 1).

By Proposition 2.3.30, the word d∗β(1) is lexicographically maximal among
all infinite β-representations of all real numbers in [0, 1]. The following result
gives the translation of this property in terms of the lazy representations.

Proposition 2.4.36. The quasi-lazy β-expansion of xβ − 1 is the lexico-
graphically least β-representation of xβ − 1 in

⊗
n∈N[[0, dβne − 1]] that is not

ultimately maximal.

Proof. By Proposition 2.4.27 and Lemma 2.4.33, the quasi-lazy β-expansion
of xβ − 1 is a β-representation of xβ − 1 in

⊗
n∈N[[0, dβne − 1]] which is not

ultimately maximal. Moreover, let a be an infinite word in
⊗

n∈N[[0, dβne−1]]
such that valβ(a) = xβ−1 and suppose that a <lex `

∗
β(xβ−1). As above, we

get θβ(a) >lex d
∗
β(1) with valβ(θβ(a)) = 1. By Proposition 2.3.30, the word

θβ(a) must be a finite β-representation of 1. By setting N to the length of
the longest prefix of θβ(a) not ending with 0, we get an = dβne − 1 for all
n ≥ N , that is, a is ultimately maximal in

⊗
n∈N[[0, dβne − 1]]. �

Remark 2.4.37. In order to “directly” compute the quasi-lazy β-expansion
of xβ−1 without using a limit on words (as for the quasi-greedy β-expansion,
see (2.5)), one could have define the lazy β-expansion of xβ − 1 (which was
not the choice made in this text as explained in Section 2.4.5) and define
`∗β(xβ − 1) respectively as follows: `∗β(xβ − 1) = `β(xβ − 1) if `β(xβ − 1) is
not ultimately periodic and `∗β(xβ−1) = ξ0 · · · ξn−2(ξn−1 + 1)`∗

β(n)(xβ(n) −1)

if ξn−1 < dβn−1e − 1 and for all m ≥ n, we have ξm = dβme − 1.

2.4.7 Lazy admissible sequences

Definition 2.4.38. We let D′β denote the subset of AN
β of all lazy β-expans-

ions of real numbers in the interval (xβ − 1, xβ] and let S′β denote the topo-
logical closure of D′β with respect to the prefix distance of infinite words:

D′β = {`β(x) : x ∈ (xβ − 1, xβ]} and S′β = D′β.
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The following result links the sets D′β and S′β with their analogous greedy

ones Dβ = {dβ(x) : x ∈ [0, 1)} and Sβ = Dβ.

Proposition 2.4.39. The maps θβ|Dβ : Dβ → D′β and θβ|Sβ : Sβ → S′β
are both bijective.

Proof. By Proposition 2.4.12, the map θβ|Dβ is well defined and surjective.

Hence, by continuity of the map θβ, the map θβ|Sβ is also well defined and

surjective. Moreover, since the map θβ is injective, so are the maps θβ|Dβ
and θβ|Sβ . �

Proposition 2.4.40. Let a, b ∈ S′β.

1. If a <lex b then valβ(a) ≤ valβ(b).

2. If valβ(a) < valβ(b) then a <lex b.

Proof. Suppose that a, b ∈ S′β are such that a <lex b. By Proposition 2.4.39
and (2.12), we have θβ(a), θβ(b) ∈ Sβ and θβ(a) >lex θβ(b). By Proposi-
tion 2.3.38, we valβ(θβ(a)) ≥ valβ(θβ(b)). We conclude the proof of the first
item by (2.11). The second item immediately follows. �

We are now able to state a Parry-like theorem for Cantor real bases in
the lazy framework.

Theorem 2.4.41. Let a be an infinite word over N.

1. The word a belongs to D′β if and only if a ∈
⊗

n∈N[[0, dβne− 1]] and for
all n ∈ N,

σn(a) >lex `
∗
β(n)(xβ(n) − 1).

2. The word a belongs to S′β if and only if a ∈
⊗

n∈N[[0, dβne− 1]] and for
all n ∈ N,

σn(a) ≥lex `
∗
β(n)(xβ(n) − 1).

Proof. Let a be an infinite word. We have a ∈ D′β if and only if a ∈⊗
n∈N[[0, dβne − 1]] and θβ(a) ∈ Dβ. Moreover, by Theorem 2.3.33, we have

θβ(a) ∈ Dβ if and only if σn(θβ(a)) <lex d
∗
β(n)(1) for all n ∈ N. However,

for all n ∈ N, by Lemma 2.4.15, we have σn(θβ(a)) = θβ(n)(σn(a)) and by



2.4. Lazy β-expansions 81

Proposition 2.4.25, we have d∗
β(n)(1) = θβ(n)(`∗

β(n)(xβ(n) − 1)). Hence, the

first item follows from (2.12). The second item can be proved in a similar
fashion by using Proposition 2.3.39. �

Example 2.4.42. Consider β = (1+
√

13
2 , 5+

√
13

6 ). In view of Example 2.4.26,
the sequence a = (2120)ω belongs to D′β.

Note that in Theorem 2.4.41, the hypothesis that a belongs to
⊗

n∈N[[0,
dβne− 1]] is required. For otherwise, any sequence a such that an > dβne− 1
for all n ∈ N would belong to D′β.

As a consequence of Theorem 2.4.41, we can characterize the set D′β by
translating Proposition 2.3.46 and Corollaries 2.3.47 and 2.3.48 to the lazy
framework. To do so, we define sets of finite words X ′β,n for n ∈ N≥1 as
follows.

Definition 2.4.43. If `∗β(xβ − 1) = `0`1 · · · then, for all n ∈ N≥1, we let

X ′β,n = {`0 · · · `n−2s : s ∈ [[`n−1 + 1, dβn−1e − 1]]}.

Note that X ′β,n is empty if and only if `n−1 = dβn−1e − 1.

Proposition 2.4.44. We have

D′β =
⋃

n0∈N≥1

X ′β,n0

( ⋃
n1∈N≥1

X ′
β(n0),n1

( ⋃
n2∈N≥1

X ′
β(n0+n1),n2

(
· · ·

)))
.

Therefore, we have D′β =
⋃

n∈N≥1

X ′β,nD
′
β(n) and any prefix of `∗β(xβ − 1)

belongs to Pref(D′β).

Proof. This follows from Propositions 2.4.25, 2.4.39 and 2.3.46 since

w0w1 · · ·wn−1 ∈ X ′β,n

if and only if

(dβ0e − 1− w0)(dβ1e − 1− w1) · · · (dβn−1e − 1− wn−1) ∈ Xβ,n.

�
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2.4.8 The lazy β-shift

We end this chapter by defining and studying the lazy β-shift.

Definition 2.4.45. We define

∆′β =
⋃
n∈N

D′
β(n) and Σ′β = ∆′β.

By Proposition 2.4.39, we get

∆′β =
⋃
n∈N

θβ(n)(Dβ(n)). (2.14)

Proposition 2.4.46. The sets ∆′β and Σ′β are both shift-invariant.

Proof. Let a be an infinite word over N. By (2.14), if a belongs to ∆′β, then
there exists n ∈ N and an infinite word b ∈ Dβ(n) such that a = θβ(n)(b).
We obtain that σ(a) = σ(θβ(n)(b)) = θβ(n+1)(σ(b)) by Lemma 2.4.15. By

Theorem 2.3.33, σ(b) ∈ Dβ(n+1) so σ(a) ∈ D′
β(n+1) . Then, it is easily seen

that if a ∈ S′
β(n) then σ(a) ∈ S′

β(n+1) . �

Since the set Σ′β is shift-invariant and closed with respect to the topology
induced by the prefix distance on infinite words, we conclude that the subset
Σ′β of AN

β is a subshift, which we call the lazy β-shift.
Let us now study the factors of the lazy β-shift.

Proposition 2.4.47. We have Fac(D′β) = Fac(∆′β) = Fac(Σ′β).

Proof. By definition, we have Fac(D′β) ⊆ Fac(∆′β) = Fac(Σ′β). It remains
to show that Fac(D′β) ⊇ Fac(∆′β). Let f ∈ Fac(∆′β). By (2.14), there
exist n ∈ N and b ∈ Dβ(n) such that f ∈ Fac(θβ(n)(b)). In particular,
f ∈ Fac(θβ(0nb)) where, by Theorem 2.3.33, 0nb ∈ Dβ. We obtain that
f ∈ Fac(θβ(Dβ)) = Fac(D′β) by Proposition 2.4.39. �

Corollary 2.4.48. We have

Fac(Σ′β) =
⋃
n∈N

θβ(n)

(
Pref(Dβ(n))

)
.

Proof. By Propositions 2.4.46 and 2.4.47, we have Fac(Σ′β) = Pref(∆′β) =⋃
n∈N Pref(D′

β(n)). The conclusion follows from Proposition 2.4.39. �



CHAPTER

3

MORE COMBINATORIAL
PROPERTIES OF ALTERNATE

BASE EXPANSIONS

The aim of this chapter is to pay special attention to periodic Cantor real
bases, referred to as alternate bases, and discuss some results that are specific
to these particular Cantor real bases.

First, we improve some results from Chapter 2 about greedy and quasi-
greedy β-expansions of 1. In particular, generalizing Parry’s result (see
Corollary 1.4.17), we obtain a characterization of the greedy β-expansion
of 1 among all β-representations of 1.

Second, we define Parry alternate bases and characterize them in terms
of the periodicity of the greedy, quasi-greedy and quasi-lazy expansions.

Third, we study the alternate base greedy and lazy β-shifts. In particular,
we generalize Bertrand-Mathis’ theorem by proving that the greedy (resp.,
lazy) β-shift is sofic if and only if β is a Parry alternate base. However,
a counterexample shows that, contrarily to the real base case, the greedy
β-shifts of finite type cannot be characterized thanks to the finiteness of the
greedy β(i)-expansions.

The results presented in this chapter are from [CC21] and [Cis21].
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3.1 Value function and representations of 1

We start with a few elementary observations. Consider an alternate base
β = (β0, . . . , βp−1). First, by Proposition 2.1.3, the condition

∏
n∈N βn =

+∞ from Definition 2.1.1 is trivially satisfied in the context of alternate
bases. Then, for an alternate base β of length p, the β-value (2.1) of an
infinite word a over R≥0 can be rewritten as

valβ(a) =
∑
n∈N

an(∏p−1
i=0 βi

)bn
p
c∏n mod p

i=0 βi

or as

valβ(a) =
∑
m∈N

1(∏p−1
i=0 βi

)m p−1∑
j=0

apm+j∏j
i=0 βi

. (3.1)

Further, the alphabet Aβ is finite since Aβ = [[0,maxi∈[[0,p−1]] (dβie − 1)]].
Finally, note that a Cantor base of the form (β, β, . . .) is an alternate base
of length 1, in which case, as already mentioned, all definitions introduced
so far coincide with those of Rényi for real bases β.

In Proposition 2.2.3, we gave a characterization of those infinite words
a ∈ (R≥0)N for which there exists a Cantor base β such that valβ(a) =
1. Here, we are interested in the stronger condition of the existence of an
alternate base β satisfying valβ(a) = 1.

Proposition 3.1.1. Let a be an infinite word over R≥0 such that an ∈ O(nd)
for some d ∈ N and let p ∈ N≥1. There exists an alternate base β of length
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p such that valβ(a) = 1 if and only if
∑

n∈N an > 1. If moreover p ≥ 2, then
there exist uncountably many such alternate bases.

Proof. From Proposition 2.2.3, we already know that the condition
∑

n∈N an
> 1 is necessary. Now, suppose that

∑
n∈N an > 1. If p = 1 then the result

follows from Lemma 2.2.1. Suppose that p ≥ 2. Consider any (p − 1)-tuple
(β1, . . . , βp−1) ∈ (R>1)p−1. For all β0 > 1, we can write valβ(a) = valβ0(c)
with β = (β0, β1, . . . , βp−1) and

cm =
1(∏p−1

i=1 βi
)m p−1∑

j=0

apm+j∏j
i=1 βi

for all m ∈ N.

Note that c ∈ (R≥0)N and that cm ∈ O(md). By hypothesis, there exists
N ∈ N such that

∑N
n=0 an > 1. Then

⌊
N
p

⌋∑
m=0

cm >

∑⌊
N
p

⌋
m=0

∑p−1
j=0 apm+j(∏p−1

i=1 βi
)⌊N

p

⌋
+1
≥

∑N
n=0 an(∏p−1

i=1 βi
)⌊N

p

⌋
+1
.

Therefore, any (p− 1)-tuple (β1, . . . , βp−1) ∈ (R>1)p−1 satisfying

(
p−1∏
i=1

βi

)⌊
N
p

⌋
+1

≤
N∑
n=0

an

is such that
∑⌊

N
p

⌋
m=0 cm > 1, and hence there exist uncountably many of

them. For such a (p− 1)-tuple, the infinite word c satisfies the hypothesis of
Lemma 2.2.1, so there exists β0 > 1 such that valβ(a) = valβ0(c) = 1. �

3.2 Greedy and quasi-greedy alternate base expan-
sions of 1

From now on, we let β be a fixed alternate base and we let p be its length.
The greedy and the quasi-greedy β-expansions of 1 enjoy specific properties
whenever β is an alternate base.

3.2.1 Some properties on periodicity

Proposition 3.2.1. The greedy β-expansion of 1 is not purely periodic.
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Proof. Suppose to the contrary that there exists q ∈ N≥1 such that for all
n ∈ N, εn = εn+q. By considering k = lcm(p, q), we get that β(k) = β and
for all n ∈ N, εn = εn+k. Therefore

1 = valβ
(
ε0 · · · εk−1

)
+

1∏k−1
i=0 βi

= valβ
(
ε0 · · · εk−2(εk−1 + 1)

)
.

Thus ε0 · · · εk−2(εk−1 +1) is a β-representation of 1 lexicographically greater
than dβ(1), which is impossible by Proposition 2.3.15. �

The following example shows that the greedy β-expansion of 1 can be
ultimately periodic with a period which is coprime with the length p of β.

Example 3.2.2. Let β = (
√

6, 3, 2+
√

6
3 ). It is easily checked that dβ(0)(1) =

2(10)ω, dβ(1)(1) = 3 and dβ(2)(1) = 11002.

Proposition 3.2.3. The quasi-greedy expansion d∗β(1) is ultimately periodic
if and only if, within the first p recursive calls to Definition 2.3.23, either an
infinite ultimately periodic greedy expansion is reached or only finite greedy
expansions are involved.

Proof. If there exists n ∈ N such that the infinite greedy expansion d∗
β(n)(1)

is involved in the computation of d∗β(1), then clearly d∗β(1) is ultimately
periodic if and only if so is d∗

β(n)(1).

Now, suppose that only finite greedy expansions are involved within p
recursive calls to the definition of d∗β(1). Then dβ(1) is finite. Thus, dβ(1) =
εβ,0 · · · εβ,k0−1 with k0 ∈ N≥1 and εβ,k0−1 > 0. Then

d∗β(1) = εβ,0 · · · εβ,k0−2(εβ,k0−1 − 1)d∗
β(i1)

(1)

where i1 = k0 mod p. By hypothesis, dβ(i1)(1) is finite as well. Thus we have
dβ(i1)(1) = εβ(i1),0 · · · εβ(i1),k1−1 with k1 ∈ N≥1 and εβ(i1),k1−1 > 0. Repeating
the same argument, we obtain

d∗
β(i1)

(1) = εβ(i1),0 · · · εβ(i1),k1−2(εβ(i1),k1−1 − 1)d∗
β(i2)

(1)

where i2 = k0 + k1 mod p. By continuing in the same fashion and by setting
i0 = 0, we obtain two sequences (kj)j∈[[0,p−1]] and (ij)j∈[[0,p]]. Because for all
j ∈ [[0, p]], we have ij ∈ [[0, p − 1]], there exist j, j′ ∈ [[0, p]] such that j < j′

and ij = ij′ . Then d∗β(1) = xyω where

x =

j−1∏
n=0

εβ(in),0 · · · εβ(in),kn−2(εβ(in),kn−1 − 1)
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and

y =

j′−1∏
n=j

εβ(in),0 · · · εβ(in),kn−2(εβ(in),kn−1 − 1).

�

3.2.2 Characterization of the greedy alternate base expan-
sions of 1

The condition given in Corollary 2.3.35 gives that, in order to know if a β-
representation a = (an)n∈N of some real number in [0, 1] is the greedy one,
we have to check if σnp(a) <lex d

∗
β(1) for n ∈ N≥1. Thus this does not allow

us to check whether a given β-representation of 1 is the greedy β-expansion
of 1 without effectively computing the quasi-greedy β-expansion of 1, and
hence the greedy β-expansion of 1 itself. The following proposition provides
us with such a condition in the case of alternate bases, provided that we are
given the quasi-greedy β(i)-expansions of 1 for i ∈ [[1, p− 1]].

Proposition 3.2.4. A β-representation a = (an)n∈N of 1 is the greedy β-
expansion of 1 if and only if for all m ∈ N≥1, σpm(a) <lex a and for all
m ∈ N and i ∈ [[1, p− 1]], σpm+i(a) <lex d

∗
β(i)(1).

Proof. The condition is necessary by Corollary 2.3.35 and since d∗β(1) ≤lex

dβ(1). Let us show that the condition is sufficient.

Let a be a β-representation of 1 such that for all m ∈ N≥1, σpm(a) <lex a
and for all m ∈ N and i ∈ [[1, p − 1]], σpm+i(a) <lex d

∗
β(i)(1). By Proposi-

tion 2.3.15, a ≤lex dβ(1). By Theorem 2.3.33, if a <lex d
∗
β(1) then valβ(a) <

1, which contradicts that a is a β-representation of 1. Thus, d∗β(1) ≤lex

a ≤lex dβ(1). If dβ(1) is infinite, then a = dβ(1) as desired. Now, suppose
that dβ(1) = ε0 · · · εk−1 with k ∈ N≥1 and εk−1 > 0. Then a0 · · · ak−2 =
ε0 · · · εk−2 and ak−1 ∈ {εk−1 − 1, εk−1}. Since valβ(a) = 1, if ak−1 = εk−1

then a = dβ(1). Therefore, in order to conclude, it suffices to show that
ak−1 6= εk−1 − 1.

Suppose to the contrary that ak−1 = εk−1 − 1. Then d∗
β(k)(1) ≤lex σ

k(a).

By hypothesis, k mod p = 0. Therefore d∗β(1) ≤lex σ
k(a) ≤lex dβ(1). By re-

peating the same argument, we obtain that ak · · · a2k−2 = ε0 · · · εk−2 and
a2k−1 ∈ {εk−1 − 1, εk−1}. Since σk(a) <lex a by hypothesis, we must
have a2k−1 = εk−1 − 1. By iterating the argument, we obtain that a =
(ε0 · · · εk−2(εk−1 − 1))ω, contradicting that σk(a) <lex a. �
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When p = 1, Proposition 3.2.4 provides us with the purely combinato-
rial condition proved by Parry (see Corollary 1.4.17) in order to determine
whether a given β-representation of 1 is the greedy β-expansion of 1. How-
ever, when p ≥ 2, we need to compute the quasi-greedy β(i)-expansions of 1
for every i ∈ [[1, p− 1]] first. This might lead us to a circular computation, in
which case the condition may seem not useful in practice. Indeed, suppose
that p = 2 and that we are provided with a β-representation a of 1 and a
β(1)-representation b of 1. Then in order to check if a = dβ(1), we need
to compute d∗

β(1)(1), and hence dβ(1)(1) first. But then, in order to check

if b = dβ(1)(1), we need to compute d∗β(1), and hence dβ(1), which brings
us back to the initial problem. Nevertheless, this condition can be useful
to check if a specific β-representation of 1 is the greedy β-expansion of 1.
For example, consider a β-representation a of 1 such that for all m ∈ N≥1,
σpm(a) <lex a and for all m ∈ N and i ∈ [[1, p − 1]], apm+i < bβic − 1. Then
the infinite word a satisfies the hypothesis of Proposition 3.2.4 and a is the
greedy β-expansion of 1.

We have seen that considering an infinite word a over N and a positive
integer p, there may exist more than one alternate base β of length p such
that valβ(a) = 1. Moreover, among all of these alternate bases, it may be
that some are such that a is greedy and others are such that a is not. Thus,
a purely combinatorial condition for checking whether a β-representation is
greedy cannot exist.

Example 3.2.5. Consider a = 2(10)ω. Then valα(a) = valβ(a) = 1 for

both α = (1 + ϕ, 2) and β = (31
10 ,

420
341). It can be checked that dα(1) = a and

dβ(1) 6= a.

Furthermore, an infinite word a over N can be greedy for more than one
alternate base.

Example 3.2.6. The infinite word 110ω is the greedy expansion of 1 with

respect to the three alternate bases (ϕ,ϕ), (5+
√

13
6 , 1+

√
13

2 ) and (1.7, 1
0.7).

At the opposite, it may happen that an infinite word a is a β-representa-
tion of 1 for different alternate bases β but that none of these are such that
a is greedy. As an illustration, by Proposition 3.2.1, for all purely periodic
infinite words a over N, all alternate bases β such that valβ(a) = 1 are such
that a is not the greedy β-expansion of 1.

Example 3.2.7. The infinite word (10)ω is a representation of 1 with re-
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spect to the three alternate bases considered in Example 3.2.6. However, the
infinite words (10)ω is purely periodic therefore, by Proposition 3.2.1, it is
not the greedy expansion of 1 in any alternate base.

3.3 Parry alternate bases

Generalizing the concept of Parry numbers from Definition 1.4.11, we define
Parry alternate bases.

Definition 3.3.1. An alternate base β = (β0, . . . , βp−1) is a Parry alternate
base if d∗

β(i)(1) is ultimately periodic for all i ∈ [[0, p− 1]].

Parry alternate bases will play an important role in the next section,
while characterizing sofic greedy and lazy β-shifts, and in Chapter 4.

One might think at first that if β = (β0, . . . , βp−1) is a Parry alternate

base, then β =
∏p−1
i=0 βi must be a Parry number, that is, d∗β(1) must be

ultimately periodic. This is not the case, as the following example shows.

Example 3.3.2. Let β = (
√

6, 3, 2+
√

6
3 ). This alternate base β is a Parry

alternate base by Example 3.2.2. But the product β =
∏p−1
i=0 βi =

√
6(2+

√
6)

is not a Parry number as explained in Example 2.3.28.

In the real base case, it is equivalent to say that dβ(1) is ultimately
periodic if and only if so is d∗β(1). Similarly, by Proposition 3.2.3, we get the
following equivalent definition of Parry alternate bases.

Proposition 3.3.3. An alternate base β is a Parry alternate base if and
only if dβ(i)(1) is ultimately periodic for all i ∈ [[0, p− 1]].

Proof. Suppose that for all i ∈ [[0, p−1]], the greedy β(i)-expansion of 1 is ul-
timately periodic. Then, for all i ∈ [[0, p−1]], within the first p recursive calls
to Definition 2.3.23, either an infinite ultimately periodic greedy expansion is
reached or only finite greedy expansions are involved. By Proposition 3.2.3,
we conclude that, for all i ∈ [[0, p − 1]], the quasi-greedy β(i)-expansion of
1 is ultimately periodic. Conversely, if there exists i ∈ [[0, p − 1]] such that
dβ(i)(1) is not ultimately periodic, then d∗

β(i)(1) = dβ(i)(1) and we get that

β is not a Parry alternate base. �

Recall that any alternate base β has a finite corresponding xβ (defined
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in (2.9)), hence it makes sense to consider the lazy β-expansions. The fol-
lowing result shows that Parry alternate bases can equivalently be defined
thanks to the periodicity of the quasi-lazy expansions.

Proposition 3.3.4. An alternate base β is a Parry alternate base if and
only if `∗

β(i)(xβ(i) − 1) is ultimately periodic for all i ∈ [[0, p− 1]].

Proof. Suppose that for all i ∈ [[0, p−1]], `∗
β(i)(xβ(i)−1) is ultimately periodic

and write1

`∗
β(i)(xβ(i) − 1) = `

(i)
0 · · · `

(i)
mi−1

(
`(i)mi · · · `

(i)
mi+ni−1

)ω
.

Without loss of generality, suppose that ni is a multiple of p (it suffices to
take the least common multiple of p and the length of the period). For all
i ∈ [[0, p− 1]], by Proposition 2.4.25, we get2

d∗
β(i)(1) = t

(i)
0 · · · t

(i)
mi−1

(
t(i)mi · · · t

(i)
mi+ni−1

)ω
with t

(i)
n = dβi+ne − 1 − `(i)n for all n ∈ [[0,mi + ni − 1]]. Hence, all quasi-

greedy expansions of 1 are ultimately periodic. The converse can be proved
in a similar fashion. �

3.4 Alternate base shifts

We now give more characterizations of the greedy and lazy β-shifts when β
is an alternate base. In particular, we extend Bertrand-Mathis’ theorem by
characterizing alternate bases β having sofic greedy β-shifts and we extend
this characterization to the lazy framework.

3.4.1 Greedy shifts and characterization of sofic ones

We define sets of finite words Yβ,h for h ∈ [[0, p− 1]] as follows.

Definition 3.4.1. If d∗β(1) = t0t1 · · · then we let

Yβ,h = {t0 · · · tn−2s : n ∈ N≥1, n mod p = h, s ∈ [[0, tn−1 − 1]]}.
1Recall that `∗

β(i)(xβ(i) − 1) can be finite, hence, ni can be equal to 1 and `
(i)
mi = 0.

2Note that the preperiod and period mi and ni may be not minimal.
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Note that Yβ,h is empty if and only if for all n ∈ N≥1 such that n mod p =
h, tn−1 = 0. So, unlike the sets Xβ,n defined in Section 2.3.5, the sets Yβ,h
can be infinite. More precisely, Yβ,h is infinite if and only if there exist
infinitely many n ∈ N≥1 such that n mod p = h and tn−1 > 0.

Proposition 3.4.2. We have

Dβ =

p−1⋃
h0=0

Yβ,h0

(
p−1⋃
h1=0

Yβ(h0),h1

(
p−1⋃
h2=0

Yβ(h0+h1),h2

(
· · ·

)))
.

Proof. It is easily seen that for all h ∈ [[0, p− 1]],

p−1⋃
h=0

Yβ,h =
⋃

n∈N≥1

Xβ,n.

The conclusion follows from Proposition 2.3.46. �

Corollary 3.4.3. We have Dβ =

p−1⋃
h=0

Yβ,hDβ(h).

In the case of a Parry alternate base β, following the same lines as in
Definition 1.4.22, we define an automaton over the finite alphabet Aβ.

Definition 3.4.4. Suppose that, for all i ∈ [[0, p− 1]], d∗
β(i)(1) is ultimately

periodic and write

d∗
β(i)(1) = t

(i)
0 · · · t

(i)
mi−1

(
t(i)mi · · · t

(i)
mi+ni−1

)ω
Let Aβ be the automaton defined as follows. The set of states is

Q =
{
qi,j,k : i, j ∈ [[0, p− 1]], k ∈ [[0,mi + ni − 1]]

}
.

The set I of initial states and the set F of final states are defined as

I =
{
qi,i,0 : i ∈ [[0, p− 1]]

}
and F = Q.

The (partial) transition function E : Q × Aβ → Q of the automaton Aβ is
defined as follows. For each i, j ∈ [[0, p− 1]] and each k ∈ [[0,mi +ni− 1]], we
have

E(qi,j,k, t
(i)
k ) =

{
qi,(j+1) mod p,k+1 if k 6= mi + ni − 1

qi,(j+1) mod p,mi else
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and for all s ∈ [[0, t
(i)
k − 1]], we have

E(qi,j,k, s) = q(j+1) mod p,(j+1) mod p,0.

Example 3.4.5. Let β = (ϕ2, 2ϕ2). Then dβ(0)(1) = 2(30)ω and dβ(1)(1) =
5(03)ω. The corresponding automaton Aβ is depicted in Figure 3.1. By
removing the non-accessible states, we obtain the automaton of Figure 3.2.

The following result extends Theorem 1.4.21.

Theorem 3.4.6. The greedy β-shift Σβ is sofic if and only if β is a Parry
alternate base.

Proof. Suppose that for all i ∈ [[0, p− 1]], d∗
β(i)(1) is ultimately periodic. We

show that the automaton Aβ accepts the language Fac(Σβ). From Proposi-
tions 2.3.43 and 2.3.44, we obtain that

Fac(Σβ) = Pref(∆β) =

p−1⋃
i=0

Pref(Dβ(i)). (3.2)

Therefore, it suffices to show that for each i ∈ [[0, p−1]], the language accepted
from the initial state qi,i,0 is precisely Pref(Dβ(i)). Let thus i ∈ [[0, p− 1]].

First, consider a word w accepted from qi,i,0. By Corollary 2.3.48, if w
is a prefix of d∗

β(i)(1) then w ∈ Pref(Dβ(i)). Otherwise, by construction of

Aβ, w starts with some u ∈ Yβ(i),h0
where h0 = |u| mod p. Moreover, the

state reached after reading u from qi,i,0 is qj,j,0 where j = (i + h0) mod p.
We obtain that w ∈ Pref(Dβ(i)) by iterating the reasoning and by using
Proposition 3.4.2.

Conversely, let w ∈ Pref(Dβ(i)). By Proposition 3.4.2, we know that
there exists k ∈ N and h0, . . . , hk ∈ [[0, p − 1]] such that w = u0 · · ·uk−1x
with un ∈ Yβ(i+h0+···hn−1),hn

for all n ∈ [[0, k− 1]] and x is a (possibly empty)

prefix of d∗
β(ik)

(1) where ik = (i + h0 + · · · + hk−1) mod p. By construction

of Aβ, by reading u0 from the state q
(i)
i,0, we reach the state qi1,i1,0 where

i1 = (i + h0) mod p. Then, by reading u1 from the latter state, we reach
the state qi2,i2,0 where i2 = (i+ h0 + h1) mod p. By iterating the argument,
after reading u0 · · ·uk−1, we end up in the state qik,ik,0. Since x is a prefix of
d∗
β(ik)

(1), it is possible to read x from the state qik,ik,0 in Aβ. Since all states

of Aβ are final, we obtain that w is accepted from qi,i,0.
We turn to the necessary condition. Let

d∗
β(i)(1) = t

(i)
0 t

(i)
1 · · · for every i ∈ [[0, p− 1]].
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q0,0,0 q0,0,1 q0,0,2

q0,1,0 q0,1,1 q0,1,2

q1,0,0 q1,0,1 q1,0,2

q1,1,0 q1,1,1 q1,1,2

2

0, 1

3

0, 1, 2

0
0, 1

2

0, 1, 2

3

0

0, 1, 2, 3, 4

5
0

3

0, 1, 2

5

0, 1, 2, 3, 4

0

3

0, 1, 2

Figure 3.1: The automaton A
(ϕ2,2ϕ2)

.

q0,0,0 q0,0,2q0,1,1

q1,0,1q1,1,0 q1,1,2

2

0, 1

00, 1, 2

3

0

5

0, 1, 2, 3, 4

3

0, 1, 2

Figure 3.2: An accessible automaton accepting Fac(Σ
(ϕ2,2ϕ2)

).
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Suppose that j ∈ [[0, p − 1]] is such that d∗
β(j)(1) is not ultimately periodic.

Our aim is to find an infinite sequence (w(m))m∈N of finite words over Aβ
such that for all distinct m,n ∈ N, the words w(m) and w(n) are not right
congruent with respect to Fac(Σβ). Recall that words x and y are not right
congruent with respect to a language L if x−1L 6= y−1L, that is, if there exists
some word z such that either xz ∈ L and yz /∈ L, or xz /∈ L and yz ∈ L. If
we succeed then we will know that the number of right congruence classes is
infinite and we will be able to conclude that Fac(Σβ) is not accepted by a
finite automaton.

We define a partition (G1, . . . , Gq) of [[0, p − 1]] as follows. Let r =
Card{d∗

β(i)(1) : i ∈ [[0, p − 1]]} and let i1, . . . , ir ∈ [[0, p − 1]] be such that

d∗
β(i1)

(1), . . . , d∗
β(ir)

(1) are pairwise distinct. Without loss of generality, we

can suppose that d∗
β(i1)

(1) >lex · · · >lex d
∗
β(ir)

(1). Let q ∈ [[1, r]] be the unique

index such that d∗
β(iq)

(1) = d∗
β(j)(1). We set

Gs = {i ∈ [[0, p− 1]] : d∗
β(i)(1) = d∗

β(is)(1)} for s ∈ [[1, q − 1]]

and
Gq = {i ∈ [[0, p− 1]] : d∗

β(i)(1) ≤ d∗
β(j)(1)}.

For each s ∈ [[1, q− 1]], we write Gs = {is,1, . . . , is,αs} where is,1 < . . . < is,αs
and we use the convention that is,αs+1 = is+1,1 for s ≤ q−2 and iq−1,αq−1+1 =
j. Moreover, we let g ∈ N≥1 be such that for all i, i′ ∈ [[0, p − 1]] such that
d∗
β(i)(1) 6= d∗

β(i′)(1), the length-g prefixes of d∗
β(i)(1) and d∗

β(i′)(1) are distinct.

Then, for s ∈ [[1, q − 1]], we define Cs to be the least c ∈ N≥1 such that

t
(is)
g−1+c > 0. Finally, let N ∈ N≥1 be such that pN ≥ max{g, C1, . . . , Cq−1}.

For all m ∈ N, consider

w(m) =

(
q−1∏
s=1

αs∏
k=1

t
(is)
0 · · · t(is)g−10p(2N+1)−g+is,k+1−is,k

)
t
(j)
0 · · · t

(j)
m−1.

For all m ∈ N, s ∈ [[1, q − 1]] and k ∈ [[1, αs]], the factor

t
(is)
0 · · · t(is)g−10p(2N+1)−g+is,k+1−is,k

has length p(2N + 1) + is,k+1 − is,k, and hence occurs at a position con-
gruent to is,k − i1,1 modulo p in w(m). Similarly, for all m ∈ N, the factor

t
(j)
0 · · · t

(j)
m−1 occurs at a position congruent to j−i1,1 modulo p in w(m). These

observations will be crucial in what follows. The situation is illustrated in
Figure 3.3.
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w(m) = w1,1
•
0

· · ·

w1,2
•

i1,2−i1,1

· · · w1,α1•
i1,α1−i1,1

· · ·

ws,1
•

is,1−i1,1

ws,2
•

is,2−i1,1

· · · ws,αs•
is,αs−i1,1

wq−1,1
•

iq−1,1−i1,1

wq−1,2
•

iq−1,2−i1,1

· · · wq−1,αq−1•
iq−1,1−i1,1

t
(j)
0 · · · t

(j)
m−1•

j−i1,1

Figure 3.3: Positions modulo p of the occurrences of the factors wk,s and

t
(j)
0 · · · t

(j)
m−1 in w(m), where wk,s = t

(is)
0 · · · t(is)g−10p(2N+1)−g+is,k+1−is,k .

Now, let m,n ∈ N be distinct. Since d∗
β(j)(1) is not ultimately peri-

odic, σm
(
d∗
β(j)(1)

)
6= σn

(
d∗
β(j)(1)

)
. Thus, there exists l ∈ N≥1 such that

t
(j)
m · · · t(j)m+l−2 = t

(j)
n · · · t(j)n+l−2 and t

(j)
m+l−1 6= t

(j)
n+l−1. Without loss of general-

ity, we suppose that t
(j)
m+l−1 > t

(j)
n+l−1. Let z = t

(j)
m · · · t(j)m+l−1. Our aim is to

show that w(m)z ∈ Fac(Σβ) and w(n)z /∈ Fac(Σβ).

In order to obtain that w(m)z ∈ Fac(Σβ), we show that w(m)z

∈ Pref(D
β(i1,1)). First, for all s ∈ [[1, q−1]] and k ∈ [[1, αs]], t

(is)
0 · · · t(is)g−10Cs ∈

Y
β
(is,k),(g+Cs) mod p

. Second, for all i ∈ [[0, p−1]], 0 ∈ Yβ(i),1. Third, by Corol-

lary 2.3.48, for all h ∈ [[0, p−1]], t
(j)
0 · · · t

(j)
m−1z ∈ Pref(Yβ(j),h). The conclusion

follows from Proposition 3.4.2.

In view of (3.2), in order to prove that w(n)z /∈ Fac(Σβ), it suffices to
show that for all i ∈ [[0, p−1]], w(n)z /∈ Pref(Dβ(i)). Proceed by contradiction

and let i ∈ [[0, p − 1]] and w ∈ Dβ(i) such that w(n)z is a prefix of w. By

Theorem 2.3.33, for all s ∈ [[1, q]], the factor t
(is)
0 · · · t(is)g−10Cs occurs at a

position e in w such that (i+ e) mod p belongs to G1 ∪ · · · ∪Gs. For s = 1,
we obtain that for all k ∈ [[1, α1]], (i+ i1,k− i1,1) mod p ∈ G1, and hence that

G1 = {(i+ i1,1 − i1,1) mod p, . . . , (i+ i1,α1 − i1,1) mod p}.

For s = 2, we get that for all k ∈ [[1, α2]], (i+ i2,k − i1,1) mod p ∈ G1 ∪G2. If
(i+ i2,k− i1,1) mod p ∈ G1 for some k ∈ [[1, α2]], then there exists k′ ∈ [[1, α1]]
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such that (i + i2,k − i1,1) mod p = (i + i1,k′ − i1,1) mod p, hence such that
i2,k = i1,k′ , which is impossible since G1 and G2 are disjoint. It follows that

G2 = {(i+ i2,1 − i1,1) mod p, . . . , (i+ i2,α2 − i1,1) mod p}.

By iterating the reasoning, we obtain that

Gs = {(i+is,1−i1,1) mod p, . . . , (i+is,αs−i1,1) mod p} for all s ∈ [[1, q−1]].

We finally get that (i+j−i1,1) mod p belongs toGq. Then d∗
β((i+j−i1,1) mod p)(1)

≤lex d
∗
β(j)(1). Let e be the position where the factor t

(j)
0 · · · t

(j)
n−1 occurs in

w(n), and hence also in w since w(n)z is a prefix of w. We have seen that
e mod p = j − i1,1 mod p. Since w ∈ Dβ(i) , it follows from Theorem 2.3.33
that

σe(w) <lex d
∗
β(i+e)(1) = d∗

β((i+j−i1,1) mod p)(1) ≤lex d
∗
β(j)(1).

We have thus reached a contradiction since the factor t
(j)
0 · · · t

(j)
n−1z is lexico-

graphically greater than the length-(n+ l) prefix of d∗
β(j)(1). �

Note that, in the classical case p = 1, the previous proof is much shorter
since Σβ = Sβ, Fac(Σβ) = Pref(Dβ), and hence we can directly deduce that

the words t
(j)
0 · · · t

(j)
m−1 and t

(j)
0 · · · t

(j)
n−1 (where in fact, j = 0) are not right

congruent with respect to Fac(Σβ).

For p = 1, it is well known that the β-shift is of finite type if and only if
dβ(1) is finite (see Theorem 1.4.20). However, this result does not generalize
to p ≥ 2 as is illustrated by the following example.

Example 3.4.7. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ) of Exam-
ple 2.3.27. We have dβ(1) = 201 and dβ(1)(1) = 11. We get d∗β(1) = 200(10)ω

and d∗
β(1)(1) = (10)ω. By Theorem 2.3.33, we see that all words in 2(00)∗2

are factors avoided by Σβ, so the greedy β-shift Σβ is not of finite type.

3.4.2 Lazy shifts and characterization of sofic ones

As in the greedy case, Proposition 2.4.44 can be straightened. To do so, we
define sets of finite words Y ′β,h for h ∈ [[0, p− 1]] as follows.

Definition 3.4.8. If `∗β(xβ − 1) = `0`1 · · · then, for all h ∈ [[0, p− 1]], we let

Y ′β,h = {`0 · · · `n−2s : n ∈ N≥1, n mod p = h, s ∈ [[`n−1 + 1, dβn−1e − 1]]}.
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Note that Y ′β,h is empty if and only if for all n ∈ N≥1 such that n mod p =
h, `n−1 = dβn−1e−1. Moreover, unlike the sets X ′β,n defined in Section 2.4.7,
the sets Y ′β,h can be infinite.

Proposition 3.4.9. We have

D′β =

p−1⋃
h0=0

Y ′β,h0

(
p−1⋃
h1=0

Y ′
β(h0),h1

(
p−1⋃
h2=0

Y ′
β(h0+h1),h2

(
· · ·

)))
.

Therefore, we have D′β =

p−1⋃
h=0

Y ′β,hD
′
β(h).

In the lazy alternate base framework, an analogue of Bertrand-Mathis’
theorem can be stated for the lazy β-shift.

Theorem 3.4.10. The lazy β-shift Σ′β is sofic if and only if β is a Parry
alternate base.

In order to prove this result, let us construct an automaton A′β in the
case where all quasi-lazy expansions are ultimately periodic and state some
results in order to link this automaton with the one used in the greedy case
Theorem 3.4.6, namely the automaton Aβ. Roughly, if all the quasi-lazy
expansions are ultimately periodic, then so are the quasi-greedy expansions
and the “image” of the automaton Aβ under the maps θβ(i) with i ∈ [[0, p−1]]

is an automaton accepting Fac(Σ′β). This notion of “image” of the automa-
ton under the maps θβ(i) will be clearer in what follows, more precisely in
Lemmas 3.4.13 and 3.4.15.

Henceforth, suppose that for all i ∈ [[0, p−1]], `∗
β(i)(xβ(i)−1) is ultimately

periodic and write

`∗
β(i)(xβ(i) − 1) = `

(i)
0 · · · `

(i)
mi−1

(
`(i)mi · · · `

(i)
mi+ni−1

)ω
.

As done in the proof of Proposition 3.3.4, without loss of generality, from
now on, suppose that ni is a multiple of p. For all i ∈ [[0, p− 1]], by Proposi-
tion 2.4.25, we get

d∗
β(i)(1) = t

(i)
0 · · · t

(i)
mi−1

(
t(i)mi · · · t

(i)
mi+ni−1

)ω
with t

(i)
n = dβi+ne − 1− `(i)n for all n ∈ [[0,mi + ni − 1]].



98 Chapter 3. More combinatorial properties of alternate base expansions

Definition 3.4.11. Let Aβ = (Q, I, F,Aβ, E) be the automaton over the
alphabet Aβ from Section 3.4.1 which accepts Fac(Σβ) (see Theorem 3.4.6).
Define the automaton A′β = (Q, I, F,Aβ, E

′) where for each i, j ∈ [[0, p− 1]]
and each k ∈ [[0,mi + ni − 1]], we have

E′(qi,j,k, `
(i)
k ) =

{
qi,(j+1) mod p,k+1 if k 6= mi + ni − 1

qi,(j+1) mod p,mi else
(3.3)

and for all s ∈ [[`
(i)
k + 1, dβje − 1]], we have

E′(qi,j,k, s) = q(j+1) mod p,(j+1) mod p,0. (3.4)

Since we supposed that the parameters ni, with i ∈ [[0, p − 1]], were
multiples of p, we get the following result.

Lemma 3.4.12. In the automata Aβ and A′β, for all i, j ∈ [[0, p − 1]] and
k ∈ [[0,mi + ni − 1]], the state qi,j,k is accessible if and only if i+ k mod p =
j mod p.

Proof. Let us prove the result for the automaton A′β. The reasoning for the
automaton Aβ is similar. Suppose that i+ k mod p = j mod p. There exists

a path from qi,i,0 to qi,j,k labeled by `
(i)
0 · · · `

(i)
k . In fact, for all k′ ∈ [[0, k− 1]],

we have

E′(qi,(i+k′) mod p,k′ , `
(i)
k′ ) = qi,(i+k′+1) mod p,k′+1. (3.5)

Conversely, let i, j ∈ [[0, p − 1]] and k ∈ [[0,mi + ni − 1]]. Suppose that the
state qi,j,k is accessible. Let c be an initial path ending in qi,j,k. By definition
of the transitions, if a path starts in qi′,i′,0 with i′ ∈ [[0, p− 1]] \ {i} and ends
in qi,j,k then it necessarily goes through qi,i,0 by using a transition of the
form (3.4). Hence, we may suppose that the path c only uses transitions
of the form (3.3). The conclusion follows since for all k′ ∈ [[0, k − 1]], we
have (3.5) and

E′(qi,(i+mi+ni−1) mod p,mi+ni−1, `
(i)
mi+ni−1) = qi,(i+mi+ni) mod p,mi

where ni mod p = 0 by assumption. �

By the previous lemma, from now on, we consider the automata Aβ and
A′β by preserving only the set{

qi,(i+k) mod p,k : i ∈ [[0, p− 1]], k ∈ [[0,mi + ni − 1]]
}

(3.6)
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of accessible states and we keep the same notation. Moreover, for the sake
of clarity, we now denote qi,k instead of qi,(i+k) mod p,k since the second index
is completely determined by the other two.

Lemma 3.4.13. Let a ∈ Aβ, i1, i2 ∈ [[0, p−1]] and k1 ∈ [[0,mi1+ni1−1]], k2 ∈
[[0,mi2 + ni2 − 1]]. We have

E(qi1,k1 , a) = qi2,k2

if and only if

E′(qi1,k1 , dβi1+k1e − 1− a) = qi2,k2 .

Proof. Fix a ∈ Aβ, i ∈ [[0, p − 1]] and k ∈ [[0,mi + ni − 1]]. By definition of
the automaton Aβ, from qi,k we have the following transitions

E(qi,k, a) =


qi,k+1 if a = t

(i)
k and k 6= mi + ni − 1

qi,mi if a = t
(i)
k and k = mi + ni − 1

q(i+k+1) mod p,0 if a ∈ [[0, t
(i)
k − 1]].

Similarly, by definition of A′β, we have

E′(qi,k, a) =


qi,k+1 if a = `

(i)
k and k 6= mi + ni − 1

qi,mi if a = `
(i)
k and k = mi + ni − 1

q(i+k+1) mod p,0 if a ∈ [[`
(i)
k + 1, dβi+ke − 1]].

We get the conclusion since `
(i)
k = dβi+ke−1− t(i)k , and hence a ∈ [[0, t

(i)
k −1]]

if and only if dβi+ke − 1− a ∈ [[`
(i)
k + 1, dβi+ke − 1]]. �

Example 3.4.14. Let β = (ϕ2, 2ϕ2) from Example 3.4.5. We have dβ(1) =
2(30)ω, dβ(1)(1) = 5(03)ω and `β(xβ − 1) = 02ω, `β(1)(xβ(1) − 1) = 02ω. The

corresponding accessible automata Aβ and A′β are depicted in Figure 3.4
with red and blue labels respectively. Note that the accessible automaton
Aβ is already depicted in Figure 3.2, but we also depicted the (greedy) red
labels in Figure 3.4 to illustrate Lemma 3.4.13.

Lemma 3.4.15. Let i ∈ [[0, p − 1]] and consider w ∈ AN
β. The word w is

accepted in Aβ from qi,0 if and only if θβ(i)(w) is accepted in A′β from qi,0.

Proof. This immediately follows from Lemma 3.4.13. �
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q0,0 q0,2q0,1

q1,1q1,0 q1,2

2
0

0,1
1,2

0
2

0,1,2
3,4,5

3
2

0
2

5
0

0,1,2,3,4
1,2,3,4,5

3
2

0,1,2
3,4,5

Figure 3.4: An accessible automaton accepting Fac(Σ
(ϕ2,2ϕ2)

) (red labels)

and Fac(Σ′
(ϕ2,2ϕ2)

) (blue labels).

We are now ready to prove Theorem 3.4.10.

Proof of Theorem 3.4.10. Suppose that, for all i ∈ [[0, p− 1]], `∗
β(i)(xβ(i) − 1)

is ultimately periodic. For all i ∈ [[0, p− 1]], let

`∗
β(i)(xβ(i) − 1) = `

(i)
0 · · · `

(i)
mi−1

(
`(i)mi · · · `

(i)
mi+ni−1

)ω
with ni multiple of p. By Proposition 2.4.25, for all i ∈ [[0, p− 1]], we obtain

d∗
β(i)(1) = t

(i)
0 · · · t

(i)
mi−1

(
t(i)mi · · · t

(i)
mi+ni−1

)ω
with t

(i)
n = dβi+ne−1−`(i)n for all n ∈ [[0,mi+ni−1]]. Let Aβ and A′β be the

automata associated with the greedy and lazy expansions respectively. By
Theorem 3.4.6, for each i ∈ [[0, p− 1]], the language accepted in Aβ from the
initial state qi,0 is precisely Pref(Dβ(i)). Hence, by Lemma 3.4.15, in A′β the
language accepted from the initial state qi,0 is precisely θβ(i)(Pref(Dβ(i))).
We get the conclusion by Corollary 2.4.48.

Conversely, suppose that there exists j ∈ [[0, p−1]] such that `∗
β(j)(xβ(j)−1)

is not ultimately periodic. Then we prove that Σ′β is not sofic. This follows
the same lines as in the greedy case (see Theorem 3.4.6). Hence, in what
follows, the main ideas of the proof are given. Let

`∗
β(i)(xβ(i) − 1) = `

(i)
0 `

(i)
1 · · · for every i ∈ [[0, p− 1]].
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We define a partition (G1, . . . , Gq) of [[0, p − 1]] as follows. Let r =
Card{`∗

β(i)(xβ(i) − 1) : i ∈ [[0, p − 1]]} and let i1, . . . , ir ∈ [[0, p − 1]] be

such that `∗
β(i1)

(xβ(i1) − 1), . . . , `∗
β(ir)

(xβ(ir) − 1) are pairwise distinct and

`∗
β(i1)

(xβ(i1) − 1) <lex · · · <lex `
∗
β(ir)

(xβ(ir) − 1). Let q ∈ [[1, r]] be the unique

index such that `∗
β(iq)

(xβ(iq) − 1) = `∗
β(j)(xβ(j) − 1) where `∗

β(j)(xβ(j) − 1) is

not ultimately periodic by assumption. We set, for s ∈ [[1, q − 1]],

Gs = {i ∈ [[0, p− 1]] : `∗
β(i)(xβ(i) − 1) = `∗

β(is)(xβ(is) − 1)}

and
Gq = {i ∈ [[0, p− 1]] : `∗

β(i)(xβ(i) − 1) ≥lex `
∗
β(j)(xβ(j) − 1)}.

For each s ∈ [[1, q− 1]], we write Gs = {is,1, . . . , is,αs} where is,1 < . . . < is,αs
and we use the convention that is,αs+1 = is+1,1 for s ≤ q−2 and iq−1,αq−1+1 =
j. Moreover, we let g ∈ N≥1 be such that for all i, i′ ∈ [[0, p − 1]] such that
`∗
β(i)(xβ(i) − 1) 6= `∗

β(i′)(xβ(i′) − 1), the length-g prefixes of `∗
β(i)(xβ(i) − 1) and

`∗
β(i′)(xβ(i′) − 1) are distinct. Then, for s ∈ [[1, q − 1]], we define Cs to be the

least c ∈ N≥1 such that `
(is)
g−1+c < dβis+g−1+ce − 1. Finally, let N ∈ N≥1 be

such that pN ≥ max{g, C1, . . . , Cq−1}.
For all m ∈ N, we define the word w(m) by(

q−1∏
s=1

αs∏
k=1

`
(is)
0 · · · `

(is)
g−1(dβis,k+ge − 1) · · · (dβis,k+1+p(2N+1)−1e − 1)

)
`
(j)
0 · · · `

(j)
m−1.

Now, let m,n ∈ N be distinct. Since `∗
β(j)(xβ(j)−1) is not ultimately periodic,

σm
(
`∗
β(j)(xβ(j) − 1)

)
6= σn

(
`∗
β(j)(xβ(j) − 1)

)
. Thus, there exists k ∈ N≥1 such

that `
(j)
m · · · `(j)m+k−2 = `

(j)
n · · · `(j)n+k−2 and `

(j)
m+k−1 6= `

(j)
n+k−1. Without loss

of generality, we suppose that `
(j)
m+k−1 < `

(j)
n+k−1. Let z = `

(j)
m · · · `(j)m+k−1.

Similarly to the proof of Theorem 3.4.6 it can be shown that w(m)z ∈
Fac(Σ′β) ∩ Pref(D′

β(i1,1)
) and w(n)z /∈ Fac(Σ′β). �

Remark 3.4.16. In the proof of the necessary condition of Theorem 3.4.10,
the parameters {r, i1, . . . , ir, q, G1, . . . , Gq, . . .}may not coincide with those in
the necessary condition of Theorem 3.4.6. In fact, it may happen that there
exist i, j ∈ [[0, p − 1]] such that d∗

β(i)(1) >lex d∗
β(j)(1) whereas `∗

β(i)(xβ(i) −
1) ≤lex `

∗
β(j)(xβ(j) − 1). For instance, this is illustrated in Examples 2.4.28

and 3.4.14.





CHAPTER

4

SPECTRUM AND
NORMALIZATION IN
ALTERNATE BASES

In this chapter, we study the algebraic properties of alternate base expansions
and we generalize the normalization function in real bases to the setting of
alternate bases. For this purpose, we generalize the spectrum in real bases
to the complex base and alternate base frameworks.

In order to define the spectrum of numeration systems associated with
alternate bases β = (β0, . . . , βp−1), one needs to consider the spectrum of

β =
∏p−1
i=0 βi with a more general alphabet of non-integer digits. Hence, we

first study the spectrum XA(δ) in the general framework of a complex base δ
such that |δ| > 1 with a finite alphabet A ⊂ C. We prove that the set Z(δ, A)
of δ-representations of zero over A is accepted by a finite Büchi automaton
if and only if the spectrum XA(δ) has no accumulation point. In doing so,
we also define and study an associated zero Büchi automaton Z(δ, A).

Second, we define the spectrum associated with an alternate base β as a
particular case of the complex spectra. We then prove that the alternate base
spectrum has no accumulation point if and only if the set of β-representations
of zero is accepted by a finite Büchi automaton, and furthermore, if and only
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if the alternate zero automaton is finite.
Third, using the spectra associated with alternate bases, we study the

algebraic properties of the Parry alternate bases. In particular, we show that
if β = (β0, . . . , βp−1) is a Parry alternate base, then the product β =

∏p−1
i=0 βi

is an algebraic integer and all of the bases β0, . . . , βp−1 belong to the algebraic
field Q(β). On the other hand, we also give a sufficient condition: if β is a
Pisot number and β0, . . . , βp−1 ∈ Q(β), then β is a Parry alternate base.

Finally, we show that if β is a Pisot number and each of the bases βi
belongs to the algebraic field Q(β) then the greedy and lazy normalization
functions in the alternate base β are computable by finite Büchi automata,
and we effectively construct such automata.

The results presented in this chapter are from [CCMP22]. Since this
chapter generalizes the spectrum and normalization in real base expansions
to the alternate base framework, Sections 1.4.2 and 1.4.3 are related prelim-
inaries.

Contents of the Chapter
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4.1 Spectrum and representations of zero in com-
plex bases

The spectrum of a real number δ > 1 and a finite alphabet A ⊂ Z was
introduced by Erdős et al [EJK90]. For our purposes, we use a generalized
concept with δ ∈ C and A ⊂ C and study its topological properties. In
particular, in this section, we generalize Theorem 1.4.29 to the setting of
complex bases and general alphabets of complex digits.
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Definition 4.1.1. A complex base is a complex number δ such that |δ| > 1.
For a complex base δ and a finite alphabet A of complex numbers, we define
the set of δ-representations of zero over A by

Z(δ, A) = {a ∈ AN :
∑
n∈N

an
δn+1

= 0}

and the spectrum of δ over the alphabet A by

XA(δ) = {
`−1∑
n=0

anδ
`−1−n : ` ∈ N, a0, a1, . . . , a`−1 ∈ A}. (4.1)

We say that a word a0 · · · a`−1 over A corresponds to the element∑`−1
n=0 anδ

`−1−n in the spectrum XA(δ).

For the remaining part of this section, we consider a fixed complex base
δ and a fixed finite alphabet A ⊂ C.

Consider the right congruence ∼Z(δ,A) over A∗ (see Definition 1.2.26). For
the sake of simplicity, we simply write ∼δ,A. For a, b ∈ A∗, we have a ∼δ,A b
whenever for all s ∈ AN, we have

as ∈ Z(δ, A) ⇐⇒ bs ∈ Z(δ, A).

Obviously, the language A∗\Pref(Z(δ, A)) is one of the equivalence classes of
∼δ,A. In the context of real bases β and integer digits, this right congruence
may be interpreted in terms of the remainders of the Euclidean division of
polynomials in Z[x] by x − β; see [Fro92]. This interpretation is no longer
possible in the present context of complex digits.

Lemma 4.1.2. Let a, b ∈ Pref(Z(δ, A)) be such that |a| = k and |b| = `.
We have a ∼δ,A b if and only if

k−1∑
n=0

anδ
k−1−n =

`−1∑
n=0

bnδ
`−1−n,

that is, the words a and b correspond to the same element in the spectrum
XA(δ).

Proof. Suppose that a ∼δ,A b. Since a and b belong to the set Pref(Z(δ, A)),
there exists s ∈ AN such that as, bs ∈ Z(δ, A). We get

−
∑
n∈N

sn
δn+1

=
k−1∑
n=0

anδ
k−1−n =

`−1∑
n=0

bnδ
`−1−n.
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Conversely, suppose that a 6∼δ,A b. Without loss of generality we can suppose
that as ∈ Z(δ, A) and bs /∈ Z(δ, A) for some s ∈ AN. Then

−
∑
n∈N

sn
δn+1

=
k−1∑
n=0

anδ
k−1−n 6=

`−1∑
n=0

bnδ
`−1−n.

�

Lemma 4.1.3. If the spectrum XA(δ) has an accumulation point in C then
there exists an infinite word in Z(δ, A) with pairwise non-equivalent prefixes
with respect to the right congruence ∼δ,A. In particular, the right congruence
∼δ,A has infinitely many classes.

Proof. Suppose that the spectrum XA(δ) has a complex accumulation point.
Then there exists an injective sequence (x(j))j∈N in XA(δ) such that
limj→+∞ x

(j) is finite. For each j ∈ N we let ρ(j) denote the minimal expo-

nent such that there exists a representation of x(j) in the form x
(j)
0 · · ·x

(j)
ρ(j)−1 ∈

A∗, that is

x(j) =

ρ(j)−1∑
n=0

x(j)
n δρ(j)−1−n.

Obviously, the sequence (ρ(j))j∈N is unbounded, and without loss of general-
ity we can assume that (ρ(j))j∈N is strictly increasing. Thus limj→+∞ ρ(j) =
+∞ and we get

lim
j→+∞

x(j)

δρ(j)
= lim

j→+∞

ρ(j)−1∑
n=0

x
(j)
n

δn+1
= 0. (4.2)

With this, we will show the existence of the desired δ-representation a of
zero over A. Set a0 as a digit in A which occurs infinitely many times among

x
(j)
0 with j ∈ N. Inductively, for n ≥ 1, set an as a digit in A which occurs

infinitely many times among x
(j)
n , where j ∈ N runs through the indices such

that x
(j)
0 · · ·x

(j)
n−1 = a0 · · · an−1. By (4.2), we get that∑

n∈N

an
δn+1

= 0,

that is, that a = a0a1a2 · · · belongs to the set Z(δ, A).

We will show that no pair of distinct prefixes of the infinite word a belong
to the same equivalence class. To show this by contradiction, we consider
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k, ` ∈ N such that a0 · · · ak−1 ∼δ,A a0 · · · a`−1 with k > `. By construction,

there exists j ∈ N such that a0 · · · ak−1 is a prefix of x
(j)
0 · · ·x

(j)
ρ(j)−1. Moreover,

by Lemma 4.1.2, we get

x(j) =
k−1∑
n=0

anδ
ρ(j)−1−n +

ρ(j)−1∑
n=k

x(j)
n δρ(j)−1−n

= δρ(j)−k
k−1∑
n=0

anδ
k−1−n +

ρ(j)−1∑
n=k

x(j)
n δρ(j)−1−n

= δρ(j)−k
`−1∑
n=0

anδ
`−1−n +

ρ(j)−1∑
n=k

x(j)
n δρ(j)−1−n

=

`−1∑
n=0

anδ
ρ(j)−k+`−1−n +

ρ(j)−k+`−1∑
n=`

x
(j)
n+k−`δ

ρ(j)−k+`−1−n.

Thus, we have found a representation a0 · · · a`−1x
(j)
k · · ·x

(j)
ρ(j)−1 of x(j) which

is shorter than x
(j)
0 · · ·x

(j)
ρ(j)−1. This contradicts the definition of ρ(j). �

Similarly as what is done in [Fro92], we define a zero Büchi automaton.

Definition 4.1.4. The zero automaton in base δ over the alphabet A is the
Büchi automaton Z(δ, A) = (Q, 0, Q,A,E) where

Q = XA(δ) ∩ {z ∈ C : |z| ≤ M

|δ| − 1
}

with M = max{|a| : a ∈ A}, and the transitions are given by the triplets
(z, a, zδ + a) in Q×A×Q.

Proposition 4.1.5. The zero automaton Z(δ, A) accepts the set Z(δ, A).

Proof. Let a be an infinite word accepted by Z(δ, A). For each ` ∈ N,
the prefix a0 · · · a`−1 labels a path in Z(δ, A) from the initial state 0 to
the state

∑`−1
n=0 anδ

`−1−n, that is, its corresponding element in the spec-
trum XA(δ). By definition of the set of states Q, we get that the sequence
(
∑`−1

n=0 anδ
`−1−n)`∈N is bounded. Hence, we obtain that

∑
n∈N

an
δn+1

= lim
`→+∞

∑`−1
n=0 anδ

`−1−n

δ`
= 0.
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Conversely, consider an infinite word a over A that is not accepted by
Z(δ, A). Then there exists ` ∈ N such that |

∑`−1
n=0 anδ

`−1−n| > M
|δ|−1 . Then

∣∣∣∣∣∑
n∈N

an
δn+1

∣∣∣∣∣ ≥
∣∣∣∣∣
`−1∑
n=0

an
δn+1

∣∣∣∣∣−
+∞∑
n=`

M

|δ|n+1
=

∣∣∣∑`−1
n=0 anδ

`−n−1
∣∣∣− M

|δ|−1

|δ|`
> 0.

�

We are now ready to state and prove the main theorem of this section,
which is a generalization of Theorem 1.4.29. This solves a problem that was
left open in [FP18].

Theorem 4.1.6. Let δ be a complex number such that |δ| > 1 and let A be an
alphabet of complex numbers. Then the following assertions are equivalent.

1. The set Z(δ, A) is accepted by a finite Büchi automaton.

2. The right congruence ∼δ,A has finitely many classes.

3. The spectrum XA(δ) has no accumulation point in C.

4. The zero automaton Z(δ, A) is finite.

Proof. Suppose that Z(δ, A) is accepted by a finite Büchi automaton. By
Theorem 1.2.27, we get that the right congruence ∼δ,A has only finitely
many classes. Hence (1) =⇒ (2). The implication (2) =⇒ (3) is given
by Lemma 4.1.3. The implication (3) =⇒ (4) follows directly from the
definition of the zero automaton. Finally, the implication (4) =⇒ (1)
follows from Proposition 4.1.5. �

Note that the zero automaton is deterministic. Therefore, the previous
result shows in particular that if the set Z(δ, A) is accepted by an arbitrary
Büchi automaton, possibly non-deterministic, then it must be also accepted
by a deterministic one.

4.2 Spectrum and representations of zero in alter-
nate bases

From now on, we consider a fixed positive integer p and an alternate base
β = (β0, . . . , βp−1), and we set β =

∏p−1
i=0 βi.

For the purpose of this chapter, we extend the definition of β-representa-
tions of real numbers (see Definition 2.1.4) in order to allow negative digits.
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That is, we say that a β-representation of a real number x is an infinite
sequence a of integers such that valβ(a) = x.

Definition 4.2.1. An alternate alphabet of length p is a sequence

D = (D0, . . . , Dp−1, D0, . . . , Dp−1, . . .)

where D0, . . . , Dp−1 are finite alphabets of integers containing 0. We write

D = (D0, . . . , Dp−1).

As for alternate bases, we use the convention that for all n ∈ Z,
Dn = Dn mod p and D(n) = (Dn, . . . , Dn+p−1).

From now on, we consider an alternate alphabet D = (D, . . . ,Dp−1) of
length p.

Definition 4.2.2. Let Dig(β,D) denote the digit set defined by

Dig(β,D) = {
p−1∑
i=0

aiβi+1 · · ·βp−1 : ∀i ∈ [[0, p− 1]], ai ∈ Di}. (4.3)

Grouping terms p by p, Equality (3.1) can be written as

x =
∑
m∈N

∑p−1
i=0 amp+iβi+1 · · ·βp−1

βm+1
.

If we add the constraint that each letter an belongs to Dn, then we obtain a
β-representation of x over the alphabet Dig(β,D).

Let ⊗n∈NDn denote the set of infinite words over the alphabet ∪p−1
i=0Di

such that for all n ∈ N, the (n+ 1)st letter belongs to the alphabet Dn:⊗
n∈N

Dn = {a ∈ (∪p−1
i=0Di)

N : ∀n ∈ N, an ∈ Dn}.

Definition 4.2.3. Let Z(β,D) denote the set of β-representations of zero
the (n+ 1)th digit of which belongs to the alphabet Dn:

Z(β,D) = {a ∈
⊗
n∈N

Dn :
∑
n∈N

an∏n
k=0 βk

= 0}.

The set Z(β,D) can be seen as a subset of (∪p−1
i=0Di)

N.
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For β =
∏p−1
i=0 βi and the alphabet Dig(β,D), the corresponding spec-

trum XDig(β,D)(β) defined in (4.1) can be rewritten as

XDig(β,D)(β) =

p−1∑
i=0

XDi(β) · βi+1 · · ·βp−1.

For the sake of simplicity, for each i ∈ [[0, p − 1]], we let X(i) denote the
spectrum built from the shifted base β(i) and the shifted alternate alphabet
D(i). In particular, we have X(0) = XDig(β,D)(β).

Lemma 4.2.4. For each i ∈ [[0, p − 1]], we have X(i) · βi + Di = X(i + 1)
where it is understood that X(p) = X(0).

Proof. For each i ∈ [[0, p− 1]], we have

X(i) =

p−1∑
j=0

XDi+j (β) · βi+j+1 · · ·βi+p−1.

Since

(XDi(β) · βi+1 · · ·βi+p−1) · βi +Di = XDi(β) · β +Di = XDi(β),

the conclusion follows. �

Lemma 4.2.5. For all ` ∈ N, we have

`−1∑
n=0

Dn · βn+1 · · ·β`−1 ⊂ X(` mod p).

Proof. We prove the inclusion by induction. If ` = 0, it is immediate. Sup-
pose the result true for ` ∈ N. We have

∑̀
n=0

Dn · βn+1 · · ·β` =
( `−1∑
n=0

Dn · βn+1 · · ·β`−1

)
β` +D`.

By induction, we get

∑̀
n=0

Dn · βn+1 · · ·β` ⊂ X(` mod p) · β` +D`.

The conclusion follows by Lemma 4.2.4. �
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In view of the previous lemma, if for each n ∈ [[0, ` − 1]], the digit an
belongs to the alphabet Dn, then we say that the finite word a0 . . . a`−1

corresponds to the element
∑`−1

n=0 anβn+1 · · ·β`−1 of the spectrum X(` mod
p).

Let us now generalize the notion of zero automaton to the context of
alternate bases.

Definition 4.2.6. For each i ∈ [[0, p− 1]], we define

M (i) =

+∞∑
n=i

max(Dn)∏n
k=i βk

and m(i) =

+∞∑
n=i

min(Dn)∏n
k=i βk

where max(Dn) and min(Dn) respectively denote the maximal and minimal
digit in the alphabet Dn.

As usual, for n ∈ Z, we set M (n) = M (n mod p) and m(n) = m(n mod p).

Definition 4.2.7. The zero automaton associated with the alternate base
β and the alternate alphabet D is the Büchi automaton

Z(β,D) =
(
Qβ,D, (0, 0), Qβ,D,∪p−1

i=0Di, E
)

where

• Qβ,D =
⋃p−1
i=0

(
{i} × (X(i) ∩ [−M (i),−m(i)])

)
• E is the set of transitions defined as follows: for (i, s), (j, t) ∈ Qβ,D and

a ∈ ∪p−1
i=0Di, there is a transition (i, s)

a−−→ (j, t) if and only if j ≡ i+ 1

(mod p), a ∈ Di and t = βis+ a.

Observe that since we have assumed that all the alphabets Di contain
the digit 0, the initial state (0, 0) is indeed an element of Qβ,D. Moreover,
if s ∈ X(i) and a ∈ Di then βis+ a ∈ X(i+ 1) by Lemma 4.2.4.

Proposition 4.2.8. The zero automaton Z(β,D) accepts the set Z(β,D).

Proof. Let a be an infinite word accepted by Z(β,D). For each ` ∈ N, the
prefix a0 · · · a`−1 labels a path in Z(β,D) from the initial state (0, 0) to the
state

(` mod p,

`−1∑
n=0

anβn+1 · · ·β`−1).



112 Chapter 4. Spectrum and normalization in alternate bases

Therefore, the sequence
(∑`−1

n=0 anβn+1 · · ·β`−1

)
`∈N is bounded. Hence, we

get ∑
n∈N

an∏n
k=0 βk

= lim
`→+∞

∑`−1
n=0 anβn+1 · · ·β`−1∏`−1

n=0 βn
= 0.

Conversely, consider an infinite word a such that an ∈ Dn for all n ∈ N
and that is not accepted by Z(β,D). Then, there exists ` ∈ N such that

(` mod p,

`−1∑
n=0

anβn+1 · · ·β`−1) /∈ Qβ,D.

In view of Lemma 4.2.5, we get

`−1∑
n=0

anβn+1 · · ·β`−1 /∈ [−M (`),−m(`)].

Suppose that
`−1∑
n=0

anβn+1 · · ·β`−1 > −m(`)

(the other case is symmetric). We have∑
n∈N

an∏n
k=0 βk

≥
`−1∑
n=0

an∏n
k=0 βk

+

+∞∑
n=`

min(Dn)∏n
k=0 βk

=

∑`−1
n=0 anβn+1 · · ·β`−1 +m(`)∏`−1

n=0 βn

>0.

�

Example 4.2.9. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ) and the

pair of alphabets D = ([[−2, 2]], [[−1, 1]]). Then

M (0) = valβ((21)ω) ' 1.67994

and
M (1) = valβ(1)((12)ω) ' 1.86852.

The zero automaton Z(β,D) is depicted in Figure 4.1 where the states with
first components 0 and 1 are colored in pink and purple respectively, and
where the edges labeled by −2,−1, 0, 1 and 2 are colored in dark blue, dark
green, red, light green and light blue respectively. For instance, the infinite
words 1(10)ω and (012121)ω have value 0 in base β (where 1 and 2 designate
the digits −1 and −2 respectively).
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0

1−1

−β1 β1 β1−1−β1+1

2β1−2−2β1+2 β1−2−β1+2

0

1−1

β0−1−β0+1 β0−2−β0+2

β0−3 −β0+3

Figure 4.1: The zero automaton Z(β,D) for β = (1+
√

13
2 , 5+

√
13

6 ) and

D = ([[−2, 2]], [[−1, 1]]). The conventions for colors are described within Ex-
ample 4.2.9.

Theorem 4.2.10. Let β be an alternate base of length p and let D be an
alternate alphabet. Then the following assertions are equivalent.

1. The set Z(β,D) is accepted by a finite Büchi automaton.

2. The spectrum XDig(β,D)(β) has no accumulation point in R.

3. The zero automaton Z(β,D) is finite.

Proof. By Lemma 4.2.4, if the spectrum XDig(β,D)(β) has no accumulation
point in R then for all i ∈ [[0, p− 1]], the spectrum X(i) based on the cyclic
shift β(i) of the base and the corresponding shifted alternate alphabet D(i)

has no accumulation point in R either. The implication (2) =⇒ (3) then
follows directly from the definition of the set of states of the zero automaton.
The implication (3) =⇒ (1) follows from Proposition 4.2.8.

Let us show that (1) =⇒ (2). Suppose that the set Z(β,D) is accepted
by a finite Büchi automaton A = (Q, q0, F,∪p−1

i=0Di, E). In view of Theo-
rem 4.1.6, it suffices to construct a finite Büchi B automaton accepting the
set Z(β,Dig(β,D)) in order to obtain that XDig(β,D)(β) has no accumula-
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tion point in R. Consider the finite Büchi automaton

B =
(
Q× {f, f}, (q0, f0), Q× {f},Dig(β,D), E′

)
where f0 = f if the initial state q0 is final and f0 = f otherwise, and the
transitions in E′ are defined as follows. For q, q′ ∈ Q, x, x′ ∈ {f, f} and
a0 ∈ D0, . . . , ap−1 ∈ Dp−1, there is a transition

(
(q, x),

p−1∑
i=0

aiβi+1 · · ·βp−1, (q
′, x′)

)
in E′ if there is a path labeled by a0 · · · ap−1 from q to q′ in A and x′ = f if
the path in A goes through a final state and x′ = f otherwise.

We prove that B accepts Z(β,Dig(β,D)). Consider

b ∈ Z(β,Dig(β,D)).

For all n ∈ N, there exists an,0 ∈ D0, . . . , an,p−1 ∈ Dp−1 such that

bn =

p−1∑
i=0

an,iβi+1 · · ·βp−1.

Clearly, the infinite word a = (a0,0 · · · a0,p−1)(a1,0 · · · a1,p−1) · · · belongs to
Z(β,D). Hence, there exists an accepting path labeled by a in A. Let
(qn)n∈N be the sequence of states of this path. Then there is a path labeled
by b in B and going through the sequence of states ((qnp, fn))n∈N where for
n ∈ N≥1, fn = f if there exists i ∈ [[1, p]] such that q(n−1)p+i ∈ F and fn = f
otherwise. Since there are infinitely many n such that qn ∈ F , we obtain
that there also are infinitely many n such that fn = f . Thus, the path in B
labeled by b going through the states ((qnp, fn))n∈N is accepting.

Conversely, consider an infinite word b over Dig(β,D) accepted by B.
Let ((qn, fn))n∈N be the sequence of states of an accepting path labeled by
b in B. By definition of the automaton B, for all n ∈ N, there exists an,0 ∈
D0, . . . , an,p−1 ∈ Dp−1 such that

bn =

p−1∑
i=0

an,iβi+1 · · ·βp−1

and a path from qn to qn+1 in A labeled by an,0 · · · an,p−1, and moreover,
there is such path going through a final state in A if and only if fn = f .
Hence, since there exist infinitely many n such that fn = f , there is an
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accepting path labeled by a = (a0,0 · · · a0,p−1)(a1,0 · · · a1,p−1) · · · in A. Since
A accepts the set Z(β,D), we get that∑

n∈N

bn
βn+1

= valβ(a) = 0.

�

Remark 4.2.11. In the proof of Theorem 4.2.10, if the Büchi automaton
A is deterministic, it is possible that the Büchi automaton B is not. This is
not problematic since we do not require that the set Z(β,D) is accepted by
a deterministic finite Büchi automaton. However, if the map

fβ,D : D → Dig(β,D), (a0, . . . , ap−1) 7→
p−1∑
i=0

aiβi+1 · · ·βp−1

is injective and A is deterministic then B is deterministic as well.

4.3 Algebraic properties of Parry alternate bases

An algebraic description of Parry numbers β > 1 is not obvious. However, we
have links with algebraic and Pisot numbers (see Remark 1.4.12): any Parry
number is an algebraic integer and any Pisot number is a Parry number. The
aim of this section is to give such algebraic properties for Parry alternate
bases (see Definition 3.3.1).

Recall that we fixed an alternate base β = (β0, . . . , βp−1) of length p, we

set β =
∏p−1
i=0 βi and we fixed an alternate alphabet D = (D0, . . . , Dp−1).

4.3.1 A necessary condition to be a Parry alternate base

The following theorem gives a necessary condition on β to be a Parry alter-
nate base. By Section 3.3, we know that the definition of a Parry alternate
base can be equivalently stated by using the periodicity of the greedy, quasi-
greedy or quasi-lazy β(i)-expansions. In this section, we use the periodicity
of the greedy β(i)-expansions of 1.

Theorem 4.3.1. If β is a Parry alternate base, then β is an algebraic integer
and βi ∈ Q(β) for all i ∈ [[0, p− 1]].

In order to give intuition on the algebraic techniques that will be used in
the proof, we start with an example.
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Example 4.3.2. Let β = (β0, β1, β2) be an alternate base such that the
expansions of 1 are given by

dβ(1) = 30ω, dβ(1)(1) = 110ω, dβ(2)(1) = 1(110)ω. (4.4)

We easily derive that β0, β1, β2 satisfy the following set of equations

3

β0
= 1,

1

β1
+

1

β1β2
= 1,

1

β2
+

(
1

β2β0
+

1

β

)
β

β − 1
= 1,

where β = β0β1β2. Multiplying the first equation by β, the second one by
β1β2 and the third one by (β − 1)β2, we obtain identities

3β1β2 − β = 0, −β1β2 + β2 + 1 = 0, β1β2 + (2− β)β2 + β − 1 = 0.

In a matrix formalism, we have(
3 0 −β
−1 1 1
1 2−β β−1

)(
β1β2
β2
1

)
=
(

0
0
0

)
. (4.5)

The existence of a non-zero vector (β1β2, β2, 1)T as a solution of this equation
forces that the determinant of the coefficient matrix is zero, that is, that

β2 − 9β + 9 = 0. Hence we must have β = 9+3
√

5
2 = 3ϕ2 where ϕ = 1+

√
5

2

is the golden ratio. Solving (4.5) for this β, we obtain β1β2 = β
3 = ϕ2 and

β2 = β1β2 − 1 = ϕ2 − 1 = ϕ, and finally β1 = 1 + 1
ϕ = ϕ. Consequently,

β0 = β
β1β2

= 3. Indeed, the triple β = (3, ϕ, ϕ) is an alternate base giving
precisely (4.4) as the expansions of 1, as already observed in Example 2.3.8.

In the previous example, for obtaining the values β0, β1, β2 from the
known ultimately periodic expansions we have used the fact that β0, β1, β2

and β = β0β1β2 are solutions of a system of polynomial equations in four
unknowns x0, x1, x2, y, in our case

3x1x2 − y = 0
−x1x2 + x2 + 1 = 0

x1x2 + (2− y)x2 + y − 1 = 0
x1x2x3 = y.

The solution of the system yielded that β is a root of a monic polynomial
with integer coefficient, that is, is an algebraic integer. The same strategy
can be applied to any Parry alternate basis, that is, to any alternate base
where all the expansions dβ(i)(1), with i ∈ [[0, p−1]], are ultimately periodic.

In the proof of Theorem 4.3.1, we will work with formal power series
whose coefficients are given by ultimately periodic sequences. Let us prepare
explicit form of these sums.
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Definition 4.3.3. For given m ∈ N, k ∈ N≥1, we define Pm,k as the set of
polynomials in Z[y] of degree at most m+ k − 1 of the form

(yk − 1)(
m−1∑
n=0

any
m−1−n) +

k−1∑
n=0

am+ny
k−1−n (4.6)

where a0, . . . , am+k−1 ∈ Z. We say that the polynomial (4.6) is associated
with the integers a0, . . . , am+k−1. Note that this polynomial has maximal
degree m+ k − 1 if a0 6= 0.

Lemma 4.3.4. Let a be an ultimately periodic sequence of integers with
preperiod m ∈ N and period k ∈ N≥1, that is,

a = a0a1 · · · am−1(amam+1 · · · am+k−1)ω.

Then, we have ∑
n∈N

an
yn+1

=
g

ym(yk − 1)

where g is the polynomial in Pm,k associated with the integers a0, . . . , am+k−1.

Proof. We have

∑
n∈N

an
yn+1

=

m−1∑
n=0

an
yn+1

+

+∞∑
n=m

an
yn+1

=
m−1∑
n=0

an
yn+1

+
1

ym

( k−1∑
n=0

am+n

yn+1

)(
1 +

1

yk
+

1

y2k
+ · · ·

)
=

m−1∑
n=0

an
yn+1

+
1

ym

( k−1∑
n=0

am+n

yn+1

) 1

1− 1
yk

=
ym(yk − 1)

(∑m−1
n=0

an
yn+1

)
+ yk

(∑k−1
n=0

am+n

yn+1

)
ym(yk − 1)

=
(yk − 1)

(∑m−1
n=0 any

m−1−n)+
∑k−1

n=0 am+ny
k−1−n

ym(yk − 1)

=
g

ym(yk − 1)

where g is the polynomial in Pm,k associated with the integers a0, . . . , am+k−1.
�
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Lemma 4.3.5. Suppose that 1 has an ultimately periodic β-representation
a of preperiod mp and period kp with m ∈ N and k ∈ N≥1. Then

βm(βk − 1) =

p−1∑
j=0

gj(β)βj+1 · · ·βp−1

where for each j ∈ [[0, p−1]], gj is the polynomial in Pm,k associated with the
integers aj , aj+p . . . , aj+(m+k−1)p.

Proof. Rewrite (3.1) as

1 =

p−1∑
j=0

∑
n∈N

anp+j
βn+1

βj+1 · · ·βp−1.

Since for every j ∈ [[0, p− 1]], the sequence (anp+j)n∈N is ultimately periodic
with preperiod m and period k, the result follows from Lemma 4.3.4. �

Whenever all p expansions dβ(i)(1) are ultimately periodic, for i ∈ [[0, p−
1]], we associate a system of polynomial equations, which we call the β-
polynomial system by analogy to the β-polynomial for real bases β [Par60],
as follows.

Without loss of generality, we suppose that for all i ∈ [[0, p − 1]], the
expansion dβ(i)(1) has a preperiod mip and a period kip with mi ∈ N and
ki ∈ N0. Then, for all i ∈ [[0, p−1]], we let gi,0, gi,1, . . . , gi,p−1 be the associated
polynomials in Pmi,ki as in Lemma 4.3.5, so that

βmi(βki − 1) =

p−1∑
j=0

gi,j(β)βi+j+1 · · ·βi+p−1.

For each i ∈ [[0, p− 1]], since the first digit of dβ(i)(1) is bβic ≥ 1, the degree
of gi,0 is ki +mi − 1.

Definition 4.3.6. The β-polynomial system is the system of p+ 1 polyno-
mial equations in p+ 1 variables x0, x1, . . . , xp−1, y given by

ymi(yki − 1) =

p−1∑
j=0

gi,jxi+j+1 · · ·xi+p−1, for i ∈ [[0, p− 1]]

y =

p−1∏
i=0

xi

(4.7)

where, as usual, we use the convention xn = xn mod p for n ∈ Z.
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By construction, the p-tuple (β0, . . . , βp−1, β) is a solution of the associ-
ated β-polynomial system.

Example 4.3.7. We resume Example 4.3.2. By writing each of the expan-
sions from (4.4) with a preperiod 3 and a period 3, that is,

dβ(0)(1) = 300(000)ω, dβ(1)(1) = 110(000)ω and dβ(2)(1) = 111(011)ω,

we get g0,0 = 3(y − 1), g1,0 = g1,1 = g2,0 = y − 1, g2,1 = g2,2 = y and
g0,1 = g0,2 = g1,2 = 0. The associated β-polynomial system is

y(y − 1) = 3(y − 1)x1x2

y(y − 1) = (y − 1)x2x0 + (y − 1)x0

y(y − 1) = (y − 1)x0x1 + yx1 + y

y = x0x1x2.

By multiplying the second equation by x1x2 and the third one by x2 and by
substituting x0x1x2 by y, we get the three equations

y(y − 1) = 3(y − 1)x1x2

y(y − 1)x1x2 = y(y − 1)x2 + y(y − 1)

y(y − 1)x2 = (y − 1)y + yx1x2 + yx2.

Placing the first equation in the last line, this can be rewritten as−y(y − 1) y(y − 1) y(y − 1)
y y − y(y − 1) y(y − 1)

3(y − 1) 0 −y(y − 1)

x1x2

x2

1

 =

0
0
0

 .

The matrix of this system is equal to M(y)− y(y − 1)I3 where

M(y) =

g1,2 yg1,0 yg1,1

g2,1 g2,2 yg2,0

g0,0 g0,1 g0,2


and I3 is the identity matrix of size 3.

Proof of Theorem 4.3.1. Let m ∈ N and k ∈ N0 be such that the expansions
dβ(i)(1) all have preperiod mp and period kp, for i ∈ [[0, p − 1]]. Then we
consider the associated polynomial system (4.7), where mi = m and ki = k
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for all i ∈ [[0, p− 1]]. We index the equations of this system from 0 to p. For
each i ∈ [[1, p− 1]], we multiply the ith equation by

∏p−1
k=i xk, which becomes

ym(yk − 1)

p−1∏
k=i

xk =

p−1∑
j=0

(gi,j

2p−1∏
k=i+j+1

xk).

By substituting x0 · · ·xp−1 by y, the latter equation can be rewritten as

ym(yk − 1)

p−1∏
k=i

xk =

p−i−1∑
j=0

(ygi,j

p−1∏
k=i+j+1

xk) +

p−1∑
j=p−i

(gi,j

p−1∏
k=i+j+1−p

xk).

Now, the first p equations of the system can be written in the matrix form

(M(y)− ym(yk − 1)Ip)
−→v (x1, . . . , xp−1) = ~0 (4.8)

where Ip is the identity matrix of size p, ~0 is the zero column vector of size
p,

−→v (x1, . . . , xp−1) =


x1x2 · · ·xp−1

x2 · · ·xp−1
...

xp−1

1


and

M(y) =


g1,p−1 yg1,0 · · · yg1,p−3 yg1,p−2

g2,p−2 g2,p−1 · · · yg2,p−4 yg2,p−3
...

...
. . .

...
...

gp−1,1 gp−1,2 · · · gp−1,p−1 ygp−1,0

g0,0 g0,1 · · · g0,p−2 g0,p−1


Since (β0, . . . , βp−1, β) is a non-trivial solution of the original system, we get
that β is a root of the polynomial

h = det(M(y)− ym(yk − 1)Ip)

of Z[y]. By construction, for every i, j ∈ [[0, p − 1]], the polynomial gi,j has
degree at most m + k − 1. Therefore, the highest degree of h is obtained
from the product

∏p−1
i=0 (gi,p−1−ym(yk−1)). This shows that h has leading

coefficient (−1)p. Since β is a root of h, we get that β is an algebraic integer.
It remains to prove that βi ∈ Q(β) for all i ∈ [[0, p− 1]]. To that purpose,

we will apply the famous Perron-Frobenius theorem (see for example [Rig14,
Theorem 2.67]). First, thanks to Lemma 4.3.4, we know that the matrix
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M(β) has non-negative entries. Then, by Lemma 4.3.5 and since any β-
expansion starts with a non-zero digit, the entries

βg1,0(β), βg2,0(β), . . . , βgp−1,0(β), g0,0(β)

of M(β) in respective positions

(0, 1), (1, 2), . . . , (p− 2, p− 1), (p− 1, 0)

are positive. Therefore, the matrix M(β) is irreducible. By the Perron-
Frobenius theorem, the vector −→v (β1, . . . , βp−1) is the unique positive eigen-
vector of M(β) having 1 as its last entry and the corresponding eigenvalue
βm(βk − 1) is the Perron-Frobenius eigenvalue of M(β). Moreover, the rank
of the matrix M(β)− βm(βk − 1)I is p− 1. Thus, the corresponding linear
system in the unknowns

c1 = x1x2 · · ·xp−1, c2 = x2 · · ·xp−1, . . . , cp−1 = xp−1

is equivalent to that obtained by deleting one its p equations. The obtained
system has full rank p − 1. Since all entries of M(β) − βm(βk − 1)I belong
to the field Q(β), any solution vector of the latter system has components ci
in Q(β). Hence, the products β1β2 · · ·βp−1, β2 · · ·βp−1, . . . , βp−1 all belong
to Q(β). We obtain in turn that β1, . . . , βp−1 ∈ Q(β). Since moreover
β0 = β/(β1 · · ·βp−1), we also get that β0 ∈ Q(β). �

Let us emphasize that the greediness of the representations was not
necessary in the proof of Theorem 4.3.1. We only need that each β(i)-
representation of 1 starts with a non-zero digit. Therefore, we have actually
proved the following stronger result.

Theorem 4.3.8. If 1 has ultimately periodic β(i)-representations for all
i ∈ [[0, p − 1]], then β is an algebraic integer. If moreover these p repre-
sentations have non-negative digits and they all start with a non-zero digit,
then β0, . . . , βp−1 ∈ Q(β).

From the proof of Theorem 4.3.1, we deduce the following result about
the uniqueness of the base.

Proposition 4.3.9. Suppose that α = (α0, . . . , αp−1) and β = (β0, . . . , βp−1)

are two alternate bases such that
∏p−1
i=0 αi =

∏p−1
i=0 βi, and suppose that there

exists p ultimately periodic sequences a(0), . . . , a(p−1) of non-negative integers

such that a
(i)
0 ≥ 1 and valα(i)(a(i)) = valβ(i)(a(i)) = 1 for every i ∈ [[0, p− 1]].

Then α = β.
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Proof. Using the same notation as in the proof of Theorem 4.3.1, given the
product β =

∏p−1
i=0 βi, the vector −→v (β1, . . . , βp−1) is the unique positive

eigenvector of M(β) having 1 as its last entry. Therefore, we must have
−→v (α1, . . . , αp−1) = −→v (β1, . . . , βp−1), hence αi = βi for all i ∈ [[1, p]]. More-
over, we have α0 = β/(α1 · · ·αp−1) = β/(β1 · · ·βp−1) = β0. �

In particular, we get the following two corollaries.

Corollary 4.3.10. Let α = (α0, . . . , αp−1) and β = (β0, . . . , βp−1) be two

alternate bases such that
∏p−1
i=0 αi =

∏p−1
i=0 βi and suppose that for every

i ∈ [[0, p− 1]], the α(i)-expansion of 1 and β(i)-expansions of 1 coincide and
are ultimately periodic. Then α = β.

Corollary 4.3.11. If dβ(i)(1) = dβ(1) for all i ∈ [[0, p − 1]] and dβ(1) is
ultimately periodic, then βi = β0 for all i ∈ [[0, p− 1]].

Proof. Apply Corollary 4.3.10 to β and β(1). �

4.3.2 Spectrum and a sufficient condition to be a Parry al-
ternate base

In Section 4.3.1, we have derived a necessary condition for an alternate base
to be Parry. Namely that the product β of the bases is an algebraic integer
and all βj with j ∈ [[0, p − 1]] belong to the field Q(β). In this section, we
give a sufficient condition.

We adopt the same notation and convention as in Section 4.2: we fix
an alternate base β = (β0, . . . , βp−1), we set β =

∏p−1
i=0 βi, we consider an

alternate alphabet D = (D0, . . . , Dp−1) and we let Dig(β,D) be the corre-
sponding alphabet of real numbers as defined in (4.3).

Proposition 4.3.12. If Di ⊇ [[−bβic , bβic]] for all i ∈ [[0, p − 1]] and if
the spectrum XDig(β,D)(β) has no accumulation point in R, then dβ(i)(1) is
ultimately periodic for all i ∈ [[0, p− 1]].

Proof. Suppose that dβ(1) is not ultimately periodic. Then the sequence
of remainders (r`p−1(1))`∈N of the greedy algorithm (see Definition 2.3.1) is
injective. For all x ∈ [0, 1] and ` ∈ N, we have

r`p−1(x) = β`x−
`−1∑
n=0

dnβ
`−1−n (4.9)
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where

dn =

p−1∑
i=0

εnp+i(x)βi+1 · · ·βp−1.

Since Di ⊇ [[−bβic , bβic]] for each i ∈ [[0, p−1]], we get that for all ` ∈ N, the
remainder r`p−1(1) is an element of XDig(β,D)(β). Since the remainders all
belong to the interval [0, 1), the spectrum XDig(β,D)(β) has an accumulation
point in R. By Lemma 4.2.4, either all the spectra X(i) based on the cyclic
shifts β(i) of the alternate base and the corresponding shifted alternate al-
phabet D(i) for i ∈ [[0, p − 1]] have an accumulation point or none of them
has. The result follows. �

Proposition 4.3.13. If β is a Pisot number and βi ∈ Q(β) for all i ∈
[[0, p− 1]] then the spectrum XDig(β,D)(β) has no accumulation point in R.

Proof. The set Dig(β,D) is a finite subset of Q(β) where β is an algebraic
integer. Hence, since every integer is an algebraic integer and since the set of
all algebraic integers is a ring (see Proposition 1.1.3), there exist a positive
integer q and a finite subset A of the ring of algebraic integers in Q(β) such
that

Dig(β,D) ∪ (Dig(β,D)−Dig(β,D)) =
1

q
A.

Let x, y ∈ XDig(β,D)(β) such that x 6= y. There exists ` ∈ N and a0, . . . , a`−1 ∈
A such that

x− y =
1

q

`−1∑
n=0

anβ
n.

We obtain that q(x− y) is an algebraic integer. Let d denote the (algebraic)
degree of β and let β2, . . . , βd be the Galois conjugates of β. Moreover,
set β1 = β. Then, by Proposition 1.1.8, by using the isomorphisms from
Definition 1.1.7, we get

1 ≤
∣∣ d∏
k=1

ψk(q(x− y))
∣∣ = q|x− y|

d∏
k=2

|ψk(q(x− y))|.

Since β is a Pisot number, for all k ∈ [[2, d]], we have |βk| < 1 and hence

|ψk(q(x− y))| ≤M
`−1∑
n=0

|βk|n ≤
M

1− |βk|
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where M = max{|ψk(a)| : k ∈ [[2, d]], a ∈ A}. We get that

|x− y| ≥ 1

q

d∏
k=2

1− |βk|
M

.

The latter inequality states that the distance between distinct elements x, y
of the spectrum XDig(β,D)(β) is bounded from below by a constant uniformly
for all pairs x, y. �

As a consequence, we get the following theorem.

Theorem 4.3.14. If β is a Pisot number and βi ∈ Q(β) for all i ∈ [[0, p−1]]
then β is a Parry alternate base.

Proof. First apply Proposition 4.3.13 with

D = ([[−bβ0c , bβ0c]], . . . , [[−bβp−1c , bβp−1c]])

and then apply Proposition 4.3.12. �

Let us make several remarks concerning the previous result. First, the
following example shows that the condition of β being a Pisot number is
neither sufficient nor necessary for β to be a Parry alternate base

Example 4.3.15. Being a Pisot number is not necessary to be a Parry
number even for p = 1 since there exist Parry numbers which are not Pisot
(see Remark 1.4.12 and Example 1.4.13). To see that it is not sufficient for

p ≥ 2, consider the alternate base β = (
√
β,
√
β) where β is the smallest Pisot

number. The product β is the Pisot number β. However, the β-expansion
of 1 is equal to d√β(1), which is known to be aperiodic. This follows from

the fact that the only Galois conjugate of
√
β is −

√
β, and thus

√
β is not a

Perron number, hence not a Parry number either.

Furthermore, the bases β0, . . . , βp−1 need not be algebraic integers in
order to have the property that dβ(i)(1) is ultimately periodic for all i ∈
[[0, p− 1]].

Example 4.3.16. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ). We have

dβ(0)(1) = 2010ω and dβ(1)(1) = 110ω. However, 5+
√

13
6 is not an algebraic

integer.
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As illustrated in the following example, for the same non-Pisot algebraic
integer β, there may exist two length-p alternate bases α = (α0, · · · , αp−1)

and β = (β0 · · ·βp−1) such that
∏p−1
i=0 αi =

∏p−1
i=0 βi = β, α0, . . . , αp−1 ∈

Q(β), β0, . . . , βp−1 ∈ Q(β) and for all i ∈ [[0, p− 1]], the expansion dα(i)(1) is
ultimately periodic whereas there exists i ∈ [[0, p−1]] such that dβ(i)(1) is not.
The technique used for showing aperiodicity is inspired by the work [LS12].

Example 4.3.17. Consider the real root β > 1 of the polynomial x6−x5−1.
This number is an algebraic integer but it is not a Pisot number since two
of its Galois conjugates have modulus greater than 1 (see Example 1.1.12).

Consider the alternate base α = (1+β7

β7 , β8

1+β7 ). We can compute that

dα(1) = 101310ω and dα(1)(1) = 10181020(1027)ω.

Now consider β = (6
5 ,

5
6β). We prove that dβ(1) is not ultimately periodic.

Let γ be a Galois conjugate of β such that |γ| > 1 and let ψ : Q(β)→ Q(γ)
be the corresponding field isomorphism induced by ψ(β) = γ. We prove
that (r12n−1(1))n∈N is not ultimately periodic, where we set r−1(1) = 1. To
do so, it is enough to prove that

(
|ψ(r12n−1(1))|

)
n∈N is ultimately strictly

increasing. It can be computed that the word 1012 is a prefix of d∗β(1) and
d∗
β(1)(1). Therefore, by Theorem 2.3.33 and Equality (4.9), for all x ∈ [0, 1],

we get

r11(x) ∈ {β6x} ∪ {β6x− β1β
k : k ∈ [[0, 5]]} ∪ {β6x− βk : k ∈ [[0, 5]]}.

Hence, for all x ∈ [0, 1] ∩Q(β), we have

ψ(r11(x)) ∈ {γ6ψ(x)} ∪ {γ6ψ(x)− 5

6
γk+1 : k ∈ [[0, 5]]}

∪ {γ6ψ(x)− γk : k ∈ [[0, 5]]}.

Since |γ| ≤ 6
5 , we get

|ψ(r11(x))| ≥ |γ|6|ψ(x)| − |γ|5.

Thus, if we have

|ψ(x)| > |γ|5

|γ|6 − 1
' 5.49

then we obtain |ψ(r11(x))| > |ψ(x)|. It can be computed that

10131015101310271011
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is the prefix of dβ(1) of length 84. Hence, by using (4.9) again, we get

r83(1) = β42 − β1β
41 − β1β

34 − β1β
26 − β1β

19 − β1β
5.

This implies

ψ(r83(1)) = γ42 − 5

6
γ42 − 5

6
γ35 − 5

6
γ27 − 5

6
γ20 − 5

6
γ6.

Now for x = r83(1), we have |ψ(x)| ' 6.23 > 5.49. We get

|ψ(r11(x))| > |ψ(x)|

where r11(x) = r95(1). Iterating the argument, we obtain that the sequence
(|ψ(r12n−1(1))|)n≥7 is strictly increasing.

4.4 Alternate bases whose set of zero representa-
tions is accepted by a finite Büchi automaton

Once again, we use the notation introduced in Section 4.2: namely we use
fixed β, β,D and then we work with the corresponding digit set Dig(β,D),
set of representations of zero Z(β,D) and spectrum XDig(β,D)(β). We com-
bine the previously established results in order to characterize for which
alternate bases the set Z(β,D) is accepted by a finite Büchi automaton. In
doing so, we generalize Theorem 1.4.31 to alternate bases. We need one more
lemma.

Lemma 4.4.1. If the spectrum XDig(β,D)(β) has no accumulation point in
R and if there exists j ∈ [[0, p− 1]] such that [[−dβe+ 1, dβe − 1]] ⊆ Dj, then
β is a Pisot number.

Proof. Suppose that XDig(β,D)(β) has no accumulation point in R and let j
be an index as in the statement. Since

XDig(β,D)(β) =

p−1∑
i=0

XDi(β)βi+1 · · ·βp−1,

the spectrum XDj (β) has no accumulation point in R. By hypothesis on j,
the spectrum Xdβe−1(β) has no accumulation point in R either. By Theo-
rem 1.4.30, we get that β is a Pisot number. �

Theorem 4.4.2. The following assertions are equivalent.
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1. The set Z(β,D) is accepted by a finite Büchi automaton for all alter-
nate alphabet D = (D0, . . . , Dp−1).

2. The set Z(β,D) is accepted by a finite Büchi automaton for one al-
ternate alphabet D = (D0, . . . , Dp−1) such that Di ⊇ [[−bβic , bβic]] for
all i ∈ [[0, p− 1]] and bβjc ≥ dβe − 1 for some j ∈ [[0, p− 1]].

3. β is a Pisot number and βi ∈ Q(β) for all i ∈ [[0, p− 1]].

Proof. The implication (1) =⇒ (2) is straightforward. Now, suppose that
(2) holds. By Theorem 4.2.10 and Proposition 4.3.12, the greedy expansions
dβ(i)(1) are ultimately periodic for all i ∈ [[0, p−1]]. Then, by Theorem 4.3.1,
we get that β is an algebraic integer and βi ∈ Q(β) for all i ∈ [[0, p − 1]].
Moreover, since there exists j ∈ [[0, p−1]] such that bβjc ≥ dβe−1, we obtain
from Theorem 4.2.10 and Lemma 4.4.1 that β is a Pisot number. Hence, we
have shown that (2) =⇒ (3). Finally, the implication (3) =⇒ (1) is
obtained by combining Proposition 4.3.13 and Theorem 4.2.10. �

4.5 Greedy and lazy normalizations in alternate
bases

In this section, we apply our results in order to show that the greedy and lazy
normalizations in alternate base are computable by finite Büchi automata
under certain hypotheses, in which case we construct such automata.

Definition 4.5.1. The greedy normalization function

νβ,D : (∪p−1
i=0Di)

N → (∪p−1
i=0 [[0, dβie − 1]])N

is the partial function mapping any β-representation a ∈ ⊗n∈NDn of a real
number x ∈ [0, 1) to the greedy β-expansion of x. We say that νβ,D is com-
putable by a finite Büchi automaton if there exists a finite Büchi automaton
accepting the set

{(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : valβ(u) ∈ [0, 1) and v = νβ,D(u)}.

Such a Büchi automaton is called a greedy normalizer in base β over D.

Similarly, the lazy normalization function

ν ′β,D : (∪p−1
i=0Di)

N → (∪p−1
i=0 [[0, dβie − 1]])N
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is the partial function mapping any β-representation a ∈ ⊗n∈NDn of a real
number x ∈ (xβ − 1, xβ] to the lazy β-expansion of x. We say that ν ′β,D
is computable by a finite Büchi automaton if there exists a finite Büchi au-
tomaton accepting the set

{(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : valβ(u) ∈ (xβ − 1, xβ] and v = ν ′β,D(u)}.

Such a Büchi automaton is called a lazy normalizer in base β over D.

4.5.1 Alternate base converter

Following the same lines as in the real base case, we start by constructing a
converter by using the zero automaton Z(β,D) defined in Section 4.2.

Consider two alternate alphabets

D = (D0, . . . , Dp−1) and D′ = (D′0, . . . , D
′
p−1).

We let D −D′ denote the alternate alphabet

(D0 −D′0, . . . , Dp−1 −D′p−1).

Definition 4.5.2. The converter from D to D′ is the Büchi automaton

C(β,D ×D′) = (Qβ,D−D′ , (0, 0), Qβ,D−D′ ,∪
p−1
i=0 (Di ×D′i), E′)

where E′ is the set of transitions defined as follows: for (i, s), (j, t) ∈ Qβ,D−D′

and for [ ab ] ∈ ∪p−1
i=0 (Di ×D′i), there is a transition

(i, s)
[ ab ]
−−→ (j, t)

if and only if [ ab ] ∈ Di × D′i and there is a transition (i, s)
a−b−−→ (j, t) in

Z(β,D −D′).

Proposition 4.5.3. The converter C(β,D ×D′) accepts the set

{[ uv ] ∈
⊗
n∈N

(Dn ×D′n) : valβ(u) = valβ(v)}.

Proof. This is a direct consequence of Proposition 4.2.8. �

Proposition 4.5.4. If β is a Pisot number and βi ∈ Q(β) for all i ∈ [[0, p−
1]], then the converter Cβ,D×D′ is finite.

Proof. By Theorems 4.4.2 and 4.2.10, the zero automaton Z(β,D −D′) is
finite. Hence, so is the converter Cβ,D×D′ . �
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4.5.2 Büchi automata accepting Dβ and D′β

In Chapter 3, we proved that when β is a Parry alternate base, the associ-
ated deterministic finite automata Aβ and A′β accept Fac(Dβ) and Fac(D′β)
respectively.

As in Remark 1.4.24, we consider a modification of these automata in
order to get Büchi automata accepting Dβ and D′β.

Suppose that β is a Parry alternate base and write

d∗
β(i)(1) = t

(i)
0 · · · t

(i)
mi−1

(
t(i)mi · · · t

(i)
mi+ni−1

)ω
for all i ∈ [[0, p−1]]. Without loss of generality, we suppose that dβ(i)(1) has a
non-zero preperiod for all i ∈ [[0, p−1]], that is, in the case of a purely periodic
expansion (t0 · · · tn−1)ω, we work with the writing t0(t1 · · · tn−1t0)ω instead.
Moreover, we suppose that ni is a multiple of p. By Proposition 2.4.25, we
get

`∗
β(i)(xβ(i) − 1) = `

(i)
0 · · · `

(i)
mi−1

(
`(i)mi · · · `

(i)
mi+ni−1

)ω
where `

(i)
n = dβi+ne − 1− t(i)n for all n ∈ [[0,mi + ni − 1]].

Since we supposed that ni is a multiple of p, consider the automata

Aβ = (Q, I, F, [[0, max
0≤i<p

dβie − 1]], E)

and

A′β = (Q, I, F, [[0, max
0≤i<p

dβie − 1]], E′)

from Definitions 3.4.4 and 3.4.11 obtained by only preserving the set{
qi,(i+k) mod p,k : i ∈ [[0, p− 1]], k ∈ [[0,mi + ni − 1]]

}
of accessible states (see Lemma 3.4.12 and (3.6)). Moreover, as in Chapter 3,
for the sake of clarity, we now denote qi,k instead of qi,(i+k) mod p,k since the
second index is completely determined by the other two.

We define associated Büchi automata as follows.

Definition 4.5.5. Let Bβ and B′β denote the Büchi automata defined by

Bβ = (Q, q0,0, FB, [[0, max
0≤i<p

dβie − 1]], E)

and

B′β = (Q, q0,0, FB, [[0, max
0≤i<p

dβie − 1]], E′).
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where the set of states Q is the one of the (accessible) automata Aβ and A′β,
the transition functions E and E′ are the same as the ones of the automata
Aβ and A′β respectively and the set of final states FB is given by

FB =
{
qi,0 : i ∈ [[0, p− 1]]

}
.

Proposition 4.5.6. If β is a Parry alternate base then the Büchi automaton
Bβ (resp., B′β) accepts the set Dβ (resp., D′β).

Proof. An infinite word is accepted by Bβ if and only if it can be factored as
u0u1u2 · · · where each factor un corresponds to a first return to a final state,
that is, for all n ∈ N, there is a path labeled by un from a state of the form qi,0
to a state of the form qj,0 and un is the shortest next factor with this property.
Since we have built Bβ by using a non-zero preperiod for each d∗

β(i)(1), each

such factor un must belong to the set Y (β(|u0|+···+|un−1|), |un|) from Defini-
tion 3.4.1. The conclusion for the greedy case follows from Proposition 3.4.2.
Moreover, as in Lemma 3.4.15, by Lemma 3.4.13, a word w ∈ AN

β is accepted
in Bβ if and only if θβ(w) is accepted in B′β. The conclusion follows since
θβ(Dβ) = D′β by Proposition 2.4.39. �

Example 4.5.7. Consider again the alternate base β = (1+
√

13
2 , 5+

√
13

6 ).
We have dβ(0)(1) = 2010ω and dβ(1)(1) = 110ω, hence d∗β(1) = 200(10)ω and
d∗
β(1)(1) = (10)ω. As explained above, since d∗

β(1)(1) is purely periodic, we

consider the writing 1(01)ω instead of (10)ω. Moreover, we have `∗β(xβ−1) =
012(02)ω and `∗

β(1)(xβ(1) − 1) = 0(20)ω. We obtain the Büchi automata Bβ
and B′β depicted in Figure 4.2.

4.5.3 A sufficient condition for the greedy and lazy normal-
izations to be computable by finite Büchi automata

We are now able to state a generalization of Theorem 1.4.42.

Theorem 4.5.8. If β is a Pisot number and βi ∈ Q(β) for all i ∈ [[0, p− 1]],
then the greedy and lazy normalization functions νβ,D and ν ′β,D are com-
putable by finite Büchi automata.

Proof. If β is a Pisot number and βi ∈ Q(β) for all i ∈ [[0, p − 1]], then
by Theorem 4.3.14, the alternate base β is a Parry alternate base. First,
consider the greedy case. By Proposition 4.5.6, the finite Büchi automaton



4.5. Greedy and lazy normalizations in alternate bases 131

q0,0 q0,1 q0,2 q0,3 q0,4

q1,0 q1,1 q1,2

2
0

0,1
1,2

0
1

0
2

1
0

0
1

0
2

1
0

0
1

0
2

1
0

0
1

Figure 4.2: A Büchi automaton accepting Dβ (red labels) and D′β (blue

labels) for β = (1+
√

13
2 , 5+

√
13

6 ).

Bβ accepts the set Dβ. Thanks to this automaton, we construct a finite
Büchi automaton accepting the set{

(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : ∃x ∈ [0, 1), v = dβ(x)
}
.

By computing the product of the latter Büchi automaton and the converter
C(β,D ×D′) where

D′ = ([[0, dβ0e − 1]], . . . , [[0, dβp−1e − 1]]),

which is finite by Proposition 4.5.4, we get a finite Büchi automaton accepting
the set

{(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : valβ(u) = valβ(v) and

∃x ∈ [0, 1), v = dβ(x)}

= {(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : valβ(u) ∈ [0, 1) and v = νβ,D(u)}.

Therefore, the so-constructed finite Büchi automaton is a finite greedy nor-
malizer in base β over D. Similarly, by Proposition 4.5.6, the finite Büchi
automaton B′β accepts the set D′β. Thanks to this automaton, we construct
a finite Büchi automaton accepting the set{

(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : ∃x ∈ (xβ − 1, xβ], v = `β(x)
}
.
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By computing the product of the latter Büchi automaton and the finite
converter C(β,D ×D′), we get a finite Büchi automaton accepting the set

{(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : valβ(u) = valβ(v) and

∃x ∈ (xβ − 1, xβ], v = `β(x)}

= {(u, v) ∈
⊗
n∈N

(Dn × [[0, dβne − 1]]) : valβ(u) ∈ (xβ − 1, xβ] and

v = ν ′β,D(u)}.

The so-constructed finite Büchi automaton is a finite lazy normalizer in base
β over D. �

Example 4.5.9. Consider again the alternate base β = (1+
√

13
2 , 5+

√
13

6 ).
Following the same steps as described in the proof of Theorem 4.5.8, from
the automata depicted in Figures 4.1 and 4.2, we obtain a finite Büchi au-
tomaton computing the greedy normalization function in base β over the
pair of alphabets D = ([[−2, 2]], [[−1, 1]]).



CHAPTER

5

DYNAMICAL PROPERTIES OF
ALTERNATE BASE

EXPANSIONS

In this chapter, we generalize the greedy and lazy β-transformations for a
real base β to the setting of alternate bases β = (β0, . . . , βp−1). As in the real
base case, these new transformations, denoted Tβ and Lβ respectively, can be
iterated in order to generate the digits of the greedy and lazy β-expansions of
real numbers. The aim of this chapter is to describe the measure theoretical
dynamical behaviors of Tβ and Lβ.

We first prove the existence of a unique absolutely continuous (with re-
spect to an extended Lebesgue measure, called the p-Lebesgue measure)
Tβ-invariant measure. We then show that this unique measure is in fact
equivalent to the p-Lebesgue measure and that the corresponding dynamical
system is ergodic and has entropy 1

p log(β) with β =
∏p−1
i=0 βi.

Then, we express the density function of this measure and compute the
frequencies of letters in the greedy β-expansions. We also obtain the dynami-
cal properties of Lβ by showing that the lazy dynamical system is isomorphic
to the greedy one. We also provide an isomorphism with suitable extensions
of the real base shift.

Finally, we show that the β-expansions can be seen as β-representations

133
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over general digit sets with β =
∏p−1
i=0 βi and we compare both frameworks.

The results presented in this chapter are from [CCD21]. Since this chap-
ter generalizes the dynamical properties of real base expansions to the alter-
nate base framework, Sections 1.3, 1.4.4 and 1.4.5 are needed preliminaries
for the good understanding of the contents of this chapter.

Contents of the Chapter
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5.5.2 Digit sets built thanks to admissible p-tuples . . 173

5.1 Definition of the β-transformations

In this chapter, we let β be a fixed alternate base, we let p be its length
and we let β be the product

∏p−1
i=0 βi. In this case, recall that xβ from (2.9)

satisfies xβ < +∞.

5.1.1 The greedy β-transformation

As said in Chapter 2 the greedy β-expansion can be obtained by alternating
the βi-transformations: for all x ∈ [0, 1) and n ∈ N,

εn(x) =
⌊
βn
(
Tβn−1 ◦ · · · ◦ Tβ0(x)

)⌋
.

This can symbolically be seen in the subsequent example.
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0 1

1

1
β0

2
β0

1
β1

Figure 5.1: The transformations T 1+
√
13

2

(blue) and T 5+
√
13

6

(green).

0 1 21 0 10 0 1 21 0 10 0 1 22

Figure 5.2: The first five digits of the greedy β-expansion of 1+
√

5
5 are 10102

for β = (1+
√

13
2 , 5+

√
13

6 ).

Example 5.1.1. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ) already
studied in Chapters 2, 3 and 4. The greedy β-expansions are obtained by
alternating the transformations T 1+

√
13

2

and T 5+
√
13

6

, which are both depicted

in Figure 5.1. Moreover, in Figure 5.2, we see the computation of the first

five digits of the greedy β-expansion of 1+
√

5
5 .

We define the transformation associated with the greedy β-expansions.

Definition 5.1.2. The greedy β-transformation is the transformation de-
fined by

Tβ : [[0, p− 1]]× [0, 1)→ [[0, p− 1]]× [0, 1),

(i, x) 7→
(
(i+ 1) mod p, Tβi(x)

)
. (5.1)

In order to see that the greedy β-transformation generates the digits of
the greedy β-expansions, we define p+ 1 maps.
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Definition 5.1.3. Define the maps

π2 : N× R→ R, (n, x) 7→ x

and
δi : R→ {i} × R, x 7→ (i, x)

with i ∈ [[0, p− 1]].

Therefore, for all x ∈ [0, 1) and n ∈ N, we have

εn(x) = bβn
(
π2 ◦ Tnβ ◦ δ0(x)

)
c

and
rn(x) = π2 ◦ Tn+1

β ◦ δ0(x).

That is, the greedy β-expansions of real numbers in [0, 1) can be obtained
by alternating the p maps

π2 ◦ Tβ ◦ δi∣∣[0,1)
: [0, 1)→ [0, 1)

with i ∈ [[0, p− 1]].
As in Section 1.4.4, the greedy β-transformation can be extended to

intervals of real numbers bigger than [0, 1) thanks to the definition of xβ.
Recall le link between the values xβ(n) and xβ(n+1) , for all n ∈ N, given in
Proposition 2.4.5: we have

xβ(n) =
xβ(n+1) + dβne − 1

βn
.

Definition 5.1.4. The extended greedy β-transformation, denoted T ext
β , is

defined by

T ext
β :

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
→

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
, (5.2)

(i, x) 7→

{(
(i+ 1) mod p, βix− bβixc

)
if x ∈ [0, 1)(

(i+ 1) mod p, βix− (dβie − 1)
)

if x ∈ [1, xβ(i)).

We extend the definition of the greedy β-expansions of real numbers to
the interval of real numbers [0, xβ). The (extended) greedy β-expansion of
x ∈ [0, xβ) is defined as the concatenation of the digits obtained thanks to
the remainders defined by alternating the p maps

π2 ◦ T ext
β ◦ δi∣∣[0,x

β(i)
)
: [0, xβ(i))→ [0, xβ(i+1))
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0 1

1

xβ(1)

xβ(1)

xβ

xβ

1
β0

2
β0

1
β1

Figure 5.3: The maps π2 ◦ T ext
β ◦ δ0

∣∣[0,xβ)
(blue) and π2 ◦ T ext

β ◦ δ1
∣∣[0,x

β(1)
)

(green) with β = (1+
√

13
2 , 5+

√
13

6 ).

with i ∈ [[0, p− 1]]

Example 5.1.5. Let β = (1+
√

13
2 , 5+

√
13

6 ) be the alternate base of Exam-
ple 5.1.1. The maps

π2 ◦ T ext
β ◦ δ0

∣∣[0,xβ)
: [0, xβ)→ [0, xβ(1))

and
π2 ◦ T ext

β ◦ δ1
∣∣[0,x

β(1)
)
: [0, xβ(1))→ [0, xβ)

are depicted in Figure 5.3.

Remark 5.1.6. Following Remark 2.3.16, it is important to note that here,
when β0 ∈ N≥2, the greedy β-expansion of 1 is (β0 − 1)dβ(1)(1) instead of
β00ω as in Chapter 2. Note that, as said in Remark 2.3.26, the quasi-greedy
β-expansion built on this greedy β-expansion of 1 coincides with the one
defined and used in Chapter 2. Hence, this chapter can make use of results
from Sections 2.3.3, 2.3.4, 2.3.5 and 3.2.

The restriction of the extended greedy β-transformation to the domain
[[0, p − 1]] × [0, 1) gives back the greedy β-transformation initially defined
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in (5.1). Moreover, the subspace [[0, p− 1]]× [0, 1) is an attractor of T ext
β in

the sense given by the following proposition.

Proposition 5.1.7. For each (i, x) ∈
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
, there exists

N ∈ N such that for all n ≥ N ,

(T ext
β )n(i, x) ∈ [[0, p− 1]]× [0, 1). (5.3)

Proof. Let (i, x) ∈
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
. On the one hand, if

(T ext
β )N (i, x) ∈ [[0, p− 1]]× [0, 1)

for some N ∈ N, then clearly (5.3) occurs for all n ≥ N . On the other hand,
if

(T ext
β )n(i, x) /∈ [[0, p− 1]]× [0, 1)

for all n ∈ N, then we would get that x = xβ(i) since at each step n, the
greedy algorithm would pick the maximal digit dβi+ne − 1. �

We now prove a result linking the iterations of the extended greedy maps
and the lexicographic order on n-tuples. In what follows, we suppose that,
for all n ∈ N, the set of n-tuples

∏n−1
i=0 [[0, dβie−1]] is equipped with the lexi-

cographic order: (c0, . . . , cn−1) <lex (c′0, . . . , c
′
n−1) if there exists i ∈ [[0, n−1]]

such that c0 = c′0, . . . , ci−1 = c′i−1 and ci < c′i.

Proposition 5.1.8. For all x ∈ [0, xβ) and n ∈ N, we have

π2 ◦ (T ext
β )n ◦ δ0(x) = xβ0 · · ·βn−1 −

n−1∑
k=0

ckβk+1 · · ·βn−1

where (c0, . . . , cn−1) is the lexicographically greatest n-tuple in
∏n−1
k=0 [[0, dβke−

1]] such that
∑n−1
k=0 ckβk+1···βn−1

β0···βn−1
≤ x.

Proof. We proceed by induction on n. The base case n = 0 is immedi-
ate: both members of the equality are equal to x. Now, suppose that
the result is satisfied for some n ∈ N. Let x ∈ [0, xβ). Let (c0, . . . , cn−1)
be the lexicographically greatest n-tuple in

∏n−1
k=0 [[0, dβke − 1]] such that∑n−1

k=0 ckβk+1···βn−1

β0···βn−1
≤ x. Then it is easily seen that for all m < n, (c0, . . . , cm)

is the lexicographically greatest (m + 1)-tuple in
∏m
k=0 [[0, dβke − 1]] such

that
∑m
k=0 ckβk+1···βm

β0···βm ≤ x. In fact, otherwise they exists a (m + 1)-tuple

(c′0, . . . , c
′
m) in

∏m
k=0 [[0, dβke − 1]] such that (c′0, . . . , c

′
m) >lex (c0, . . . , cm)
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and
∑m
k=0 c

′
kβk+1···βm

β0···βm ≤ x. Therefore, by setting c′m+1 = · · · = c′n−1 = 0, the

n-tuple (c′0, . . . , c
′
n−1) in

∏n−1
k=0 [[0, dβke − 1]] is lexicographically greater than

(c0, . . . , cn−1) and satisfies∑n−1
k=0 c

′
kβk+1 · · ·βn−1

β0 · · ·βn−1
=

∑m
k=0 c

′
kβk+1 · · ·βm

β0 · · ·βm
≤ x,

which is absurd. Now, set y = π2 ◦ (T ext
β )n ◦δ0(x). Then y ∈ [0, xβ(n)) and by

induction hypothesis, we obtain that y = xβ0 · · ·βn−1−
∑n−1

k=0 ckβk+1 · · ·βn−1.
Then, by setting

cn =

{
byβnc if y ∈ [0, 1)

dβne − 1 if y ∈ [1, xβ(n))

we obtain that

π2 ◦ (T ext
β )n+1 ◦ δ0(x) = xβ0 · · ·βn −

n∑
k=0

ckβk+1 · · ·βn.

In order to conclude, we have to show that

a)
∑n
k=0 ckβk+1···βn

β0···βn ≤ x

b) (c0, . . . , cn) is the lexicographically greatest (n + 1)-tuple in∏n
k=0 [[0, dβke − 1]] such that a) holds.

By definition of cn, we have cn ≤ yβn. Therefore,

n∑
k=0

ckβk+1 · · ·βn =
( n−1∑
k=0

ckβk+1 · · ·βn−1

)
βn + cn

= (xβ0 · · ·βn−1 − y)βn + cn

≤ xβ0 · · ·βn.

This shows that a) holds.
Let us show b) by contradiction. Suppose that there exists (c′0, . . . , c

′
n) ∈∏n

k=0 [[0, dβke−1]] such that (c′0, . . . , c
′
n) >lex (c0, . . . , cn) and

∑n
k=0 c

′
kβk+1···βn

β0···βn ≤
x. Then there exists m ≤ n such that c′0 = c0, . . . , c

′
m−1 = cm−1 and

c′m ≥ cm + 1. We again consider two cases. First, suppose that m < n.

Since (c′0, . . . , c
′
m) >lex (c0, . . . , cm), we get

∑m
k=0 c

′
kβk+1···βm

β0···βm > x. But then

n∑
k=0

c′kβk+1 · · ·βn ≥
( m∑
k=0

c′kβk+1 · · ·βm
)
βm+1 · · ·βn > xβ0 · · ·βn,
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a contradiction. Second, suppose that m = n. Then

xβ0 · · ·βn ≥
n∑
k=0

c′kβk+1 · · ·βn ≥
n−1∑
k=0

ckβk+1 · · ·βn + cn + 1,

hence yβn ≥ cn + 1. If y ∈ [0, 1) then cn + 1 = byβnc + 1 > yβn, a
contradiction. Otherwise, y ∈ [1, xβ(n)) and cn + 1 = dβne. But then c′n ≥
dβne, which is impossible since c′n ∈ [[0, dβne − 1]]. This shows b) and ends
the proof. �

5.1.2 The lazy β-transformation

Let us now define the lazy β-transformation.

Definition 5.1.9. The lazy β-transformation is the transformation defined
by

Lβ :

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
→

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
, (5.4)

(i, x) 7→
(
(i+ 1) mod p, βix− dβix− xβ(i+1)e

)
.

The lazy β-transformation Lβ generates the digits of the lazy β-expan-
sions of real numbers in the interval (xβ − 1, xβ] as follows. For all x ∈
(xβ − 1, xβ] and n ∈ N, we have

ξn(x) =
⌈
βn
(
π2 ◦ Lnβ ◦ δ0(x)

)
− xβ(n+1)

⌉
and

sn(x) = π2 ◦ Ln+1
β ◦ δ0(x)

As for the greedy β-transformation, the lazy β-transformation Lβ can
be extended to a bigger interval.

Definition 5.1.10. The extended lazy β-transformation, denoted Lext
β , is

the transformation defined by

Lext
β :

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
→

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
,

(i, x) 7→


(
(i+ 1) mod p, βix

)
if x ∈ (0, xβ(i) − 1](

(i+ 1) mod p, βix−
⌈
βix− xβ(i+1)

⌉ )
if x ∈ (xβ(i) − 1, xβ(i) ].
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Therefore, we define the (extended) lazy β-expansion of x ∈ (0, xβ] as
the concatenations of the digits obtained thanks to the remainders defined
by alternating the p maps

π2 ◦ Lext
β ◦ δi∣∣(0,x

β(i)
]
: (0, xβ(i) ]→ (0, xβ(i+1) ]

for i ∈ [[0, p− 1]].

Example 5.1.11. Consider again the length-2 alternate base

β = (1+
√

13
2 , 5+

√
13

6 ) from Examples 5.1.1 and 5.1.5. We have xβ = 5+7
√

13
18 '

1.67 and xβ(1) = 2+
√

13
3 ' 1.86. The maps

π2 ◦ Lext
β ◦ δ0

∣∣(0,xβ]
: (0, xβ]→ (0, xβ(1) ]

and
π2 ◦ Lext

β ◦ δ1
∣∣(0,x

β(1)
]
: (0, xβ(1) ]→ (0, xβ]

are depicted in Figure 5.4. In Figure 5.5, we see the computation of the first

five digits of the lazy β-expansion of 1+
√

5
5 .

Note that for each i ∈ [[0, p− 1]],

Lext
β

(
{i} × (xβ(i) − 1, xβ(i) ]

)
⊆ {(i+ 1) mod p} × (xβ(i+1) − 1, xβ(i+1) ].

Therefore, the restriction of the extended lazy β-transformation Lext
β to the

domain
⋃p−1
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]) gives back the lazy β-transformation

Lβ initially defined in (5.4). Similarly to the greedy case, we obtain that the

subspace
⋃p−1
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
is an attractor of Lext

β .

Proposition 5.1.12. For each (i, x) ∈
⋃p−1
i=0

(
{i} × (0, xβ(i) ]

)
, there exists

N ∈ N such that for all n ≥ N ,

(Lext
β )n(i, x) ∈

p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
. (5.5)

Proof. Let (i, x) ∈
⋃p−1
i=0

(
{i} × (0, xβ(i) ]

)
. On the one hand, if

(Lext
β )N (i, x) ∈

p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
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0 xβ(1)xβ

xβ(1)− 1
β1

xβ− 2
β0

xβ− 1
β0

xβ(1)

xβ

xβ(1)−1

xβ−1

Figure 5.4: The maps π2 ◦ Lext
β ◦ δ0

∣∣(0,xβ]
(blue) and π2 ◦ Lext

β ◦ δ1
∣∣(0,x

β(1)
]

(green) with β = (1+
√

13
2 , 5+

√
13

6 ).

0 1 2 0 1 0 1 2 0 1 0 1 2

Figure 5.5: The first five digits of the lazy β-expansion of 1+
√

5
5 are 01112

for β = (1+
√

13
2 , 5+

√
13

6 ).

for some N ∈ N, then clearly (5.5) occurs for all n ≥ N . On the other hand,
if

(Lext
β )n(i, x) /∈

p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
for all n ∈ N, then we would get that x = 0 since at each step, the lazy
algorithm would pick the minimal digit, which is always 0. �

The following proposition is the analogue of Proposition 5.1.8 for the lazy
β-transformation.
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Proposition 5.1.13. For all x ∈ (0, xβ] and n ∈ N, we have

π2 ◦ (Lext
β )n ◦ δ0(x) = xβ0 · · ·βn−1 −

n−1∑
k=0

ckβk+1 · · ·βn−1

where (c0, . . . , cn−1) is the lexicographically least n-tuple in
∏n−1
k=0 [[0, dβke−1]]

such that
∑n−1
k=0 ckβk+1···βn−1

β0···βn−1
+
∑+∞

m=n
dβme−1∏m
k=0 βk

≥ x.

Proof. We proceed by induction on n. The base case n = 0 is immediate:
both members of the equality are equal to x. Now, suppose that the result
is satisfied for some n ∈ N. Let x ∈ (0, xβ]. Let (c0, . . . , cn−1) be the
lexicographically least n-tuple in

∏n−1
k=0 [[0, dβke − 1]] such that∑n−1

k=0 ckβk+1 · · ·βn−1

β0 · · ·βn−1
+

+∞∑
m=n

dβme − 1∏m
k=0 βk

≥ x. (5.6)

Note that inequality (5.6) wan be rewritten as∑n−1
k=0 ckβk+1 · · ·βn−1 + xβ(n)

β0 · · ·βn−1
≥ x. (5.7)

Then it is easily seen that for all m < n, (c0, . . . , cm) is the lexicographically

least (m+1)-tuple in
∏m
k=0 [[0, dβke−1]] such that

∑m
k=0 ckβk+1···βm+x

β(m+1)

β0···βm ≥
x. In fact, otherwise they exists a (m+1)-tuple (c′0, . . . , c

′
m) in

∏m
k=0 [[0, dβke−

1]] such that (c′0, . . . , c
′
m) <lex (c0, . . . , cm) and

∑m
k=0 c

′
kβk+1···βm+x

β(m+1)

β0···βm ≥ x.

Therefore, by setting c′m+1 = dβm+1e − 1, . . . , c′n−1 = dβn−1e − 1, the n-

tuple (c′0, . . . , c
′
n−1) in

∏n−1
k=0 [[0, dβke − 1]] is lexicographically smaller than

(c0, . . . , cn−1) and satisfies∑n−1
k=0 c

′
kβk+1 · · ·βn−1 + xβ(n)

β0 · · ·βn−1
=

∑m
k=0 c

′
kβk+1 · · ·βm + xβ(m+1)

β0 · · ·βm
≥ x,

which is absurd. Now, set y = π2 ◦ (Lext
β )n ◦δ0(x). Then y ∈ (0, xβ(n) ] and by

induction hypothesis, we obtain that y = xβ0 · · ·βn−1−
∑n−1

k=0 ckβk+1 · · ·βn−1.
Then, by setting

cn =

{
0 if y ∈ (0, xβ(n) − 1]

dyβn − xβ(n+1)e if y ∈ (xβ(n) − 1, xβ(n) ]

we obtain that

π2 ◦ (Lext
β )n+1 ◦ δ0(x) =π2 ◦ Lext

β ◦ δn(y)
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=yβn − cn

=xβ0 · · ·βn −
n∑
k=0

ckβk+1 · · ·βn.

In order to conclude, we have to show that

a)

∑n
k=0 ckβk+1···βn+x

β(n+1)

β0···βn ≥ x

b) (c0, . . . , cn) is the lexicographically least (n + 1)-tuple in∏n
k=0 [[0, dβke − 1]] such that a) holds.

By definition of cn, we have cn ≥ yβn − xβ(n+1) . Therefore,

n∑
k=0

ckβk+1 · · ·βn =
( n−1∑
k=0

ckβk+1 · · ·βn−1

)
βn + cn

= (xβ0 · · ·βn−1 − y)βn + cn

≥ xβ0 · · ·βn − xβ(n+1) .

This shows that a) holds.

Let us show b) by contradiction. Suppose that there exists (c′0, . . . , c
′
n) ∈∏n

k=0 [[0, dβke − 1]] such that (c′0, . . . , c
′
n) <lex (c0, . . . , cn) and∑n

k=0 c
′
kβk+1 · · ·βn + xβ(n+1)

β0 · · ·βn
≥ x.

Then there exists m ≤ n such that c′0 = c0, . . . , c
′
m−1 = cm−1 and c′m +

1 ≤ cm. We again consider two cases. First, suppose that m < n. Since

(c′0, . . . , c
′
m) <lex (c0, . . . , cm), we get

∑m
k=0 c

′
kβk+1···βm+x

β(m+1)

β0···βm < x. But then

n∑
k=0

c′kβk+1 · · ·βn + xβ(n+1)

≤
( m∑
k=0

c′kβk+1 · · ·βm
)
βm+1 · · ·βn +

n∑
k=m+1

(dβke − 1)βk+1 · · ·βm + xβ(n+1)

=
( m∑
k=0

c′kβk+1 · · ·βm
)
βm+1 · · ·βn + xβ(m+1)βm+1 · · ·βn

<
(
xβ0 · · ·βm − xβ(m+1)

)
βm+1 · · ·βn + xβ(m+1)βm+1 · · ·βn

= xβ0 · · ·βn,
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a contradiction, where the first equality is obtained by iterating (2.10). Sec-
ond, suppose that m = n. Then

xβ0 · · ·βn ≤
n∑
k=0

c′kβk+1 · · ·βn + xβ(n+1)

=

n−1∑
k=0

ckβk+1 · · ·βn + c′n + xβ(n+1)

≤
n−1∑
k=0

ckβk+1 · · ·βn + cn − 1 + xβ(n+1) ,

hence yβn ≤ cn − 1 + xβ(n+1) . If y ∈ (0, xβ(n) − 1] then cn = 0. But

then c′n + 1 ≤ 0 which is impossible since c′n ∈ [[0, dβne − 1]]. Otherwise,
y ∈ (xβ(n) − 1, xβ(n) ] and we have

cn − 1 + xβ(n+1) = dyβn − xβ(n+1)e − 1 + xβ(n+1)

< yβn − xβ(n+1) + xβ(n+1)

= yβn,

a contradiction. This shows b) and ends the proof. �

5.1.3 A note on Cantor bases

Since the greedy algorithm described in Section 2.3 is well defined in the
context of Cantor bases, a natural question is to ask if the notion of itera-
tion of a greedy β-transformation can be extended to this framework. The
following proposition is a generalization of Proposition 5.1.8 when restricted
to [0, 1) but in the general framework of a Cantor base β = (βn)n∈N.

Proposition 5.1.14. For all x ∈ [0, 1), n ∈ N and all β0, . . . , βn−1 > 1, we
have

Tβn−1 ◦ · · · ◦ Tβ0(x) = xβ0 · · ·βn−1 −
n−1∑
k=0

ckβk+1 · · ·βn−1

where (c0, . . . , cn−1) is the lexicographically greatest n-tuple in
∏n−1
k=0 [[0, dβke−

1]] such that
∑n−1
k=0 ckβk+1···βn−1

β0···βn−1
≤ x.

For all k ∈ [[0, n−1]], the βk-transformation Lβk is defined on (xβk−1, xβk ].
So, the transformations Lβ0 , . . . , Lβn−1 cannot be composed to one another in
general. Therefore, even if the lazy algorithm can be defined for Cantor bases,
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provided that xβ < +∞, we cannot state an analogue of Proposition 5.1.14
in terms of the lazy transformations for Cantor bases.

Even though this chapter is mostly concerned with alternate bases, let
us emphasize that some results are indeed valid for any sequence (βn)n∈N ∈
(R>1)N, and hence for any Cantor base. This is the case of Proposition 5.1.14,
Theorem 5.2.3, Corollary 5.2.4 and Proposition 5.2.19.

5.2 Dynamical properties of Tβ

In this section, we study the dynamics of the greedy β-transformation. First,
we generalize Theorem 1.4.46 to the transformation Tβ on [[0, p− 1]]× [0, 1).
Second, we extend the obtained result to the extended transformation T ext

β .
Third, we provide a formula for the density functions of the measures found
in the first two parts. Finally, we compute the frequencies of the digits in
the greedy β-expansions.

5.2.1 Unique absolutely continuous Tβ-invariant measure

In order to generalize Theorem 1.4.46 to the alternate base framework, we
start by recalling a result of Lasota and Yorke [LY82, Theorem 4].

Theorem 5.2.1. Let T : [0, 1) → [0, 1) be a transformation for which there
exists a partition [a0, a1), . . . , [aK−1, aK) of the interval [0, 1) with a0 < · · · <
aK such that for each k ∈ [[0,K − 1]], T∣∣[ak,ak+1)

is convex, T (ak) = 0,

T ′(ak) > 0 and T ′(0) > 1. Then there exists a unique T -invariant absolutely
continuous probability measure. Furthermore, its density function is bounded
and decreasing, and the corresponding dynamical system is exact.

We then prove a stability lemma.

Lemma 5.2.2. Let I be the family of transformations T : [0, 1) → [0, 1)
for which there exist a partition [a0, a1), . . . , [aK−1, aK) of the interval [0, 1)
with a0 < · · · < aK and a slope s > 1 such that for all k ∈ [[0,K − 1]],
ak+1− ak ≤ 1

s and for all x ∈ [ak, ak+1), T (x) = s(x− ak). Then I is closed
under composition.

Proof. Let S, T ∈ I. Let [a0, a1), . . . , [aK−1, aK) and [b0, b1), . . . , [bL−1, bL)
be partitions of the interval [0, 1) with a0 < · · · < aK , b0 < · · · < bL, and let
s, t > 1 such that for all k ∈ [[0,K − 1]], ak+1 − ak ≤ 1

s , for all ` ∈ [[0, L− 1]],
b`+1 − b` ≤ 1

t and for all x ∈ [0, 1), S(x) = s(x − ak) if x ∈ [ak, ak+1) and
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T (x) = t(x − b`) if x ∈ [b`, b`+1). For each k ∈ [[0,K − 1]], define Lk to be
the greatest ` ∈ [[0, L− 1]] such that ak + b`

s < ak+1. Consider the partition

[
a0 +

b0
s
, a0 +

b1
s

)
, . . . ,

[
a0 +

bL0−1

s
, a0 +

bL0

s

)
,
[
a0 +

bL0

s
, a1

)
...[
aK−1 +

b0
s
, aK−1 +

b1
s

)
, . . . ,

[
aK−1 +

bLK−1−1

s
, aK−1 +

bLK−1

s

)
,
[
aK−1 +

bLK−1

s
, aK

)

of the interval [0, 1). For each k ∈ [[0,K − 1]] and ` ∈ [[0, Lk − 1]], ak +
b`+1

s −
ak − b`

s ≤
1
ts and ak+1 − ak −

bLk
s = (ak+1 − ak −

bLk+1

s ) +
bLk+1−bLk

s ≤ 1
ts .

Now, let x ∈ [0, 1) and k ∈ [[0,K − 1]] be such that x ∈ [ak, ak+1). Then
S(x) = s(x − ak) ∈ [0, 1). We distinguish two cases: either there exists

` ∈ [[0, Lk−1]] such that x ∈ [ak+ b`
s , ak+

b`+1

s ), or x ∈ [ak+
bLk
s , ak+1). In the

former case, S(x) ∈ [b`, b`+1) and T ◦S(x) = t(S(x)− b`) = ts(x− (ak + b`
s )).

In the latter case, since ak+1 − ak ≤
bLk+1

s , we get that S(x) ∈ [bLk , bLk+1)

and hence that T ◦ S(x) = t(S(x) − bLk) = ts(x − (ak +
bLk
s )). This shows

that the composition T ◦ S belongs to I. �

The following theorem provides us with the main tool for the construction
of a Tβ-invariant measure.

Theorem 5.2.3. For all n ∈ N≥1 and all β0, . . . , βn−1 > 1, there exists a
unique (Tβn−1 ◦ · · · ◦Tβ0)-invariant absolutely continuous probability measure
µ on B([0, 1)). Furthermore, the measure µ is equivalent to the Lebesgue
measure on B([0, 1)), its density function is bounded and decreasing, and the
dynamical system

([0, 1),B([0, 1)), µ, Tβn−1 ◦ · · · ◦ Tβ0)

is exact and has entropy log(β0 · · ·βn−1).

Proof. The existence of a unique (Tβn−1 ◦ · · · ◦ Tβ0)-invariant absolutely con-
tinuous probability measure µ on B([0, 1)), the fact that its density function
is bounded and decreasing, and the exactness of the corresponding dynamical
system follow from Theorem 5.2.1 and Lemma 5.2.2. With a similar argu-
ment as in [DK10, Lemma 2.6], we can conclude that dµ

dλ > 0 λ-a.e. on [0, 1).
It follows that µ is equivalent to the Lebesgue measure on B([0, 1)). More-
over, the entropy equals log(β0 · · ·βn−1) since Tβn−1 ◦ · · · ◦ Tβ0 is a piecewise
linear transformation of constant slope β0 · · ·βn−1 [DK21, Roh61]. �



148 Chapter 5. Dynamical properties of alternate base expansions

The following consequence of Theorem 5.2.3 will be useful for proving
our generalization of Theorem 1.4.46.

Corollary 5.2.4. Let n ∈ N≥1 and β0, . . . , βn−1 > 1. Then for all B ∈
B([0, 1)) such that (Tβn−1 ◦ · · · ◦ Tβ0)−1(B) = B, we have λ(B) ∈ {0, 1}.

Definition 5.2.5. For each i ∈ [[0, p − 1]], we let µβ,i denote the unique
(Tβi−1

◦· · ·◦Tβi−p)-invariant absolutely continuous probability measure given
by Theorem 5.2.3.

We use the convention that for all n ∈ Z, µβ,n = µβ,n mod p.

Note that if p = 1, the measure µβ,0 is the unique invariant measure
found independently by Gel’fond in 1959 [Gel59] and Parry in 1960 [Par60]
(see Theorem 1.4.46).

Lemma 5.2.6. 1 For i ∈ [[0, p− 1]], we have µβ,i = µβ,i−1 ◦ T−1
βi−1

.

Proof. Let i ∈ [[0, p−1]]. By definition of µβ,i, it suffices to show that µβ,i−1◦
T−1
βi−1

is a (Tβi−1
◦ · · · ◦ Tβi−p)-invariant absolutely continuous probability

measure on B([0, 1)). First, we have µβ,i−1

(
T−1
βi−1

([0, 1))
)

= µβ,i−1([0, 1)) =

1. Second, for all B ∈ B([0, 1)), we have

µβ,i−1 ◦ T−1
βi−1

(
(Tβi−1

◦ · · · ◦ Tβi−p)
−1(B)

)
= µβ,i−1

(
(Tβi−1

◦ · · · ◦ Tβi−p ◦ Tβi−p−1
)−1(B)

)
= µβ,i−1

(
(Tβi−2

◦ · · · ◦ Tβi−p−1
)−1(T−1

βi−1
(B))

)
= µβ,i−1

(
T−1
βi−1

(B)
)
.

Third, for all B ∈ B([0, 1)) such that λ(B) = 0, we get that λ(T−1
βi−1

(B)) =

0 by Remark 1.4.47, and hence that µβ,i−1(T−1
βi−1

(B)) = 0 since µβ,i−1 is
absolutely continuous. �

Definition 5.2.7. Consider the σ-algebra

Tp =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B([0, 1))

}
(5.8)

1I thank Julien Leroy for suggesting this lemma, which allowed me and my co-authors
to simplify several proofs.
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over [[0, p− 1]]× [0, 1). We define a probability measure µβ on the σ-algebra
Tp as follows: for all B0, . . . , Bp−1 ∈ B([0, 1)), we set

µβ

(
p−1⋃
i=0

({i} ×Bi)

)
=

1

p

p−1∑
i=0

µβ,i(Bi). (5.9)

We now study the properties of the probability measure µβ.

Proposition 5.2.8. The measure µβ is Tβ-invariant.

Proof. For all B0, . . . , Bp−1 ∈ B([0, 1)),

µβ

(
T−1
β

(
p−1⋃
i=0

({i} ×Bi)

))
= µβ

(
p−1⋃
i=0

T−1
β ({i} ×Bi)

)

= µβ

(
p−1⋃
i=0

(
{(i− 1) mod p} × T−1

βi−1
(Bi)

))

=
1

p

p−1∑
i=0

µβ,i−1(T−1
βi−1

(Bi))

=
1

p

p−1∑
i=0

µβ,i(Bi)

= µβ

(
p−1⋃
i=0

({i} ×Bi)

)

where we applied Lemma 5.2.6 for the fourth equality. �

Corollary 5.2.9. The quadruple
(
[[0, p−1]]×[0, 1), Tp, µβ, Tβ

)
is a dynamical

system.

Let us define a new measure over the σ-algebra Tp, which extends to the
“p-dimensional setting” the Lebesgue measure.

Definition 5.2.10. For all B0, . . . , Bp−1 ∈ B([0, 1)), we set

λp

(
p−1⋃
i=0

({i} ×Bi)

)
=

1

p

p−1∑
i=0

λ(Bi). (5.10)

We call this measure the p-Lebesgue measure on Tp.
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Proposition 5.2.11. The measure µβ is equivalent to the p-Lebesgue mea-
sure on Tp.

Proof. This follows from the fact that the p measures µβ,0, . . . , µβ,p−1 are
equivalent to the Lebesgue measure λ on B([0, 1)). �

Next, we compute the entropy of the dynamical system
(
[[0, p − 1]] ×

[0, 1), Tp, µβ, Tβ
)
. To do so, we consider the p induced transformations

Tβ,i : {i} × [0, 1)→ {i} × [0, 1), (i, x) 7→ T pβ(i, x)

for i ∈ [[0, p − 1]]. Note that indeed, for all (i, x) ∈ [[0, p − 1]] × [0, 1), the
first return of (i, x) to {i} × [0, 1) is equal to p. Thus Tβ,i = T pβ

∣∣{i}×[0,1)
. For

each i ∈ [[0, p − 1]], the induced transformation Tβ,i is measure preserving
with respect to the measure γβ,i on the σ-algebra {{i} × B : B ∈ B([0, 1))}
defined as follows: for all B ∈ B([0, 1)),

γβ,i({i} ×B) = pµβ({i} ×B).

Lemma 5.2.12. For every i ∈ [[0, p − 1]], the map δi∣∣[0,1)
: [0, 1) → {i} ×

[0, 1), x 7→ (i, x) defines an isomorphism between the dynamical systems(
[0, 1),B([0, 1)), µβ,i, Tβi−1

◦ · · · ◦ Tβi−p
)

and (
{i} × [0, 1), {{i} ×B : B ∈ B([0, 1))}, γβ,i, Tβ,i

)
Proof. Let i ∈ [[0, p − 1]]. For the sake of clarity, in this proof, we simply
denote the map δi∣∣[0,1)

by δi. Clearly, δi is measurable, bijective and

δi ◦ (Tβi−1
◦ · · · ◦ Tβi−p) = Tβ,i ◦ δi.

Moreover, for all B ∈ B([0, 1)), we have

γβ,i({i} ×B) = pµβ({i} ×B) = µβ,i(B) = µβ,i ◦ (δi)
−1({i} ×B).

�

We are now ready to calculate the entropy of the greedy dynamical sys-
tem. Recall that β =

∏p−1
i=0 βi.
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Proposition 5.2.13. The entropy of the dynamical system(
[[0, p− 1]]× [0, 1), Tp, µβ, Tβ

)
is 1

p log(β).

Proof. Let i ∈ [[0, p − 1]]. By Abramov’s formula (see Theorem 1.3.33), we
have

hµβ(Tβ) = µβ({i} × [0, 1))hγβ,i(Tβ,i) =
1

p
hγβ,i(Tβ,i).

Since the entropy is an isomorphic invariant, it follows from Theorem 5.2.3
and Lemma 5.2.12 that hγβ,i(Tβ,i) = log(β). �

Finally, we prove that any Tβ-invariant set has p-Lebesgue measure 0 or
1.

Proposition 5.2.14. For all A ∈ Tp such that T−1
β (A) = A, we have

λp(A) ∈ {0, 1}.

Proof. Let B0, . . . , Bp−1 be sets in B([0, 1)) such that

T−1
β

(
p−1⋃
i=0

({i} ×Bi)

)
=

p−1⋃
i=0

({i} ×Bi).

This implies that

T−1
βi−1

(Bi) = B(i−1) mod p for all i ∈ [[0, p− 1]]. (5.11)

We use the convention that Bn = Bn mod p for all n ∈ Z. An easy induction
yields that for all i ∈ [[0, p− 1]] and n ∈ N,

(Tβi−1
◦ · · · ◦ Tβi−n)−1(Bi) = Bi−n.

In particular, for n = p, we get that for each i ∈ [[0, p− 1]],

(Tβi−1
◦ · · · ◦ Tβi−p)

−1(Bi) = Bi.

By Corollary 5.2.4, for each i ∈ [[0, p − 1]], λ(Bi) ∈ {0, 1}. By definition
of λp, in order to conclude, it suffices to show that either λ(Bi) = 0 for
all i ∈ [[0, p − 1]], or λ(Bi) = 1 for all i ∈ [[0, p − 1]]. From (5.11) and
Remark 1.4.47, we get that for each i ∈ [[0, p − 1]], λ(Bi) = 0 if and only if
λ(Bi+1) = 0. The conclusion follows. �
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We are now able to state the announced generalization of Theorem 1.4.46
to alternate bases.

Theorem 5.2.15. The measure µβ is the unique Tβ-invariant probability
measure on Tp that is absolutely continuous with respect to λp. Furthermore,
µβ is equivalent to λp on Tp and the dynamical system

([[0, p− 1]]× [0, 1), Tp, µβ, Tβ)

is ergodic and has entropy 1
p log(β).

Proof. By Propositions 5.2.8 and 5.2.11, µβ is a Tβ-invariant probability
measure that is absolutely continuous with respect to λp on B([0, 1)). Then
we get from Proposition 5.2.14 that for all A ∈ Tp such that T−1

β (A) = A,
we have µβ(A) ∈ {0, 1}. Therefore, the dynamical system ([[0, p − 1]] ×
[0, 1), Tp, µβ, Tβ) is ergodic. Now, we obtain that the measure µβ is unique
by Theorem 1.3.28. The equivalence between µβ and λp and the entropy of
the system were already obtained in Propositions 5.2.11 and 5.2.13. �

Remark 5.2.16. For p greater than 1, the dynamical system

([[0, p− 1]]× [0, 1), Tp, µβ, Tβ)

is not exact even though for all i ∈ [[0, p− 1]], the dynamical systems

([0, 1),B([0, 1)), µβ,i, Tβi−1
◦ · · · ◦ Tβi−p)

are exact. It suffices to note that the dynamical system

([[0, p− 1]]× [0, 1), Tp, µβ, T pβ)

is not ergodic for p > 1. Indeed, T−pβ ({0} × [0, 1)) = {0} × [0, 1) whereas

µβ({0} × [0, 1)) = 1
p .

5.2.2 Extended measure

In order to study the dynamics of the extended greedy β-transformation
defined in (5.2), we first define an extended σ-algebra T ext

β and extended

measures µext
β and λext

β by extending the domain of the measures µβ and λp
defined in (5.9) and (5.10) respectively.
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Definition 5.2.17. Define a σ-algebra T ext
β on

⋃p−1
i=0

(
{i} × [0, xβ(i))

)
as

follows:

T ext
β =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B([0, xβ(i)))

}
.

For A ∈ T ext
β , we set

µext
β (A) = µβ

(
A ∩

(
[[0, p− 1]]× [0, 1)

))
and

λext
β (A) = λp

(
A ∩

(
[[0, p− 1]]× [0, 1)

))
.

Note that, in the previous section, we could have denoted the σ-algebra
Tp by Tβ and similarly, the measure λp by λβ. We chose to only emphasize
the dependence in p since the definitions of Tp and λp indeed only depend
on the length p of the corresponding alternate base β.

Theorem 5.2.18. The measure µext
β is the unique T ext

β -invariant probability

measure on T ext
β that is absolutely continuous with respect to λext

β . Further-

more, µext
β is equivalent to λext

β on T ext
β and the dynamical system

(

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
, T ext
β , µext

β , T ext
β )

is ergodic and has entropy 1
p log(β).

Proof. Clearly, µext
β is a probability measure on T ext

β . For all A ∈ T ext
β , we

have

µext
β ((T ext

β )−1(A))

= µβ
(
(T ext
β )−1(A) ∩ ([[0, p− 1]]× [0, 1))

)
= µβ

(
(T ext
β )−1

(
A ∩ ([[0, p− 1]]× [0, 1))

)
∩ ([[0, p− 1]]× [0, 1))

)
= µβ

(
T−1
β

(
A ∩ ([[0, p− 1]]× [0, 1))

))
= µβ

(
A ∩ ([[0, p− 1]]× [0, 1))

)
= µext

β (A)

where we used Proposition 5.2.8 for the fourth equality. This shows that
µext
β is T ext

β -invariant on T ext
β . The conclusion then follows from the fact that



154 Chapter 5. Dynamical properties of alternate base expansions

the identity map from [[0, p− 1]]× [0, 1) to
⋃p−1
i=0

(
{i} × [0, xβ(i))

)
defines an

isomorphism between the dynamical systems

([[0, p− 1]]× [0, 1), Tp, µβ, Tβ)

and

(

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
, T ext
β , µext

β , T ext
β ).

�

5.2.3 Density functions

In the next proposition, we express the density function of the unique mea-
sure given in Theorem 5.2.3.

Proposition 5.2.19. Consider n ∈ N≥1 and β0, . . . , βn−1 > 1. Suppose that

• K is the number of not onto branches of Tβn−1 ◦ · · · ◦ Tβ0

• for j ∈ [[1,K]], cj is the right-hand side endpoint of the domain of the
jth not onto branch of Tβn−1 ◦ · · · ◦ Tβ0

• T : [0, 1)→ [0, 1) is the transformation defined by

T (x) = Tβn−1 ◦ · · · ◦ Tβ0(x)

for x /∈ {c1, . . . , cK} and

T (cj) = lim
x→c−j

Tβn−1 ◦ · · · ◦ Tβ0(x)

for j ∈ [[1,K]]

• S is the matrix defined by S = (Si,j)1≤i,j,≤K where

Si,j =
∑

m∈N≥1

δ(Tm(ci) > cj)

(β0 · · ·βn−1)m
,

where δ(P ) equals 1 when the property P is satisfied and 0 otherwise

• 1 is not an eigenvalue of S

• d0 = 1 and
(
d1 · · · dK

)
=
(
1 · · · 1

)
(−S + IdK)−1
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0 1

1

1
β0

1
β1β0

1
β0

β1+1
β1β0

2
β0

Figure 5.6: The composition Tβ1 ◦ Tβ0 with β = (1+
√

13
2 , 5+

√
13

6 ).

• C =
∫ 1

0

(
d0 +

∑K
j=1 dj

∑
m∈N≥1

χ[0,Tm(cj)]

(β0···βn−1)m

)
dλ is the normalization

constant.

Then the density function of the (Tβn−1 ◦ · · · ◦ Tβ0)-invariant measure given
by Theorem 5.2.3 with respect to the Lebesgue measure is

1

C

(
d0 +

K∑
j=1

dj
∑

m∈N≥1

χ[0,Tm(cj)]

(β0 · · ·βn−1)m

)
. (5.12)

Proof. This is an application of the formula given in [Gór09, Theorem 2]. �

In [Gór09], Góra conjectured that 1 is not an eigenvalue of the matrix S
if and only if the dynamical system is exact. Thus, if Góra’s conjecture were
true, thanks to Theorem 5.2.3, the hypothesis that 1 is not an eigenvalue
of the matrix S could be removed from the statement of Proposition 5.2.19.
In particular, Proposition 5.2.19 would then provide the density function of
the (Tβn−1 ◦ · · · ◦Tβ0)-invariant measure given by Theorem 5.2.3 without any
further conditions.

Example 5.2.20. Consider again the alternate base β = (1+
√

13
2 , 5+

√
13

6 ).
The composition Tβ1 ◦ Tβ0 is depicted in Figure 5.6. Since 1

β0
= β1 − 1,

keeping the notation of Proposition 5.2.19, we have K = 3, c1 = 1
β0

, c2 = 2
β0

and c3 = 1. We have T (c1) = T (c2) = T (c3) = c1. Therefore, all elements
in S equal 0, d0 = d1 = d2 = d3 = 1 and C = 1 + 3

β0(β1β0−1) = 1 + 3
β2
0
. The

density function of the unique absolutely continuous (Tβ1 ◦ Tβ0)-invariant
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probability measure µβ,0 is

1

C

(
1 +

3

β0
χ[0, 1

β0
]

)
.

For example, µβ,0
(
[0, 1

β0
)
)

= 13+
√

13
26 . Moreover, it can be checked that

µβ,0
(
(Tβ1 ◦ Tβ0)−1[0, 1

β0
)
)

= µβ,0
(
[0, 1

β0
)
)
.

We obtain a formula for the density function
dµβ
dλp

by using the density

functions
dµβ,i
dλ for i ∈ [[0, p− 1]] given in Proposition 5.2.19. We first need a

lemma.

Lemma 5.2.21. For all i ∈ [[0, p−1]], all sets B ∈ B([0, 1)) and all B([0, 1))-
measurable functions f : [0, 1)→ [0,+∞), the map f ◦π2 : [[0, p−1]]× [0, 1)→
[0,+∞) is Tp-measurable and∫

{i}×B
f ◦ π2 dλp =

1

p

∫
B
fdλ.

Proof. First, consider a B([0, 1))-measurable function f : [0, 1) → [0,+∞).
The map f◦π2 is measurable. In fact, it is sufficient to check Definition 1.3.16
for intervals of the form [0, y) with y > 0 and we have

(f ◦ π2)−1
(
[0, y)

)
= {(i, x) ∈ [[0, p− 1]]× [0, 1) : f ◦ π2(i, x) < y}
= {(i, x) ∈ [[0, p− 1]]× [0, 1) : f(x) < y}

=

p−1⋃
i=0

(
{i} × {x ∈ [0, 1) : f(x) < y}

)
=

p−1⋃
i=0

(
{i} × f−1

(
[0, y)

))
where the set f−1

(
[0, y)

)
belongs to the σ-algebra B([0, 1)) since f is mea-

surable. Hence, we get (f ◦ π2)−1
(
[0, y)

)
∈ Tp.

Second, consider i ∈ [[0, p − 1]] and B ∈ B([0, 1)). The integral equality
follows from standard arguments by using the definition of the integral via
simple functions (see Definition 1.3.17). In fact, we have∫

{i}×B
f ◦ π2 dλp

=

∫
(f ◦ π2) χ{i}×B dλp
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= sup

{∫
g dλp : g ∈ S+([[0, p− 1]]× [0, 1), Tp), g ≤ (f ◦ π2) χ{i}×B

}
(5.13)

and

1

p

∫
B
fdλ =

∫ (1

p
f
)
χBdλ

= sup

{∫
h dλ : h ∈ S+([0, 1),B([0, 1))), h ≤

(1

p
f
)
χB

}
. (5.14)

We then prove the desired equality by double inequality between the values
of the suprema (5.13) and (5.14). We show that the value (5.13) is smaller
than or equal to (5.14), the other inequality can be done in a similar fashion.
Consider a simple function g ∈ S+([[0, p − 1]] × [0, 1), Tp) such that g ≤
(f ◦ π2) χ{i}×B. There exist n ∈ N≥1, B1, . . . , Bn ∈ B([0, 1)), a1, . . . , an > 0

such that ∪n−1
k=1Bk = B, Bn = [0, 1) \ B, Bk ∩ Bk′ = ∅ if k, k′ ∈ [[1, n]] and

k 6= k′, an = 0 and for all (j, x) ∈ [[0, p− 1]]× [0, 1),

g(j, x) =

{
ak if j = i and x ∈ Bk, k ∈ [[1, n− 1]]

0 otherwise.

We set h ∈ S+([0, 1),B([0, 1))) defined by

h(x) =

{
1
pak if x ∈ Bk, k ∈ [[1, n− 1]]

0 otherwise.

We obtain h ≤ (1
pf) χB and, by the definition of the p-Lebesgue measure

and the definition of integral of simple functions, we get∫
g dλp =

n−1∑
k=1

akλp
(
{i} ×Bk

)
=

n−1∑
k=1

ak
1

p
λ(Bk)

=

∫
h dλ.

�

Proposition 5.2.22. The density function
dµβ
dλp

of µβ with respect to the
p-Lebesgue measure λp on Tp is

p−1∑
i=0

(
dµβ,i
dλ
◦ π2

)
· χ{i}×[0,1). (5.15)
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Proof. Let A ∈ Tp and let B0, . . . , Bp−1 ∈ B([0, 1)) such that A =
⋃p−1
i=0 ({i}×

Bi). It follows from Lemma 5.2.21 that

∫
A

p−1∑
i=0

(
dµβ,i
dλ
◦ π2

)
· χ{i}×[0,1) dλp =

p−1∑
i=0

∫
{i}×Bi

dµβ,i
dλ
◦ π2 dλp

=
1

p

p−1∑
i=0

∫
Bi

dµβ,i
dλ

dλ

=
1

p

p−1∑
i=0

µβ,i(Bi)

=µβ(A).

�

Note that the formula (5.15) also holds for the extended measures µext
β

and λext
p on T ext

β .

5.2.4 Frequencies

We now turn to the frequencies of the digits in the greedy β-expansions of
real numbers in the interval [0, 1). Recall that the frequency of a digit d
occurring in the greedy β-expansion a0a1a2 · · · of a real number x in [0, 1)
is equal to

lim
n→+∞

1

n
#{0 ≤ k < n : ak = d},

provided that this limit exists.

Proposition 5.2.23. For λ-almost all x ∈ [0, 1), the frequency of any digit
d occurring in the greedy β-expansion of x exists and is equal to

1

p

p−1∑
i=0

µβ,i

([
d
βi
, d+1
βi

)
∩ [0, 1)

)
.

Proof. Let x ∈ [0, 1) and let d be a digit occurring in dβ(x) = a0a1a2 · · · .
Then for all k ∈ N, ak = d if and only if π2(T kβ(0, x)) ∈ [ dβk ,

d+1
βk

) ∩ [0, 1).

Moreover, since for all k ∈ N, T kβ(0, x) ∈ {k mod p} × [0, 1), we have

χ[ d
βk
, d+1
βk

)∩[0,1)

(
π2

(
T kβ(0, x)

))
= χ

{k mod p}×
(

[ d
βk
, d+1
βk

)∩[0,1)
)(T kβ(0, x)

)
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=

p−1∑
i=0

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)(T kβ(0, x)

)
.

Therefore, if it exists, the frequency of d in dβ(x) is equal to

lim
n→+∞

1

n

n−1∑
k=0

p−1∑
i=0

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)(T kβ(0, x)

)
.

Yet, for each i ∈ [[0, p − 1]] and for µβ-almost all y ∈ [[0, p − 1]] × [0, 1), we
have

lim
n→+∞

1

n

n−1∑
k=0

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)(T kβ(y)

)
=

∫
[[0,p−1]]×[0,1)

χ
{i}×

(
[ d
βi
, d+1
βi

)∩[0,1)
)dµβ

= µβ

(
{i} ×

([
d
βi
, d+1
βi

)
∩ [0, 1)

))
=

1

p
µβ,i

([
d
βi
, d+1
βi

)
∩ [0, 1)

)
where we used Theorem 5.2.15 and the Ergodic theorem for the first equality.
The conclusion now follows from Proposition 5.2.11. �

Note that, when p = 1, Proposition 5.2.23 gives back the classical formula

µβ
(
[ dβ ,

d+1
β ) ∩ [0, 1)

)
for the frequency of the digit d, where µβ is the measure given in Theo-
rem 1.4.46.

5.3 Dynamical properties of Lβ

We now turn to the dynamical study of the lazy β-transformation. To do
so, we first prove that the greedy and lazy dynamical systems are isomorphic
and then we deduce the dynamical properties of the lazy dynamical system
thanks to the ones of the greedy dynamical system studied in the previous
section.

5.3.1 Isomorphism between greedy and lazy β-transformations

We first define a map which will then be proved to be an isomorphism be-
tween the greedy β-transformation and the lazy β-transformation.
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Definition 5.3.1. Consider the map

φβ :

p−1⋃
i=0

(
{i} × [0, 1)

)
→

p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
, (5.16)

(i, x) 7→
(
i, xβ(i) − x

)
and the σ-algebra

Lβ =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B
(
(xβ(i) − 1, xβ(i) ]

)}

on
⋃p−1
i=0

(
{i} ×

(
xβ(i) − 1, xβ(i)

])
.

Remark that we let Lβ denote the lazy σ-algebra since there is a depen-
dence on the alternate base β and not only on its length p as in the greedy
case.

Theorem 5.3.2. The map φβ is an isomorphism between the dynamical
systems (

[[0, p− 1]]× [0, 1), Tp, µβ, Tβ
)

and ( p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
,Lβ, µβ ◦ φ−1

β , Lβ
)
.

Proof. Clearly, φβ is a bimeasurable bijective map. Hence, we only have to

show that φβ ◦ Tβ = Lβ ◦ φβ. Let (i, x) ∈
⋃p−1
i=0

(
{i} × [0, 1)

)
. Then

φβ ◦ Tβ(i, x) =
(
(i+ 1) mod p, xβ(i+1) − βix+ bβixc

)
and

Lβ ◦ φβ(i, x) =
(
(i+ 1) mod p, βi(xβ(i) − x)−

⌈
βi(xβ(i) − x)− xβ(i+1)

⌉ )
.

We easily get that φβ ◦ Tβ(i, x) = Lβ ◦ φβ(i, x) by using (2.10) linking the
values xβ(i) and xβ(i+1) . �

Remark 5.3.3. We deduce from Theorem 5.3.2 that if the greedy β-expan-
sion of a real number x ∈ [0, 1) is a = a0a1a2 · · · , then the lazy β-expansion
of xβ − x is

θβ(a) = (dβ0e − 1− a0)(dβ1e − 1− a1)(dβ2e − 1− a2) · · ·

as already shown in the wider context of Cantor bases in Proposition 2.4.12.
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Moreover, if we extend the lazy σ-algebra and the map φβ as follows, we
can similarly prove that the extended greedy and lazy dynamical systems are
also isomorphic.

Definition 5.3.4. Consider the extended σ-algebra

Lext
β =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ [[0, p− 1]], Bi ∈ B
(
(0, xβ(i) ]

)}
.

We also set

φext
β :

p−1⋃
i=0

(
{i} × [0, xβ(i))

)
→

p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
,

(i, x) 7→
(
i, xβ(i) − x

)
.

Theorem 5.3.5. The map φext
β is an isomorphism between the dynamical

systems ( p−1⋃
i=0

(
{i} × [0, xβ(i))

)
, T ext
β , µext

β , T ext
β

)
and ( p−1⋃

i=0

(
{i} × (0, xβ(i) ]

)
,Lext
β , µext

β ◦ (φext
β )−1, Lext

β

)
.

5.3.2 Unique absolutely continuous Lβ-invariant measure

Thanks to Theorems 5.3.2 and 5.3.5, we obtain two analogues of Theo-
rems 5.2.15 and 5.2.18 for the lazy β-transformation. Recall that β =∏p−1
i=0 βi.

Theorem 5.3.6. The measure µβ ◦ φ−1
β is the unique Lβ-invariant proba-

bility measure on Lβ that is absolutely continuous with respect to λβ ◦ φ−1
β .

Furthermore, µβ ◦ φ−1
β is equivalent to λβ ◦ φ−1

β on Lβ and the dynamical
system ( p−1⋃

i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
,Lβ, µβ ◦ φ−1

β , Lβ
)

is ergodic and has entropy 1
p log(β).
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Theorem 5.3.7. The measure µext
β ◦ (φext

β )−1 is the unique Lext
β -invariant

probability measure on Lext
β that is absolutely continuous with respect to λp ◦

(φext
β )−1. Furthermore, µext

β ◦ (φext
β )−1 is equivalent to λp ◦ (φext

β )−1 on Lext
β

and the dynamical system

( p−1⋃
i=0

(
{i} × (0, xβ(i) ]

)
,Lext
β , µext

β ◦ (φext
β )−1, Lext

β

)
is ergodic and has entropy 1

p log(β).

5.3.3 Density functions and frequencies

Thanks to Theorem 5.3.6, we obtain formulae for the density function of the
measure associated with the lazy dynamical system and the frequencies of
digits in lazy β-expansions.

Proposition 5.3.8. The density function
d(µβ◦φ−1

β )

d(λp◦φ−1
β )

of µβ ◦φ−1
β with respect

to the measure λp ◦ φ−1
β is

dµβ
dλp
◦ φ−1

β =

(
p−1∑
i=0

(
dµβ,i
dλ
◦ π2

)
· χ{i}×[0,1)

)
◦ φ−1

β .

Proof. Consider A ∈ Lβ. We have∫
A

dµβ
dλp
◦ φ−1

β d(λp ◦ φ−1
β ) =

∫
φ−1
β (A)

dµβ
dλp

dλp = µβ(φ−1
β (A)).

The conclusion follows from Proposition 5.2.22 �

Proposition 5.3.9. For λ-almost all x ∈ (xβ − 1, xβ], the frequency of any
digit d occurring in the lazy β-expansion of x exists and is equal to

1

p

p−1∑
i=0

µβ,i

([ dβie−1−d
βi

, dβie−dβi

)
∩ [0, 1)

)
.

Proof. Let x ∈ (xβ − 1, xβ] and let `β(x) = a0a1a2 · · · and dβ(xβ − x) =
b0b1b2 · · · . Consider a digit d occurring in `β(x). By Remark 5.3.3, for all
k ∈ N, ak = d if and only if bk = dβke − 1− d. The conclusion follows from
Proposition 5.2.23. �
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5.4 Isomorphism with the β-shifts

The aim of this section is to generalize the isomorphism from Theorem 1.4.50
between the greedy β-transformation Tβ and the β-shift Sβ (using the no-
tion of cylinders from Definition 1.4.49) to the framework of alternate bases.
Moreover, the analogue lazy result is given.

Definition 5.4.1. Consider the σ-algebra

Gβ =

p−1⋃
i=0

(
{i} × (CAβ ∩ Sβ(i))

)
on
⋃p−1
i=0 ({i} × Sβ(i)). We define

σp :

p−1⋃
i=0

({i} × Sβ(i))→
p−1⋃
i=0

({i} × Sβ(i)), (i, w) 7→ ((i+ 1) mod p, σ(w))

ψβ : [[0, p− 1]]× [0, 1)→
p−1⋃
i=0

({i} × Sβ(i)), (i, x) 7→ (i, dβ(i)(x)).

Note that the transformation σp is well defined by Proposition 2.3.39.

Theorem 5.4.2. The map ψβ defines an isomorphism between the dynam-
ical systems (

[[0, p− 1]]× [0, 1), Tp, µβ, Tβ
)

and (
p−1⋃
i=0

({i} × Sβ(i)),Gβ, µβ ◦ ψ−1
β , σp

)
.

Proof. It is easily seen that

ψβ ◦ Tβ = σp ◦ ψβ (5.17)

and that ψβ is injective. Moreover, we have

ψβ
(
[[0, p− 1]]× [0, 1)

)
= ∪p−1

i=0 ({i} ×Dβ(i))

and
µβ(ψ−1

β (∪p−1
i=0 ({i} ×Dβ(i))) = 1.

�
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Note that (5.17) is a 2-component version of Proposition 2.3.10.
However, although ψβ is continuous, it does not define a topological

isomorphism since it is not surjective.

Remark 5.4.3. In view of Theorems 5.4.2 and 1.4.50, the set
⋃p−1
i=0 ({i} ×

Sβ(i)) can be seen as the “greedy β-shift”, that is, the generalization of
the greedy β-shift Sβ to alternate bases. However, in Chapter 2, what we

called the greedy β-shift is the union Σβ =
⋃p−1
i=0 Sβ(i) . This definition was

motivated by Theorem 3.4.6. In summary, we can say that there are two
ways to extend the notion of β-shift to alternate bases β, depending on the
way we look at it: either as a combinatorial object or as a dynamical object.

Thanks to Theorem 5.4.2, we obtain an analogue of Theorem 5.2.15 for
the transformation σp.

Theorem 5.4.4. The measure µβ ◦ ψ−1
β is the unique σp-invariant proba-

bility measure on Gβ that is absolutely continuous with respect to λp ◦ ψ−1
β .

Furthermore, µβ ◦ ψ−1
β is equivalent to λp ◦ ψ−1

β on Gβ and the dynamical
system ( p−1⋃

i=0

({i} × Sβ(i)),Gβ, µβ ◦ ψ−1
β , σp

)
is ergodic and has entropy 1

p log(β).

In order to have an analogue of Theorem 5.4.4 in the lazy framework, we
now define an isomorphism between the dynamical system

(

p−1⋃
i=0

({i} × Sβ(i)),Gβ, µβ ◦ ψ−1
β , σp)

and its analogue lazy one.

Definition 5.4.5. We consider the σ-algebra

G′β =

p−1⋃
i=0

(
{i} × (CAβ ∩ S

′
β(i))

)
on
⋃p−1
i=0 ({i} × S′

β(i)) and we define the maps

σ′p :

p−1⋃
i=0

({i} × S′
β(i))→

p−1⋃
i=0

({i} × S′
β(i)), (i, w) 7→ ((i+ 1) mod p, σ(w))
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Θβ :

p−1⋃
i=0

({i} × Sβ(i))→
p−1⋃
i=0

({i} × S′
β(i)), (i, a) 7→ (i, θβ(i)(a)).

Theorem 5.4.6. The map Θβ defines an isomorphism between the dynam-
ical systems (

p−1⋃
i=0

({i} × Sβ(i)),Gβ, µβ ◦ ψ−1
β , σp

)
and ( p−1⋃

i=0

({i} × S′
β(i)),G′β, µβ ◦ ψ−1

β ◦Θ−1
β , σ′p

)
Proof. This immediately follows from Proposition 2.4.39. �

The following result is a consequence of Theorems 5.3.2, 5.4.2 and 5.4.6.

Corollary 5.4.7. The map Θβ ◦ ψβ ◦ φ−1
β is an isomorphism between the

dynamical systems

( p−1⋃
i=0

(
{i} × (xβ(i) − 1, xβ(i) ]

)
,Lβ, µβ ◦ φ−1

β , Lβ
)

and ( p−1⋃
i=0

({i} × S′
β(i)),G′β, µβ ◦ ψ−1

β ◦Θ−1
β , σ′p

)
.

It is easy to check that, as expected, that for all (i, x) ∈
⋃p−1
i=0

(
{i} ×

(xβ(i) − 1, xβ(i) ], we have

Θβ ◦ ψβ ◦ φ−1
β (i, x) = (i, `β(i)(x)).

5.5 β-Expansions and some (β0 . . . βp−1)-expansions

We can see the greedy and lazy β-expansions of real numbers as β-representa-
tions, with β =

∏p−1
i=0 βi, over the digit set Dig(β,D) from Chapter 4 (see

Definition 4.2.2), where

D =
(
[[0, dβ0e − 1]], . . . , [[0, dβp−1e − 1]]

)
.
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In fact, by rewriting Equality (3.1) from Chapter 3, we get

x =
a0β1 · · ·βp−1 + a1β2 · · ·βp−1 + · · ·+ ap−1

β
(5.18)

+
apβ1 · · ·βp−1 + ap+1β2 · · ·βp−1 + · · ·+ a2p−1

β2

+ · · · .

For the sake of simplicity, from now on, we fix D as the alternate alphabet
above and we omit the dependence on D in the writing Dig(β,D), that is,
we write

Dig(β) =

{
p−1∑
i=0

ciβi+1 · · ·βp−1 : ∀i ∈ [[0, p− 1]], ci ∈ [[0, dβie − 1]]

}
.

5.5.1 Digit set built thanks to all the p-tuples

In this section, we examine some cases where by considering the greedy (resp.,
lazy) β-expansion of a real number x ∈ [0, 1) (resp., x ∈ (xβ − 1, xβ]) and
rewriting it as (5.18), the obtained representation is the greedy (resp., lazy)
(β,Dig(β))-expansion of x (see Section 1.4.5).

Definition 5.5.1. We define the map

fβ :

p−1∏
i=0

[[0, dβie − 1]]→ R, (c0, . . . , cp−1) 7→
p−1∑
i=0

ciβi+1 · · ·βp−1.

The map fβ is in fact the map fβ,D from Remark 4.2.11 where D =(
[[0, dβ0e − 1]], . . . , [[0, dβp−1e − 1]]

)
.

Note that fβ is not injective in general. The digit set Dig(β) has car-

dinality at most
∏p−1
i=0 dβie and can be rewritten Dig(β) = im(fβ). Let us

write
Dig(β) = {d0, d1 . . . , dm}

with d0 < d1 < · · · < dm. We have

d0 = fβ(0, . . . , 0) = 0,

d1 = fβ(0, . . . , 0, 1) = 1

and

dm = fβ(dβ0e − 1, . . . , dβp−1e − 1).
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In what follows, as in Section 5.1.1, we suppose that
∏p−1
i=0 [[0, dβie − 1]] is

equipped with the lexicographic order.
Recall that all along this section, we let β denote the product

∏p−1
i=0 βi.

Lemma 5.5.2. The set Dig(β) is an allowable digit set for β.

Proof. We need to check Condition (1.4), which means in this case

max
k∈[[0,m−1]]

(dk+1 − dk) ≤
dm − d0

β − 1
.

We have d0 = 0 and

dm = fβ(dβ0e − 1, . . . , dβp−1e − 1) ≥
p−1∑
i=0

(βi − 1)βi+1 · · ·βp−1 = β − 1,

Therefore, it suffices to show that for all k ∈ [[0,m − 1]], dk+1 − dk ≤ 1.
Thus, we only have to show that f(c′0, . . . , c

′
p−1)− f(c0, . . . , cp−1) ≤ 1 where

(c0, . . . , cp−1) and (c′0, . . . , c
′
p−1) are lexicographically consecutive elements of∏p−1

i=0 [[0, dβie − 1]]. For such p-tuples, there exists j ∈ [[0, p − 1]] such that
c0 = c′0, . . . , cj−1 = c′j−1, cj = c′j−1, cj+1 = dβj+1e−1, . . . , cp−1 = dβp−1e−1
and c′j+1 = · · · = c′p−1 = 0. Then

f(c′0, . . . , c
′
p−1)− f(c0, . . . , cp−1)

= βj+1 · · ·βp−1 −
p−1∑
i=j+1

(dβie − 1)βi+1 · · ·βp−1

≤ βj+2 · · ·βp−1 −
p−1∑
i=j+2

(dβie − 1)βi+1 · · ·βp−1

...

≤ βp−1 − (dβp−1e − 1)

≤ 1.

�

Since xβ = dm
β−1 , it follows from Lemma 5.5.2 that every point in [0, xβ)

admits a greedy (β,Dig(β))-expansion.

Proposition 5.5.3. For all x ∈ [0, xβ), we have

Tβ,Dig(β)(x) ≤ π2 ◦ (T ext
β )p ◦ δ0(x) (5.19)



168 Chapter 5. Dynamical properties of alternate base expansions

and
Lβ,Dig(β)(x) ≥ π2 ◦ (Lext

β )p ◦ δ0(x). (5.20)

Proof. Let x ∈ [0, xβ). On the one hand, we have

Tβ,Dig(β)(x) = βx− d

where d is the greatest digit in Digits(β) such that d
β ≤ x. On the other

hand, by rephrasing Proposition 5.1.8 in terms of the map fβ when n equals
p, we get

π2 ◦ (T ext
β )p ◦ δ0(x) = βx− fβ(c)

where c is the lexicographically greatest p-tuple in
∏p−1
i=0 [[0, dβie−1]] such that

fβ(c)
β ≤ x. By definition of d, we get d ≥ fβ(c). Therefore, we obtain (5.19).

The inequality (5.20) then follows from Theorem 5.3.2. �

In what follows, we provide some conditions under which the inequalities
of Proposition 5.5.3 happen to be equalities.

Proposition 5.5.4. The transformations

Tβ,Dig(β) and π2 ◦ (T ext
β )p ◦ δ0

∣∣[0,xβ)

coincide if and only if the transformations

Lβ,Dig(β) and π2 ◦ (Lext
β )p ◦ δ0

∣∣(0,xβ]

do.

Proof. We only show the forward direction, the backward direction being
similar. Suppose that Tβ,Dig(β) = π2 ◦ (T ext

β )p ◦ δ0
∣∣[0,xβ)

and let x ∈ (0, xβ].

Since xβ = dm
β−1 and Dig(β) = D̃ig(β), we successively obtain that

Lβ,Dig(β)(x) = Lβ,Dig(β) ◦ φβ,Dig(β)(xβ − x)

= φβ,Dig(β) ◦ Tβ,Dig(β)(xβ − x)

= φβ,Dig(β) ◦ π2 ◦ (T ext
β )p ◦ δ0(xβ − x)

= π2 ◦ φext
β ◦ (T ext

β )p ◦ δ0(xβ − x)

= π2 ◦ (Lext
β )p ◦ φext

β ◦ δ0(xβ − x)

= π2 ◦ (Lext
β )p ◦ δ0(x).

�
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The next result provides us with a sufficient condition under which the
transformations Tβ,Dig(β) and π2 ◦ (T ext

β )p ◦ δ0
∣∣[0,xβ)

coincide. Here, the non-

decreasingness of the map fβ refers to the lexicographic order: for all c, c′ ∈∏p−1
i=0 [[0, dβie − 1]], c <lex c

′ =⇒ fβ(c) ≤ fβ(c′).

Theorem 5.5.5. If the map fβ is non-decreasing then

Tβ,Dig(β) = π2 ◦ (T ext
β )p ◦ δ0

∣∣[0,xβ)
.

Proof. We keep the same notation as in the proof of Proposition 5.5.3. Let
c′ ∈

∏p−1
i=0 [[0, dβie − 1]] such that d = fβ(c′). By definition of c, we get

c ≥lex c
′. Now, if fβ is non-decreasing then fβ(c) ≥ fβ(c′) = d. Hence the

conclusion. �

The following example shows that considering the length-p alternate base
β = (β, . . . , β) with p ∈ N≥3, it may happen that Tβp,Dig(β) differs from
π2 ◦ (T ext

β )p ◦ δ0
∣∣[0,xβ)

. This result was already proved in [DdVKL12, Propo-

sition 2.1].

Example 5.5.6. Consider the alternate base β = (ϕ2, ϕ2, ϕ2). Then

Dig(β) = {ϕ4c0 + ϕ2c1 + c2 : c0, c1, c2 ∈ {0, 1, 2}}.

Dajani et al. [DdVKL12, Proposition 2.1] proved that Tβn,Dig(β) = Tnβ for all
n ∈ N if and only if fβ is non-decreasing. Since

fβ(0, 2, 2) = 2ϕ2 + 2 > ϕ4 = fβ(1, 0, 0),

the transformations Tϕ6,Dig(β) and π2 ◦ (T ext
β )3 ◦ δ0

∣∣[0,xβ)
differ.

Whenever fβ is not non-decreasing, the transformations Tβ,Dig(β) and
π2 ◦ (T ext

β )p ◦ δ0
∣∣[0,xβ)

can either coincide or not. The following two examples

illustrate both cases. In particular, Example 5.5.8 shows that the sufficient
condition given in Theorem 5.5.5 is not necessary.

Example 5.5.7. Consider the alternate base β = (ϕ,ϕ,
√

5). Then

Dig(β) = {
√

5ϕc0 +
√

5c1 + c2 : c0, c1 ∈ {0, 1}, c2 ∈ {0, 1, 2}}.

However, fβ(0, 1, 2) =
√

5 + 2 ' 4.23 and fβ(1, 0, 0) =
√

5ϕ ' 3.61. It can
be easily checked that there exists x ∈ [0, xβ) such that

T√5ϕ2,Dig(β)(x) 6= π2 ◦ (T ext
β )3 ◦ δ0(x).
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0 xβ

xβ

1

1

0 xβ

xβ

1

1

Figure 5.7: The transformations T√5ϕ2,Dig(β) (left) and π2 ◦ (T ext
β )3 ◦ δ0

∣∣[0,xβ)

(right) with β = (ϕ,ϕ,
√

5).

For example, we can compute T√5ϕ2,Dig(β)(0.75) ' 0.15 and π2 ◦ (T ext
β )3 ◦

δ0(0.75) ' 0.77. The transformations T√5ϕ2,Dig(β) and π2 ◦ (T ext
β )3 ◦ δ0

∣∣[0,xβ)

are depicted in Figure 5.7, where the red lines show the images of the in-

terval
[√

5+2√
5ϕ2 ,

√
5ϕ+1√
5ϕ2

)
' [0.72, 0.78), that is, where the two transformations

differ. Similarly, the transformations L√5ϕ2,Dig(β) and π2 ◦ (Lext
β )3 ◦ δ0

∣∣(0,xβ]

are depicted in Figure 5.8. As illustrated in red, the two transformations

differ on the interval φ√5ϕ2,Dig(β)

([√
5+2√
5ϕ2 ,

√
5ϕ+1√
5ϕ2

))
' (0.82, 0.89].

Example 5.5.8. Consider the alternate base β = (3
2 ,

3
2 , 4). We have

Dig(β) = [[0, 13]]. The map fβ is not non-decreasing since we have fβ(0, 1, 3)
= 7 and fβ(1, 0, 0) = 6. However, T9,Dig(β) = π2 ◦ (T ext

β )3 ◦ δ0
∣∣[0,xβ)

and

L9,Dig(β) = π2 ◦ (Lext
β )3 ◦ δ0

∣∣[0,xβ)
. The transformation T9,Dig(β) is depicted

in Figure 5.9.

The next example illustrates that it may happen that the transforma-
tions Tβ,Dig(β) and π2 ◦ (T ext

β )p ◦ δ0
∣∣[0,xβ)

indeed coincide on [0, 1) but not on

[0, xβ).

Example 5.5.9. Consider the alternate base β = (
√

5
2 ,
√

6
2 ,
√

7
2 ). Then

fβ(0, 1, 1) > fβ(1, 0, 0) and it can be checked that the maps T√210
8

,Dig(β)
and
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0 xβ

xβ

xβ − 1

xβ − 1

0 xβ

xβ

xβ − 1

xβ − 1

Figure 5.8: The transformations L√5ϕ2,Dig(β) (left) and π2 ◦ (Lext
β )3 ◦ δ0

∣∣[0,xβ)

(right) with β = (ϕ,ϕ,
√

5).

0 xβ

xβ

1

1

Figure 5.9: The transformations T9,Dig(β) where β = (3
2 ,

3
2 , 4).



172 Chapter 5. Dynamical properties of alternate base expansions

π2 ◦ (T ext
β )3 ◦ δ0

∣∣[0,xβ)
differ on the interval

[fβ(0,1,1)
β2β1β0

,
fβ(1,0,1)
β2β1β0

)
' [1.28, 1.44).

However, the two maps coincide on [0, 1).

Finally, we provide a necessary and sufficient condition for the map fβ
to be non-decreasing.

Proposition 5.5.10. The map fβ is non-decreasing if and only if for all
j ∈ [[1, p− 2]],

p−1∑
i=j

(dβie − 1)βi+1 · · ·βp−1 ≤ βj · · ·βp−1. (5.21)

Proof. If the map fβ is non-decreasing then for all j ∈ [[1, p− 2]],

p−1∑
i=j

(dβie − 1)βi+1 · · ·βp−1 = fβ(0, . . . , 0, 0, dβje − 1, . . . , dβp−1e − 1)

≤ fβ(0, . . . , 0, 1, 0, . . . , 0)

= βj · · ·βp−1.

Conversely, suppose that (5.21) holds for all j ∈ [[1, p − 2]] and consider
two p-tuples (c0, . . . , cp−1) and (c′0, . . . , c

′
p−1) in

∏p−1
i=0 [[0, dβie − 1]] such that

(c0, . . . , cp−1) <lex (c′0, . . . , c
′
p−1). Then there exists j ∈ [[0, p − 1]] such that

c0 = c′0, . . . , cj−1 = c′j−1 and cj ≤ c′j − 1. We get

fβ(c0, . . . , cp−1) ≤
j∑
i=0

c′iβi+1 · · ·βp−1 − βj+1 · · ·βp−1

+

p−1∑
i=j+1

(dβie − 1)βi+1 · · ·βp−1

≤
j∑
i=0

c′iβi+1 · · ·βp−1

≤ fβ(c′0, . . . , c
′
p−1).

�

Corollary 5.5.11. If p = 2 then Tβ0β1,Dig(β) = π2 ◦ (T ext
β )2 ◦ δ0

∣∣[0,xβ)
. In

particular, Tβ0β1,Dig(β)
∣∣[0,1)

= Tβ1 ◦ Tβ0.
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0 1

1

xβ

xβ

0 xβ − 1

xβ − 1

xβ

xβ

Figure 5.10: The transformations π2 ◦ (T ext
β )2 ◦ δ0

∣∣[0,xβ)
(left) and

π2 ◦ (Lext
β )2 ◦ δ0

∣∣(0,xβ]
(right) for β = (1+

√
13

2 , 5+
√

13
6 ).

Proof. This follows from Theorem 5.5.5 and Proposition 5.5.10. �

Example 5.5.12. Consider once more the alternate base β = (1+
√

13
2 , 5+

√
13

6 )
from Example 5.1.1. Then Dig(β) = {0, 1, β1, β1 + 1, 2β1, 2β1 + 1} and

xβ = 2β1+1
β1β0−1 = 5+7

√
13

18 . The transformations π2 ◦ (T ext
β )2 ◦ δ0

∣∣[0,xβ)
and

π2 ◦ (Lext
β )2 ◦ δ0

∣∣(0,xβ]
are depicted in Figure 5.10. By Corollary 5.5.11, they

coincides with Tβ0β1,Dig(β) and Lβ0β1,Dig(β) respectively.

5.5.2 Digit sets built thanks to admissible p-tuples

As said in the previous section, by considering the greedy β-expansion of a
real number x ∈ [0, 1) and rewriting it as (5.18), the obtained representation
is a (β,Dig(β))-representation of x. However, since the greedy β-expansions
of real numbers in [0, 1) are greedy β-admissible sequences characterized by
the combinatorial property given in Theorem 2.3.33, not all p-tuples of letters
can be the preimage of a digit. Since the set Dβ is closed for the power-p
of the shift map, that is σp(Dβ) = Dβ, a p-tuple (c0, c1, . . . , cp−1) of letters
can appear if c0c1 · · · cp−1 ∈ Pref(Dβ). Hence, the obtained representation
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is more precisely a (β,Adm(β))-representation of x where

Adm(β) =

{
p−1∑
i=0

ciβi+1 · · ·βp−1 : c0c1 · · · cp−1 ∈ Pref(Dβ)

}
.

Similarly, by considering the lazy β-expansion of a real number x in (xβ −
1, xβ] and rewriting it as (5.18), the obtained representation is a
(β,Adm′(β))-representation of x where

Adm′(β) =

{
p−1∑
i=0

ciβi+1 · · ·βp−1 : c0c1 · · · cp−1 ∈ Pref(D′β)

}
.

Clearly, the digit sets Adm(β) and Adm′(β) are subsets of the digit set
Dig(β) studied in the previous section. Moreover, we have

Adm(β) = fβ
(
{(c0, . . . , cp−1) : c0c1 · · · cp−1 ∈ Pref(Dβ)}

)
and

Adm′(β) = fβ
(
{(c0, . . . , cp−1) : c0c1 · · · cp−1 ∈ Pref(D′β)}

)
.

The goal of this section is to study whether while considering a greedy
(resp., lazy) β-expansion of a real number x ∈ [0, 1) (resp., x ∈ (xβ −
1, xβ]) and rewriting it as (5.18), the obtained representation is the greedy (β,
Adm(β))-expansion (resp., the lazy (β,Adm′(β))-expansion) of x.

We start with the study of the digit sets Adm(β) and Adm′(β).

Lemma 5.5.13. For any real number a, we have

a ∈ Adm(β) ⇐⇒
p−1∑
i=0

(dβie − 1)βi+1 · · ·βp−1 − a ∈ Adm′(β).

Proof. Consider a real number a ∈ Adm(β). There exists a p-tuple
(c0, . . . , cp−1) such that c0 · · · cp−1 ∈ Pref(Dβ) and a = fβ(c0, . . . , cp−1). By
Proposition 2.4.12, we get (dβ0e− 1− c0) · · · (dβp−1e− 1− cp−1) ∈ Pref(D′β).

Therefore, the real number fβ
(
(dβ0e−1−c0) · · · (dβp−1e−1−cp−1)

)
belongs

to the digit set Adm′(β) where

fβ
(
(dβ0e − 1− c0) · · · (dβp−1e − 1− cp−1)

)
=

p−1∑
i=0

(dβie − 1− ci)βi+1 · · ·βp−1



5.5. β-Expansions and some (β0 . . . βp−1)-expansions 175

=

p−1∑
i=0

(dβie − 1)βi+1 · · ·βp−1 −
p−1∑
i=0

ciβi+1 · · ·βp−1

=

p−1∑
i=0

(dβie − 1)βi+1 · · ·βp−1 − fβ(c0, . . . , cp−1).

This ends the forward direction, the backward direction being similar. �

As a consequence, we obtain that the digit sets Adm(β) and Adm′(β)
have the same cardinality. Let us write

Adm(β) = {a0, a1, . . . , an} and Adm′(β) = {a′0, a′1, . . . , a′n}

with a0 < a1 < · · · < an and a′0 < a′1 < · · · < a′n. Since, in general, not all
p-tuples in

∏p−1
i=0 [[0, dβie − 1]] are admissible, we have n ≤ m, where m+ 1 is

the cardinality of the digit set Dig(β) from the previous section.

A major difference with respect to the previous section is given by the
following proposition, where the increasingness of the map fβ refers to the

lexicographic order: for all c, c′ ∈
∏p−1
i=0 [[0, dβie − 1]], c <lex c

′ =⇒ fβ(c) <
fβ(c′).

Proposition 5.5.14. The map fβ is increasing when restricted to the sets

{(c0, . . . , cp−1) : c0 · · · cp−1 ∈ Pref(Dβ)}

and

{(c0, . . . , cp−1) : c0 · · · cp−1 ∈ Pref(D′β)}.

Proof. First, consider two p-tuples (c0, . . . , cp−1) and (c′0, . . . , c
′
p−1) such that

(c0, . . . , cp−1) <lex (c′0, . . . , c
′
p−1) and c0 · · · cp−1, c′0 · · · c′p−1 ∈ Pref(Dβ).

There exists j ∈ [[0, p − 1]] such that c0 = c′0, . . . , cj−1 = c′j−1, cj ≤ c′j − 1.
Moreover, since c0 · · · cp−1 ∈ Pref(Dβ), we have cj+1 · · · cp−1 ∈ Pref(Dβ(j+1)).

Hence, we have
∑p−1

i=j+1 ciβi+1 · · ·βp−1 < βj+1 · · ·βp−1. We have

fβ(c0, . . . , cp−1)

=

p−1∑
i=0

ciβi+1 · · ·βp−1

=

j−1∑
i=0

ciβi+1 · · ·βp−1 + cjβj+1 · · ·βp−1 +

p−1∑
i=j+1

ciβi+1 · · ·βp−1
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≤
j−1∑
i=0

c′iβi+1 · · ·βp−1 + (c′j − 1)βj+1 · · ·βp−1 +

p−1∑
i=j+1

ciβi+1 · · ·βp−1

<

j−1∑
i=0

c′iβi+1 · · ·βp−1 + c′jβj+1 · · ·βp−1.

We obtain

fβ(c0, . . . , cp−1) <

j∑
i=0

c′iβi+1 · · ·βp−1 ≤
p−1∑
i=0

c′iβi+1 · · ·βp−1 = fβ(c′0, . . . , c
′
p−1).

Second, consider two p-tuples (c0, . . . , cp−1) and (c′0, . . . , c
′
p−1) such that

(c0, . . . , cp−1) <lex (c′0, . . . , c
′
p−1) and c0 · · · cp−1, c

′
0 · · · c′p−1 ∈ Pref(D′β). The

p-tuples

(dβ0e − 1− c0, . . . , dβp−1e − 1− cp−1)

and

(dβ0e − 1− c′0, . . . , dβp−1e − 1− c′p−1)

are such that

(dβ0e−1−c0, . . . , dβp−1e−1−cp−1) >lex (dβ0e−1−c′0, . . . , dβp−1e−1−c′p−1)

and the length-p words (dβ0e−1− c0) · · · (dβp−1e−1− cp−1) and (dβ0e−1−
c′0) · · · (dβp−1e − 1− c′p−1) belong to Pref(Dβ) by Proposition 2.4.12. By the
first part of the proof, we have

fβ(dβ0e−1−c0, . . . , dβp−1e−1−cp−1) > fβ(dβ0e−1−c′0, . . . , dβp−1e−1−c′p−1).

We get

p−1∑
i=0

(dβie − 1)βi+1 · · ·βp−1 − fβ(c0, . . . , cp−1)

>

p−1∑
i=0

(dβie − 1)βi+1 · · ·βp−1 − fβ(c′0, . . . , c
′
p−1),

that is,

fβ(c0, . . . , cp−1) < fβ(c′0, . . . , c
′
p−1).

�
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From now on, for all i ∈ [[0, p − 1]], we write d∗
β(i)(1) = t

(i)
0 t

(i)
1 t

(i)
2 · · · and

`∗
β(i)(xβ(i)−1) = `

(i)
0 `

(i)
1 `

(i)
2 · · · . As a consequence of the previous proposition,

we have
a0 = fβ(0, . . . , 0) = 0

and
an = fβ(t

(0)
0 , . . . , t

(0)
p−1)

since t
(0)
0 · · · t

(0)
p−1 belongs to Pref(Dβ) by Corollary 2.3.48 and, by Theo-

rem 2.3.33, no lexicographically larger length-p word do. Similarly, we have

a′0 = fβ(`
(0)
0 , . . . , `

(0)
p−1)

since `
(0)
0 · · · `

(0)
p−1 belongs to Pref(D′β) by Proposition 2.4.44 and, by Theo-

rem 2.4.41, no lexicographically smaller length-p word do, and

a′n = fβ(dβ0e − 1, . . . , dβp−1e − 1).

It is important to note that, in general, we have ˜Adm(β) 6= Adm′(β).

Example 5.5.15. Consider the alternate base β = (1+
√

13
2 , 5+

√
13

6 ). By
Example 2.4.26, we have d∗β(1) = 200(10)ω, d∗

β(1)(1) = (10)ω, `∗β(xβ − 1) =

012(02)ω and `β(1)(xβ(1)−1) = (02)ω. Hence, by Theorems 2.3.33 and 2.4.41,
we respectively get

Adm(β) = fβ
(
{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)}

)
= {0, 1, β1, β1 + 1, 2β1}

and

Adm′(β) = fβ
(
{(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}

)
= {1, β1, β1 + 1, 2β1, 2β1 + 1}.

Moreover, we have

˜Adm(β) = {0, β1 − 1, β1, 2β1 − 1, 2β1} 6= Adm′(β).

Lemma 5.5.16. We have

a0

β − 1
= 0,

an
β − 1

≥ 1,

a′0
β − 1

≤ xβ − 1 and
a′n
β − 1

= xβ
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Proof. The first equality is straightforward since a0 = 0 and the fourth one
is immediate by definition of xβ. Moreover, we have

an = fβ(t
(0)
0 , . . . , t

(0)
p−1)

=

p−1∑
i=0

t
(0)
i βi+1 · · ·βp−1

=
( ∑
m∈N

t
(0)
m∏m

k=0 βk

)
β −

+∞∑
m=p

t
(0)
m∏m

k=p βk

≥ β − 1.

Finally, we have

a′0 = fβ(`
(0)
0 , . . . , `

(0)
p−1)

= fβ(dβ0e − 1− t(0)
0 , . . . , dβp−1e − 1− t(0)

p−1)

= fβ(dβ0e − 1, . . . , dβp−1e − 1)− fβ(t
(0)
0 , . . . , t

(0)
p−1)

= a′n − an.

Therefore, we get

a′0
β − 1

=
a′n − an
β − 1

= xβ −
an
β − 1

≤ xβ − 1.

This ends the proof. �

Lemma 5.5.17. The sets Adm(β) and Adm′(β) are allowable digit sets for
β.

Proof. First, we consider the set Adm(β). We need to check Condition (1.4),
which means in our case

max
k∈[[0,n−1]]

(ak+1 − ak) ≤
an
β − 1

.

By Proposition 5.5.14 and Lemma 5.5.16, it suffices to show that for all
k ∈ [[0,m−1]], fβ(c′0, . . . , c

′
p−1)−fβ(c0, . . . , cp−1) ≤ 1 where (c0, . . . , cp−1) and

(c′0, . . . , c
′
p−1) are lexicographically consecutive elements in {(c0, . . . , cp−1) :

c0 · · · cp−1 ∈ Pref(Dβ)}. There exists j ∈ [[0, p − 1]] such that c0 = c′0, . . . ,

cj−1 = c′j−1, cj = c′j − 1, cj+1 = t
(j+1)
0 , . . . , cp−1 = t

(j+1)
p−j−2 and c′j+1 = · · · =

c′p−1 = 0. We have

fβ(c′0, . . . , c
′
p−1)− fβ(c0, . . . , cp−1)
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= c′jβj+1 · · ·βp−1 − (c′j − 1)βj+1 · · ·βp−1 −
p−1∑
i=j+1

t
(j+1)
i−j−1βi+1 · · ·βp−1

= βj+1 · · ·βp−1 −
(( ∑

m∈N

t
(j+1)
m∏m

k=0 βj+1+k

)
βj+1 · · ·βp−1

−
+∞∑

m=p−j−1

t
(j+1)
m∏m

k=p−j−1 βj+1+k

)

=
+∞∑

m=p−j−1

t
(j+1)
m∏m

k=p−j−1 βj+1+k

≤ 1.

Second, we consider the set Adm′(β). In this case, Condition (1.4) means

max
k∈[[0,n−1]]

(a′k+1 − a′k) ≤
a′n − a′0
β − 1

,

where, by Lemma 5.5.16, we have

a′n − a′0
β − 1

≥ 1.

Again, it suffices to show that for all k ∈ [[0,m − 1]], fβ(c′0, . . . , c
′
p−1) −

fβ(c0, . . . , cp−1) ≤ 1 where (c0, . . . , cp−1) and (c′0, . . . , c
′
p−1) are lexicograph-

ically consecutive elements in {(c0, . . . , cp−1) : c0 · · · cp−1 ∈ Pref(D′β)}. The
p-tuples (dβ0e−1−c′0, . . . , dβp−1e−1−c′p−1) and (dβ0e−1−c0, . . . , dβp−1e−1−
cp−1) are lexicographically consecutive elements in {(c0, . . . , cp−1) : c0 · · · cp−1

∈ Pref(Dβ)}. The conclusion follows by the first part of the proof since we
have

fβ(dβ0e − 1− c0, . . . , dβp−1e − 1− cp−1) = a′n − fβ(c0, . . . , cp−1)

and

fβ(dβ0e − 1− c′0, . . . , dβp−1e − 1− c′p−1) = a′n − fβ(c′0, . . . , c
′
p−1).

�

By the previous two lemmas, we get that any real number x ∈ [0, 1) has
a greedy (β,Adm(β))-expansion and any real number x ∈ (xβ − 1, xβ] has a
lazy (β,Adm′(β))-expansion. We are now ready to prove the main result of
this section.
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Theorem 5.5.18. We have

Tβ,Adm(β) = π2 ◦ (Tβ)p ◦ δ0 on [0, 1)

and

Lβ,Adm′(β) = π2 ◦ (Lβ)p ◦ δ0 on (xβ − 1, xβ].

Proof. First, consider the greedy maps and let x ∈ [0, 1). On the one hand,
we have

Tβ,Adm(β)(x) = βx− d

where d is the greatest digit in Adm(β) such that d
β ≤ x. On the other hand,

by rephrasing Proposition 5.1.8 in terms of the map fβ when the parameter
n from the statement equals p, we get

π2 ◦ (Tβ)p ◦ δ0(x) = βx− fβ(c0, . . . , cp−1)

where (c0, . . . , cp−1) is the lexicographically greatest p-tuple in
∏p−1
i=0 [[0, dβie−

1]] such that
fβ(c0,...,cp−1)

β ≤ x. By Proposition 2.3.15, the word c0 · · · cp−1 is
the length-p prefix of dβ(x). Hence, the p-tuple (c0, . . . , cp−1) belongs to
the set {(c0, . . . , cp−1) : c0 · · · cp−1 ∈ Pref(Dβ)}. By definition of d, we get
d ≥ fβ(c0, . . . , cp−1). Let (c′0, . . . , c

′
p−1) such that c′0 · · · c′p−1 ∈ Pref(Dβ) and

d = fβ(c′0, . . . , c
′
p−1). By definition of (c0, . . . , cp−1), we get (c0, . . . , cp−1) ≥lex

(c′0, . . . , c
′
p−1). By Proposition 5.5.14, we get

fβ(c0, . . . , cp−1) ≥ fβ(c′0, . . . , c
′
p−1) = d.

Second, consider x ∈ (xβ − 1, xβ]. We have

Lβ,Adm′(β)(x) = βx− d

where d is the least digit in Adm′(β) such that

d

β
+

+∞∑
k=1

a′n
βk+1

≥ x.

By Lemma 5.5.16, this inequality can be rephrased as

d+ xβ
β

≥ x.

On the other hand, by rephrasing Proposition 5.1.13 by using (5.7) and in
terms of the map fβ when the parameter n from the statement equals p, we
get

π2 ◦ (Lβ)p ◦ δ0(x) = βx− fβ(c0, . . . , cp−1)
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where (c0, . . . , cp−1) is the lexicographically least p-tuple in
∏p−1
i=0 [[0, dβie−1]]

such that
fβ(c0,...,cp−1)+xβ

β ≥ x. By Proposition 2.4.18, the word c0 · · · cp−1

is the length-p prefix of `β(x). Hence, the p-tuple (c0, . . . , cp−1) belongs to
the set {(c0, . . . , cp−1) : c0 · · · cp−1 ∈ Pref(D′β)}. By definition of d, we get
d ≤ fβ(c0, . . . , cp−1). Let (c′0, . . . , c

′
p−1) such that c′0 · · · c′p−1 ∈ Pref(D′β) and

d = fβ(c′0, . . . , c
′
p−1). By definition of (c0, . . . , cp−1), we get (c0, . . . , cp−1) ≤lex

(c′0, . . . , c
′
p−1). By Proposition 5.5.14, we get

fβ(c0, . . . , cp−1) ≤ fβ(c′0, . . . , c
′
p−1) = d.

Hence the conclusion. �

Note that, compared to the proofs in Section 5.5.1, in Theorem 5.5.18,
the lazy equality cannot be immediately deduced from the greedy one since
˜Adm(β) 6= Adm′(β).

As a consequence of the previous theorem, we get and improvement of
Theorem 5.5.5.

Lemma 5.5.19. We have

Adm(β) ⊆ Dig(β) ∩ [0, β)

and

Adm′(β) ⊆ Dig(β) ∩ (a′n − β, a′n].

Moreover, we have

Adm(β) = Dig(β) ∩ [0, β) ⇐⇒ Adm′(β) = Dig(β) ∩ (a′n − β, a′n].

Proof. We have Adm(β) ⊆ Dig(β) and Adm′(β) ⊆ Dig(β). Moreover, we
have Adm(β) = {a0, . . . , an} with 0 = a0 < · · · < an and

an = fβ(t
(0)
0 , . . . , t

(0)
p−1) < β.

Hence, we get Adm(β) ⊆ Dig(β) ∩ [0, β). By Lemma 5.5.13, for any real
number a, we have a ∈ Adm(β) if and only if a′n − a ∈ Adm′(β). We obtain
Adm′(β) ⊆ Dig(β) ∩ (a′n − β, a′n].

Now, we turn to the second part of the statement. Since D̃ig(β) =
Dig(β), for any real number d, we have d ∈ Dig(β) if and only if dm − d ∈
Dig(β), where dm = a′n. We get

Adm(β) = Dig(β) ∩ [0, β)
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⇐⇒ {a′n − a : a ∈ Adm(β)} = {a′n − d : a ∈ Dig(β) ∩ [0, β)}
⇐⇒ Adm′(β) = Dig(β) ∩ (a′n − β, a′n].

�

Proposition 5.5.20. The transformations

Tβ,Dig(β)
∣∣[0,1)

and π2 ◦ (Tβ)p ◦ δ0
∣∣[0,1)

coincide if and only if the transformations

Lβ,Dig(β)
∣∣(xβ−1,xβ]

and π2 ◦ (Lβ)p ◦ δ0
∣∣(xβ−1,xβ]

do.

Proof. The same proof as that of Proposition 5.5.4 can be applied. �

Theorem 5.5.21. We have

Tβ,Dig(β) = π2 ◦ (Tβ)p ◦ δ0 on [0, 1)

if and only if

Adm(β) = Dig(β) ∩ [0, β).

Similarly, we have

Lβ,Dig(β) = π2 ◦ (Lβ)p ◦ δ0 on (xβ − 1, xβ]

if and only if

Adm′(β) = Dig(β) ∩ (a′n − β, a′n].

Proof. First, we consider the greedy part of the statement. Suppose that

Adm(β) = Dig(β) ∩ [0, β).

By Theorem 5.5.18, it is sufficient to prove that we have Tβ,Dig(β) = Tβ,Adm(β)

on [0, 1). For all x ∈ [0, 1), we have Tβ,Dig(β)(x) = βx − d where d is the

greatest digit in Dig(β) such that d
β ≤ x. By assumption we have x < 1,

hence we obtain d < β. Therefore, since Adm(β) = Dig(β)∩ [0, β), the digit
d is the greatest digit in Adm(β) such that d

β ≤ x. We obtain

Tβ,Dig(β)(x) = Tβ,Adm(β)(x).

Conversely, suppose that

Adm(β) 6= Dig(β) ∩ [0, β).
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By Lemma 5.5.19, there exists a digit

d ∈
(
Dig(β) ∩ [0, β)

)
\Adm(β).

If there exists k ∈ [[0, n− 1]] such that ak < d < ak+1. Without loss of gener-
ality, we suppose that there is no other digit d′ ∈

(
Dig(β)∩ [0, β)

)
\Adm(β)

such that d < d′ < ak+1 (otherwise we consider d′ instead of d). Then, for all
x ∈ [ dβ ,

ak+1

β ), we have Tβ,Dig(β)(x) = βx−d whereas Tβ,Adm(β)(x) = βx−ak.
If d > an, then for all x ∈ [ dβ , 1), we have Tβ,Dig(β)(x) = βx − d whereas
Tβ,Adm(β)(x) = βx − an. Hence, the two maps differ and we conclude by
Theorem 5.5.18.

The lazy part of the statement follows by the first part of the proof by
using Lemma 5.5.19 and Proposition 5.5.20. �

Example 5.5.22. Consider the alternate base β = (3
2 ,

3
2 , 4) from Exam-

ple 5.5.8. We have Dig(β) = [[0, 13]]. Since we have d∗β(1) = (102)ω,
d∗
β(1)(1) = 11(102)ω and d∗

β(2)(1) = 3(102)ω, we get

Adm(β) = fβ
(
{(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 0, 2)}
)

= [[0, 8]]

= Dig(β) ∩ [0, 9).

Moreover, we have `∗β(xβ − 1) = (011)ω, `∗
β(1)(xβ(1) − 1) = 02(011)ω and

`∗
β(2)(xβ(2) − 1) = 0(011)ω. Therefore, we get

Adm′(β) = fβ
(
{(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, 2), (1, 0, 3), (1, 1, 0),

(1, 1, 1), (1, 1, 2), (1, 1, 3)}
)

= [[5, 13]]

= Dig(β) ∩ (4, 13].

By Theorem 5.5.21, the maps T9,Dig(β) on [0, 1) and L9,Dig(β) on [0, xβ) re-
spectively coincide with π2 ◦ (Tβ)3 ◦ δ0 on [0, 1) and π2 ◦ (Lβ)3 ◦ δ0 on [0, xβ).
This agrees with what was observed in Example 5.5.8.

Remark 5.5.23. I found the results from this section after the publication
of the article [CCD21]. A direct consequence of Theorem 5.5.18 is that, for all
i ∈ [[0, p−1]], the measure µβ,i from Definition 5.2.5 is the unique Tβ,Adm(β(i))-

invariant absolutely continuous probability measure given by [DK10, Theo-
rem 2.10]. However, note that the digit set Dig(β) has its own advantage
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since, compared to Adm(β) and Adm′(β), it can be constructed without
any prior combinatorial check. In fact, in order to construct the set Adm(β)
(resp., Adm′(β)), one needs to first compute the quasi-greedy β(i)-expansions
of 1 (resp., quasi-lazy β(i)-expansions of xβ(i) − 1) for all i ∈ [[0, p− 1]].



PERSPECTIVES

During this doctoral research, we studied questions related to a generalization
of β-representations which have been studied a lot since 1960. Real base
representations have many related research groundwork to be generalized to
Cantor and alternate base frameworks. Still, a great deal of work remains to
be achieved in this new theory, which is good news for future research. We
end this dissertation by a brief summary of some potential future research
questions.

1. Real base expansions were generalized to the context of negative bases
in 2009 by Ito and Sadahiro [IS09]. In [CD20], in order to generalize real
bases and Cantor (integer) bases, Caalima and Demegillo work with
sequences of real numbers composed of positive and negative bases.
However, not all properties of this book had been studied by Caalima
and Demegillo who concentrated on a generalization of Parry’s theorem
characterizing greedy admissible sequences. In particular, they did not
work on lazy expansions, greedy and lazy β-shifts, normalization or
dynamics. Hence, an open question is to generalize results from this
dissertation to sequences β = (βn)n∈N allowing positive and negative
bases.

2. In Chapter 3, we proved that an alternate base β is a Parry alter-
nate base if and only if the associated greedy (resp., lazy) β-shift is
sofic. Moreover, we illustrated that there exist non-finite type greedy

185
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β-shifts that are based on alternate bases β such that all greedy β(i)-
expansions of 1 are finite. An open question is to elucidate whether all
β(i)-expansions of 1 have to be finite in order to have a greedy β-shift
of finite type.

3. In the real base case, for every sequence of non-negative digits a =
a0a1a2 · · · satisfying the lexicographic condition anan+1an+2 · · · ≤lex a
for all n ∈ N, there exists a unique β > 1 such that dβ(1) = a [Par60]. It
is not clear yet whether for p integer digit sequences a(0), . . . , a(p−1) sat-
isfying analogous lexicographic conditions, there exists a unique alter-
nate base (β0, . . . , βp−1) such that dβ(i)(1) = a(i) for i = 0, 1, . . . , p− 1.
Corollary 4.3.10 represents a first step towards this direction.

4. For β > 1, let Per(β) denote the set of real numbers in [0, 1) having
an ultimately periodic β-expansion. Schmidt [Sch80] proved that if
Per(β) ⊃ Q∩ [0, 1) then β is either a Pisot number or a Salem number
(that is a real algebraic integer greater than 1 such that all of its Galois
conjugates have modulus less than or equal 1 and at most one of them
has modulus exactly 1); and that if β is a Pisot number, then Per(β) =
Q(β) ∩ [0, 1). The question here is to generalize such results, that is
to understand which are the ultimately periodic β-expansions for an
alternate base β, and in particular, for which alternate bases β do all
rational numbers have ultimately periodic β-expansions. We currently
work on this question with Émilie Charlier and Savinien Kreczman.

5. In Chapter 4, we proved that if β =
∏p−1
i=0 βi is a Pisot number and

β0, . . . , βp−1 belong to Q(β), then β is a Parry alternate base (see The-
orem 4.3.14). We have illustrated that β being Pisot is not a necessary
condition. For p = 1, Solomyak obtained algebraic properties of Parry
numbers [Sol94]. It would be interesting to study the analogy in the
context of alternate bases. In particular, to find bounds on the alge-
braic conjugates of β.

6. In Chapter 4, we proved that if β =
∏p−1
i=0 βi is a Pisot number and

βi ∈ Q(β) for all i ∈ [[0, p− 1]], then the greedy and lazy normalization
functions are computable by finite Büchi automata. An open ques-
tion is to investigate if whether or not this sufficient condition is also
necessary.

7. For a real base β > 1, Theorem 1.4.30 tells us that if d > β − 1, then
the spectrum Xd(β) has no accumulation point in R if and only if β is
Pisot. In view of Theorems 4.2.10 and 4.4.2 from Chapter 4, we leave
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the following two questions open. Let β = (β0, . . . , βp) be an alternate

base, let β =
∏p−1
i=0 βi, letD = (D0, . . . , Dp−1) be an alternate alphabet

and let Dig(β,D) be the associated real digit set.

(a) Suppose that the spectrum XDig(β,D)(β) has no accumulation
point in R and that Di ⊇ [[−bβic , bβic]] for all i ∈ [[0, p − 1]].
Can we deduce that the product β is a Pisot number and that
βi ∈ Q(β) for all i ∈ [[0, p− 1]]?

(b) Suppose that the spectrum XDig(β,D)(β) has no accumulation
point in R and that Di ⊇ [[−dβie+1, dβie−1]] for all i ∈ [[0, p−1]],
(with or without the hypothesis that there exists j ∈ [[0, p − 1]]
such that dj ≥ dβe − 1, depending on item (a)). Can we deduce
that β is a Pisot number and that βi ∈ Q(β) for all i ∈ [[0, p− 1]]?

8. In Chapter 5, we concentrated on measure theoretical aspects of alter-
nate base expansions. A natural question would be to consider the
topological point of view. For example, it would be of interest to
prove that the topological entropies of the topological dynamical sys-
tems under consideration coincide with the measure theoretical entropy
1
p log(β) found, where β =

∏p−1
i=0 βi. In particular, this would prove that

the measure theoretical dynamical systems studied in Chapter 5 are all
of maximal entropy.

9. In Chapters 3, 4 and 5, we studied the properties of alternate base
expansions. An extension of these works can be investigated while
considering Cantor bases β that take only finitely many values and
such that for all n ∈ N, the value of βn can be “interpreted using
a computable method”. Since automata are in some way the simplest
model of computation, a first step can be to investigate the behaviors of
Cantor bases such that (βn)n∈N is an automatic sequence [AS03]. A fa-
mous example of such a Cantor base is a Thue-Morse Cantor base (2.2).
Related open questions are the following ones.

• Do such systems define sofic β-shifts?

• What are the algebraic properties of the natural extension of the
spectra associated with such Cantor real bases?

• What kind of algebraic properties do we get?

• Given such a Cantor real base, can we find associated greedy and
lazy transformation, iterations of which generate the greedy and
lazy expansion respectively? Moreover, can we prove the existence
of associated unique absolutely continuous invariant measures?
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10. Consider the set

Zβ = {±
`−1∑
n=0

anβ
`−1−n : ` ∈ N, a0a1 . . . a`−10ω ∈ Dβ}.

Clearly, the set Zβ is a subset of the spectrum Xdβe−1(β) of β over
the alphabet [[−dβe + 1, dβe − 1]]. This set Zβ was introduced by
Gazeau [Gaz97] and is called the set of β-integers. The set Zβ has a
lot of properties.

• Zβ = Z when β is an integer greater than or equal to 2.

• Zβ has no accumulation point.

• Zβ is self-similar thus βZβ ⊂ Zβ.

• Zβ is not invariant under translation if β /∈ N.

• Zβ forms a Meyer set if β is a Pisot number [BFGK98], that is,
Zβ − Zβ ⊂ Zβ + F for a finite set F ⊂ R.

• Zβ = Xdβe−1(β) if and only if β is a confluent Parry number
(sometimes called generalized multinacci numbers), that is, zeros
greater than 1 of polynomials

xd −mxd−1 −mxd−2 − · · · −mx− n

where d ≥ 1 and m ≥ n ≥ 1.

From the first item, we know that when β is an integer greater than or
equal to 2, the distances between neighboring elements in Zβ is always
1. If β is not an integer, the situation changes significantly, but still
the distances between neighboring elements can be characterized. Let
(xn)n∈N be an increasing sequence such that

Zβ = ±{xn : n ∈ N}.

The set Zβ has finitely many distances xn+1 − xn if and only if β is a
Parry number [Thu89]. If β is a Parry number, there exist a positive
integer k and real numbers ∆0, . . . ,∆k such that {∆i : i ∈ [[0, k]]} is the
set of distances of Zβ. This set of distances is intimately linked with
the values of prefixes of dβ(1). We define an infinite word uβ = (un)n∈N
defined by un = i, with i ∈ [[0, k]], if xn+1−xn = ∆i, for all n ∈ N. The
word uβ is the fixed point of a morphism [Fab95]. Moreover, the infinite
word uβ is Sturmian, that is aperiodic of minimal factor complexity,
if and only if β is a quadratic Pisot number. An interesting research



189

project I started working on with Émilie Charlier, Zuzana Masáková
and Edita Pelantová is to study properties of analogue β-integers when
β is an alternate base.

11. Let U be the set of univoque bases consisting of real numbers β > 1
such that 1 has a unique β-expansion. The set U has been widely
studied for nearly 25 years. To cite just a few:

• Erdös, Joó and Komornik [EJK90] showed that U is uncountable
and of zero Lebesgue measure.

• Daróczy and Kátai [DK95] showed that U has full Hausdorff di-
mension.

• Komornik and Loreti [KL98, KL02, KL07] found its smallest ele-
ment qKL, which is now called the Komornik-Loreti constant and
is related to the Thue-Morse sequence, and proved that the topo-
logical closure of U is a Cantor set, that is a non-empty compact
set having neither interior nor isolated points.

• Dajani, Komornik, Kong and Li [DKKL18] proved that the alge-
braic difference U − U contains an interval.

A vast potential research project is to define and study an analogue set
of univoque Cantor (or alternate) bases.
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