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INTRODUCTION

Mathematics is notably concerned with the study of numbers and the arith-
metic properties of these numbers in relation with the syntactical properties
of their representations by sequences of symbols (usually called digits). In
order to approach such questions, we first need to know how to represent
numbers since there are many ways to write them. Usually, numbers are
represented by words over an alphabet of digits with respect to a base. In
everyday life, the decimal representation is used, that is, the base elements
are the powers of 10. In computer science, the binary base is preferred for
some practical aspects. More generally, any integer b > 2 can be considered
as a base. We then obtain words written over the alphabet {0,1,...,b— 1}
called the base-b representations. Towards a general study, mathematicians
are interested in other various ways to represent numbers.

Two well-known generalizations of integer base representations are Can-
tor and real base representations. The former was introduced by Cantor in
1869 |Can69]. A Cantor representation of a real number x via a base se-
quence (by,)nen of integers greater than or equal to 2 is an infinite sequence
apaias - - - of non-negative integers such that

an
I S
neN Hi:(] bi

If for each n € N, the digit a, belongs to the alphabet {0,1...,b, — 1} and
if infinitely many digits a,, are non-zero, then the series is called the Cantor
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series of . Many studies are devoted to Cantor series, a large amount of
which are concerned with the digit frequencies; see [ER59, [Gal76, [KT84]
RénbH6| to cite just a few. The latter was defined by Rényi in 1957 [Rén57]
and well understood since the pioneering work of Parry in 1960 [Par60]. A
representation of a real number x via a real base 5 > 1 is an infinite sequence

apaias - - - of non-negative integers such that
Qn,
T= Z Bnt1
neN

The digits a,, can be chosen by using several appropriate algorithms. Typi-
cally each point in [0, 1) has uncountably many representations [Sid03]. The
most commonly used algorithms are the greedy and lazy algorithms giving
rise respectively to the largest and the smallest representations in the lexi-
cographic order. Representations in a real base are extensively studied and
we can only cite a few of the many possible references [BM86, Lot02, [Par60,
Sch80,, 1S09, [Fro92l [Sol94), [FS10), IKLI8, Ped05l [DK02bl [DAVKILI12, DKO7].

This doctoral dissertation is dedicated to the investigation of series ex-
pansions of real numbers that are based on a sequence 8 = (3, )nen of real
numbers greater than 1 such that [[,.y/fn = +00. We call such a base
sequence B a Cantor real base. A representation of a real number x via
a Cantor real base 8 = (,,)nen is an infinite sequence agajas--- of non-
negative integers such that

%9
x = —_.
% H?:o Bi
We talk about B3-representations. In doing so, we generalize both represen-
tations of real numbers through Cantor series and real bases. The digits of
a (3-representation can be chosen by using several appropriate algorithms.
As in the real base theory, in order to represent non-negative real numbers
smaller than or equal to xg, where

[ﬁn—| —1
rg = _—
? % Ty i
we will consider the greedy algorithm and the lazy one. In the greedy algo-
rithm, each digit is chosen as the largest possible among 0,...,[3,] — 1 at
position n. At the other extreme, the lazy algorithm picks the least possible
digit at each step. The so-obtained B-representations are respectively called
the greedy and lazy (B-expansions.

The goal of this thesis centered at the study of B-representations is to
figure out if the properties of representations in real bases can be general-
ized while considering Cantor real bases. The framework of this doctoral



vii

dissertation encompasses several related but distinct domains, namely, nu-
meration systems, combinatorics on words, formal language theory, algebra,
dynamical systems, ergodic theory and number theory.

Note that these type of representations involving more than one base si-
multaneously and independently have recently aroused the interest of other
mathematicians [CD20, Li21), Neu2ll, [KLZ21]. Each gives a different gener-
alization of representations via real bases and with different global interests.
These papers all present a generalization of Parry’s theorem [Par60] to their
respective frameworks. But so far, all the research was concentrated on
the symbolic properties of these representations. In this work, we also give
algebraic and dynamical properties which are nowhere else studied.

Throughout this text, in order to provide a clear presentation, we illus-
trate the concepts under consideration thanks to a number of examples. This
doctoral dissertation is articulated as follows.

In the first chapter, without attempting to provide an exhaustive de-
scription, we recall the necessary backgrounds for a clear understanding of
this work. We start with some algebraic structures and related conventions.
Then, we briefly introduce words, languages and automata. Next, we state
material about measure preserving dynamical systems. This chapter ends
with an entire section devoted to the key notion of representations of real
numbers in real bases. This section deals with an overview of the combina-
torial, algebraic and dynamical properties of S-representations. The goal is
to give the state of the art on S-representations by stating results which will
then be generalized (or not) in the subsequent chapters to the Cantor real
base framework in general or in the particular case of periodic Cantor real
bases, called alternate bases. Therefore, the stated results will not be “used”
to prove analogue ones for Cantor real bases but they are stated in order to
compare theories of real bases and Cantor real bases.

The second chapter aims at defining Cantor real bases and proving fun-
damental combinatorial properties of 3-representations. We first give a char-
acterization of those infinite words a over the alphabet R>( for which there
exists a Cantor real base B such that valg(a) = 1. Next, we introduce
the greedy algorithm and study the combinatorial properties of greedy 3-
expansions, each of which extends existing results on representations in a
real base. In particular, we introduce the quasi-greedy (-expansion dg(l)
of 1 and show that dg(l) is the lexicographically greatest B-representation
not ending in 0“ of all real numbers in [0, 1]. We then prove a generalization
of Parry’s theorem [Par60] characterizing sequences of non-negative integers
that are the greedy (B-representations of some real number in the interval
[0,1). We end this section by introducing the notion of greedy B-shift and
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give a description of it in full generality. In the fourth section, the lazy al-
gorithm in real bases is generalized to the setting of Cantor real bases when
xg < +o00. It is shown that the lazy 3-expansions are obtained by “flipping”
the digits of the greedy B-expansions. As a consequence, combinatorial prop-
erties of the previous section are “flipped” to the lazy framework. Then, we
show that the same “flip” permits us to go from the quasi-greedy B-expansion
to a quasi-lazy one. Consequently, a Parry-like criterion characterizing se-
quences of non-negative integers that are the lazy (3-expansions of some real
number in (zg — 1, zg] is proved. Moreover, we define and study a lazy B-
shift. Note that lazy real base expansions have been widely studied in terms
of dynamics and, to the best of our knowledge, not really in terms of com-
binatorics. Hence, since real bases are particular cases of Cantor real bases,
this section also gives a new study of lazy S-expansions for real bases 8 > 1.

In the third chapter, we focus on the combinatorial properties of periodic
Cantor real bases

B: (BO?"'7610—17[30)"'75]2—11'“))

which we call alternate bases. Note the importance of these particular Cantor
real bases since they will also be central for the next two chapters. In both
the greedy and lazy cases, we are able to give more precise results than
in the general framework of Cantor real bases. In particular, generalizing
Parry’s result [Par60], we obtain a characterization of the greedy (3-expansion
of 1 among all B-representations of 1. Moreover, generalizing a result of
Bertrand-Mathis [BMS86], we show that for any alternate base 3, the greedy
3-shift is sofic, that is, its factors form a language that is accepted by a finite
automaton, if and only if all quasi-greedy ﬁ(i)—expansions of 1 are ultimately
periodic, where

ﬂ(Z) = (ﬁla s 76p71aﬁ()7 o 7ﬁp*17 . )

is the i*" shift of the Cantor real base 3. Since real bases 8 > 1 determining
sofic [B-shifts are called Parry numbers, we call Parry alternate bases the
alternate bases such that all quasi-greedy ﬂ(i)—expansions of 1 are ultimately
periodic. Using the “flip” from greedy to lazy (3-expansions, analogue results
are proved for lazy B-expansions. In particular, we prove that an alternate
base B is a Parry alternate base if and only if all quasi-lazy 8(")-expansions
of Tg) — 1 are ultimately periodic. Moreover, we show that the alternate
base 3 is a Parry alternate base if and only if the lazy B-shift is sofic.

The fourth chapter deals with some algebraic properties of alternate base
expansions. In the real base case, an algebraic description of Parry numbers
B > 1 is not obvious. It is known that the set of Parry numbers includes
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Pisot numbers, that is, algebraic integers greater than 1 with Galois con-
jugates inside the unit circle [Ber77], and that this statement cannot be
reversed. The first aim of this chapter is to give such algebraic properties
of Parry alternate bases. In particular, we show a necessary condition for
an alternate base 8 = (fo,...,Bp—1,50,.--,Bp—1,...) to be a Parry one is
that the product 8 = Hf:_l B; is an algebraic integer and all of the bases
Bo, - - -, PBp—1 belong to the algebraic field Q(5). On the other hand, we also
give a sufficient condition: if 5 is a Pisot number and fy,. .., S—1 € Q(B),
then 3 is a Parry alternate base. The importance of the class of Pisot bases in
connection to automata was pointed out also by Frougny [Fro92] who showed
that normalization in a real base 8 > 1 which maps any S-representation of
a real number in [0,1) to its greedy [-expansion is computable by a finite
Biichi automaton if § is a Pisot number. The second aim of this chapter
is to provide an analogue of Frougny’s result concerning greedy and lazy
normalizations in alternate bases. We show that given an alternate base
B = (Bor--+Bp-1,B0s- -+ Bp1,-..) such that 8 = [[’2y ; is a Pisot num-
ber and Sy, ...,By,—1 € Q(B), the greedy and lazy normalization functions
are computable by finite Biichi automata, and furthermore, we effectively
construct such automata. An important tool in our proofs is the spectrum
of numeration systems associated with alternate bases. Its definition shows
that one needs to consider the spectrum of 8 = Hf;ol B; with a more general
alphabet of non-integer digits. Hence, we first study the spectrum in the
general framework of a complex base 0 such that |§| > 1 with an alphabet
A C C, which is defined as

XA0)={>_aid' :ne€N,a; € A}.
=0

The notion of spectrum was originally introduced by Erdoés, Joé and Ko-
mornik for a base 0 € (1,2) and an alphabet of the form A = {0,1,...,m}
[EJK90]. Topological properties of the spectrum determine many of the
arithmetical aspects of the numeration system; see [EP18]. One of the main
problems in the study of spectra is to describe bases which give spectra
without accumulation points in dependence on the alphabet. For the case of
real bases and symmetric integer alphabets, a complete characterization was
given by Akiyama and Komornik [AK13] and Feng [Fenl6]. In this chapter,
as an analogy to the results of [FP18], we prove that the set of representa-
tions of zero in a complex base ¢ such that |§| > 1 and an alphabet A of
complex number is accepted by a finite Biichi automaton if and only if the
spectrum X4 (§) has no accumulation point. Next, we deduce an analogue in
the alternate base case. This result makes use of a Biichi automaton called
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the zero automaton which generalizes that defined by Frougny [Fro92] and
which is intimately linked with the Biichi automata computing the greedy
and lazy normalization functions in alternate bases.

The fifth chapter is concerned with the dynamical properties of alternate
base expansions. We know that, considering a real base § > 1, an interesting
feature of greedy and lazy [-expansions is that they can be dynamically
generated by iterating respectively the so-called greedy (-transformation

T3:10,1) = [0,1), = Sz — |Bz],
and lazy (-transformation
Lg: (xg—1,28] = (x5 — 1,28], © — fx — [Br —xg],

where zg5 = . Thus it is natural to wonder if, given an alternate base
B, one can find an alternate greedy transformation 7g and an alternate
lazy transformation Lg, iterations of which generate the greedy and lazy
B-expansions respectively. This will be the focus of this final chapter. More-
over, in the real base case, the dynamical properties of T3 and Lg are now
well understood since the seminal works of Rényi and Parry; for example,
see [DKO02b]. Hence, the aim of this chapter is to describe the measure the-
oretical dynamical behaviors of such transformations Tg and Lg. We first
prove the existence of a unique absolutely continuous 7Tg-invariant measure
(with respect to an extended Lebesgue measure, called the p-Lebesgue mea-
sure where p is the period of the alternate base 3). We then show that this
unique measure is in fact equivalent to the p-Lebesgue measure and that the
corresponding dynamical system is ergodic and has entropy %log(ﬁ) where

[B1-1
A1

B = f;ol Bi. Using tools from ergodic theory, we are able to exhibit an
explicit expression of the density function of this invariant measure and to
compute the frequencies of letters in the greedy B-expansions. Furthermore,
we show that the dynamical system underlying the greedy (B-expansion is
measure theoretically isomorphic to the dynamical system underlying the
lazy (-expansion as well as to the dynamical systems underlying natural
greedy an lazy generalizations of the so-called 5-shift. As a consequence, the
four transformations have the same dynamical behavior. Another interesting
property of alternate base expansions is that when every p-terms are written
as one fraction, then one is able to rewrite the involved series in the form

dn
T = Z Bn—f—l’

neN




xi
with g = Hf;ol B; and d,, belonging to the fixed digit set of real numbers

p—1
Dig(B) = {Zci5i+1"'ﬁp—1 :Vie[0,p—1], ¢; €{0,1,...,[8] — 1}}.
=0

This algebraic operation transforms the considered alternate base expansion
to a representation over a general digit set in base 8. This is a particular case
of Pedicini’s extension of real base representations while considering general
digit sets [Ped05]. We give a sufficient condition for the representations
over Dig(3) obtained by grouping p by p the terms of the greedy and lazy 3-
expansions to be respectively the greedy and lazy B-expansions over the digit
set Dig(8). Next, by the greedy and lazy generalizations of Parry’s theorem
given in Chapter [2| not all p-tuples of letters can appear in the greedy and
lazy (B-expansions of real numbers in [0,1) and (zg — 1, ] respectively.
Hence, in the last section of the chapter, we construct two subsets of the
digit set Dig(3) by using respectively the greedy and lazy admissible p-
tuples. Then, we prove that the g-representations obtained by grouping
p by p the terms of the greedy and lazy B-expansions of real numbers in
[0,1) and (zg — 1,xg] are respectively the greedy and lazy ones over these
particular digit sets.

This study will finish with several perspectives for future research con-
tinuing the work accomplished during this doctoral research.

As a final comment to this introduction, I would like to mention that,
in order to create a coherent whole, this dissertation present the contents of
four of my papers. However, during these four years of doctoral studies, I
also considered other problems giving me the opportunity to write five more
papers. The interested reader can find my list of publications in the next
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CHAPTER

1
PRELIMINARIES

This chapter gives the basic notions that are needed for the comprehension
of this work.

First, we recall some usual notion of algebraic structures and we introduce
the conventions and notation used in the subsequent chapters. Next, we recap
the definitions from combinatorics on words and automata theory. Then, in
order to study the representations of real numbers in real bases, namely the
[B-representations, some basics on measure and ergodic theory are recalled.

Forthwith, the g-representations are defined, studied combinatorics-wise
with also an overview on the associated normalization function and then
studied in terms of dynamics. The goal of this summary is to know which
properties we will look at in the other chapters for Cantor real bases and
alternate bases.

Notions from Sections and must be understood before starting
reading this work. Then, the reader can consult these preliminaries when
studying the other chapters of this book. More precisely, Chapters [2 and [3]
need preliminaries from Section [1.4.1] Groundwork from Sections [1.4.2
and is required for Chapter ] and Sections [1.4.4] and [1.4.5] are
related to Chapter

For further readings on the main discussed topics, we refer the interested
reader to [BR10, [FS10) Lot97, Lot02) [Rigl4] for more on combinatorics on
words and [BG97, [DK21], DK02al, [Fur&81] for more on ergodic theory.
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1.1 Algebraic structures and related conventions

In this text, we let N be the set of non-negative integers and for any m € N
and any ¢ € {<,<,>,>}, we let N, denote the set {n € N : nom}.
Moreover, for any integers ¢ and j satisfying ¢ < j, the interval of integers
{i,i+1,...,7} is denoted [i, j]. We make the convention that if i > j then
[i, 7] is the empty set. Moreover, for all i € N, [i, +00] denotes the set of
integers greater than or equal to 4, that is, [i, +00] = N>,.

Similarly, we let Z,Q,R and C be the sets of all integer, rational, real
and complex numbers respectively. For any ¢ € {<, <, >, >}, analogously
to the set Ny,,, we define Zgy,, Qom, Ropm and C,,y, for m € Z,Q,R and C
respectively.

Given a non-negative integer n and a positive integer p, n modulo p,
denoted n mod p is the remainder of the Euclidean division of n by p.

Welet [-]: R — Z and |-] : R — Z denote the ceiling function and floor
function respectively defined for all x € R by [2] =inf{z € Z: z > z} and
|z] =sup{z € Z: z < z}. The fractional function {-}: R — [0,1) is defined
forall z € R by {z} =z — |z].

We make use of the common notions of monoid, ring, field, subring and
subfield. With the classical addition and multiplication of numbers, the set
7Z is a ring and the sets Q,R and C are fields.

We briefly recall additional algebraic definitions needed for this work.

Definition 1.1.1. Let K be a commutative ring. The ring of polynomials
with coefficients in K is denoted K[z]. A monic polynomial is a polynomial
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in K[z] whose leading coefficient is 1. For n € N>1, the ring of polynomials
in n indeterminates with coefficients in K is denoted Kz1, ..., z,].

Definition 1.1.2. An algebraic number is a complex number that is a zero
of a monic polynomial with coefficients in Q. The minimal polynomial of an
algebraic number 3 is the monic polynomial of minimal degree having coef-
ficients in QQ and annihilated by S. The minimal polynomial of an algebraic
number 3 is irreducible over QQ and its degree is the degree of the algebraic
number 3. Zeros of the same irreducible polynomial over Q are distinct and
are said to be Galois conjugates. An algebraic number is an algebraic integer
if it is a zero of a monic polynomial in Z[x].

It can be shown that the minimal polynomial of an algebraic integer also
has integer coefficients.

Proposition 1.1.3. The set of all algebraic integers is a subring of C.

Definition 1.1.4. The smallest subfield of the field C containing Q and a
complex number f is denoted by Q(f).

Example 1.1.5. If § is an algebraic number of degree d then the field Q(3)
is of the form

d—1
Q(B) = {Zaiﬁi fa; € Q}
=0

Definition 1.1.6. A monoid morphism is a function f: K — K’ from a
monoid (K, g, 1x) into a monoid (K', g/, 1x/) such that f(1g) = lg/ and
for all k1,ke € K, f(k1 'k k2) = f(k1) 'k’ f(k2). A monoid isomorphism is
a bijective monoid morphism. A ring morphism is a function f: K — K’
from a ring (K, 'k, +k, Ok, 1x) to a ring (K, x/, +x/, Ogs, 1x/) such that for
all k1, ko € K, f(k1xko) = f(k1) x f(k2) and f(k1+x ko) = f(k1) +xe f(k2).
A ring isomorphism is a bijective ring morphism. In the following, when the
context is clear, we simply talk about morphism and isomorphism.

Definition 1.1.7. Let 8 be an algebraic number of degree d and let 3s, . .., By
be its Galois conjugates (we set f1 = (). Then for all k € [1,d], the fields
Q(B) and Q(pk) are isomorphic by the isomorphism

d—1 d—1
Ur: Q(B) = QBr), > anB" = > an(Br)"

n=0 n=0
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Proposition 1.1.8. Let 8 be an algebraic number of degree d, Bo, . .., By be
its Galois conjugates (we set 1 = B) and 1,...,1%q be the corresponding
isomorphisms. For all x € Q(B), we have szl Yr(x) € Q. Moreover,
whenever x is an algebraic integer in Q(B), then szl Yr(x) is an integer.

Important classes of algebraic integers that we will deal with are Pisot
and Perron numbers.

Definition 1.1.9. A Pisot number is an algebraic integer 5 > 1 whose
Galois conjugates all have modulus less than 1. A Perron number is an
algebraic integer 8 > 1 whose Galois conjugates all have modulus less than

|8l-

Obviously, every Pisot number is a Perron number. Moreover, every
integer is a Pisot number and a rational number which is not an integer is
never an algebraic integer.

Example 1.1.10. Consider the real number (1 + +/5)/2. This real number
will widely be used in the examples of this dissertation. It is called the
Golden ratio and is denoted ¢. The Golden ratio ¢ is a Pisot number since

its minimal polynomial is 2> — 2 — 1 and its Galois conjugate is the real
number (1 — v/5)/2 of modulus less than 1.

Example 1.1.11. The smallest Pisot number is given by the positive zero
of the polynomial 23 — x — 1, that is 3 ~ 1.3247.

Example 1.1.12. Consider the real number 8 > 1 satisfying 8% = 8° + 1,
that is § ~ 1.2852. This number is a Perron number but it is not a Pisot
number since two of its Galois conjugates have modulus greater than 1.

1.2 Words, languages and automata

We now define backgrounds related with combinatorics on words that are
needed for this dissertation.

Definition 1.2.1. An alphabet is a non-empty finite or infinite set, whose
elements are called letters. A finite (resp., infinite) word over an alphabet A
is a finite (resp., infinite) sequence of letters in A. The empty word, denoted
by €, is the empty sequence.
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The length of a finite word w, denoted by |w|, is the number of letters
contained in w. The length of an infinite word is set to +oo.

If w is a non-empty (finite or infinite) word, then the letters of w are
indexed from 0, that is, for any n € [0, |w|—1], we let w,, denote its (n+ 1)
letter.

The set of finite (resp., non-empty finite, infinite) words over an alphabet
A is denoted by A* (resp., AT, AN).

A language over an alphabet A is a subset of A*. An w-languages over
an alphabet A is a subset of AV.

Example 1.2.2. Let A = {a,b,--- ,z,y, 2z} be the Latin (or Roman) alpha-
bet. The finite word w = numeration has length |w| = 10.

An alphabet A composed of two letters is usually called a binary alphabet.
In this text, while working with alphabets made of non-negative integers, we
usually make no distinction between the symbols 0,1, 2,... and the integers
they represent.

Example 1.2.3. Let A = {0, 1} be the alphabet composed of the two letters
0 and 1. Consider the finite word w = 0110 over A. Its length is |w| = 4 and
its second letter is w; = 1.

We introduce two useful operations on words which will be largely used
in this text.

Definition 1.2.4. Let A be an alphabet. The shift operator on the infinite
words over A, denoted o 4, is defined by

oa: AN — AN, apaiag - -+ — a1a2a3 - - - .

Whenever there is no ambiguity on the alphabet, we drop the subscript and
write o.

Definition 1.2.5. Let A be an alphabet, v be a finite word and v be a
finite or infinite word. The concatenation of u and v, denoted by wuv, is the
word w defined by w, = u, for all n € [0, |u| — 1] and w, = Vp—|y| for
all n € [|ul,|u| + |v] — 1]. The concatenation of words is associative. In
particular, the set A* equipped with the concatenation restricted on A* x A*
is a monoid with € as neutral element.

For a finite word u over A and a non-negative integer n, we let u™ denote
the concatenation of n copies of u, which is inductively defined by u? = ¢
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and u"t! = y"uy for all n € N.

We let u“ define the infinite word made of the concatenation of infinitely
many copies of u. An infinite word w € AN is said to be ultimately periodic
if there exist finite words u and v over A with v # & such that w = uv®.
Moreover, the word w is called (purely) periodic if u = €, that is w = v¥.

Example 1.2.6. Over the binary alphabet A = {0, 1}, the concatenation of
the words 0110 and 1001 gives the word 01101001. We have (01)? = 0101 and
(01)¥ = 010101 ---. The words (01)“ and 0(01)“ are respectively periodic
and ultimately periodic.

Definition 1.2.7. Let L and M be two languages over the alphabet A. The
concatenation of L and M is the language LM = {uv :u € L, v € M}. For
all n € N, we let L™ denote the concatenation of n copies of L defined by

L = {u® .. .u™ @ e [ for all i € [1,n]}.

We let L denote the w-language made of the concatenation of infinitely
many copies of words in L.

Remark 1.2.8. In this work, for all n € N, we sometimes summarize the
concatenation of the n words w9, v™, ... w1 by HZ;S u®). Moreover,
considering alphabets Ay, ..., A,_1, in order to avoid any confusion with the
Cartesian product Hz;é Ay containing n-tuples, we write ®Z;$ Ay, for the
set of words w of length n with wy € Ay for all k£ € [0,n —1]. We extend
the notation () for infinite words.

We now introduce the notions of factors, prefixes and suffixes of words.

Definition 1.2.9. Let w be a word over an alphabet A. A factor of w is a
finite word u such that there exist ¢ and j in [0, |w| — 1] satisfying ¢ < j and
u = w; - - -wj, in which case w is called the factor of w starting at position i
and ending at position j. We let Fac(w) be the set of all factors of w.

Definition 1.2.10. A prefiz of a word w is a factor starting at position 0.
The prefiz of length n of w with n < |w|, denoted Pref,(w), is the factor
wp - - wp—1. We let Pref(w) be the set of all prefixes of w. A suffix of a
finite word w is a factor ending at position |w| — 1. We let Suff(w) be the
set of all suffixes of w. We extend the definition of suffixes to infinite words
as follows: a suffix of an infinite word w is an infinite word v € AN such that
there exists u € Pref(w) satisfying w = wv.
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Example 1.2.11. Consider the word w = numeration. The words num,
rat and on are respectively a prefix, a factor and a suffix of w.

Notions of factor, prefix and suffix of words can be extended to languages
and w-language as follows.

Definition 1.2.12. Considering a language (resp., an w-language) L over
A, the set of finite factors of elements in L is denoted Fac(L). Moreover, let
Pref(L) (resp., Suff(L)) denote the set of the prefixes (resp., suffixes) of its
words.

We now endow AN with a distance. This gives rise to the concept of
convergence of sequences of words.

Definition 1.2.13. Let u,v € AN. We let A(u,v) denote the longest com-
mon prefiz of w and v. Note that |A(u,v)| is the smallest index where the
two words u and v differ, that is

|A(u,v)| = inf{i € N : u; # v;}.

The (prefix) distance between u and v is defined by 2~ IAMu) if 4 £ v and 0
otherwise.

A sequence (uy, )pen of infinite words over the alphabet A converges to the
infinite word v € AN if the distance between u,, and v tends to 0 whenever
n tends to +0o0. We write limy,— 4 uy, = v.

Example 1.2.14. Consider the sequence (u,)pen of infinite words over
{0,1} defined by u, = 0(01)"0¥. The distance between u; = 0010“ and
ug = 001010% equals 2~ Moreover, we have lim,, o u, = 0(01)%.

We are now able to define the well-known Thue-Morse word [Thul2),
Mor21] as the limit of a sequence of finite words. Note that the Thue-Morse
word has many other equivalent definitions. This one is chosen based on its
use in the subsequent chapters.

Definition 1.2.15. Consider the monoid morphism = : {a,b}* — {a,b}*

defined by @ = b and b = a. Let (uy)nen be the sequence of finite words over
the binary alphabet {a,b} defined as follows:

Ho=a (1.1)
Up = Up—1Up—1, VN > 1.
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The Thue-Morse word over {a,b} is the infinite word

lim w,, = abbabaab-- - .
n—-+o0o

If an alphabet A is endowed with a total order, the sets of words A* and
AN can be ordered as followd]

Definition 1.2.16. Let (A, <) be a totally ordered alphabet. If u and v are
two finite words over A, the word u is lexicographically less than v, which
is denoted u <jox v, either if u is a strict prefix of v or if there exists ¢ €
[0, min{|u|, |v|} — 1] such that u,, = v, for all n € [0,¢— 1] and u, < vy. We
write u <jex v if either u <jex v or u = v. The lexicographic order is extended
to the set of infinite words over A as follows: if v and v are two infinite words
over A, u <jex v if there exists n € N>; such that Pref,,(u) <jex Pref, (v).

Example 1.2.17. Over the binary alphabet, we have (10)* <)o, 110“. Over
the Latin alphabet A = {a,b,--- ,x,y, 2}, the lexicographic order is the or-
der used in the dictionaryEl The word numeration comes before system
in the lexicographical order (and so in the dictionary), that is we have
numeration <jex System.

Automata are in some way the simplest model of computation. In the
remaining of this section, we recall the definitions and properties needed all
along this work.

Definition 1.2.18. A deterministic automaton is a 5-tuple
A=(Q,i,F, A E)

where () is a non-empty set, called the set of states, i is a distinguished
element of @, called the initial state, F' C () is the set of final states, A is
an alphabet and E: Q x A — @ is the (partial) transition function.

A deterministic automaton is finite if its set of states is finite and the
alphabet is finite.

A path in A is a sequence of states qo,...,q, with n € N>; and a label
apai - - - anp—1 such that for all k € [1,n], we have E(qx—1,ax—1) = qx. The
path is initial (resp., final) if go =i (resp., ¢, € F'). If a path is both initial

! An other order on A* (not used in this work) is also widely studied in combinatorics
on words, namely the radiz or genealogic order.

2 Actually, the lexicographic order is the order used in the dictionary if special symbols
like accents and dashes are omitted.
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0 0
t (

Figure 1.1: A deterministic finite automaton accepting the binary words
having an even number of 1.

and final, it is called an accepting path in A. A state q is accessible if there
exists an initial path ending in ¢. Similarly, a state ¢ is co-accessible if there
exists a final path starting in q.

A finite word w over A is accepted by A if there exists in A an accepting
path labeled by w. The set of words accepted by A is the language accepted
by A.

Deterministic automata can be represented by oriented labeled graphs
as follows: nodes are states, the initial state is designated by an incoming
arrow, the final states are designated by doubly-framed nodes and for all
states p and ¢ and all letters a such that F(p,a) = ¢, there exists an arrow
from p to q labeled by a.

Example 1.2.19. Consider the deterministic finite automaton

A= ({QOa Q1}7 q0, {QO}> {Oa 1}7 E)

where the transition function F is given by F(qo,0) = qo, E(q,1) = q1,
E(q1,0) = ¢1 and E(q1,1) = qo. The automaton A is depicted in Figure
This automaton accepts the set of binary words having an even number of 1.

A generalization of deterministic automata are the non-deterministic
ones.

Definition 1.2.20. A non-deterministic automaton is a 5-tuple A =
(Q,I,F, A, F) where Q, F and A are defined as in a deterministic automaton,
I C @ is a non-empty set, called the set of initial states, E C QQ x A X Q) is
a non-empty set, called the transition relation.

The differences between deterministic and non-deterministic automata
are the following ones: in a non-deterministic automaton, there may exist
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several initial states and there may exist several transitions with the same
label outgoing from a state.

The notions previously defined for deterministic automata (such as paths,
accepted words, accepted language, representations by oriented graphs,...)
can be generalized to non-deterministic automata.

Remark 1.2.21. Since the Cartesian product A x B of two alphabets A
and B is still an alphabet, a deterministic automaton can be defined over
the alphabet A x B. In that case, a transition is labeled by a pair of letters
[¢] € A x B. Such an automaton is called a 2-tape automaton.

Since a deterministic automaton is a particular non-deterministic au-
tomaton, one could think that there are more languages accepted by non-
deterministic automata than are by deterministic automata, but the follow-
ing proposition shows that this is actually not the case.

Proposition 1.2.22. A language is accepted by a finite non-deterministic
automaton if and only if it is accepted by a finite deterministic automaton.

We now introduce the central notion of regular languages.

Definition 1.2.23. A language is regular if it is accepted by a (deterministic
or non-deterministic) finite automaton.

Biichi [Biic60] in 1960, and Muller [Mul63] not much later in 1963, ex-
tended the notion of automata in order to accept sets of infinite words. Biichi
automata are thoroughly studied in [PP04].

Definition 1.2.24. Biichi automata are defined as non-deterministic au-
tomata except for the acceptance criterion which has to be adapted in order
to deal with infinite words: an infinite word is accepted if it labels a path
going infinitely many times through final states. A Biichi automaton is finite
if its set of states is finite and the alphabet is finite.

Note that the main difference between the theory of classical automata
and that of Biichi automata is that an analogue of Proposition [1.2.22] does
not hold.

Example 1.2.25. The Biichi automaton depicted in Figure accepts
the w-language of infinite binary words over the alphabet {a,b} contain-
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a,b b
o, O

Figure 1.2: A Biichi automaton.

ing finitely many a’s. No deterministic Biichi automaton accepts this w-
language.

Regular languages and w-languages accepted by finite Biichi automata
can be characterized in terms of an equivalence relation.

Definition 1.2.26. If L is a language or an w-language over A and u € A*,
we set

uw 'L = {veSuff(L) : uv € L}.

Two finite words u,v € A* are right congruent with respect to L, written
w ~p v, if 'L = v~!L. Right congruent words u,v € A* are also said
equivalent for the equivalence relation ~y,.

Theorem 1.2.27. A language (resp., an w-language) L is reqular (resp.,
accepted by a finite Biichi automaton) if and only if the equivalence relation
~r, has only finitely many equivalence classes.

We end this section by introducing the product of automata in order
to state that the intersection of regular languages is a regular language,
and similarly, that the intersection of w-languages accepted by finite Biichi
automata is an w-language accepted by a finite Biichi automaton.

Definition 1.2.28. Consider two automata (resp., Biichi automata) A; =
(Ql, Il, Fl, Al, El) and .AQ = (QQ, IQ, FQ, AQ, EQ). The pmduct of .A1 and .AQ
is the automaton (resp., Biichi automaton) A; x Ay = (Q, I, F, A, E) where
Q=Q1 xQo, I =11 xI), F=I xFy,) A= A1 x Ay and the transition
relation £ C Q x A x @ is defined by

((q17q2)7 ((11,0,2), (qiv(:é)) €k — (qlaalvqi) € El and (Q27a27§é) € EQ-

Proposition 1.2.29. Let Ly and Lo denote respectively the languages (resp.,
w-languages) accepted by the finite automata (resp., Biichi automata) Ay



12 Chapter 1. Preliminaries

and As. The language (resp., w-language) L1 N Lo is accepted by the finite
automaton (resp., Bichi automaton) A; x As.

1.3 Measure preserving dynamical systems

In this section, we introduce some basics on measure theory. In the next
section, the real base expansions will be studied combinatorics-wise and then
dynamics-wise. Hence, all the subsequent definitions will be illustrated in
Section [I.4.4} Moreover, Chapter [3]is devoted to the study of the dynamical
properties of one of the main object of this dissertation, namely the alternate
bases.

Definition 1.3.1. Let X be a set. The set made of all subsets of X is
denoted P(X). A collection F C P(X) is a o-algebra over X such that
X € F and that is closed under complementation and countable unions.
The pair (X, F) is called a measurable space. The members of F are called
measurable sets.

Example 1.3.2. Let X be a set. The collections {@), X} and P(X) are
o-algebras over X.

Definition 1.3.3. Let X be a set and .S be a collection of subsets of X. The
smallest o-algebra containing all sets of S is called the o-algebra generated
by S and is denoted o(S).

Example 1.3.4. Let X be a set and A be a subset of X, the collection
{0, A, A°, X'} is the o-algebra generated by {A}.

An important o-algebra for this work is the Borel o-algebra.

Definition 1.3.5. A topological space is a set X together with a collection
C of subsets of X such that () € C, X € C and closed under countable unions
and finite intersections. The elements of C are called open sets and the
collection C is called a topology on X.

Definition 1.3.6. Let X be a topological space. The o-algebra generated
by all open sets is the Borel o-algebra over X and is denoted B(X). An
element B € B(X) is called a Borel set.

In this text, we will mostly deal with the Euclidean topology on real
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numbers and Borel o-algebras over intervals of real numbers.

We now define a measure over a set and an associated o-algebra. Roughly,
a measure on a set is a number intuitively interpreted as its size. In this sense,
a measure is a generalization of the concepts of length, area, and volume.

Definition 1.3.7. Let X be a set and F be a o-algebra over X. A map
p: F — [0,+00] is a measure over F if pu() = 0 and for any sequence
(Bg)ren of pairwise disjoint sets in F, we have

m (U Bk> = u(By).

keN keN

If moreover p(X) =1 then p is called a probability measure over F.

Definition 1.3.8. A measure space is a triplet (X, F, u) where X is a set,
F is a o-algebra over X and p is a measure on F. If moreover u(X) =1
then the triplet (X, F, u) is called a probability space.

Definition 1.3.9. Let (X, F,u) be a measure space. A subset A of X is
p-negligible if there exists a set B € F such that A C B and p(B) = 0.
The measure p is called complete if every negligible set is an element of
the o-algebra F. A property over X holds p-almost-everywhere, shortened
by p-a.e., if the set of elements for which the property does not hold is
p-negligible.

A particularly important example of measure is the Lebesgue measure
on R? which assigns the usual volume to subsets of R¢. For instance, the
Lebesgue measure of an interval [a, b) of real numbers is its usual length b—a.
In order to define this measure, we need to introduce outer measures.

Definition 1.3.10. Let X be a set. A map p*: P(X) — [0, +00) U {+o0}
is an outer measure over X if p*(0) = 0, p*(A) < p*(B) for all sets A C B

and
p <U Ak> <> p(Ag)

keN keN
for all sequence (Ay)ken of subsets of X.

Definition 1.3.11. Let X be a set and p* be an outer measure over X. A
set B is measurable for the outer measure pu* if for each subset A of X, we
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have
W' (A) = (AN B) + (AN B).

Proposition 1.3.12. Let X be a set and u* be an outer measure over X.
The set of measurable sets for the outer measure u* form a o-algebra. More-
over, the restriction of the outer measure pu* to the o-algebra of measurable
sets for u* defines a complete measure.

We are now ready to construct the Lebesgue measure.

Definition 1.3.13. Let d be a positive integer. A d-dimensional interval of
R< is a set of the form I = H?Zl[ai, b;] where a; < b; for all ¢ € [1,d] and its

volume is defined by -
d

Vol(I) = [ [ (i — ax).
i=1
Let A be a subset of R and let C4 be the collection of all sequences (A )ren of
d-dimensional intervals such that A C (J;cy Ax. The Lebesgue outer measure
A* is defined by

A P(RY) — [0,+00], A inf { > Vol(Ag): (Ax)ren € Ca}-
keN
The restriction of the outer Lebesgue measure A* to the o-algebra of mea-
surable sets for A* is called the Lebesgue measure and is denoted .

In Chapter[5] the Lebesgue measure will play a considerable role. As said
in the following result, every Borel set is A*-measurable.

Proposition 1.3.14. The Lebesque measure over R% is a complete measure
defined over the Borel sets in B(R?).

Two measures over the same measurable space can be compared.

Definition 1.3.15. Let p and v be two measures over the same measurable
space (X, F). The measure pu is absolutely continuous with respect to v if for
all B € F, v(B) = 0 implies x(B) = 0. The measures p and v are equivalent
if they are absolutely continuous with respect to each other. In particular,
a measure on B(X) with X C R is absolutely continuous if it is absolutely
continuous with respect to the Lebesgue measure \ restricted to B(X). On
the contrary, the measures pu and v are mutually singular if there exist two
sets A, B € F such that ANB =0, AUB = X and p(A) =0=v(B).
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Let us now define measurable and integrable maps.

Definition 1.3.16. Let (X, Fx) and (Y, Fy) be measurable spaces. A map
T: X — Y is measurable if for all B € Fy, then

T7Y(B)={z € X :T(x) € B}
belongs to Fx.

Definition 1.3.17. Let (X, F, 1) be a measure space. A simple non-negative

function is a function of the form 2?21 ajxp; where n € N, ay,...,an > 0,
By,...,B, € Fand xp,,...,XB, are the characteristic functions of the sets
By, ..., B, respectively. The set of simple non-negative functions is denoted

ST(X,F). The integral of f = > i_1aixB; € ST(X, F) with respect to u,
denoted [ fdpu, is defined by

[ Fan=>" aus)
j=1

The integral of a measurable map f: X — [0, +o0] with respect to p is
defined by

/fduzsup{/gdu:gES"_(X,}") and ggf}.

Let f: X — [—00, +00] be a measurable map. If the positive part of f defined

by
() = {f(x) if f(z) >0

0 otherwise
and the negative part of f defined by
_ —f(x) if f(x) <0
(a) = { (x) if f()

0 otherwise

are such that [ f*du < 4+ooand [ f~ dp < +oo, then f is called p-integrable
(or simply integrable) and its integral with respect to p is defined by

[tan=[sran- [ 1 an

Let f: X — [—00,+00] be a measurable map and B € F. Then f is said

integrable over B if fxp is integrable and in this case, the integral of f over
B is denoted [ fdu and is defined by

/deuz/fXBdu-
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Theorem 1.3.18 (Radon-Nikodym). Let p and v be two probability mea-
sures over the same measurable space (X, F) such that p is absolutely contin-
uous with respect to v. Then there exists a v-integrable map f: X — [0, +00)
such that for all B € F, w(B) = [ fdv. Moreover, the map f is v-a.e.
unique.

Definition 1.3.19. The unique map f designated by Radon-Nikodym’s the-
orem is called the density function of the measure p with respect to v and
is usually denoted fl—’lf.

Let us define some properties of measurable maps.

Definition 1.3.20. For a measurable space (X, F), a measurable transfor-
mation T: X — X and a measure y on F, the map T is non-singular with
respect to p if for all B € F, u(B) = 0 if and only if u(T~1(B)) = 0.

We can now define dynamical systems in terms of a stronger character-
ization of measurable maps than being non-singular and then study their
properties.

Definition 1.3.21. For a measurable space (X, F), a measurable transfor-
mation 7': X — X and a measure p on F, the measure p is T-invariant,
or equivalently, the transformation T: X — X is measure preserving with
respect to pu, if for all B € F, we have u(T~1(B)) = u(B).

Definition 1.3.22. A (measure preserving) dynamical system is a quadru-
ple (X, F,u,T) where (X, F,u) is a probability space and T: X — X is a
measure-preserving transformation with respect to .

Theorem 1.3.23 (Poincaré’s Recurrence Theorem). Let (X, F,u,T) be a
dynamical system and B be a set in F. If u(B) > 0 then for u-almost every
point © € B, there exists k > 1 such that T*(z) € B.

Remark 1.3.24. Throughout the text, for a subset A of X, the notation
F N A where F is a o-algebra designates the o-algebra {BNA: B € F} over
A.

Definition 1.3.25. Two dynamical systems (X, Fx,ux,Tx) and (Y, Fy,
wy,Ty) are (measure preservingly) isomorphic if there exist M € Fx and
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N € Fy with
px (M) = py(N) =0

and
Tx(X\M)C X\ M and Ty(Y\N)CY\N,

and if there exists a bijective map
v: X\M—-Y\N

which is bimeasurable with respect to the o-algebras Fx N (X \ M) and
Fy N (Y \ N) and such that for all B € Fy N (Y \ N),

py (B) = ux (¥~ (B)), (1.2)

and finally, such that for all z € X \ M,

P(Tx(x)) = Ty (P(2))-

When (T.2)) is satisfied for all B € Fy, we write uy = pux o~ !. Figures
and [I.4] symbolically depict a measure preservingly isomorphism.

We now introduce the notion of ergodicity.

Definition 1.3.26. A dynamical system (X, F,u,T) is ergodic if for all
B € F, T~Y(B) = B implies u(B) € {0,1}.

Roughly speaking we call a dynamical system (X, F, u,T) ergodic if it is
impossible to divide X into two pieces A and B (each with positive prob-
ability) such that T' acts on each piece separately. A non-ergodic map is
symbolically depicted in Figure

Theorem 1.3.27 (The ergodic theorem). Let (X, F,u,T) be a dynamical
system. For any p-integrable map f: X — R, the limit

. 1 n—1 . .
S = @
i
exists p-a.e. and we have f*oT = f* p-a.e. and [y fdp = [y [*dp. If
moreover the dynamical system (X, F,u,T) is ergodic, then f* is a constant

p-a.e. and f* = [y fdp.
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Figure 1.3: The isomorphism from (X, Fx, pux, Tx) to (Y, Fy, py, Ty) gives
px(A) = py(B) where B € Fy and A = ¢~ 1(B).

X ¥ Y

Figure 1.4: A commutative diagram given by an isomorphism from
(X7FX3MX5TX) to (Yy]:Y7HY7TY)’

Theorem 1.3.28. Suppose that pyi, ps are probability measures on (X, F),
and T: X — X is a measure-preserving ergodic transformation with respect
to both uy and pa. Then either 1 = po or py and ps are mutually singular
with respect to each other.

Definition 1.3.29. A dynamical system (X,F,u,T) is ezact if
MpentT~"(B) : B € F} only contains sets of measure 0 or 1.

Clearly, any exact dynamical system is ergodic. Moreover, if a dynami-
cal system (X, F, u,T) is exact, then for all n € N>, the dynamical system
(X, F,pu,Tm) is ergodic.
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Ke

e

Figure 1.5: A non-ergodic map.

The subsequent definition introduces a notion, called the measure theo-
retical entropy of a transformation, reflecting the average amount of infor-
mation gained by a transformation in a dynamical system. Randomness of
information in a system was first studied by Shannon in 1948 [Sha48].

Definition 1.3.30. Let (X, F, u,T) be a dynamical system. Let I be a finite
or countable index set. A partition for X is a collection P = {P; : i € I} of
measurable sets of X such that p(P;) > 0 for all ¢ € I, u(P; N P;j) = 0 for all
i # j and p(U;cr Pi) = u(X). When [ is finite, the entropy of the partition
P is given by
H(P) == u(P;)log(u(P;)).
el
Given such a partition P = {P; : i € I} of X, for all n € N, the partition
defined by
(P,NT'P,n---nT~ VP g, ip g €I}
is denoted \/?:_01 T—'P. The entropy of the transformation T with respect to
u and the partition P is given by

n—+oo n

n—1
1 .
hu(P,T) = lim Hﬂ<\/ T‘ZP>.
=0
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Finally, the (measure theoretic) entropy of the transformation T is given by
hu(T) = sup h, (P, T)
P
where the supremum is taken over all finite partitions P of X.

Proposition 1.3.31. Entropy is an isomorphism invariant.

To end this section, we define the induced systems and give a result about
their entropy.

Definition 1.3.32. Let (X, F, u,T) be a dynamical system and B be a set
of F such that pu(B) > 0. For = € B, define the first return time of x to B,
denoted r(x), by

r(z) =inf{n >1:T"(x) € B}.

Consider the o-algebra F N B on B and define the measure pup and the
induced transformation T by

up(A)=——=, for Ae FNB,

and
Tg: B— B, z+—T"®)(2), forzeB

respectively. Then (B, FN B, up,Tp) is a dynamical system, which is called
the dynamical system induced by B.

Note that in the previous definition, we have that r(x) is finite p-a.e.
on B by Poincaré’s Recurrence Theorem The induced dynamical
system inherits many nice properties of the original system. For example
Tp is measure preserving with respect to up. If the original system is er-
godic, then the induced system is also ergodic. The converse holds true if
(Upen T7"(B)) = 1. Moreover, a famous result of Abramov [Abr59] relates
the entropy of the original system with the entropy of the induced system.

Theorem 1.3.33 (Abramov’s formula). Let (X, F,u,T') be a dynamical sys-
tem, B be a set of F such that u(B) > 0 and (B, F N B,up,Tp) the corre-
sponding induced system. We have

hu(T) = w(B)hy (Tp).-



1.4. An overview of -representations 21

1.4 An overview of S-representations

Generalizing integer base representations, and more particularly the decimal
and binary ones, the -expansions are introduced in the next section and
then studied all along the remaining part of this chapter.

1.4.1 Combinatorics of S-representations

Representations of real numbers in real bases were introduced by Rényi in
1957 [Rénh7] and well understood since the pioneering work of Parry in
1960 [Par60].

Definition 1.4.1. A real base is a real number 3 greater than 1. We define
the value map valg: (R>0)" — Rxo by

a;
valg(a) = 3 =y
€N
for any infinite sequence a over R, provided that the series converges. A

B-representation of a non-negative real number z is an infinite sequence a
over N such that valg(a) = .

There may exist more than one S-representation of the same real number.
Between all of them, one plays a crucial role, called the greedy one.

Definition 1.4.2. For x € [0,1], define a [S-representation of x thanks to
the greedy algorithm: set r_1 = x and let, for all n € N,

an = {B rn—lJ and 1, = {B rn—l}-

The obtained §-representation is called the greedy (-expansion of x, or simply
the B-expansion of x, and is denoted dg(x). For all x € [0, 1], the S-expansion
of z is an infinite word over the alphabet [0, [3]]. This algorithm is called
greedy since at each step it takes the largest possible digit. Indeed, if the
first N digits of the -expansion of x are given by ag,...,any_1, then the
next digit ay is the greatest integer such that

N oo

n
Z Bt <z
n=0

Example 1.4.3. We have d3(1) = 30“, d,(1) = 110%, dy,(3 — v/5) = 10010
and d2(1) = 21¢.
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In the following, the combinatorial properties of the S-expansions are
recalled. We refer the reader to [Lot02, Chapter 7] for a survey. From now
on, let 5 > 1 be a base.

Proposition 1.4.4. For each infinite sequence a of non-negative integers
and all x € [0,1], we have a = dg(x) if and only if valg(a) = = and for all
L eN,

= a; 1

Z Bitl < B+

1=0+1

Proposition 1.4.5. The B-expansion of a real number x € [0, 1] is the great-
est of all B-representations of x with respect to the lexicographic order.

Proposition 1.4.6. The function dg: [0,1] — [0, |B]]N,z — dg(x) is in-
creasing: for all x,y € [0,1], x <y <= dg(x) <jex dg(y)-

Proposition 1.4.7. Let o and B be two real numbers greater than 1. Then
a < B if and only if do(1) < dg(1).

The p-expansion of 1 plays a special role in the theory of S-expansions.
Proposition 1.4.8. The B-expansion of 1 is never purely periodic.

A pB-representation is said to be finite if it ends with infinitely many zeros
and infinite otherwise. If a S-representation is finite, we usually omit to write
the tail of zeros. When d(1) is finite, we modify it in order to have an infinite
B-representation of 1 that is lexicographically maximal among all infinite (-
representations of 1. As it will be seen later on, this new S-representation of
1 reveals its importance.

Definition 1.4.9. Let d:g(l) denote the quasi-greedy B-expansion of 1 de-
fined as follows:

d@(l) if dg(l) is infinite
dz:(l) = (ao tee ag,Q(ag,1 — 1))“) if dg(l) =ap---ap—1 with £ € Nzl
and ag_1 # 0.

Example 1.4.10. Resuming Example we get d3(1) = 2¥, d (1) =
(10)* and d%,(1) = 21¢.
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Definition 1.4.11. A real number 3 > 1 is a Parry number if dg(1) is
ultimately periodic (equivalently, if dg(l) is ultimately periodic). Further, if
dg(1) is finite, then we say that j is a simple Parry number.

Remark 1.4.12. An algebraic description of Parry numbers is not obvious.
However, some links with Perron and Pisot number are known: any Pisot
number is a Parry number [Ber77, [Sch80], any Parry number is a Perron
number (see for example [Fab95]) and neither of the statements can be re-
versed. Moreover, every quadratic Parry number is a Pisot number [Bas02].
More detailed information on Galois conjugates of a Parry number S was
given by Solomyak [Sol94].

The following example illustrates the existence of Parry but non-Pisot
numbers.

Example 1.4.13. The polynomial 2* — 323 — 222 — 3 has the two real zeros
B~ 3.6164 and v ~ —1.0968 and two complex zeros with modulus less than
1. Hence, the real number § is a non-Pisot number. However, it is easily
checked that dg(1) = 32030“. So 3 is a Parry number.

Definition 1.4.14. The set Dg is the set of S-expansions of real numbers in
the interval [0,1) and the set S3 is the topological closure of D with respect
to the prefix distance of infinite words:

Dg={dg(z):x€[0,1)} and Sz= Dg.

In 1960, Parry [Par60] characterized those infinite words over N that
belong to Dg thanks to the quasi-greedy [(-expansion of 1. Such infinite
words are sometimes called S-admissible sequences. The advantage of this
characterization is that it is a purely combinatorial criterion on the sequences.

Theorem 1.4.15 (Parry’s theorem, [Par60]). Let a be an infinite sequence
of non-negative integers. Then a € Dg if and only if 0™ (a) <iex dj(1) for all
n € N.

Corollary 1.4.16. Let a be an infinite sequence of non-negative integers.
Then a € Sg if and only if 0" (a) <iex dj(1) for alln € N.

Corollary 1.4.17. Let a be an infinite sequence of non-negative integers
such that ag > 1, a, < ag for alln > 1 and a # 10¥. Then there exists a
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unique real number > 1 such that ),y # = 1. Furthermore, a = dg(1)
if and only if c™(a) < a for all n € N>;.

We now turn to the g-shift. To do so, let us recall the needed definitions.

Definition 1.4.18. Let A be an alphabet. A subset of AV is a subshift of
AN if it is shift-invariant and closed with respect to the topology induced by
the prefix distance. Let S C AN be a subshift, I(S) = A" \ Fac(S) be the
set of factors avoided by S and X (S) be the set of words of I(S) which have
no proper factors in I(S). A subshift S C AN is sofic if X(S) is regular, or
equivalently if the language Fac(S) is regular. A subshift S C AN is of finite
type if X () is finite.

In view of Corollary|1.4.16} the subset Sz of [0, | 3]]" is a subshift, which
we call the -shift. The properties of Dg and Sg are recalled in the following.

Proposition 1.4.19. Let dj(1) = totita---. We have Dg =Y where

Y ={ty---th-1a:ne€N,ae[0,t, —1]}.

Theorem 1.4.20 ([IT74]). The (-shift Sz is of finite type if and only if 5
s a simple Parry number.

Theorem 1.4.21 (Bertrand-Mathis’ theorem, [BMS86]). The B-shift Sg is
sofic if and only if B is a Parry number.

Let us describe the automaton, given in the proof of Bertrand-Mathis’
theorem, accepting Fac(Sg) when f is a Parry number.

Definition 1.4.22. Suppose that dz(l) is ultimately periodic and denote

d}g(l) =to-tm1 (tm o tm—i—n—l)w-

Let Ag be the deterministic finite automaton defined as follows and depicted
in Figure The set of states is @ = {¢; : i € [0,m + n — 1]}. The initial
state is go and all states are final. The alphabet is [0, | 3]] and the (partial)
transition function E: @ x [0, |8]] — @ of the automaton Ag is defined as
follows. For each i € [0,m + n — 1], we have

g1 Hi£Em4+n-—1
E(gi,ti) = { "
Qm else
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Figure 1.7: The automata A, (left) and A, (right).

and for all s € [0,t; — 1], we have E(qgi, s) = qo.

Example 1.4.23. From Examples [1.4.3] and [1.4.10] we already know that
the Golden ratio ¢ is a simple Parry number and its square (? is a non-simple
Parry number. The automata A, and A2 are depicted in Figure

Remark 1.4.24. For any Parry number 3, the automaton A3 can be seen as
a Biichi automaton accepting infinite words. In that case, it is easy to see that
the corresponding accepted w-language is exactly the 3-shift Sgz. Moreover,
we can modify this Biichi automaton in order to accept Dg. Suppose that the
Biichi automaton Az had been constructed by considering the quasi-greedy
[B-expansion of 1 as non-purely periodic, that is, if dg(l) is purely periodic of
period length ¢ it suffices to consider the first letter as the preperiod and the
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Figure 1.8: Biichi automata accepting D, (left) and D, (right).

next ¢ ones as the period. By taking only the initial state gg as unique final
state, we obtain a Biichi automaton accepting Dg (see [BR10, Proposition
2.3.4)).

Example 1.4.25. The automata A, and A, from Figure can be seen
as Buchi automata accepting S, and S 2 respectively. Moreover, Biichi
automata accepting D, and D2 are depicted in Figure

1.4.2 Spectrum and set of S-representations of (

Considering a real base 5 > 1 and an alphabet of integers, one could ask
if the set of infinite words having value 0 in base 8 can be the w-language
accepted by a finite Biichi automaton. This question reveals its importance,
especially when the question of normalization (introduced in the next section)
arises. This set of infinite words is intimately linked with a discrete set
of real numbers called spectrum. Spectra were introduced by Erdés, Joo
and Komornik in 1990 [EJK90] and have been gaining interest in recent
years [AK13| [Fenl06, [FP18, HMV18, Vav21].

In this context, we work with alphabets of integer digits. Hence, we
extend the definition of S-representations of non-negative real numbers (see
Definition to the set of sequences over Z. That is, we allow negative
integer digits.

Definition 1.4.26. For a real number § > 1 and d € N, we let Z(5,d)
denote the set of B-representations of zero over the alphabet [—d, d]:

Z(B,d) = {a € [~d,d]": >

neN

an

BnJrl = 0}'

The d-spectrum of B is the set

/-1
X4p) = {Z a5l €N, ag,aq,... a1 € [—d,d]}.

n=0
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Figure 1.9: The 1-spectrum of ¢.

Example 1.4.27. The 1-spectrum of ¢ in the neighbourhood of 0, namely
X1(¢)N[—5.5,5.5], is depicted in Figure

Definition 1.4.28. Let X be a topological space and ¥ C X. A point
x € X is an accumulation point of the set Y if every open neighborhood of
x contains at least one point from Y distinct from z.

The following theorem linking these two sets was proved in [FP18].

Theorem 1.4.29. Let > 1 andd € N. Then Z(f3,d) is accepted by a finite
Biichi automaton if and only if the spectrum X%(B) has no accumulation
point in R.

The next result is due to Akiyama and Komornik [AK13] and Feng [Fen16].

Theorem 1.4.30. Let 8 > 1 and d € N. The spectrum X%(B) has an
accumulation point in R if and only if 6 — 1 < d and B is not a Pisot
number.

The following result is a direct consequence of Theorems|[T.4.29]and [T.4.30),
as noticed in [FP18].

Theorem 1.4.31. Let 8 > 1. The following assertions are equivalent.
1. The set Z(5,d) is accepted by a finite Biichi automaton for all d > 0.

2. The set Z(B,d) is accepted by a finite Biichi automaton for one d >
(8] —1.

3. B is a Pisot number.

1.4.3 Normalization in real bases

A question on S-expansions that has raised a lot of interest all along the years
is to characterize the real bases for which the normalization is computable
by a finite 2-tape Biichi automaton.
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Definition 1.4.32. Let A be an arbitrary alphabet of integer digits. The
normalization vg 4 in base [ over the alphabet A is the partial function
which maps any [-representation over A of a real number z € [0,1) onto

dg(x).

This function v 4 is partial since, depending on the alphabet A, a word
over A can have a value not in [0,1).

Definition 1.4.33. Let A be an arbitrary alphabet of integer digits. A
2-tape Biichi automaton accepting the set

{(u,v) € (A x[0,[B] — 1]])N :valg(u) € [0,1), v =r4(u)}

is called a normalizer.

A normalizer can be constructed thanks to a Biichi automaton accept-
ing the set of fB-representations of 0 over the smallest symmetric alphabet
containing A. We now describe the construction of a well-known Biichi au-
tomaton accepting Z(f,d), called the zero automaton, and recall the related
results.

Definition 1.4.34. For any positive integer d, we define the zero automaton
in base 8 over the alphabet [—d,d] by Z(5,d) = (Q4,0,Qqg, [—d,d], E) where

Qa= XU(8) N [~ 541, 5%]
and for all s,t € Xd(ﬁ) and all a € Z, there is a transition

s 2st if and only if t= s+ a. (1.3)

Proposition 1.4.35. The zero automaton Z(8,d) accepts the set Z(8,d).

Example 1.4.36. The zero automaton in base ¢ over the alphabet [—1, 1]
is depicted in Figure For example, the infinite words 1(10)* and 101%
(where 1 designates the digit —1) are accepted by the Biichi automaton
Z(p,1). Therefore, the infinite words 1(10)* and 101* have value 0 in base

®.

The zero automaton Z(3,d) is the key element to build a normalizer.
Hence, in order to understand when there exists a finite normalizer, we state
the following result which is an improvement of the result from [FS10] about
the finiteness of Z(3,d).
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Figure 1.10: The zero automaton Z(p,1).

Theorem 1.4.37. The following conditions are equivalent.
(i) The zero automaton Z(f,d) is finite for every d > 0.
(ii) The zero automaton Z(B,d) is finite for one d > [B] — 1.

(iii) B is a Pisot number.

In order to get this revised result (compared to the one in [FS10]) it is
sufficient to prove the following result.

Proposition 1.4.38. The zero automaton Z(B,[5] —1) is finite if and only
if B is Pisot.

Proof. The condition is sufficient by [FS10]. The condition is necessary since
if the zero automaton Z(53,[5] — 1) is finite then the set Z(8,[8] — 1) is
accepted by a finite Biichi automaton and we get by Theorem that 3
is a Pisot number. [ |

The second step is the construction of a converter.

Definition 1.4.39. Consider two finite alphabets of integers A and C' and

let d = max |a— c|. We define the converter of § from A to C' by
acA,ceC

C(BaA X C) = (QdaOanaA X C7 El)

where the transitions E’ are defined as follows. Let s,t € Q4 and a € A,
c € C, we define

s —>—»t ifandonly if s ——=s¢.
C(B,AXC) Z(B,d)
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Proposition 1.4.40. The converter C(8, A x C) accepts the set

{(u,v) € (A x O)YN : valg(u) = valg(v)}.

Example 1.4.41. Using the zero automaton in base ¢ over the alphabet
[—1, 1] depicted in Figure we obtain the converter C(3, {0, 1}?) depicted

in Figure [L.I1}

By Theorem [1.4.37} if /5 is a Pisot number then the converter C(3, A x C)
is finite for all finite alphabets A and C'. Moreover, since every Pisot number
is Parry, by Remark [1.4.24] there exists a finite Biichi automaton accepting

AN x Dg = {(u,v) € (A x Ag)N: 3z €[0,1), v=ds(z)}.

Then, by computing the product of C(3, A x Ag) and this finite Biichi au-
tomaton we obtain a finite normalizer.
In particular, we get the following result.

Theorem 1.4.42. If B is a Pisot number then, for any finite alphabet A of
integers, the normalization in base B > 1 over the alphabet A is computable
by a finite 2-tape Biichi automaton.

Example 1.4.43. We continue Examples[1.4.25] [1.4.36 and [T.4.41] By com-
puting the product of the converter C(ip, {0,1}?) and the Biichi automaton
accepting {0, 1} x D,, (obtained by modifying the Biichi automaton accept-
ing D), we obtain the normalizer in base ¢ depicted in Figure (where
only the accessible and co-accessible states are drawn). For example, the
pair of words [01001:)] is accepted by the normalizer depicted in Figure

Therefore, we get v, 19,13(001%) = 10%.

1.4.4 Dynamics of f-expansions

Real base expansions have also been studied through a dynamical point of
view. This section is devoted to the study of their associated dynamical
systems. We refer the reader to [DK21] for more details.

Definition 1.4.44. The greedy B-transformation, denoted Tj, is defined by
Ts:[0,1) = [0,1), z— Bz — |Bz].

The greedy [-expansion of a real number = € [0,1) can be obtained by
setting dg(r) = aparaz - -+ with a, =[BT (z)] for all n € N.
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Figure 1.12: The normalizer in base ¢ over the alphabet {0, 1}.

31
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Figure 1.13: The transformations 7T, (left) and T, (right).
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Figure 1.14: Three iterations of the map 7T, on the real number %

As illustrated in the following example, S-transformations are usually
represented by unit squares depicting the associated maps Tg. In addition,
the diagonal is commonly represented in order to easily iterate the map.
Each branch of the g-transformation corresponds to a digit in [0, [8] — 1],
that is, for all n € N and z € [0,1), if Tg(x) belongs to the preimage of the
(i + 1)%* branch of the map with i € [0, [3] — 1], then the (n 4 1) digit of
dg(z) is 1.

Example 1.4.45. The transformations T, and T, are depicted in Fig-
ure Moreover, one can see in Figure three iterations of the map
T, on the real number % Since the third step gives the value % again, we

get dy(3) = (010)~.

A fundamental dynamical result is the following. This summarizes results
from [Par60l Rén57, Roh61].

Theorem 1.4.46. There exists a unique Tg-invariant absolutely continu-
ous probability measure pg on B([0,1)). Furthermore, the measure pg is
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equivalent to the Lebesgue measure on B([0,1)) and the dynamical system
([0,1),B([0,1)), g, Tp) is ergodic and has entropy log(3).

Remark 1.4.47. It follows from Theorem that T is non-singular
with respect to the Lebesgue measure.

Rényi [Rén57] proved the existence of the measure pg from Theorem|1.4.46
and Gel’fond |Gel59] and Parry [Par60] independently gave the following ex-
plicit formula for the density function of this measure.

Theorem 1.4.48. The density function of the unique Tg-invariant abso-
lutely continuous probability measure pg on B([0,1)) is given by

d
0= 0.. 7o 5 Y xonn (@)

nGN

where C' = fol Z:KTE(U Bind)\ s a normalization constant.

One can give a link between the combinatorial and dynamical properties
of the greedy [-expansion. In fact, there exists an isomorphism between
the dynamical system associated with the g-transformation and the S-shift
Sg. In order to give this result, let us define a o-algebra over infinite words,
which will then be restricted to Sz (see Remark .

Definition 1.4.49. For an alphabet A, we let C4 denote the o-algebra gen-
erated by the cylinders of the form
CA(ao, .. .,ag_l) = {’LU S AN wo = ag,...,Wp—1 = ag_l}

with £ € N and ag,...,ap_1 € A.

Theorem 1.4.50. The map ¢g: [0,1) = Sz, = — dg(x) defines an isomor-
phism  between the dynamical systems ([0,1),B([0,1)), ug,Ts) and

(S8, Co,re1-11 N S, 15 © Y5 ', 0|5, )-
The S-transformation can be extended to a bigger interval than [0, 1).

Definition 1.4.51. Let
(B8] -1

xrp =
B 31
be the greatest real number that has a S-representation over the alphabet

[0, 51 —1].
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Figure 1.15: The extended transformations T (left) and T;’Q‘t (right).

Clearly, we have zg > 1 and xg = 1 if and only if 8 € N>o. In [DKO02b],
the map T3 was extended to the interval [0, z3).

Definition 1.4.52. The extended greedy (-transformation, denoted TEXt, is
defined by

Bx — | Bz] if x €10,1)

TE: [0,25) [0, 25), @+ {B:r —([B1=1) ifz € [1,ap)

Example 1.4.53. We continue Example[I.4.45] The extended greedy trans-
formations T:;Xt and T;’;t are depicted in Figure m

Let us make some remarks.

Remark 1.4.54. For all x € [%, %), the two cases of Definition [1.4.52
coincide since |Sz| = [B] — 1. The extended [-transformation restricted
to the interval [0,1) gives back the classical greedy [-transformation from
Definition Moreover, for all z € [0, zg), there exists N € N such that
for all n > N, (Tg")"(z) € [0, 1).

Remark 1.4.55. It is important to note that if 5 is an integer, then the
greedy [-expansion of 1 given in Section [1.4.1] is S0% whereas the greedy
B-expansion of 1 given thanks to the extended greedy B-transformation is
(8 —1)% (corresponding to the quasi-greedy of 1 in base § in Section .
Both definitions have their advantages in their area (combinatorics on words
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and dynamics) and a choice had been made in each theory.

Extending the measure pg on the Borel o-algebra B([0,z3)) by
WS4 (B) = ns(B N[0, 1)
for all B € B([0,23)), we get the following extension of Theorem [1.4.46

Theorem 1.4.56. The extended measure M%Xt 1s the unique T, EXt—invariant
probability measure absolutely continuous with respect to the Lebesgue mea-
sure on B([0,25)). Furthermore, the measure pG* is equivalent to the Lebesgue
measure on B([0,x5)) and the dynamical system ([0, 25), B([0, z5)), 3", T§*")
is ergodic and has entropy log(f).

In the greedy algorithm, one selects the largest digit among 0,1, ..., [8]—
1 at each step. Let us define the other extreme algorithm which chooses the
least digit at each step [EJK90].

Definition 1.4.57. For ¢ € (xg — 1,x3], define a (-representation of x
thanks to the lazy algorithm: if the first N digits of the expansion of a real
number z € (zg — 1, 23] are given by ao, ...,an—1, then the next digit ay is
the least element in [0, [3] — 1] such that

0,[
N
Z/@n—i—l Z l@n-i—l Z %,

n=N-+1

or equivalently,

> .

Z l@n—i—l 6N+1 -

The so-obtained B—representatlon is called the lazy B-expansion of x and is
denoted lg(x).

Dajani and Kraaikamp [DK02a] proved in 2002 that, as in the greedy case,
the lazy [-expansion can be dynamically generated by a transformation.

Definition 1.4.58. The lazy B-transformation, denoted Lg, is defined by
Lg: (xp—1,28) = (x5 — 1,28], © — pfz — [z —xg].

For all € (xg — 1, 24|, the lazy S-expansion of x can be obtained by
setting (g(x) = aparaz - -+ with a, = [BLj(x) — xg] for all n € N.
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Figure 1.16: The transformations L, (left) and L2 (right).

Example 1.4.59. The lazy transformations L, and L. are depicted in

Figure

Dajani and Kraaikamp [DKO02b] proved that there is an isomorphism
between the greedy and the lazy S-transformations.

Theorem 1.4.60. The map ¢g: [0,1) = (zg — 1,28], v +— x3 — = defines
an isomorphism between the dynamical systems

([0,1), B([0, 1)), s, Ts)

and
((IEB - 17$B]7B(($B - 1,%‘5]),,&5 © qulaL,B)

As a direct consequence of this property, an analogue of Theorem [1.4.46
is obtained for the lazy transformation on (xzg — 1, z3].

Theorem 1.4.61. The measure jg o gZ)El is the unique Lg-invariant prob-
ability measure absolutely continuous with respect to the Lebesgue measure
on B((xg — 1,2]). Furthermore, the measure pg o gi)gl is equivalent to the
Lebesgue measure on B((xg — 1,x8]) and the dynamical system
((wg—1,25],B((xg —1,28]), ug o gb/gl, Lg) is ergodic and has entropy log(3).

As in the greedy case, the lazy S-transformation Lg can be extended to
the bigger interval (0, x3] as follows.
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Figure 1.17: The extended transformations Le‘;‘t (left) and LZ’;‘J (right).

Definition 1.4.62. The extended lazy [-transformation, denoted L%Xt, is
defined by
Bz if x € (0,25 — 1]

ext ,
Lg*: (0,2p] — (0, 2], {ﬂw — [Br —xg] ifze (zg—1, 28]

Remark 1.4.63. Observe that for all x € (Mgl, %’], the two cases of the

definition coincide since [#z — x5] = 0. Moreover, since LZ* (zg—1,25]) =

(g — 1, 4], the lazy transformation L% can be restricted to the length-one
interval (x5 — 1,2g]. This restriction gives back the lazy [-transformation
Lg. Also note that for all € (0,x3], there exists N € N such that for all
n> N, (LF)"(z) € (w5 — 1, 2]

Example 1.4.64. The extended lazy transformations L3* and Lfo’ét are de-
picted in Figure

Theorem 1.4.65. The map qﬁ%’“: 0,28) = (0,28], v — xg — = defines an
isomorphism between the dynamical systems

([0,25), B([0,25)), u5, TS
and

((0, 5], B((0, 25)), 5 0 (651, LGY).

Theorem can be interpreted in Figures and[L.I7]as the rotation
symmetry of 180 degrees.
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As a direct consequence of Theorem an analogue of Theorem
is obtained for the lazy transformation on (0, zg].

1.4.5 [(-Representations over a general digit set

A generalization of S-representations is obtained by considering infinite words
over arbitrary alphabets instead of the alphabet [0, [/5] — 1]. This general-
ization was originally defined by Pedicini in 2005 [Ped05].

Definition 1.4.66. Consider an arbitrary finite set A = {dg,ds,...,dpn} C
R where dy < dy < -+ < dp,. Then a (3, A)-representation of a real number
do dm

2 in the interval [m, ﬂ> is an infinite sequence agaias--- over A such

that v = % Such a set A is called an allowable digit set for (3 if

dm —d
max (dpi1 — di) om0

. 14
k€[o,m—1] - p-1 (1.4)

In this case, every point in [%, %] has a (8, A)-representation.

Considering an allowable digit set A for 3, the greedy and lazy (8, A)-
representation can be defined. Let us start with the greedy one.

Definition 1.4.67. Let A be an allowable digit set for 5. The greedy

(8, A)-expansion of a real number x € [%, %) is defined recursively as

follows: if the first IV digits of the greedy (3, A)-expansion of z are given by
ag, - --,an—_1, then the next digit ay is the greatest element in A such that
Z Ly <.
n+1 n+1 —
B n=N-+1 B

From a dynamical point of view, let us define the transformation associ-
ated with these expansions [DKO07].

Definition 1.4.68. Let A be an allowable digit set for 5. The greedy (5, A)-
transformation, denoted T3 a, is defined by

. —d, dig+1—d
Bz — d, 1fa:€[ﬂ 1+d ;)Bcl_()1+ k*% 9), ke [0o,m—1],
Br—dy if w € [0 4 dngle, do),
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Figure 1.18: The transformation T, o for A = {0, 1, “‘%1, ©*}.
The greedy (3, A)-expansion can also be obtained by iterating the greedy

(8, A)-transformation as follows: for all n € N, a,, is the greatest digit d in
A such that % + 5 % < TgA(2).

Example 1.4.69. Consider the digit set A = {0,1,¢ + é, ©*}. Tt is eas-
ily checked that A is an allowable digit set for ¢. The greedy (¢, A)-
transformation

YT if:ne[(),é)
r—1 ifeell 144
Ton [O7¢<p_21)—>[0,¢‘”—_21),x'—> v 1y - [(p 1902)
8035—(904-5) ifxell ?7@
2 . 2
YT — @ 1fa:€[go,%)

is depicted in Figure [[.18]

Similarly, if A is an allowable digit set for 3, then the other extreme
(8, A)-representation can be defined.

Definition 1.4.70. Let A be an allowable digit set for 5. The lazy (5, A)-
expansion of a real number x € (%, %] is defined recursively as follows: if
the first NV digits of the lazy (5, A)-expansion of = are given by ag,...,an—1,

then the next digit ay is the least element in A such that
N a +oco d
n m
Z Bt + Z Bt =g

n=N+1
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Figure 1.19: The transformation L,x for A ={0,1,¢0+ é, %},

From a dynamical point of view, the lazy (3, A)-expansions can be gen-
erated by a transformation.

Definition 1.4.71. The lazy (B, A)-transformation

—1° B—1 —1> B—1
: do  dpy  dp—d
. px lf:UG(T_Ol’?_d 50],
Br—dy ifwe (foy—mgh=t, o —dmdi] ke [1,m)].

The lazy (3, A)-transformation can be used to obtain the digits of the
lazy (8, A)-expansions: for all n € N; a,, is the least digit d in A such that
§+ 205 grer = L a(2).

The greedy and lazy (3, A)-transformations can be linked as in the real
base expansions over the canonical alphabet [0, [ 5] —1] (see Theorem [1.4.60)).

Proposition 1.4.72. If A = {dy,d1,...,dn} C R where dy < dy < -+- <
dm 1s an allowable digit set for B > 1 then so is the set

A= {dm,dy—1, ..., do}
where for all k € [0,m], dj, = do + dum — d.

Theorem 1.4.73. If A is an allowable digit set for 8 > 1 then the map

d, dm d dm do+dm
dpat [, 525) = (5o 5], o0 G —w
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s a bicontinuous bijection satisfying Lﬁ,& o pgAn =P 0 TaA.

Example 1.4.74. Consider the digit set A where A is the digit set from Ex-

ample |1.4.69f We get A = {0,1 — %, ©,9?}. The lazy (p, A)-transformation

1 . ®p 3

(o, £ P pr—(=y) oG o]
Loa: 0512055k ey o if o € (252, 2621
) - 2

SOZE_SD? lfI'E(%ap]

is depicted in Figure It is conjugated to the greedy (p, A)-transformation

Tpn by dpa: [0, 27) = (0, 24], o 25—






CHAPTER

2

COMBINATORIAL PROPERTIES
OF CANTOR REAL BASE
EXPANSIONS

In this chapter, we introduce and study series expansions of real numbers
with an arbitrary Cantor real base 8 = (3, )nen, which we call B-representa-
tions. In doing so, we generalize both representations of real numbers in real
bases and through Cantor series.

First, we focus on the greedy algorithm and we show fundamental prop-
erties of B-representations, each of which extends existing results on repre-
sentations in a real base recalled in Section In particular, we prove a
generalization of Parry’s theorem characterizing sequences of non-negative
integers that are the greedy (3-representations of some real number in the
interval [0, 1).

Next, we define the lazy algorithm and we study the combinatorial prop-
erties of the lazy expansions in Cantor real bases. To do so, we prove that
the lazy B-expansions can be obtained by “flipping” the digits of the greedy
ones. Hence, the combinatorial properties of the greedy (3-expansions we just
obtained can be “flipped” to the lazy framework. In particular, a version of
Parry’s theorem in the lazy Cantor real base framework is proved.

The results presented in this chapter are from [CC21] and [Cis21]. Since

43
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this chapter generalizes the combinatorial properties of real base expansions
to the Cantor real base framework, Sections and are needed
preliminaries for the good understanding of the contents of this chapter.

Contents of the Chapter
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2.1 Definition of Cantor bases

Definition 2.1.1. A Cantor real base, or simply a Cantor base, is a sequence
B = (Bn)nen of real numbers greater than 1 such that [], .y B = +00.

Example 2.1.2. For alln € N, let a, = 1+ QH% and 8, =2+ 2,1% The
sequence & = (i )nen is not a Cantor base since [],, .y an < +o0o. In fact,
for all n € N, we have 1 + 2"% < exp (gn%) so, for all N € N, we get

N N ) N
H Qp < H exp (2n+1) = exp (Z 2n+1)
n=0 n=0 n=0

where the series »° 271% is a convergent geometric series. However, the
sequence 3 = (Bn)nen is indeed a Cantor base since [[,cyfn = +00. In
fact, for all N € N, we have ngo Bn > ngo 2.
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Proposition 2.1.3. Any sequence 3 = (Bn)nen of real numbers greater than
1 that takes only finitely many values is a Cantor base.

Proof. Consider a sequence 8 = (/3 )nen of real numbers greater than 1 that
takes only finitely many values. There exists a real number 8 > 1 occuring
infinitely many times in the sequence 3. Then, we get [[, cnyBn = +00. M

In particular, by the previous proposition, any sequence 3 = (3,0, ...)
with 8 > 1 is a Cantor base.

Definition 2.1.4. The B-value (partial) map valg: (Rso)Y — Rsq is the
map defined by

Qn,
valg(a) = —_ (2.1)
% H?:o Bi
for any infinite word a = apaias - -- over R, provided that the series con-
verges. A B-representation of a non-negative real number z is an infinite
word a € NN such that valg(a) = x. So we ask that the digits of a 3-
representation are non-negative integers.

If 8= (8,5,...), then for all x € [0,1], a B-representation of x is a (-
representation of z as defined by Rényi [Rén57] (see Section [L.4.1). In this
case, we do not distinguish the notation 3 and 3: we write valg and we talk
about [S-representations, as usual.

We will need to represent real numbers not only in a fixed Cantor base
B but also in all Cantor bases obtained by shifting 3.

Definition 2.1.5. For all n € N, the n'" shift of the Cantor base 3 is
denoted 8™, that is, 8 = (Bns Brt1s - - -). In particular, we have B = g.

2.2 Representations of 1

The B-representations of 1 will be of interest in what follows, in particular the
greedy and the quasi-greedy expansions of 1 (see Sections [2.3.1]| and [2.3.3)).
We start our study by providing a characterization of those infinite words a
over the alphabet R>( for which there exists a Cantor real base 3 such that
valg(a) = 1.

For any infinite word a over N satisfying some suitable conditions, the
equation valg(a) = 1 admits a unique solution 3 > 1 (see Corollary [1.4.17).
This classical result remains true for non-negative real digits and weaker
conditions on the infinite word a.
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Lemma 2.2.1. Let a be an infinite word over R>q such that a,, € O(n?) for
some d € N. There exists a real base B such that valg(a) = 1 if and only if
Y neN @n > 1, in which case B is unique and 8 > ag, and if moreover for all
n €N, a, < ag, then 8 < ag+ 1.

Proof. If ), . an < 1 then for all real bases 3, valg(a) < 1. Indeed, this is
obvious if @ = 0%, and else valg(a) < >, cyan < 1.

Now, suppose that » _ya, > 1. Let N € N be such that Zf:[:o an > 1.
The function f:[0,1) = R, z + > cyanz"! is well-defined, continu-
ous, increasing and such that f(0) = 0 and that for all x € [0,1), f(x) >
Zivzo apxz"t. The function g: R — R, z — Zivzo a,xz™*t! is continuous,
increasing and such that ¢g(0) = 0 and ¢g(1) > 1. Therefore, there exists a
unique xg € (0, 1) such that g(x¢) = 1, and hence such that f(z¢) > 1. Now,
there exists a unique v € (0, 2] such that f(y) = 1. By setting 8 = %,
we get that 8 > % > 1 and valg(a) = f (%) = 1. Moreover, 8 > ag for
otherwise f (%) > f (%) > 1.

If moreover for all n € N, a, < ag, then 8 < ag + 1 for otherwise we
would have

an 1
vals(a) = ) ey < a0 ) omrpyerr = 1
neN

neN

No upper bound on the growth order of the digits a,, is needed in order
to find a Cantor base 8 such that valg(a) = 1.

Lemma 2.2.2. Let a be an infinite word over R>q such that ) yan =
+00. Then there exists a Cantor base 3 such that valg(a) = 1.

Proof. First of all, observe that the hypothesis implies that a does not end
in 0 and that [],cn(an + 1) = +oo.

We define two sequences of non-negative integers (ng)i<k<kx and
(mg)1<k<kx where K € NU {+o00}. The length K of these two sequences
is the number of zero blocks in a, that is, the factors of the form 0™ which
are neither preceded nor followed by 0 in a. Two cases stand out: either
K € Nor K = +00. We describe the two cases at once. In order to do so,
it should be understood that the parts of the definition where k > K should
just be ignored when K € N. Let ny denote the least n € N such that a,, =0
and let m; denote the least m € N such that a,, 4+, > 0. Then for k > 2,
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let n; denote the least integer n > ng_q1 + my_1 such that a, = 0 and let
my, denote the least m € N such that an,+m > 0. Thus, (ng)i<k<x is the
sequence of positions of appearance of the successive zero blocks in a and
(mg)1<k<k is the sequence of lengths of these blocks.

Next, for all k € [1, K], we pick any oy in the interval (1, ™¢/an, +m, + 1).
For all n € N, we define

an+1 ifne0,n —1] orn e Up [nn +mp + 1,npp1 — 1]

B = < o if n € [ng, ng + my — 1] for some k € [1, K]
‘L"—T,T,} if n = ny + my, for some k € [1, K]
k

where we set nx4+1 = +oo if K € N. In particular if K = 0, that is, if for all
n €N, ay >0, then for alln € N, 8, = a, + 1.

Let us show that in any case, the obtained sequence B = (B, )nen is such
that [],cn Bn = +00 and valg(a) = 1. By construction,

ni—1 K T ngr1—1
Any +m
[18.=I] (@n+1)- a;”’“-’“;kﬁ,f- II @+
neN n=0 k=1 n=ng+mp+1
= H (an +1).
neN

By induction we can show that

ng-+myg

1
=1———— forallke[l,K].
Z Hz 0 ﬂl H?ka—mk /Bz
If K = 400 then we obtain that valg(a) = 1 by letting k£ tend to infinity.
Otherwise, K € N. Set ng = —1 and mo = 0. By induction again, we can
show that

m
an 1
E =1- for all m € N.

n=ng-+mg-+1
By letting m tend to infinity, we get

Valﬁ("K+mK+1) (gnKerKJrl (a)) =1.

Finally, we obtain

nK+mg

“+o0
an
valg(a) = D st > g

n=ng+mg-+1
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1 valgontmye +n) (0" KT (a))

— +
H?:KoerK Bi Hi:}{0+mK Bi

Proposition 2.2.3. Let a be an infinite word over R>o. There exists a
Cantor base B such that valg(a) = 1 if and only if 3 yan > 1.

Proof. Similarly to the proof of Lemma the condition ) ya, > 1
is necessary. Now, suppose that ) _yan, > 1. If }° _ya, = 400 then we
use Lemma [2.2.2] Otherwise, we have 1 < ) _ya, < +0o and we apply

Lemma 2211 [ |

2.3 Greedy (3-expansions

This section is concerned with the study of the greedy (-expansions of real
numbers smaller than or equal to 1. Properties of real base expansions from
Section [1.4.1] will be generalized to the Cantor base framework.

2.3.1 The greedy algorithm

Definition 2.3.1. For =z € [0,1], a distinguished B-representation
ego(x)egi(x)ega(x)-- - is computed thanks to the greedy algorithm:

o c50(2) = [Boz] and rgo(z) = oz — €g0(x)
o egn(x) = |Bnrgn—1(x)] and r, = Burgn_1(x) —egn(x) for n € N>q.

The obtained B-representation of z is denoted by dg(x) and is called the
greedy B-expansion of x. For all n € N, the value rg, () belongs to the
interval [0,1) and we call 7g,(z) the (n + 1) remainder of the greedy (-
expansion of x.

We write €, (x) and 7, (x) instead of eg ,,(x) and rg,,(x) when the context
is clear. The greedy (3-expansion of 1 will play a special role. For the sake
of clarity, we let €, denote its digits instead of e,(1).

As previously mentioned, if 3 = (3,0,...), then for all € [0,1], the
greedy (-expansion of x is equal to the usual greedy [-expansion of x as
defined by Rényi [Rén57] and we write indistinctly 3 or 5.
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Remark 2.3.2. The first digit eg(x) belongs to [0, | 5p]] and for all n € N>q,
the (n+ 1) digit e, (z) belongs to [0, [3,] —1]. The letter | 8| differs from
[Bo] — 1 only when Sy € N>o. Moreover, in that case, the letter |5p] can
only appear at position 0 of the B-expansion of 1.

Example 2.3.3. If there exists n € N such that §, is an integer (without
any restriction on the other f,,), then dﬁ(n) (1) = Bp0v.

Definition 2.3.4. We let Ag denote the (possibly infinite) alphabet
[0, sup,,en([Bn] = DI

The digits of the B-expansions of real numbers in [0, 1] (resp. in [0,1))
belongs to Ag U {|Bo]} (resp., Ag). Note that, if the supremum is infinite,
the alphabet Ag is made of all non-negative integers.

The algorithm is called greedy since at each step it chooses the largest
possible digit. Indeed, consider z € [0,1] and N € N, and suppose that
the digits (), ...,en—1(z) are already known. Then the digit €N( ) is the
largest element of [0 [[ [Bx1-1] ([0, [ Bo]] if N = 0) such that S T (:,)81 <
x. Thus

Z ry(z)
Hz 0/8Z Hz O/Bi
where ry(x) € [0,1). Note that smce[l a Cantor base satisfies [],,cyBn =

—+00, the latter equality implies the convergence of the greedy algorithm and
that x = valg(dg(z)).

Example 2.3.5. Consider the sequence a (which is not a Cantor base)
from Example 2.1.2] If we perform the greedy algorithm on x = 1 for the
sequence o, we obtain the sequence of digits 10“, which is clearly not an
a-representation of 1.

Example 2.3.6. Let a = % and g = 5+%/ﬁ.

1. Consider 3 = (B )nen the Cantor base where the infinite word p5152 - - -
is the Thue-Morse word over the alphabet {c, 8} (see Definition|1.2.15)),
that is, the Cantor base defined by

B:(a7/8757a7/37a7a’57"')' (2'2)

IThis is the reason why the condition I1,.cy Bn = +oo appears in the definition of a
Cantor base.
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The greedy (B-expansion of % has 10001 as a prefix and dg((%*lc%)
10020*. Moreover, we compute dg(1) = 20010110, dg) (1) = 1010110¥
and dge) (1) = 110

2. Consider 8 = (V13,a, B, a, B, a, B,...). It is easily checked that dg(1l) =
3(10)* and that for all m € N, dgem1) (1) = 2010 and dgem2) (1) =
110¢.

Definition 2.3.7. We call an alternate base a periodic Cantor base

B: (/807"'aBpflaﬁOa"wﬁp*lﬂ"')a

that is, a Cantor base for which there exists p € N> such that for all n € N,
Bn = Bn+p- In this case we simply note 8 = (S, ..., Bp—1) and the integer p
is called the length of the alternate base (3.

In what follows, most examples will be alternate bases and Chapters
and b will be specifically devoted to their study.

Example 2.3.8. Let 3 = (3, ¢, @) where ¢ still designates the Golden ratio
(1++/5)/2. For all m € N, we have dgem (1) = 30“, dgEmin (1) = 110“ and
dﬂ(3m+2>(1) = 1(110)~.

Example 2.3.9. Consider the alternate base 3 = (Hzi‘/ﬁ, %) We have
dg(%m) = 110% and dg(%) = (10)“. Moreover, the alternate base

B(l) equals the first shift of the Cantor base from the second item in Exam-
ple [2.3.6. We get dg(1) = 2010% and dga (1) = 110%.

Note that both previous alternate bases will be running examples all
along this text.

2.3.2 First properties of greedy expansions

Let us show that the classical properties of the greedy B-expansion theory are
still valid for Cantor bases. Some are just an adaptation of the related proofs
in [Lot02] but for the sake of completeness the details are written. From now
on, unless otherwise stated, we consider a fixed Cantor base 3 = (5,,)nen-

For all z € [0,1) and n € N, we can express the digit €, (z) and remainder
rn(z) of the greedy B-expansion of x thanks to the (,-transformations from
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Definition [L.4.44
en(z) = |Bn(Tp, 0 -0 Tp(x))| and ry(z)=Ts, 0 o0Tp(x). (2.3)
Proposition 2.3.10. For all z € [0,1) and all n € N, we have
0" odg(x) = dgm 0 Tp, , 0+ 0 Tpy ().

Proof. This follows from (2.3). In fact, for all x € [0,1) and all n € N, we
have 0" odg(x) = egn(x)egny1(x) - - where, for all m € N,

€ﬁ7n+m($) = Lﬁn+m (Tﬂn+m71 ©---0 TﬁO (x))J :
Let y denote T, , o--- 0Ty (x). We get
gt (@) = ot (Tory 0+ 0 T, (1)) = £t (1)

We obtain o™ o dg(z) = dgm (y)- [ |

Definition 2.3.11. We let Dg denote the subset of Ag of all greedy (-
expansions of real numbers in the interval [0, 1):

Dg = {dg(z) : 2 €[0,1)}.

Infinite words in Dg are said to be greedy B-admissible sequences.
As in the real base framework, a goal of this study is to characterize Dg.

Lemma 2.3.12. For all infinite words a over N and all x € [0,1], a = dg(x)
if and only if valg(a) = x and for all k € N,

1
Z H, : ﬁz Hi-“:oﬁi' (2.4)

n=k+1

Proof. From the greedy algorithm, for all « € [0, 1], valg(dg(x)) = « and for
all k € N,

(3 G- (o= 3 ) T =i <

n=k+1 =0 1=0

Conversely, suppose that a is an infinite word over N such that valg(a) = «
and such that for all £ € N, (2.4]) holds. Let us show by induction that for
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all m € N, am = em(x). From (2.4) for k = 0, we get that z — 3 < B%‘
Thus, Sor — 1 < ag. Since g—g < x, we get that a9 < Poxz. Therefore,
ap = | for] = eo(x). Now, suppose that m € N>; and that for n € [0, m—1],

an = €p(x). Then
Bz = +Tm( )
(n ;_,'_1 Hz OBZ> 1110

By using (2.4)) for & = m, since r,,(x) < 1, we obtain that a,, = e, (z). B

Proposition 2.3.13. Let a be a B-representation of some real number x in
[0,1]. Then the following four assertions are equivalent.

1. The infinite word a is the greedy (3-expansion of x.
2. For alln € N>q, Valﬁ(n) (c™(a)) < 1.
3. The infinite word o(a) belongs to Dgay.

4. For alln € N>y, 0™(a) belongs to DB(")'

Proof. Since valg(a) = x € [0,1], it follows from Lemma that a =
dg(x) if and only if for all £ € N, holds. In order to obtain the equiv-
alences between the first three items, it suffices to note that the greedy
condition can be rewritten as Valﬁ(k+1)(0'k+1(a>) < 1. Clearly (4) im-
plies (3). Finally we obtain that (3) implies (4) by iterating the implication
(1) = (3). |

Corollary 2.3.14. An infinite word a over N belongs to Dg if and only if
for alln € N, valgm (0 (a)) < 1.

Proposition 2.3.15. The greedy B-expansion of a real number z € [0, 1] is
lexicographically mazximal among all B-representations of x.

Proof. Let € [0,1] and a € NY be a B-representation of z. Proceed by
contradiction and suppose that a >jex dg(z). There exists k € N such that
eo(x) - ep_1(x) =ap---ap_1 and ap > ex(z). Then

3w

n=k+1

ZH’L Oﬁl ZHZ OB B Hz 06@
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and hence
> 1
n=k+1 Hl =0 B’ Hf:o Bi
which is impossible by Lemma [2.3.12 |

Remark 2.3.16. In this section, we made a choice of definition for the
greedy B-expansion of 1. This choice was motivated firstly by conserving the
same algorithm for the real numbers in [0, 1) and for the real number 1 and
secondly by Proposition we have just established. In fact, an other
choice would have been to preserve the alphabet Ag by avoiding the digit | 5|
when fj is an integer. However, in that case, when 3y € N>o, we would get
that the greedy expansion of 11is (fo—1)dg) (1) which is not lexicographically
maximal among all B-representations of 1 since 5p0% >ex (8o — 1)dﬁ(1)(1).
It is important to note that for the dynamical point of view in Chapter
the other choice will be made. This will be motivated differently. Note that
this ambiguity with two possible definitions of the greedy [-expansion of
1 when 8 € N>, already appears in the real base case as pointed out in

Remark [L4.55
Proposition 2.3.17. The function dg: [0,1] — (Ag U {|Bo|})Y is increas-
mg:
Vx,y € [0, 1], T <Yy < dﬂ((ﬁ) <lex d@(y).
Proof. Suppose that dg(x) <iex dg(y). There exists k € N such that

eo(x) -+ ex—1(w) = eo(y) - ex-1(y)

and ex(z) < ex(y). By Lemma [2.3.12] we get

= 7

neN

er(y) =1
<y
Hz 051 ZH’L OBZ Hz Oﬁz Hz Qﬁl ZHZ Dﬁl
It follows immediately that < y implies dg(x) <jex dg(y). [

Corollary 2.3.18. If a is an infinite word over N such that valg(a) < 1,
then a <iex dg(1). In particular, dg(1) is lexicographically maximal among
all B-representations of all real numbers in [0, 1].

Proof. Let a be an infinite word over N such that valg(a) < 1. By Proposi-
tions [2.3.15| and [2.3.17] a <jex dg(valg(a)) <jex dg(1). [ |
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Recall the property of the greedy [-expansions stating that considering
two bases a and [, we have o < f if and only if do(1) < dg(1) (see Proposi-
tion . The following proposition provides a generalization of a weaker
version of this property to Cantor bases.

Proposition 2.3.19. Let a = (an)nen and B = (Bn)nen be two Cantor
bases such that for alln € N, [[iqa; < [[igBi- Then for all z € [0,1], we
have do(x) <iex dg(x).

Proof. Let x € [0,1] and suppose to the contrary that do(z) >lex dg(x).
Thus, there exists k € Nsuch that eq o(z) - - -eqp—1(2) = €go(x) - - €8 k—1(x)
and eq () > g k(). From Lemma [2.3.12|and from the hypothesis, we ob-
tain that

+oo

Ean(T) Eak(x) -1 egn(x)
Tz < ’ + o
Z “ 1m0 5% [oB: 570 i B

6(177,
<§:T1061

E:ga”
Hz 0 i

S:L‘,

a contradiction. [ |

Corollary 2.3.20. Let o = (ap)nen and B = (Bn)nen be two Cantor bases
such that for alln € N, oy, < B,,. Then for all x € [0, 1], we have do () <jex

dg(x).

It is not true that da(1) <iex dg(1) implies that for all n € N, 7" ;a5 <
[1i-, Bi as the following example shows. The same example shows that the
lexicographic order on the Cantor bases is not sufficient either. Here, the
term lexicographic order refers to the following order: a < 3 whenever there
exists k € N such that oy, = 3, for n € [0,k — 1] and oy < Sg.

Example 2.3.21. Let a = (24 1/3,2) and 8 = (2 +v/2,5). Then du(1) =
“ and dg(1) starts with the prefix 32, hence do (1) <jex dg(1).
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2.3.3 Quasi-greedy expansions

Definition 2.3.22. A B-representation is said to be finite if it ends with
infinitely many zeros, and infinite otherwise. The length of a finite 3-
representation is the length of the longest prefix ending in a non-zero digit.

In this text, we usually omit to write the tail of zeros of finite 3-representa-
tions. When the greedy (3-expansion of 1 is finite, we show how to modify it
in order to obtain an infinite 3-representation of 1 that is lexicographically
maximal among all infinite B-representations of 1.

Definition 2.3.23. The quasi-greedy (3-expansion of 1 denoted by d:g(l) is
defined recursively as follows:

dg(1) if dg(1) is infinite
dZ_}(l) =<e0 - en—2(En—1— l)dz(n) (1) if dﬁ(l) =€0 " En-1 (2.5)
with n € N>1, ep—1 > 0.

By construction, the quasi-greedy (-expansion of 1 is an infinite word
over the alphabet Ag.

When 8 = (8,0, ...), we recover the usual definition of the quasi-greedy
p-expansion. In particular, it is easy to check that in this case, if dg(1) =
€0 -€p—1 With n € N>y and €,_; > 0, then the quasi-greedy expansion is
purely periodic and d(1) = (g0 .. en—2(en—1 — 1))*.

Example 2.3.24. Let 3 = (3, ¢, ¢) the alternate base already considered
in Example Then we directly have that d;@) (1) = dge (1) = 1(110)~.
In order to compute dj(1) and d;(l) (1), we need to go through the definition
several times. We compute dj(1) = Qd*g(l)(l) = 210d3(1) = (210)* and
dg(l)(l) = 10d3(1) = 10(210)* = (102)~. The computation of dj(1) and
dz(l) (1) can be interpreted thanks to Figure [2.1

Example 2.3.25. Let 8 = (0o, ..., p—1) be an alternate base such that for
all i € [[O,p — 1]], Bi € NZQ. Then for all i € [[O,p — 1]], dﬁ(i)(l) = ;04 and

dgiy (1) = ((Bi = 1) - (Bp-1 = D(Bo = 1) ... (Bi1 = 1)),

The recursive calls to the definition (2.5) are illustrated in Figure
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Figure 2.1: Symbolic computation of dj(1) and d;(l)(l) for B = (3,p,¢).

d;(i)(l) = (6@ - 1)

Figure 2.2: Symbolic computation of d;(i)(l) for B = (Bo,...,Bp-1) €
(N>2)".

Remark 2.3.26. As explained in Remark [2.3.16] a choice was made for the
definition of dg(1) when By € N>o. It is important to note that even if the
other choice were made, meaning by avoiding the letter |5], the obtained
quasi-greedy B-expansion of 1 would coincide with that obtained with our
choice of definition of the greedy B-expansion of 1.

Contrary to the real base case, for arbitrary Cantor bases, when the
greedy expansion of 1 is finite, the quasi-greedy expansion of 1 can be not
purely periodic.

Example 2.3.27. Consider the alternate base 3 = (Hgﬁ, 5+%/ﬁ). In Ex-

ample |2.3.9 we computed dg(1) = 201 and dga) (1) = 11. Then d;(l)(l) =
10)¥ and d%(1) = 200d* ,,(1) = 200(10)“. Figure [2.3| symbolically depicts
( B B g Y y

the computation of dj(1) and d;(1>(1).
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d5(1) = 200

Figure 2.3: Symbolic computation of dz(1) and d

5(1)(1) for B8 =

(1+\/ﬁ 5+x/ﬁ)
2 6 )

Moreover, even if the greedy [3-expansion is finite, the quasi-greedy
B-representation can be infinite not ultimately periodic. Suppose that dg(1)
is finite and that an infinite quasi-greedy is involved during the computation
of dj(1). Let n € N>; be the positive integer such that d;(n)(l) is the in-

volved infinite expansion. Then dg(l) is ultimately periodic if and only if so
is d;(n) (1).

Example 2.3.28. Consider the Cantor base 8 = (3,3,03,08,0,...) where
B =6(2+6). We get dg(1) = 3 and dga (1) = dg(1) is infinite not ulti-
mately periodic since 3 is a non-Pisot quadratic number (see Remark.
Therefore, the quasi-greedy expansion dj(1) = 2d7%,) (1) is not ultimately pe-

5(1)
riodic.

Before using the quasi-greedy (B-expansion of 1 in order to study the
greedy admissible sequences, let us prove that the so-defined quasi-greedy 3-
expansion of 1 is a B-representation of 1 and is precisely the lexicographically
maximal infinite one.

Proposition 2.3.29. The quasi-greedy expansion dg(l) is a B-representation
of 1.

Proof. 1t d,’g(l) = dg(1) the result is immediate. Thus, we suppose that
dﬁ(l) =€ ---Ep_1 With n € NZl and €,_1 > 0 and
d:g(l) = &0 5n72(5n71 - 1)d;(n)(1)
We get
V?ﬂ,@(n) (d*ﬁ(n) (1))
ITi=0 Br

Valﬁ(dfé(l)) = V&lg(&“o e 'En—2(5n—1 - 1)) +



58 Chapter 2. Combinatorial properties of Cantor real base expansions

)
1725 B 1720 Br

Hence, it is sufficient to now prove that valﬂ(n)(d;(n)(l)) = 1. Again, if

—1—

d,*B(")(l) = dg (1) then it is immediate, otherwise, there exists m € N>,
such that

. 1 valﬁ(n+m) (d;(n+m) (1))
Valﬂ(m (dﬁm)(l)) = m—1 m—1 '
-0 /BnJrk k=0 5n+k
We get
valg(dg(1)) =1 — R ey

The result follows by iterating the reasoning since either we have an equality
at one step or we conclude since [ ], .y 8n = +00. |

Proposition 2.3.30. If a is an infinite word over N such that valg(a) < 1,
then a <jex d,’g(l). Furthermore, dg(l) 18 lexicographically mazimal among
all infinite B-representations of all real numbers in [0, 1].

Proof. 1f dg(1) is infinite then the result follows from Corollary Thus,
we suppose that there exists & € N>i such that dg(l) = e¢---ex—1 and
ex—1 > 0.

First, let a € NN be such that valg(a) < 1 and suppose to the contrary
that a >1ex dg(l). By Corollary '2.3.18|, a <iex dg(1). Then ag---ap—2 =
(1). Since

€0 Ek—2, Ok—1 = €g—1 — 1 and 0%(a) >1ex d;(k)

k
8k 1—1 Valg(k) (‘7 (a))
valg(a Z + =1
H 05Z Hz =0 M1 Hi:O {

— r[f_lolﬂ, (1 — Valﬁac) (Uk(a))) ,

we get that val (k)( k(a)) < 1. By Corollary again, o¥(a) <jex
dgum (1). Therefore dﬁ(k)( ) must be finite and we obtain that a = dj(1)
by iterating the reasoning. But then valg(a) = 1, a contradiction.

We now turn to the second part. Suppose that a € NN does not end in 0%
and is such that valg(a) < 1. Our aim is to show that a <jex dj3(1). We know
from Corollary m 8 that a <jx dg(1). Now, suppose to the contrary that
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a >lex dg(1). Then ag---ag_9 =0+~ €p—2, ag-1 = -1 — 1, and 0 (a) >1ex
dg(k)(l). As in the first part of the proof, we obtain that Valﬂ(k)(ak(a)) <1

and that dﬁ(k) (1) must be finite. By iterating the reasoning, we obtain that
a = dj(1), a contradiction. [ |

2.3.4 Greedy admissible sequences

In this section, we generalize Theorem [1.4.15] namely Parry’s theorem, to
Cantor bases by characterizing greedy (3-admissible sequences.

Lemma 2.3.31. Let a be an infinite word over N and for each n € N, let
b be o B -representation of 1. Suppose that for alln € N, 0" (a) <pex B™.
Then for all k,1,m,n € N with [ > 1, the following implication holds:

= (2.6)
Valg(k)(ak cpgi—1) < Val,g(m(bgg) : -~bflf)+z_1)-
Consequently, for all k,m,n € N, the following implication holds:

¥ (a) <iex ™ (B™) = valgu (0¥ (a)) < val g (6™ (). (2.7)

Proof. Proceed by induction on [. The base case [ = 1 is clear. Let [ > 2
and suppose that for all I’ < [ and all k,m,n € N, the implication (2.6) is

true. Now let £, m,n € N and suppose that ay - - - agri1—1 <lex bﬁ,’l) e bfg}rl_l.
Two cases are possible.
. _ pm) (n) . 4(n)
Case 1: ar = by’ Then agi1---apri—1 <tex bpiq bm+l—1 and by

induction hypothesis, we obtain that

val o) (Qgy1 - apai—1) < val gees1) (bgg—)s—l .. _bfgil_l).
Therefore
val g (ag - - agp1-1) = CLI; " Valﬁ(kﬂ)(@k;’: e Aky—1)
< % N Valﬁ<k+1>(b£7:,b-)i-1 . ”bg;«b-)l-l—l)
= B B
= valguo (0 -~ b} )-

Case 2: aj, < ™ Since "1 (a) <jex b by hypothesis, we have

bék—i—l) D)

Ak+1 " Qi1 <lex 1—92
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By induction hypothesis,

val gt Qg1+ Qhyr-1) < Vallg(m)(b[()kﬂ) oy <1,

12
Then
val gx) (g apsi—1) = % " val goe+1) (Gk;: e Qpai—1)
. B 1 . val goeiy (D - 5D
- Bk B
< valg (057 - Bihy_y)-

Thus, the implication ([2.6)) is proved. The implication (2.7) immediately
follows. u

Lemma 2.3.32. Let a be an infinite word over N and for each n € N, let
b(™ be q B(")-representation of 1. Suppose that for alln € N, 0™ (a) <jex b,
Then for alln € N, valgm) (0™ (a)) < 1 unless there exists | € N>1 such that

o b = 55" b with b} >0
® Uplp+l- " Qpiyl—1 = b(()n) e bl(ﬁ)Q(bl(i)l _ 1)

. Valﬁ(n+l)(a-n+l(a)) =1

in which case valg) (0™ (a)) = 1.

Proof. Let n € N. By hypothesis, 0"(a) <jex (™. So there exists [ € N>q
such that a, -+ ap1;_o = bén) e bl(ﬁ)Q and apy;1 < bl(f)l. By hypothesis, we

also have 0"t (a) <jex b, We get from Lemma [2.3.31| that

Va:lﬁ(n+l)(o-n+l(a)) < Valﬁ(n+l)(b(n+l)) =1

Then
n—+l
. ansr 1 Valgemin (0" (a))
val gin) (0(a)) = valg (an - Gngi—2) + H”:’*lﬂ + ﬁnwlg.
(n)
(n) by —1 1

< valg (05" -+ b)) +

= valgon (b5 b))

— + —
e 146
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<1

Moreover, the equality holds throughout if and only if b(® = b(()n) e bl(f)l,

Apti—1 = bl(f)l —1 and Valﬁmm(a"”(a)) = 1. The conclusion follows. [ |

The following theorem generalizes Parry’s theorem for real bases.

Theorem 2.3.33. An infinite word a over N belongs to Dg if and only if
for alln € N, 0™(a) <jex d;(n)(l).

Proof. In view of Corollary [2.3.14] it suffices to show that the following two

assertions are equivalent.
1. For all n € N, valgw) (0"(a)) < 1.

2. Foralln € N, 0™(a) <jex d*ﬁ(n)(l).

The fact that (1) implies (2) follows from Proposition [2.3.30] Since any
quasi-greedy expansion of 1 is infinite, we obtain that (2) implies (1) by
Proposition [2.3.29] and Lemma [2.3.32 |

Example 2.3.34. Let 3 = (3, p,¢) be the alternate base already studied
in Examples and [2.3.24 The sequence a = 210(110)% is the greedy
B-expansion of some z € (0,1). In fact, since d7, (1) = (210)¥, dg(l)(l) =
(102)¥ and d;@)(l) = 1(110)*, by Theorem [2.3.33] there exists = € [0,1)

19495 )

such that a = dg(z). We can compute that a = dg(valg(a)) = dﬁ(3(7+3\/g)

We obtain a corollary characterizing the greedy (-expansions of a real
number z in the interval [0, 1] among all its B-representations.

Corollary 2.3.35. A B-representation a of some real number x € [0,1] is
its greedy B-expansion if and only if for alln € N>1, 0™(a) <jex d;(m( ).

Proof. Let a € NN be such that valg(a) € [0, 1]. From Theorem [2.3.33] o(a)

belongs to Dgq) if and only if for all n € Ny, o™(a) <iex dg(n)(l). The
conclusion then follows from Proposition [2.3.13 |

Example 2.3.36. Consider 8 = (M,Q). Then dg(1) = dj(1) =
34(27)%, dgm) (1) = 90¢ and d;m(l) = 834(27)“. For all m € N>, we have
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2™ (34(27)%) <jex d5(1) and a2 1(34(27)%) <lex dg(l)(l) as prescribed by
Corollary [2.3.35

In comparison with the S-expansion theory, considering a Cantor base
B and an infinite word a over N, Corollary does not give a purely
combinatorial condition to check whether a is the greedy (3-expansion of 1.
We will see in Chapter [3] that even though an improvement of this result in
the context of alternate bases can be proved, a purely combinatorial condition
cannot exist.

2.3.5 The greedy B-shift

Definition 2.3.37. Let Sg denote the topological closure of Dg with respect
to the prefix distance of infinite words, that is, Sg = Dg.

Proposition 2.3.38. Let a,b € Sg.
1. If a <iex b then valg(a) < valg(b).

2. If valg(a) < valg(b) then a <jex b.

Proof. Consider two sequences (a(™),eny and (b™),en of Dg such that
limy, 400 a™ = g and limy, 400 b(™ = b. Suppose that a <jex b. Then
there exists k € N>1 such that ap---ag—1 = bp---br—1 and a; < by. By
definition of the prefix distance, there exists N € N such that for all n >
N, a{” -0l = ag---a, and bV b™ = by---by. Therefore, for all
n > N, we have a(® <o 8™ and then by Proposition valg(a(”)) <
valﬁ(b(”)). Since the function valg is continuous, by letting & tend to infinity,
we obtain valg(a) < valg(b). This proves the first item. The second item
follows immediately. |

Thanks to the generalization of Parry’s theorem in Theorem [2.3.33] we
get the following combinatorial characterization of the set Sg.

Proposition 2.3.39. An infinite word a over N belongs to Sg if and only if
for alln € N, 0™(a) <jex d;(n)(l).

Proof. Suppose that a € Sg. Then there exists a sequence (a(k))keN of Dg
converging to a. By Theorem [2.3.33] for all k,n € N, we have J”(a(k)) Lex
d,”é(n)(l). By letting k tend to infinity, we get that for all n € N, 0" (a) <jex
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Conversely, suppose that for all n € N, 0"(a) <jex dg(n)(l). For each

keN,let a® = ag---ap0”. Then limg_y 1 o0 a®) = ¢ and for all k,n € N,

o™ (a®) <jox 0™(a) <iex dyyy (1) Since d7, (1) is infinite, for all k,n € N,

o™(a®)) <jex d*ﬁ(n)(l). By Theorem [2.3.33] we deduce that for all k& € N,
alk) ¢ Dg. Therefore a € Sg. |

Corollary 2.3.40. For all a € Sg, we have o(a) € Sga).

Example 2.3.41. Consider the alternate base 38 = (1+%/ﬁ, 5+%/ﬁ). Since

we have dj(1) = 200(10)* and dz_}(l)(l) = (10)“, the infinite word 020%
belongs to the set Sga). The infinite word 0(020%) = 20“ belongs to the set
Sg. However, it does not belong to the set Sﬂ(l).

As illustrated in the previous example, the closed set Sg is not shift-
invariant. Let us define another closed set which will be proved to be shift-
invariant.

Definition 2.3.42. We set

Ag=J Dy and =24
neN

Proposition 2.3.43. The sets Ag and ¥ are both shift-invariant.

Proof. Let a be an infinite word over N and n € N. It follows from Corol-

lary [2.3.14] that if a € D gy then o(a) € Dgin+1y- Then, it is easily seen that
ifaé€ 50 then o(a) € Sﬂ(nﬂ). [ ]

In view of Proposition [2.3.43] the subset X3 of Ag is a subshift, which
we call the greedy (3-shift.

Proposition 2.3.44. We have Fac(Sg) = Fac(Dg) = Fac(Ag) = Fac(Xg).
Proof. By definition, we have Fac(Sg) = Fac(Dg), Fac(Ag) = Fac(Xg) and
Fac(Dg) C Fac(Ag). Let us show that Fac(Dg) 2 Fac(Ag). Let f €
Fac(Ag). There exist n € N and a € D 5(n) such that f € Fac(a). Tt follows
from Corollary that 0"a belongs to Dg. Therefore, f € Fac(Dg). M

We define sets of finite words Xg ,, for n € N> as follows.
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Definition 2.3.45. If dj(1) = tot1 -+~ then we let
Xﬁm = {to coth_98:8 € [[O,tnfl — 1]]}

Note that Xg, is empty if and only if ¢,,_; = 0.

Proposition 2.3.46. We have

e ) 5o U o U mn D)
no€N>1 n1EN>, ng2€N>1

Proof. For the sake of conciseness, we let X3 denote the right-hand set of

the equality. For n € N, write d(n) (1) = té”)tgn) ...

Let a € Dg. By Theorem [2.3.33] for all n € N, ¢"(a) < d;(n)(l). In

(0)

particular, a < dz;,(l). Thus, there exist ng € N>1 such that ¢,° ; > 0 and

so € [[O,tig))fl — 1] such that a = o - - tp,—2500"°(a). Next, we also have

0" (a) < dg(no)(l). Then there exist n; € N>; such that tgg@l > 0 and
s1 € [0, t;nlo_)l — 1] such that 0™ (a) = t(()no) o -t;ﬁQQSW”O*"l(a). We get that
a € Xg by iterating the process.

Now, let a € Xg. Then there exists a sequence (ny)geny of N>1 such
that @ = woujus--- where for all K € N, u; € Xf}("O*”'"k—l),nk' By Theo-
rem in order to prove that a € Dg, it suffices to show that for all

n €N, 0"(a) <jex d;(n)(l). Let thus n € N. There exist k& € N and finite
words x and y such that up = zy, y # € and 0" (a) = yugs1ugsro---. Then
n=mng+- - +ne_1+|z] and 0"(a) <jex 0|m|(d;(n0+‘_‘nkil)(1)). Ifz=c¢
then we obtain 0" (a) <jex d;<no+wnk,1>(1) = dg(n)(l). Otherwise it follows
from Corollary [2.3.35| that a'm‘(d[_}(nﬁ...nk_l)(l)) <lex d;("0+“‘nk71+|1|)(1) =

d;(n)(l), hence we get 0™ (a) <pex d;(n)(l) as well. [

Corollary 2.3.47. We have Dg = U XgnD

nENZI

B -

Corollary 2.3.48. Any prefiz of dz_,(l) belongs to Pref(Dg).

Proof. Write dj(1) = totita--- and let n € N>q. Since dj(1) is infinite,
there exists k& > n such that t;_; > 0. Choose the least such k£ and let
s € [0,tx—1 — 1]. Then to--- tp_10F " 1g belongs to Xg ;. The conclusion
follows from Proposition |
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Remark 2.3.49. The analogue of Definition in the real base case
splits the definition of the set depending on the finiteness of the greedy (3-
expansion of 1 (see for example [Lot02, Chapter 7]). In this text, for the sake
of simplicity in the proofs, we did not split in the same way since more than
one expansion is involved while computing greedy admissible B-expansions.

We get an equivalent definition of the quasi-greedy (3-expansion of 1.
Proposition 2.3.50. We have

dg(1) = lim dg(x). (2.8)

r—1~

Proof. Let toty - - - denote dj(1). By Corollary for all n € N, the word
to- - tn,—10% is the greedy (3-expansion of a real number x,, € [0,1). For all
n € N, we have xp,11 = =, + W Hence, we have x, < x,41 for all
n € N. There exists r € [0, 1] such that lim,, 100 2, = 7. We now prove
that » = 1. Suppose r < 1. For all x € (r,1), we have z > z,, for all n € N.
By Propositionm we have dg(x) >ex to - - - t,—10“ for all n € N. This is
absurd since by Theorem |2.3.33|, we have dg(z) < dj(1) = tot1---. Hence,
we have lim,,_, 1z, = 1. Now, consider z € [0,1) and let N denote the
maximal index n € N such that > z,. Let a denote a ,B(N )—representation
of (x —xn) HkN:_Dl Br. The infinite word tg---ty_1a, is a B-representation
of . By Proposition we have dg(x) >1ex to---tn—1a. Moreover, by
Theorem [2.3.33) we have dg(z) <jex dj(1). We obtain that the length-N
prefix of dg(x) is to---tn—1. Hence, the result follows. [ |

In Section[2.3.1} we made a choice of definition for the greedy B3-expansion
of 1 and, in Section we defined dj(1) accordingly. One could define
the quasi-greedy B3-expansion of 1 immediately as ([2.8]).

2.4 Lazy [(3-expansions

This section is concerned with the combinatorial study of lazy (B-expansions
of real numbers. Recall that the lazy real base expansions had been stud-
ied only in the dynamical point of view and not in the combinatorial one.
Therefore, even if both are somehow related, results of this section can be
considered as unprecedented.
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2.4.1 Definition of z4

Let ®,,cn [0, [8n] — 1] denote the set of infinite words a € Al such that, for
all n € N, the letter a,, belongs to [0, [3,] — 1] (see Remark [1.2.8)). We now

define (if it exists) the greatest real number that has a B-representation in

®nEN[[07 [Bn—l - 1]]'

Definition 2.4.1. Let

ﬁn _1
2.9

Either this series converges or zg = +00. If x5 < 400, then zg is the
greatest real number that has a B-representation in @),,cx[0, [8n] — 1].

Example 2.4.2. Consider the sequence 8 = (%ﬁ)neN- The sequence 8 is
a Cantor base since [] 22 = +o00. We get

neN nt+1
1 1
8= = D = too.
neN Hk 0 k+1 nENn+2

The following result gives a sufficient condition in order to have xg < 4o0.

Proposition 2.4.3. Any Cantor base 3 that takes only finitely many values
has a finite corresponding xg.

Proof. Consider a Cantor base 3 that takes only finitely many values. There
exist m, M € N such that for all n € N, we have 3,, < 8, < B We get

[Bn] — [Bul—1  [Bul—1
ZHk oﬁk Z n+1_ Bm_l'

neN neN
|
Corollary 2.4.4. Any alternate base 3 has a finite corresponding xg.
We now link the values T g(n) and T gn+1) for all n € N.
Proposition 2.4.5. Let n € N. Suppose that Tgn) < +00. We have
B = 2 ;JM . (2.10)
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Proof. Let n € N and suppose that T g(n) < +00. We have

Wn—I—m} —1
Tgn) = m .
o = 2 T

Therefore, we obtain
—1 —1
$[3(n — 571 + Z (/Bn+m
Hk 0 Bn-i—k

o [ﬁn—|_1 ﬁ(n+1
= B A

The conclusion follows. [ ]

Since the greedy algorithm converges on [0, 1] (see Section [2.3.1)), it can
be easily seen that xg > 1. In fact, since dg(1) belongs to the set of words

®n€N[[O’ [Bn—| - 1]] we have

[Bn] — en(1) _
Z Hk oﬁk %szoﬁk -t

neN

Lemma 2.4.6. We have xg = 1 if and only if B, € N>2 for all n € N.

Proof. By ([2.10), we have g = 1 if and only if

zgm + [Pol —1
a Bo '

However, we have z50) > 1 so zg0) + [Bo] =1 > [Bo]. Hence, we get
rg = 1 if and only if Tga) =1 and [By] = Po. The conclusion follows by
induction. [ |

Example 2.4.7. Consider the alternate base 8 = (1 +V13 5+‘/ﬁ) already

2 6
widely studied in Section We get xg = 5*{( ~
2413
=== ~ 1.86.

—_
\]
&
=}
(oW
8

Example 2.4.8. [|Let a, 8 > 1 and let 8 = (a, 8, 8,, B, o, v, B, . ..) be the
Thue-Morse Cantor base on {«, 5} defined as (2.2)). For all n > 1, let

2m—1
[/Bm] —1
= mZ::O Hk:() /Bk

2] thank Jean-Pierre Schneiders for suggesting the way to approximate the value of g
in this example.
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V\E get xg = lim,,_, o xp. Similarly, let 3 denote the Cantor base 8 =

(Bn)nen where @ = 8 and B = a. We get B8 = (3,a,a, 8,a, 3,8, ,...). For
all n > 1, write

R
n = —.
m=0 H;n:O Bk
By definition of the Thue-Morse sequence (see Definition[l.2.15)), for alln € N

we have

(52"7 62"+17 ceey ﬁZ”""lfl) = (%7 Ea cee ,52"71)-
Moreover, for all n > 1, the sequence (5, ..., S2n_1) has the same number

of a and 8. We get Hzlal B = (a5)2n_1. Hence, we have

2y = o1 A1

j = Ly Tl

Tptl = Tp + (aﬂ)%ym Vn >1
Yn+1 = Yn + (amﬁxn, Vn > 1.

That is, for all n > 1, we have

Un4+1 = Apvn

X 1 12n—1
Uy = < ") and A, = 1 (a'B)l .
yn (aIB)Qn—l

where,

. . 1 1
For all n > 1, the eigenvalues of the matrix A,, are H_W and 1_(045)T
of eigenvectors G) and <_11> respectively. Moreover, we have
1 _ 1
Jr
V] = leyl (1) 4 z1270’1 (_1> .
We obtain
Upg1 = ApAp_1--- A1y
1 _ 1
= L—Q’_yIAnAnfl"'Al (1> + M AL A,y Ay (_1)
= 1 . 1
_ ozt 1 - 1
=ee o <a5>2’“*1) <1> v ]I (aﬁ)zk*) (—1) ‘

k=1 k=1
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Then, the value of xg can be computed by

Y _ m+ 1 - 1
rg = nlﬂloo Ty = S50 kel;ll (1+ (ag)%—l) + 554 k;el;l (1 (aB)?" ! )
>1 >1

We now study the ﬁrstﬂ infinite product in the above formula. We have

(I 0+ =) ( 1T (- 5)

EN>y eN>q
= 11 ((H(aﬁ)l?’“)(l_<aﬁ>12’“*1))
kGNZl

i
Pt (aB)?

Hence, we get

Il (+ ) ==

kEN>4 af

Then, the value of xg can be computed by

1 o —
_L)+ 12y1 H (1_W)'

af keNZl

— $1;y1 (1

In particular, by considering the Cantor base from Example a computer

approximation of erN>1 (1 — ;) gives 0.627941. Hence, we get xg ~

(aB)2*
1.73295.

2.4.2 The lazy algorithm

If 3 < +oo the lazy B-expansions are defined. Hence, from now on, when
dealing with the lazy algorithm, we consider Cantor bases 3 = (5, )nen such
that xg < +oo0.

In the greedy algorithm, each digit is chosen as the largest possible at
the considered position. On the contrary, in the lazy algorithm, each digit is
chosen as the least possible at each step.

%Note that the infinite product Hk€N>1 (1 — z2k_1) (which cannot be simplified in

general) is equal to the generating function of the sequence ((—l)t")neN where tot1ts - - -
is the Thue-Morse sequence over the alphabet {0,1}.
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Definition 2.4.9. The lazy algorithm is defined as follows: for x € (zg —
1,zg], if the first N digits of the lazy [B-expansion of x are given by
£8,0: - --,€3,N—1, then the next digit {g n is the least element in [0, [Gn] — 1]

such that
§,B n = (/Bn—| —1
Z H Z HZ:() 5k 2 %

k=0 Ok n=N-+1

or equivalently,

o, TN
TV 2 T
Z « [0 Br H]kvzo Bk
The lazy algorithm over (xg — 1, 2] can be equivalently defined as follows:
o {po(x) = [Box —zgm | and sgo(x) = foz — {g0(2)

* {pn(@) = [Buspn-1(z) — Tgmin | and sg () = Busgn-1(x) — {gn(T)
for n € N>q.

The obtained B-representation of x € (xg — 1,xg] is denoted by ¢g(x) and
is called the lazy B-expansion of x.

As before, if the context is clear, the index 8 in the writings £g () and
sg,n(x) are omitted.

Example 2.4.10. We continue Examples 2.3.9|and 2.4.7] The first 5 digits
of £5(25=3Y13) are 10212.

Any greedy (B-expansions of real numbers in [0, 1) and lazy B-expansions
of real numbers in (zg — 1, zg] belong to Ag and more precisely to the set

of words &), [0, [Bn] — 1].
2.4.3 Flip greedy and get lazy
In this section greedy and lazy Cantor base expansions are compared.

Definition 2.4.11. Let 63 be the map defined by

05: QI0,[8:1 — 1] = Q0. [8:1 - 1],

neN neN

aoal-ni—)([ﬂo—‘—1—0,0)([511—1—&1)---.
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The map 63 is continuous with respect to the topology induced by the
prefix distance, bijective and the inverse map 951 is the map 6g itself. For
any infinite word a € @, [0, [Bn] — 1], we get

valg(fg(a)) = x5 — valg(a). (2.11)

Moreover, the map 63 is decreasing with respect to the lexicographic order,
that is, for all infinite words a and b in @),,cn[0, [Bn] — 1], we get

a <jex b — 95(&) >lex 95(1)). (2.12)

The map g is the key of the reasoning in order to link the greedy and the
lazy B-expansions. In fact, as shown in the following result, it will allow us
to “flip” the greedy expansions in order to get the lazy ones.

Proposition 2.4.12. Forallxz € [0,1) and alln € N, we have g ,,(xg—x) =
[Bn] =1 —egn(x) and sgn(zg — ) = Tgmt1) — Tan(®). In particular, we
get

lg(zp — x) = Og(dg(x)).

Proof. Consider x € [0,1). We proceed by induction on n. By (2.10)), we
have

¢p0(xp —x) =[Bo(zg — ) — x|
=[[Bo] =1~ Bo]
=[Bol — 1+ [—Poz]
=[Bol —1— |Boz]
=[Bo] =1 —egp(x).

Moreover, we get
sgo(zg — ) =Po(xg — ) — ([Ao] =1 —epo(x))
=pozg — ([Bo] —1) — (Boz —ego(x))
=50 — 18,0(2)
where ([2.10)) is used again in the last equality. By induction, for all n € N>,
we have
§pn(xp — ) =[Bnspn-1(z8 — ) — Tgm+n |
=[Bn(@5m — T8n-1(25 — T)) = Tgm+n |
=[[Bn] =1 = Burgn-1(zs — )]
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=[Bnl = 1= [Burgn-1(z5 — )|
= [/Bn—‘ -1- 5ﬁ,n(x)

and
sgn(x8 — @) =bnspgn-1(28 — x) — Egnlzg — 2)
=Pn(xg0 —1n-1(7)) = ([Bn] =1 = gpn())
:xﬁ(n+1) - Tﬁ’n(:L').
In particular, we can conclude that {g(zg — z) = 6g(dg(x)). [

Example 2.4.13. Let 8 = (H‘ﬁ 5+‘ﬁ) be the alternate base considered
in Example [2 By Proposition [2.4.12 m the lazy B-expansion of zg —

—5+2\/7 25— 5\/7 equals 10(21) since dﬁ(%) = 11. This coincides
Wlth Example

Example 2.4.14. We continue Examples and where (3 is the
Thue-Morse Cantor base. By Proposition the lazy (3-expansion of
z3 — 3 ~ 1.23295 has 11120 as a prefix since 10001 is a prefix of dg(3).

2.4.4 First properties of lazy expansions

Thanks to Proposition [2.4.12)results from Section[2.3]on greedy B-expansions
will be translated in terms of lazy B-expansions. The differences between the
greedy and lazy B-expansions will be highlighted in the text.

Lemma 2.4.15. For all n € N, we have
o' obg = 95<n) oog”
on Qpenl0, [n] —1]-
Proof. Consider n € N and a € @Q,,cx[0, [8n] — 1]. We have

0" obg(a) =" (([Bo] =1 —ao)([B1] =1 —a1)---)
= ([Bn] =1 =an)([Bns1] =1 —any1) -~
= Oﬁ(") (ananJrl .. )

=050 00" (a).
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Proposition 2.4.16. For all x € (xg — 1,28] and all n € N, we have

0" (lg(x)) = Ly (sgn-1(2)).

Proof. This is a consequence of Proposition[2.4.12] Lemma|2.4.15|and Propo-
sition [2.3.10| since for all z € (xg — 1, 23] we have

0" (lp(x)) = 0" 0 O5(dp(zp — z))
= O 00" (dp(rp — 1))
= O (dgen (rn-1(2p — 1))
= Lgm (2gm) —Tan-1(2p — 1))
= Lgm (3pn-1(2))-
|

Proposition 2.4.17. Let a be an infinite word over N and x € (vg—1,zg].
We have a = Lg(x) if and only if a € @,,cx[0, [Bn] — 1], valg(a) = = and

for all N € N,

—+oo an ﬂjﬂ(NJrl) - 1

- > .
n%:—i-l [Ti=0 B ch\fzo B

Proof. Consider a € N and z € (zg — 1,2g). By Proposition we
have a = £g(z) if and only if a € &),,cn[0, [Bn] — 1] and Og(a) = dg(zg —x).
By Lemma we get a = {g(x) if and only if a € @,,n[0, [Bn] — 1],
valg(fg(a)) = g —  and for all N € N,

+oo
[Bn] —1—ay 1
. < .
2 L s

We conclude the proof by (2.11]) and by definition of TgN+1).- [ |

Proposition 2.4.18. The lazy B-expansion of a real number x € (xg—1, 4]
1§ lexicographically minimal among all B-representations of x in

®n€N[[O’ [Bn-‘ - 1]]

Proof. Consider a real number x € (rg — 1,2g] and an infinite word a €
X,enl0, [Bn] — 1] be a B-representation of x. Suppose that a <jex £g().

By (2.12)), we get 0g(a) >1ex 08(€g(x)). By (2.11)), 6g(a) is a B-representation

of xg — x. Moreover, by Proposition [2.4.12| and since the inverse map 0,51
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is the map 6 itself, we have 0g(¢g(x)) = dg(xg — x). This is absurd since,
by Proposition [2.3.15] dg(zg — x) is lexicographically maximal among all
B-representations of xg — x. [ |

Note that, contrary to Proposition it cannot be stated that “the
lazy B-expansion of a real number x € (xg — 1, 23] is lexicographically min-
imal among all B-representations of x”. In fact, the alphabet of the 3-
representations of x must be fixed as shown in the following example.

Example 2.4.19. Let 3 be the alternate base from Example and con-
sider = 8 — 2v/13. We have z € (xg — 1, 2] and the lazy B-expansion of =
has 01 as a prefix. However, the infinite word 003330% is a B-representation
of z and 003330“ <jex ¢g(x). This does not contradict Proposition
since the infinite word 003330“ does not belong to @,,x[0, [Bn] — 1].

Proposition 2.4.20. The function {g: (vg — 1,28] — Ag" is increasing:

Vo,y € (zg— 1,28], =<y <= (3(z) <iex {3(y).

Proof. Consider x,y € (xg — 1,2g]. By Propositions [2.3.17 and [2.4.12| and
by (2.12]), we have

r<y <>rg—x>18—Y
— dlg(:E,@ - l’) >lex d,@(xﬁ - y)
= 0p(Lp(2)) >1ex 95(¢5(y))
— fg(x) <lex fﬁ(y).

Remark 2.4.21. Considering two Cantor bases & = (a)neny and 8 =
(Bn)nen such that for all n € N, [, a; < [[;, Bi, by Proposition
we have do(2) <jex dg(z) for all z € [0,1). However, an analogous result
cannot be obtained for the lazy expansions. In fact, since the interval of
definition of the lazy expansions depends on the considered Cantor base, it
is not possible to state a result of the form “for all x € I, we have £ (x) <jex
lg(x) (or Lo(x) >1ex €a(x))” where I is a fixed interval. Moreover, it is
neither correct to say “for all z € [0,1), we have lo(za — ) <iex {g(zs — )
(or ba(xa — ) >lex 8(xa — ))”. Indeed, this can already be seen while
considering real bases, that is, 8 = (3,,...) with 8 > 1, as illustrated in
Figure (where the notation 3, xg and £3(-) are used instead of 8, 3 and

lp(-))-
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s 2 ¥

2]-1 -1 _ 5 [5]-1_ 4

g (2]_1 =1 (%11 =3 [211 =3
lg(zg—3) | 01 1221 - - 1211

Figure 2.4: Some lazy (3-expansions when 3 = (3, 3,...) with g > 1.

Remark 2.4.22. Note that, some results as Propositions 2.4.16] and [2.3.17]
could also have been proved easily without any prerequisite from Section [2.3]
In this section, a choice has been made, that is, to use as much as possible
Proposition 2:4.12] and results from Section 2.3

2.4.5 A word on the lazy expansion of 53 — 1

In Section [2.3] as explained in Remark [2.3.16] we made a choice of definition
for the greedy (B-expansion of 1. One could have expected to define the lazy
B-expansion of xg — 1 analogously, which is not done in Section In
this section, we will define it and compare it with the greedy B-expansion of
1.

By definition of the lazy algorithm from Section the digits are
picked as the smallest possible at each step. Hence, by extending the lazy
algorithm to the real number xg — 1, we get that digit {go(xg — 1) should
be the least element in [0, [By] — 1] such that

-1 L1
Spolep =1 | To0 5 g
Bo Bo

By (2.10)), we get that £go(zg—1) = 0 satisfies the wanted inequality. Hence,
the first digit of £g(xg — 1) is 0 and its suffix starting at position 1 is the lazy

B _expansion of Bo(xg — 1) which, by (2.10)), is equal to Tgm + [Bo]l —1—Po
in [acﬂ@) — 1,3:5@)). That is,

lg(zg —1) = 0Lg) (xgm + [Bo] — 1 = Bo).

By construction, we obtain that the lazy 3-expansion of xg — 1 is lexico-
graphically minimal among all B-representations of g —1in @),,cy[0, [8n] —
1]. This extends Proposition

However, it is important to note that the equivalent definition of the lazy
algorithm over (zg — 1, xg] using the ceiling function, given in Section m,
is not valid for the real number zg — 1 when By € N>o. In fact, we have
[Bo(xg — 1) — xﬁ(ﬂ = —1 where —1 cannot appear as a letter of a 3-
representation. Hence, £g(xg — 1) would have not been the image of dg(1)
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by the map 03 when fy is an integer since if fy € N>o, we have dg(1) =
Bo0“ whereas the first letter of g(zg — 1) is 0. However, if 8y ¢ N>, the
lazy algorithm using the ceiling function can be used in order to compute
the digits of {g(zg — 1). As a consequence, it can be proved similarly to
Proposition that in that case we have {g(xg — 1) = 0g(dg(1)).

As a conclusion, if we decided to define {g(zg — 1), we would not have
been able to extend the algorithm with the ceilings from Section and
moreover, we could not have given the property {g(zg — 1) = 6g(dg(1))
since we would have had to separate the statement into two cases: if 5y is
an integer or not. Therefore, to avoid this ambiguity, I have decided to no
longer work with {g(zg —1).

2.4.6 Quasi-lazy expansions

In this section, we define the quasi-lazy B-expansion of xg — 1 in order
to obtain similar results from Section for lazy expansions and more
precisely an analogue of Parry’s theorem characterizing the lazy expansions
of real numbers in (zg — 1, zg].

Proposition 2.4.23. The limit lim, (., 1)+ {g(z) ezists and is equal to
0p(ds(1))-

Proof. By Proposition and by continuity of g, we get

m_}(ggim lp(x) = H(g;{w Op(dp(zp —x))
=0p(, Jm  da(ap—))
= 0p( lim dg(y))
= 0p(d(1))
where the last equality is due to Proposition [ |

Definition 2.4.24. The quasi-lazy B-expansion of xg—1 is the infinite word
defined as follows:

lg(zg—1)= lim  Lg(z). (2.13)

z—(xg—1)*

By Proposition|2.4.23] this limit exists and, similarly to Proposition|2.4.12
the “flip” of the quasi-greedy B-expansions of 1 is the quasi-lazy B-expansion
of rg — 1.
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Proposition 2.4.25. We have {3(zg — 1) = 0g(d5(1)).

Proof. This is immediate by definition of the quasi-lazy B-expansion of xg—1
and by Proposition [2.4.23 |

Example 2.4.26. Consider the alternate base 8 = (1+\/ﬁ’ 5+%/ﬁ). By

2
Example we have dj(1) = 200(10)*, d;m(l) = (10)“. Hence, by

Proposition[2.4.25] we get £5(zg—1) = 012(02)* and {5 (z50) —1) = (02)“.

Proposition 2.4.27. The quasi-lazy expansion K}} (zg—1) is a B-representa-
tion of xg — 1.

Proof. This is direct by Propositions [2.4.25[ and [2.3.29 and by (2.11)). [ |

Note that, in comparison with the quasi-greedy B-expansion of 1 which
is always infinite, the quasi-lazy B3-expansion of xg — 1 can be either finite
or infinite.

Example 2.4.28. Consider an alternate base 8 = (fo, ..., fp—1) such that
for all i € [0,p — 1], Bi € N>o. From Example [2.3.25, we get dg(i)(l) =

((Bi = 1)+ (Bp—1 = 1)(Bo — 1)~ (Bi=1 — 1))* and since, by Lemma [2.4.6
T =1 for all ¢ € [0,p — 1], we have E;<i)(0) =Qv.

The following result gives a necessary condition on the Cantor base 3 for
having a finite quasi-lazy B-expansion of xg — 1.

Proposition 2.4.29. If the quasi-lazy B-expansion of xg — 1 is finite of
length n € N, then Tgm = 1.

Proof. Suppose that E;‘a(xﬁ —1)=4y---£,—10¥ with n € N and £,,_; # 0 (if
it exists, that is, if n # 0). By Proposition [2.4.25] we get that

dg(1) = ([Bo] =1 =4o) - ([Bn-1] =1 = Lp-1)([Bn] = ([ Bns1] — 1)~
However, by Proposition we know that
o"(dg(1)) = ([Bn] = D([Brsr] = 1)+ Sitex dgeny (1)

Hence, we obtain that 0" (dj(1)) = d,

ﬁ(n)(l)- We conclude that

Tgm = valgm (0" (dg(1)))
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=1

where the last equality is due to Proposition [2.3.29 [ |

Corollary 2.4.30. If the quasi-lazy B3-expansion of xg —1 is finite of length
n € N, then B, € N>g for all k > n.

Proof. This immediately follows from Proposition [2.4.29] and Lemma [2.4.6
|

As the following example shows, the necessary conditions given by the
previous proposition and corollary are not sufficient.

Example 2.4.31. Consider the Cantor base 3 = (%,2,2,2,2,2---). We
have zg = 3 and zgm = 1 for all n > 1. However, we have dj(1) = (10)”
and (5(zg — 1) = (01)~.

Definition 2.4.32. An infinite word w € @,,cx[0, [Bn] — 1] is said wulti-
mately mazimal if there exists N € N such that for all n > N, we have

wy = [Bn] — 1.
Lemma 2.4.33. The infinite word {3(xg—1) cannot be ultimately mazimal.

Proof. This is a direct consequence of Proposition [2.4.25/ since dj(1) is infi-
nite. [

We now prove that ¢ (zg—1) is lexicographically smaller than all other 3-
representations of real numbers in (xg—1, zg] belonging to &),,cn[0, [5,]—1].

Proposition 2.4.34. If a is an infinite word in Q),, [0, [ 8] —1] such that
valg(a) € (zg — 1,28], then a >1ex L5(zg — 1).

Proof. Let a be an infinite word in @),x[0, [8n] — 1] such that valg(a) €
(xg — 1,28]. Then 6g(a) is an infinite word over @),,x[0,[Bn] — 1] and
by (2.11)), we have valg(6g(a)) = zg—valg(a) € [0,1). By Proposition[2.3.30]
we get that Og(a) <iex dj(1). Moreover, by Proposition [2.4.25, we have
d;é(l) = 0g({5(zg — 1)). Hence, by (2.12), we conclude that a >ex {5(z5 —
1). |
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Note that, similarly to Proposition [2.4.18] Proposition is weaker
than its analogous greedy one, that is, Proposition since we fix the
alphabet of the B-representations. A stronger result cannot be stated as
illustrated in the next example.

Example 2.4.35. Continuing Examples [2.4.19 and [2.4.26] the infinite word
003330% is a B-representation of 8 —2+v/13. However 003330% <}, 012(02)¥ =

t5(zg —1).

By Proposition|2.3.30} the word d*ﬁ(l) is lexicographically maximal among
all infinite B-representations of all real numbers in [0, 1]. The following result
gives the translation of this property in terms of the lazy representations.

Proposition 2.4.36. The quasi-lazy B-expansion of xg — 1 is the lexico-
graphically least B-representation of xg —1 in @, [0, [Bn] — 1] that is not
ultimately mazimal.

Proof. By Proposition [2.4.27)and Lemma [2.4.33] the quasi-lazy B-expansion
of g — 1 is a B-representation of xg — 1 in @,,x[0, [n]| — 1] which is not
ultimately maximal. Moreover, let a be an infinite word in @), [0, [ 8] —1]
such that valg(a) = x5 —1 and suppose that a <jex £3(zg—1). As above, we
get 0g(a) >1ex djg(1) with valg(fg(a)) = 1. By Proposition the word
6(a) must be a finite B-representation of 1. By setting N to the length of
the longest prefix of fg(a) not ending with 0, we get a, = [3,] — 1 for all
n > N, that is, a is ultimately maximal in &), cy[0, [5,] — 1]. [ |

Remark 2.4.37. In order to “directly” compute the quasi-lazy B-expansion
of xg—1 without using a limit on words (as for the quasi-greedy B-expansion,
see ), one could have define the lazy B-expansion of g — 1 (which was
not the choice made in this text as explained in Section and define
l5(zg — 1) respectively as follows: (5(zg — 1) = {g(xzg — 1) if {g(zg — 1) is
not ultimately periodic and £3(zg —1) = &o -+ - §n—2(&n—1+ 1)%(”) (250 — 1)
if £,-1 < [Bn—1] — 1 and for all m > n, we have &, = [Bn] — 1.

2.4.7 Lazy admissible sequences

Definition 2.4.38. We let Db denote the subset of Ag of all lazy B-expans-
ions of real numbers in the interval (zg — 1, zg] and let 5’,’3 denote the topo-
logical closure of Db with respect to the prefix distance of infinite words:

D/ﬁ ={lg(z):xz € (zg—1,28]} and Sb = Dil’6
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The following result links the sets Djg and S with their analogous greedy
ones Dg = {dg(x) : x € [0,1)} and Sg = Dg.

Proposition 2.4.39. The maps 95|Dﬂ : Dg — Dj and 95|Sﬁ 1 Sg — Sp
are both bijective.

Proof. By Proposition '2.4.12|, the map 95|D,3 is well defined and surjective.

Hence, by continuity of the map 3, the map 6g| Sg is also well defined and
surjective. Moreover, since the map 6g is injective, so are the maps 03] Da
and 03] S [

Proposition 2.4.40. Let a,b € Sp.

1. If a <jex b then valg(a) < valg(b).

2. If valg(a) < valg(b) then a <jex b.

Proof. Suppose that a,b € Sb are such that a <jex b. By Proposition
and (2.12)), we have 0(a),03(b) € Sg and 6g(a) >iex 03(b). By Proposi-
tion we valg(fg(a)) > valg(6g(b)). We conclude the proof of the first
item by . The second item immediately follows. |

We are now able to state a Parry-like theorem for Cantor real bases in
the lazy framework.

Theorem 2.4.41. Let a be an infinite word over N.

1. The word a belongs to Dy if and only if a € @,,ex[0, [Bn] — 1] and for
alln € N,

0" (a) >lex %(n) (@gom —1).

2. The word a belongs to S if and only if a € @,,ex[0, [Bn] — 1] and for
all n € N,

Proof. Let a be an infinite word. We have a € D/; if and only if a €
X,enl0, [Bn] — 1] and 6g(a) € Dg. Moreover, by Theorem [2.3.33) we have
8s(a) € Dg if and only if 6" (g(a)) <iex d;(m(l) for all n € N. However,

for all n € N, by Lemma [2.4.15, we have 6" (63(a)) = 050n) (0" (a)) and by
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Proposition [2.4.25, we have dg(n)(l) = bgm) (f;(n) (zgm) —1)). Hence, the

first item follows from (2.12]). The second item can be proved in a similar
fashion by using Proposition [2.3.39 |

5

Example 2.4.42. Consider 8 = (H2 13 5+%/ﬁ). In view of Example [2.4.26}

the sequence a = (2120)“ belongs to Dj.

Note that in Theorem the hypothesis that a belongs to ), cn[0,
[Bn| — 1] is required. For otherwise, any sequence a such that a,, > [5,] —1
for all n € N would belong to Dj.

As a consequence of Theorem [2.4.41] we can characterize the set D/B by
translating Proposition and Corollaries [2.3.47] and [2.3.48| to the lazy
framework. To do so, we define sets of finite words Xj , for n € N>; as
follows.

Definition 2.4.43. If {5(zg — 1) = lofy - -+ then, for all n € N>, we let
X/ﬂ,n = {fo v lp_08:8€ [[gn—l +1, (Bn—l] — 1]]}
Note that Xj , is empty if and only if £,—1 = [Bp-1] — 1.

Proposition 2.4.44. We have
/ / !/ /
Dﬁ = U X,B,no ( U XB<"0),n1 < U Xlg(n0+n1)7n2 ( T >>> :
no€N>4 n1EN>, n2€N>
Therefore, we have Db = U Xb’nDLB(n) and any prefix of Eg(xg - 1)

nENZI
belongs to Pref(Dj).

Proof. This follows from Propositions [2.4.25], [2.4.39] and [2.3.46] since

WoW1 *** Wp—1 € Xb,n
if and only if

([Bo] =1 —wo)([B1] =1 —=w1) - ([Bn-1] =1 —wp—1) € Xg .
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2.4.8 The lazy 3-shift
We end this chapter by defining and studying the lazy 3-shift.

Definition 2.4.45. We define

5= Dy and S=Aj
neN

By Proposition [2.4:39] we get

23 = U eﬁ(n)(Dﬁ(n)). (2.14)
neN

Proposition 2.4.46. The sets Ajg and i are both shift-invariant.

Proof. Let a be an infinite word over N. By (2.14)), if a belongs to Ab, then
there exists n € N and an infinite word b € D 4n) such that a = 040 (D).
We obtain that o(a) = (05 (b)) = Ogmi1(o(b)) by Lemma [2.4.15, By
Theorem [2.3.33, 0(b) € Dy so o(a) € Dgwﬂ)- Then, it is easily seen
that if a € Sﬁ(n) then o(a) € S’ﬁ(nﬂ). [ ]

Since the set E’B is shift-invariant and closed with respect to the topology
induced by the prefix distance on infinite words, we conclude that the subset
Eb of Ag is a subshift, which we call the lazy B-shift.

Let us now study the factors of the lazy B-shift.

Proposition 2.4.47. We have Fac(Dp) = Fac(Aj) = Fac(Xp).

Proof. By definition, we have Fac(Dj) C Fac(Aj) = Fac(¥j). It remains
to.show that Fac(Djg) 2 Fac(Ajp). Let f € Fac(Ap). By (2.14 ,.there
exist n € N and b € D g such that f € Fac(@B(n>(b)). In particular,
f € Fac(63(0mb)) where, by Theorem [2.3.33) 0"b € Dg. We obtain that
f € Fac(05(Dg)) = Fac(Dj) by Proposition [2.4.39 |

Corollary 2.4.48. We have

Fac(Xj) = U 050 (Pref(Dﬁ(m)).
neN

Proof. By Propositions [2.4.46 and [2.4.47, we have Fac(Xj3) = Pref(Aj)

Upen Pref (ng)). The conclusion follows from Proposition [2.4.39 [ |




CHAPTER

3

MORE COMBINATORIAL
PROPERTIES OF ALTERNATE
BASE EXPANSIONS

The aim of this chapter is to pay special attention to periodic Cantor real
bases, referred to as alternate bases, and discuss some results that are specific
to these particular Cantor real bases.

First, we improve some results from Chapter [2| about greedy and quasi-
greedy (-expansions of 1. In particular, generalizing Parry’s result (see
Corollary , we obtain a characterization of the greedy B-expansion
of 1 among all B-representations of 1.

Second, we define Parry alternate bases and characterize them in terms
of the periodicity of the greedy, quasi-greedy and quasi-lazy expansions.

Third, we study the alternate base greedy and lazy 3-shifts. In particular,
we generalize Bertrand-Mathis’ theorem by proving that the greedy (resp.,
lazy) B3-shift is sofic if and only if B is a Parry alternate base. However,
a counterexample shows that, contrarily to the real base case, the greedy
B3-shifts of finite type cannot be characterized thanks to the finiteness of the
greedy B -expansions.

The results presented in this chapter are from [CC21] and [Cis21].
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3.1 Value function and representations of 1

We start with a few elementary observations. Consider an alternate base

B = (Bo,...,Bp—1). First, by Proposition the condition ], . fn =
+o0o from Definition [2.1.1] is trivially satisfied in the context of alternate
bases. Then, for an alternate base 3 of length p, the B-value of an
infinite word a over R>g can be rewritten as

valg(a) = o
% (T2 Bo) P T1med e g,

or as
p—1

1 Apm-+j5
valg(a) = > —— pmt) (3.1)
meN (sz?:o ’L) =0 ngo Bi
Further, the alphabet Ag is finite since Ag = [0, max;co,—17 ([8i] — 1)].
Finally, note that a Cantor base of the form (3, ,...) is an alternate base
of length 1, in which case, as already mentioned, all definitions introduced
so far coincide with those of Rényi for real bases .

In Proposition [2.2.3] we gave a characterization of those infinite words
a € (Rso)Y for which there exists a Cantor base 3 such that valg(a) =
1. Here, we are interested in the stronger condition of the existence of an
alternate base 3 satisfying valg(a) = 1.

Proposition 3.1.1. Let a be an infinite word over R>q such that a,, € O(n?)
for some d € N and let p € N>1. There exists an alternate base B of length
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p such that valg(a) = 1 if and only if ), . an > 1. If moreover p > 2, then
there exist uncountably many such alternate bases.

Proof. From Proposition we already know that the condition )y an
> 1 is necessary. Now, suppose that ) _ya, > 1. If p = 1 then the result
follows from Lemma m Suppose that p > 2. Consider any (p — 1)-tuple
(B1,..-,Bp—1) € (R>1)P~L. For all By > 1, we can write valg(a) = valg,(c)
with ,3 = (607 Bla ce ,ﬂpfl) and

1 1 a j
e = P for all m € N.

(Hf;f i)m §=0 [1i-1 B

Note that ¢ € (R>o)Y and that c,, € O(m?). By hypothesis, there exists
N € N such that ZTJLO an > 1. Then

% > ZYL;:JO Z?;é Apm-+j5 > 227:0 an ‘
e B e B

Therefore, any (p — 1)-tuple (81, ..., Bp-1) € (R>1)P~! satisfying

(ii+) s

n=0

N
is such that ZL;J) cm > 1, and hence there exist uncountably many of
them. For such a (p — 1)-tuple, the infinite word ¢ satisfies the hypothesis of
Lemma so there exists By > 1 such that valg(a) = valg,(c) = 1. [

3.2 Greedy and quasi-greedy alternate base expan-
sions of 1

From now on, we let 3 be a fixed alternate base and we let p be its length.
The greedy and the quasi-greedy (-expansions of 1 enjoy specific properties
whenever 3 is an alternate base.

3.2.1 Some properties on periodicity

Proposition 3.2.1. The greedy B-expansion of 1 is not purely periodic.
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Proof. Suppose to the contrary that there exists ¢ € N>y such that for all
n €N, e, = ep4q. By considering k = lem(p, ¢), we get that B(k) = 3 and
for all n € N, g, = gy,4.5. Therefore

1

1 = valg (60 e sk,l) + =g = Valg(eo coep_o(Ep_1 + 1))
Hi:O Bi

Thus €g - - - €x_2(ex_1 + 1) is a B-representation of 1 lexicographically greater
than dg(1), which is impossible by Proposition [2.3.15 |

The following example shows that the greedy B-expansion of 1 can be
ultimately periodic with a period which is coprime with the length p of 3.

Example 3.2.2. Let 8 = (v/6, 3, 2+3\/6). It is easily checked that dﬁ(o)(l) =
2(10)v, dﬁu)(l) =3 and d,@@)(l) = 11002.

Proposition 3.2.3. The quasi-greedy expansion dz_,(l) 18 ultimately periodic
if and only if, within the first p recursive calls to Definition[2.3.23, either an
infinite ultimately periodic greedy expansion is reached or only finite greedy
expansions are involved.

Proof. If there exists n € N such that the infinite greedy expansion d;m) (1)
is involved in the computation of dj(1), then clearly dj(1) is ultimately
periodic if and only if so is d;(n) (1).

Now, suppose that only finite greedy expansions are involved within p
recursive calls to the definition of dj(1). Then dg(1) is finite. Thus, dg(1) =
€8,0" €@ ko—1 With kg € N>1 and eg gy—1 > 0. Then

da(1) = €po---epro—2(¢pk0—1 — Ddgay (1)

where i; = kg mod p. By hypothesis, dﬁ(il) (1) is finite as well. Thus we have
d,@(il)(l) = Eg6i0 " €80 ky—1 with k1 € N>1 and €611 1 =~ 0. Repeating
the same argument, we obtain

;(il)(l) =Epting” "5ﬂ<i1),k1—2<55<i1>,k1—1 -1 ;@)(1)

where i = ko + k1 mod p. By continuing in the same fashion and by setting
io = 0, we obtain two sequences (k;);efo,p—1] and (i;);e[op]- Because for all
J € [0,p], we have i; € [0,p — 1], there exist j,j" € [0,p] such that j < j/
and i; = ij. Then dj(1) = zy* where

7j—1
= [ egem 0" 2gim b, -2(Egim g1 = 1)
n=0
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and

i'—1
y= [T eaem .0 epim p,2(Egim b, 1 = 1)
=j

3.2.2 Characterization of the greedy alternate base expan-
sions of 1

The condition given in Corollary gives that, in order to know if a 3-
representation a = (a,)nen of some real number in [0, 1] is the greedy one,
we have to check if 0"P(a) <jex dj3(1) for n € N>1. Thus this does not allow
us to check whether a given 3-representation of 1 is the greedy B-expansion
of 1 without effectively computing the quasi-greedy (3-expansion of 1, and
hence the greedy B-expansion of 1 itself. The following proposition provides
us with such a condition in the case of alternate bases, provided that we are
given the quasi-greedy ﬁ(i)—expansions of 1 for i € [1,p—1].

Proposition 3.2.4. A B-representation a = (an)nen of 1 is the greedy -
expansion of 1 if and only if for all m € N>i, cP™(a) <iex @ and for all
m €N and i € [1,p— 1], 0P (a) <jex d;(i)(l).

Proof. The condition is necessary by Corollary and since dg(l) <lex
dg(1). Let us show that the condition is sufficient.

Let a be a B-representation of 1 such that for all m € N>q, 0P™(a) <jex @
and for all m € N and i € [1,p — 1], 0P (a) <jex d;(i)(l). By Proposi-
tion a <jex dg(1). By Theorem if a <jex dj(1) then valg(a) <
1, which contradicts that a is a B-representation of 1. Thus, dg(l) <lex
a <iex dg(1). If dg(1) is infinite, then a = dg(1) as desired. Now, suppose
that dg(1) = eo---ex—1 with £ € N>y and €1 > 0. Then ap---ap_2 =
€0 €x—2 and agp_1 € {ex—1 — 1,ex—1}. Since valg(a) = 1, if ap_1 = 11
then a = dg(1). Therefore, in order to conclude, it suffices to show that
ag—1 7 €p—1 — L.

Suppose to the contrary that ay_; = €,_1 — 1. Then d;w (1) <jex 0¥(a).
By hypothesis, k mod p = 0. Therefore dj(1) <jex ok (a) <jex dg(1). By re-
peating the same argument, we obtain that ap---agp_o = ¢ €x_o and
ask—1 € {er_1 — l,ep_1}. Since o¥(a) <iex @ by hypothesis, we must
have agp_1 = €1 — 1. By iterating the argument, we obtain that a =
(g0 er_2(ep_1 — 1))*, contradicting that o%(a) <ex a. [ |
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When p = 1, Proposition provides us with the purely combinato-
rial condition proved by Parry (see Corollary [1.4.17)) in order to determine
whether a given B-representation of 1 is the greedy B- expans10n of 1. How-
ever, when p > 2, we need to compute the quasi-greedy ,6 -expansions of 1
for every i € [1,p —1] first. This might lead us to a circular computation, in
which case the condition may seem not useful in practice. Indeed, suppose
that p = 2 and that we are provided with a G-representation a of 1 and a
B representation b of 1. Then in order to check if a = dg(1), we need
to compute d;(l)(l), and hence dga)(1) first. But then, in order to check

if b = dg (1), we need to compute dg(1), and hence dg(1), which brings
us back to the initial problem. Nevertheless, this condition can be useful
to check if a specific B-representation of 1 is the greedy (3-expansion of 1.
For example, consider a B-representation a of 1 such that for all m € N>,
oP™(a) <jex @ and for all m € N and i € [1,p — 1], apm+s < |Bi] —1. Then
the infinite word a satisfies the hypothesis of Proposition and a is the
greedy (B-expansion of 1.

We have seen that considering an infinite word a over N and a positive
integer p, there may exist more than one alternate base 3 of length p such
that valg(a) = 1. Moreover, among all of these alternate bases, it may be
that some are such that a is greedy and others are such that a is not. Thus,
a purely combinatorial condition for checking whether a 3-representation is
greedy cannot exist.

Example 3.2.5. Consider a = 2(10)*. Then valg(a) = valg(a) = 1 for
both a = (1+ ¢,2) and B = (%, %). It can be checked that dq (1) = a and
dp(1) # a.

Furthermore, an infinite word a over N can be greedy for more than one
alternate base.

Example 3.2.6. The infinite word 110% is the greedy expansion of 1 with

respect to the three alternate bases (i, ), (5+‘ﬁ H‘ﬁ) and (1.7, 0?7).

At the opposite, it may happen that an infinite word a is a B-representa-
tion of 1 for different alternate bases B but that none of these are such that
a is greedy. As an illustration, by Proposition for all purely periodic
infinite words a over N, all alternate bases 3 such that valg(a) = 1 are such
that a is not the greedy B-expansion of 1.

Example 3.2.7. The infinite word (10)“ is a representation of 1 with re-
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spect to the three alternate bases considered in Example However, the
infinite words (10)% is purely periodic therefore, by Proposition it is
not the greedy expansion of 1 in any alternate base.

3.3 Parry alternate bases

Generalizing the concept of Parry numbers from Definition [1.4.11] we define
Parry alternate bases.

Definition 3.3.1. An alternate base 8 = (o, ..., Sp—1) is a Parry alternate
base if d;}@) (1) is ultimately periodic for all i € [0,p — 1].

Parry alternate bases will play an important role in the next section,
while characterizing sofic greedy and lazy (3-shifts, and in Chapter 4

One might think at first that if 8 = (fo,...,Sp—1) is a Parry alternate
base, then 8 = Hf:_ol B; must be a Parry number, that is, dg(l) must be
ultimately periodic. This is not the case, as the following example shows.

Example 3.3.2. Let 8 = (16,3, 2+3‘/€). This alternate base 3 is a Parry

alternate base by Example But the product 8 = Hf;ol ;= V6(2+6)
is not a Parry number as explained in Example [2.3.28

In the real base case, it is equivalent to say that dg(1) is ultimately
periodic if and only if so is d;j(l). Similarly, by Proposition we get the
following equivalent definition of Parry alternate bases.

Proposition 3.3.3. An alternate base B is a Parry alternate base if and
only if dﬁ(i) (1) is ultimately periodic for all i € [0,p — 1].

Proof. Suppose that for all ¢ € [0,p— 1], the greedy B(i)-expansion of 1is ul-
timately periodic. Then, for all ¢ € [0, p— 1], within the first p recursive calls
to Definition either an infinite ultimately periodic greedy expansion is
reached or only finite greedy expansions are involved. By Proposition
we conclude that, for all ¢ € [0,p — 1], the quasi-greedy B -expansion of
1 is ultimately periodic. Conversely, if there exists ¢ € [0,p — 1] such that
dﬁ(i)(l) is not ultimately periodic, then d;(i)(l) = d,@(i)(l) and we get that
3 is not a Parry alternate base. |

Recall that any alternate base 3 has a finite corresponding =g (defined
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in (2.9)), hence it makes sense to consider the lazy (-expansions. The fol-
lowing result shows that Parry alternate bases can equivalently be defined
thanks to the periodicity of the quasi-lazy expansions.

Proposition 3.3.4. An alternate base B is a Parry alternate base if and

only if Eg(i) (-:Uﬁ(i) — 1) is ultimately periodic for all i € [0,p — 1].

Proof. Suppose that for all i € [0,p—1], %(i) (acﬁm —1) is ultimately periodic
and writd[]

Without loss of generality, suppose that n; is a multiple of p (it suffices to
take the least common multiple of p and the length of the period). For all

i € [0,p — 1], by Proposition [2.4.25, we getEl

(t(i) £ )w

m; mi+n;—1

o) = )8

m;—1

with t{) = [Bign] — 1 — ¢ for all n € [0, m; + n; — 1]. Hence, all quasi-
greedy expansions of 1 are ultimately periodic. The converse can be proved
in a similar fashion. |

3.4 Alternate base shifts
We now give more characterizations of the greedy and lazy 3-shifts when 3
is an alternate base. In particular, we extend Bertrand-Mathis’ theorem by

characterizing alternate bases B having sofic greedy (3-shifts and we extend
this characterization to the lazy framework.

3.4.1 Greedy shifts and characterization of sofic ones
We define sets of finite words Yg, for h € [0,p — 1] as follows.

Definition 3.4.1. If djz(1) = tot1 -~ then we let

Y ={to---th—2s:n € N>y, nmodp=nh, s€[0,t,—1 —1]}.

'Recall that Z;(i) (%5(:y — 1) can be finite, hence, n; can be equal to 1 and Zi,i)i =0.
ZNote that the preperiod and period m; and n; may be not minimal.
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Note that Yg j, is empty if and only if for all n € N> such that n mod p =
h, tn—1 = 0. So, unlike the sets X, defined in Section [2.3.5] the sets Yz 1,
can be infinite. More precisely, Yg, is infinite if and only if there exist
infinitely many n € N> such that n mod p = h and ¢,_1 > 0.

Proposition 3.4.2. We have

p—1 p—1 p—1
Dﬂ = U thho < U Y,@”’O)Jn ( U Yﬁ(h0+h1)7h2 < R )))
ho=0 h1=0 ho=0

Proof. 1t is easily seen that for all h € [0,p — 1],

p—1
U Va5 = U Xg.-
h=0

nENZI
The conclusion follows from Proposition [2.3.46 [ |
p—1
Corollary 3.4.3. We have Dﬁ = U Y,@hDﬁ(h)-
h=0

In the case of a Parry alternate base 3, following the same lines as in
Definition we define an automaton over the finite alphabet Ag.

Definition 3.4.4. Suppose that, for all i € [0,p — 1], d;m(l) is ultimately
periodic and write

*gm(l) = t(()l) o ‘tffm),»fl(t%)i - ‘ta(vlb)ﬁnrl)w

Let Ag be the automaton defined as follows. The set of states is
Q = {Qi,j,k : 17] € [[Oap_ 1]]7 k€ |I07mz +n; — 1]]}

The set I of initial states and the set F' of final states are defined as

I={qg,0:i€[0,p—1]} and F=Q.

The (partial) transition function E: @ x Ag — @ of the automaton Ag is
defined as follows. For each i,j € [0,p — 1] and each k € [0, m; + n; — 1], we
have
. L if k . 1
E(Qi,j,k; t;;)) _ 4i,(j+1) mod p,k+1 1 7£ m; + n;
Gi,(j+1) mod p;m;  ©lse
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and for all s € [0, tg) — 1], we have

E(Qi,j,ka 5) = 4(j+1) mod p,(5+1) mod p,0-

Example 3.4.5. Let 8 = (¢?,2¢?). Then dgo)(1) = 2(30)* and dg) (1) =
5(03)“. The corresponding automaton Ag is depicted in Figure By
removing the non-accessible states, we obtain the automaton of Figure |3.2

The following result extends Theorem [1.4.21

Theorem 3.4.6. The greedy B-shift X is sofic if and only if B is a Parry
alternate base.

Proof. Suppose that for all ¢ € [0,p — 1], d;(i) (1) is ultimately periodic. We

show that the automaton Ag accepts the language Fac(Xg). From Proposi-
tions [2.3.43] and [2.3.44] we obtain that

Fac(g) = Pref(Ag) = | Pref(Dga). (3.2)
=0

Therefore, it suffices to show that for each i € [0, p—1], the language accepted

from the initial state ¢; ;0 is precisely Pref(Dﬂ@). Let thus ¢ € [0,p — 1].
First, consider a word w accepted from ¢; ;0. By Corollary if w

is a prefix of d;m(l) then w € Pref(Dge ). Otherwise, by construction of

Ag, w starts with some u € Yy, where hg = |u| mod p. Moreover, the
state reached after reading w from g;; 0 is g0 where j = (i + hg) mod p.
We obtain that w € Pref (D,@(i)) by iterating the reasoning and by using
Proposition [3.4.2}

Conversely, let w € Pref(Dﬁ(i)). By Proposition we know that
there exists k € N and hg,...,ht € [0,p — 1] such that w = wg- - ug_1x
with u, € Y,G(i+h0+“‘hn71),hn for all n € [0,k — 1] and z is a (possibly empty)

Eak)(l) where i, = (i + hg + - -+ + hx—1) mod p. By construction
(4)

of Ag, by reading ug from the state 40, We reach the state g¢;, ;, 0 where
i1 = (i + ho) mod p. Then, by reading u; from the latter state, we reach
the state gi, i,,0 where ia = (i + ho + h1) mod p. By iterating the argument,
after reading g - - - up—1, we end up in the state g;, ;, 0. Since x is a prefix of
d;(ik) (1), it is possible to read x from the state g;, ;, 0 in Ag. Since all states
of Ag are final, we obtain that w is accepted from g; ; o.

We turn to the necessary condition. Let

prefix of d

;(i)(l) = t(()i)tgi) -+ for every i € [0,p — 1].
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40,0,0

0,1

q0,1,0

q1,0,0

0,1,2,3,4

q1,1,0
0,1,2,3,4
0,1,2
Figure 3.1: The automaton A(W'
2 3
L— L—
—»140,0,0 qo,1,1 q0,0,2
\_/ \_/
0,1,2,3,4
e
—141,1,0 »141,0,1 q1,1,2
) [
3

Figure 3.2: An accessible automaton accepting Fac(X (

s02,2s02))'

93

0,1,2
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Suppose that j € [0,p — 1] is such that d;(j)(l) is not ultimately periodic.

Our aim is to find an infinite sequence (w(m))meN of finite words over Ag
such that for all distinct m,n € N, the words w(™ and w(™ are not right
congruent with respect to Fac(Xg). Recall that words x and y are not right
congruent with respect to a language L if t 'L # y~'L, that is, if there exists
some word z such that either zz € L and yz ¢ L, or zz ¢ L and yz € L. If
we succeed then we will know that the number of right congruence classes is
infinite and we will be able to conclude that Fac(¥Xg) is not accepted by a
finite automaton.

We define a partition (Gi,...,G,) of [0,p — 1] as follows. Let r =
Card{d* (1) i € [0,p—1]} and let i1,...,4. € [0,p — 1] be such that
d;(n)
can suppose that d* B 1 (1) >tex -+ >lex d;‘__}(iT)(l). Let ¢ € [1,r] be the unique
index such that dg(l (1) = dZ:JU (1). We set

Gs={ie0,p—1]:dgy(1) = dgu,, (1)} forse[l,¢-1]

(1 ) .,d};(m(l) are pairwise distinct. Without loss of generality, we

and
Gy ={i€[0,p—1]:dgu(1) < dgi (1)}

For each s € [1,q— 1], we write G5 = {is1,...,95,q,} Where is1 < ... <igq,
and we use the convention that 5 o 41 = 7s41,1 for s < ¢—2and lg—1,a9_1+1 =
j Moreover, we let g € N>; be such that for all i,i" € [0,p — 1] such that

5(1 (1) # dﬁm( ), the length-g prefixes of dg( ,(1) and d* (Z,)( ) are distinct.

Then, for s € [1,q — 1], we define Cs to be the least ¢ € N>j such that

i’ )1+c > 0. Finally, let N € N> be such that pN > max{g, C1, ..., Cyp_1}.

For all m € N, consider

q_l Qs
- (H H t(()is) . t;ii)lop(zN+1)_g+is,k+l_is,k) t(()j) .. 'tgi)—l'

s=1k=1
For all m € N, s € [1,¢ — 1] and k € [1, as], the factor

téis) - téij)lop(2N+1)_g+is,k+1_is,k

has length p(2N + 1) + 45441 — @5, and hence occurs at a position con-
gruent to is ) — 41,1 modulo p in w™. Similarly, for all m € N, the factor
t(()] ). 't%)_l occurs at a position congruent to j—i1 1 modulo p in w(™) . These
observations will be crucial in what follows. The situation is illustrated in

Figure 3.3
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w(m) — ’Ll)1’1 ’LULQ e wl,oq
[ [

[
0 11,2—11,1 11,0 —1,1
Ws,1 Ws 2 e Ws, g
[ [ [
1s,1721,1 1s,2711,1 1s,ag 1,1

Wq—1,1 Wq—1,2 ... Wq—1,004-1
[ [ [
lg—1,1—01,1 ig—1,2—1%1,1 Tg—1,1—1%1,1
(4) (4)
Lt
J—i1,1

Figure 3.3: Positions modulo p of the occurrences of the factors wy s and

t(()]) e t%)_l in w(m)’ Where wk7s — t[()ZS) e t(gii)lop(2N+1)7g+is,k+l7is,k.

Now, let m,n € N be distinct. Since d;(j)
odic, Um(d;(j)(l)) # a”(dg(j)(l)). Thus, there exists [ € N>; such that
t%) “ee tg)_H_Q = t%j) ‘e tfﬁ_l_Q and tfi)_s_l_l + t;j}rl—l‘ Without loss of general-
ity, we suppose that tfi)_s_l_l > tgfll_l. Let z = t,(%) e tgll_l.
show that w(™z € Fac(Xg) and w2z ¢ Fac(Xg).

In order to obtain that w(™z e Fac(¥g), we show that w(™) z
€ Pref(Dﬁ(iljl)). First, for all s € [1,¢—1] and k € [1, as], t(()is) . -t;if)l()CS €

Yﬁ(is,m’(ﬁcs) mod p° Second, for all i € [0,p—1], 0 € Y ;. Third, by Corol-

lary [2.3.48] for all h € [0,p—1], t((]j) . ~t,£i)_1z € Pref(Yﬁ(j),h). The conclusion
follows from Proposition [3.4.2

In view of (3-2)), in order to prove that w(™z ¢ Fac(Zg), it suffices to
show that for all i € [0,p—1], w(™ 2 ¢ Pref (Dg). Proceed by contradiction
and let i € [0,p — 1] and w € Dﬁ(i) such that w™z is a prefix of w. By

Theorem [2.3.33) for all s € [1,q], the factor téis)'--téii)l()@ occurs at a
position e in w such that (i + e) mod p belongs to Gy U --- U G,. For s =1,
we obtain that for all k£ € [1, 1], (i +141 , —i1,1) mod p € Gy, and hence that

(1) is not ultimately peri-

Our aim is to

G1 = {(’L =+ i1,1 — 2‘171) mod Dyenny (’L =+ il,cxl — il,l) mod p}.

For s = 2, we get that for all k € [1, o], (i +i2, —i1,1) mod p € G1 UGy If
(i41i2x, —1i1,1) mod p € G for some k € [1, az], then there exists k' € [1, o]



96 Chapter 3. More combinatorial properties of alternate base expansions

such that (i 4 dg — i1,1) mod p = (i + 41 4 — 41,1) mod p, hence such that
@95 = 91,1, which is impossible since G; and G3 are disjoint. It follows that

G2 = {(Z =+ Z'271 — 7;171) mod Dyeny (Z + 2'27042 - i171) mod p}.
By iterating the reasoning, we obtain that
Gs ={(i+isp—i11) mod p, ..., (i+isa, —i11) mod p} for all s € [1,¢q—1].

We finally get that (i+j—i1,1) mod p belongs to G,. Then d;((iﬂ._il 1) mod ) (1)
éj) e

n—1 OCCUIS 11

Lex d;(j)(l). Let e be the position where the factor ¢

w™ and hence also in w since w(™z is a prefix of w. We have seen that
fhm;)dp = j — 1,1 mod p. Since w € Dﬁ(i), it follows from Theorem [2.3.33
a

(W) <tex dgiire) (1) = dgirj=ir 1) moa (1) Stex dg (1)-

We have thus reached a contradiction since the factor t(gj ). -t,(lez is lexico-

graphically greater than the length-(n + 1) prefix of d;}(i) (1). [

Note that, in the classical case p = 1, the previous proof is much shorter
since ¥3 = S3, Fac(¥g) = Pref(Dg), and hence we can directly deduce that

the words t((]j) . ~t£i)_1 and t(()j) . -tgll (where in fact, j = 0) are not right

congruent with respect to Fac(Xg).

For p =1, it is well known that the §-shift is of finite type if and only if
dg(1) is finite (see Theorem (1.4.20). However, this result does not generalize
to p > 2 as is illustrated by the following example.

Example 3.4.7. Consider the alternate base 8 = (1+§/ﬁ, 5+%/ﬁ) of Exam-

ple2.3.27] We have dg(1) = 201 and dq) (1) = 11. We get djz(1) = 200(10)*

an d;(l) 1) = (10)¥. By Theorem |2.3.3i£ we see that all words in 2(00)*2
are factors avoided by ¥g, so the greedy 3-shift X5 is not of finite type.

3.4.2 Lazy shifts and characterization of sofic ones

As in the greedy case, Proposition can be straightened. To do so, we
define sets of finite words Yy, for h € [0,p — 1] as follows.

Definition 3.4.8. If {3(z5 — 1) = {ol1 - -+ then, for all h € [0,p — 1], we let

Ygp={lo-- lnos:ne€Ns, nmodp=nh, s€[lp1+1,[B1]—1]}
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Note that Y,é,h is empty if and only if for all n € N> such that n mod p =
hy €n—1 = [Bn-1]—1. Moreover, unlike the sets Xb ,, defined in Sectionm
the sets Yé ,, can be infinite.

Proposition 3.4.9. We have

p—1 p—1 p—1
D= Yé,hﬂ( U Yé(h())’hl( U Yé(h0+hl)7h2( )))
ho=0

ho=0 h1=0

p—1

Therefore, we have Db = U Yﬁ/7hD/ﬁ(h)'
h=0

In the lazy alternate base framework, an analogue of Bertrand-Mathis’
theorem can be stated for the lazy (-shift.

Theorem 3.4.10. The lazy B3-shift Ef@ is sofic if and only if B is a Parry
alternate base.

In order to prove this result, let us construct an automaton Ab in the
case where all quasi-lazy expansions are ultimately periodic and state some
results in order to link this automaton with the one used in the greedy case
Theorem namely the automaton Ag. Roughly, if all the quasi-lazy
expansions are ultimately periodic, then so are the quasi-greedy expansions
and the “image” of the automaton .Ag under the maps 6 5 with ¢ € [0,p—1]
is an automaton accepting Fac(E/ﬂ). This notion of “image” of the automa-
ton under the maps 6,i) will be clearer in what follows, more precisely in
Lemmas [3.4.13] and @

Henceforth, suppose that for all i € [0,p—1], %(i) (a:ﬁa) —1) is ultimately
periodic and write

ORI

Lo (g — 1) = £ @) ... p0)

m;—1 (gmz : m¢+n¢fl)w'

As done in the proof of Proposition without loss of generality, from
now on, suppose that n; is a multiple of p. For all i € [0, p — 1], by Proposi-

tion [2.4:25] we get

o (0 =167 0 (10t 1)

with 1) = [Bign] —1— ¢ for all n € [0,m; +n; —1].
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Definition 3.4.11. Let Ag = (Q, I, F, Ag, E) be the automaton over the
alphabet Ag from Section which accepts Fac(Xg) (see Theorem [3.4.6).
Define the automaton A = (Q, I, F, Ag, E') where for each i, j € [0,p — 1]
and each k € [0,m; + n; — 1], we have

E(qi, k,f;(:)) _ J 4G+ mod pky1 1K #Fm;+n; — 1 (3.3)
"~ qi,(j+1) mod p,m; else

and for all s € [[Z,(f) +1,[B;] — 1], we have
E'(Gi ks S) = 4(j41) mod p,(j+1) mod p,0- (3.4)

Since we supposed that the parameters n;, with i € [0,p — 1], were
multiples of p, we get the following result.

Lemma 3.4.12. In the automata Ag and A};, for all i,5 € [0,p — 1] and
k € [0,m; +n; — 1], the state q; j is accessible if and only if i + k mod p =
j mod p.

Proof. Let us prove the result for the automaton A’ﬁ. The reasoning for the
automaton Ag is similar. Suppose that i+ k mod p = j mod p. There exists
a path from ¢;; o to ¢; ;1 labeled by Eg) . -Eg). In fact, for all " € [0,k — 1],
we have ‘

E' (¢ (i+k7) mod pik'» f;(;/)) = i (i+k+1) mod p,k/+1- (3.5)
Conversely, let 4,7 € [0,p — 1] and k& € [0, m; + n; — 1]. Suppose that the
state ¢; ;1 is accessible. Let ¢ be an initial path ending in ¢; ;1. By definition
of the transitions, if a path starts in g; ;7 o with 7’ € [0,p — 1] \ {7} and ends
in ¢;j, then it necessarily goes through g¢;;o by using a transition of the

form (3.4). Hence, we may suppose that the path ¢ only uses transitions
of the form (3.3). The conclusion follows since for all ¥’ € [0,k — 1], we

have (3.5 and

' () _
E (qi,(ieriJrnifl) mod p,m;+n;—1> emﬁ—ni—l) - Qi,(i+mi+ni) mod p,m;
where n; mod p = 0 by assumption. |

By the previous lemma, from now on, we consider the automata .43 and
A’ﬁ by preserving only the set

{@ (i+8) mod p 11 € [0,p — 1], k € [0,m; +n; — 1]} (3.6)
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of accessible states and we keep the same notation. Moreover, for the sake
of clarity, we now denote g; y instead of g; (i1 ) mod p, Since the second index
is completely determined by the other two.

Lemma 3.4.13. Leta € Ag, i1,i2 € [0,p—1] and k1 € [0, m;,+ni, —1], ko €
[0, m;i, + niy, — 1]. We have

E(Qil,kl Y CL) = qi27k2
if and only if
El(qil,kla [Bi1+k1~| -1- CL) = qi2,k2'

Proof. Fix a € Ag, i € [0,p — 1] and k € [0,m; + n; — 1]. By definition of
the automaton Ag, from g; , we have the following transitions

Qi k+1 if a = t,(;) and kK £#m; +n; — 1
E(qik,a) = 9 ¢im, ifa= t,(;) and k=m; +n; — 1

U(i+k+1) mod po  1f @ € [[O,tl(j) —1].

Similarly, by definition of Aj, we have

st if a = z,(j) and k # m; +n; — 1
E' ik a) =} Gim, if a = 0" and k= m; +n; — 1

4(i+k+1) mod p,0 iface [[El(gl) +1, (/Bz-l-khl - 1]]

We get the conclusion since K,(f) = [Bitx| —1— tfj), and hence a € [0, tl(j) —1]
if and only if [Bi k] —1—a € [() + 1, [Bipx] — 1] m

Example 3.4.14. Let 8 = (¢?,2¢?) from Example We have dg(1) =
2(30)~, dﬁ(l)(l) = 5(03)“ and 55(33[3 —1) =02, Eﬁu)(m’l@u) —1) =02“. The
corresponding accessible automata Ag and .A’ﬁ are depicted in Figure 3.4
with red and blue labels respectively. Note that the accessible automaton
Ag is already depicted in Figure but we also depicted the (greedy) red
labels in Figure to illustrate Lemma [3.4.13

Lemma 3.4.15. Let i € [0,p — 1] and consider w € Ag. The word w is
accepted in Ag from g if and only if Hﬂ(i) (w) is accepted in A/B from g; 0.

Proof. This immediately follows from Lemma [3.4.13 |
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—140,0 qo0,2

0,1,2,3,4
1,2,3,4,5
—141,0 - q1,1 q1,2
5 \_/
0 3
2

Figure 3.4: An accessible automaton accepting Fac(E(W)) (red labels)

and Fac(E’(W)) (blue labels).

We are now ready to prove Theorem (3.4.10

Proof of Theorem[3.7.10. Suppose that, for all i € [0,p — 1], Ez(i) (x50 — 1)
is ultimately periodic. For all i € [0,p — 1], let

%(i) <37ﬁ<z'> -1)= E(()Z) - ‘55;1—1(5(i)~ o 'esn)ﬁ-m—l)w

m;

with n; multiple of p. By Proposition [2.4.25] for all ¢ € [0, p — 1], we obtain

i} i A ‘ % "
B (1) - t(()Z) o 't7(711)i—1 (t%)i T thz)i-i-m—l)

with ¢ = [Bizn] —1 — 0P foralln € [0,m;+n;—1]. Let Ag and Aj be the
automata associated with the greedy and lazy expansions respectively. By
Theorem for each ¢ € [0,p — 1], the language accepted in Ag from the
initial state g; o is precisely Pref(Dﬁ@). Hence, by Lemma [3.4.15] in .A’ﬁ the
language accepted from the initial state g; ¢ is precisely 6 30 ref (D,@u))).
We get the conclusion by Corollary [2.4.48

Conversely, suppose that there exists j € [0, p—1] such that %(1‘) (xﬁm —1)

is not ultimately periodic. Then we prove that E’B is not sofic. This follows
the same lines as in the greedy case (see Theorem [3.4.6). Hence, in what
follows, the main ideas of the proof are given. Let

E;(i) (g —1) = Eéi)ﬂgi) -+ for every i € [0,p — 1].
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We define a partition (Gi,...,G,) of [0,p — 1] as follows. Let r =
Card{ﬁﬂ(l( @ — 1) : i € [0,p— 1]} and let iy,...,i, € [0,p — 1] be
such that £* (21)( gl — 1)""’%("”(mﬁ(i"> — 1) are pairwise distinct and
ej[k}(il)( 81 — 1) <iex - - <lex Eg(ir)(xﬁm) —1). Let g € [1,r] be the unique
index such that ﬂﬂ(z (g6 — 1) = K;(j>(x5(j) 1) where €ﬁ<] (T — 1) is
not ultimately periodic by assumption. We set, for s € [1,q — 1],

Gs = {i € [0,p=1]: Ly (500 — 1) = 500 (Tg00 — 1)}

and
Gy ={i € [0,p—1]: L0 (x50 — 1) Ziex Ly (Tg0) — 1)}

For each s € [1,q— 1], we write G5 = {is1,...,0sa,} Whereisi < ... < igq,
and we use the convention that is o, +1 = is41,1 for s < ¢g—2and ig—1,0, ,+1 =
j. Moreover, we let g € N>j be such that for all 4,7 € [0,p — 1] such that
€;< ) (@50 —1) # EB“ (x T g — 1), the length-g prefixes of Eg(i) (2@ —1) and
85@ ( gty — 1) are distinct. Then, for s € [1,q — 1], we define C; to be the

least ¢ € N>y such that Eg )1+C < [Bis4g—1+c| — 1. Finally, let N € N>q be
such that pN > max{g,C1,...,Cq—1}.
For all m € N, we define the word w(™ by

E ; = . .
(H H £y 5 g - )1 ([Biostgl = 1) - ([Bi, jirtpeN+1)-1] — 1)) 66”~ . ‘5%)71.

s=1k=1

Now, let m,n € N be distinct. Since Eﬁ(])( 50) —1) is not ultimately periodic,
o (650) (a:ﬁ(j) - )) +0o ( Bw(xﬁm )) Thus, there exists k € N>q such

that £ 69 o =609 and 69, | # 9 Without loss

of generality, we suppose that f%)ﬂﬁ Eglk ;- Let 2 = E%) . -Eglkfl.
Similarly to the proof of Theorem it can be shown that w(™z €
Fac(¥j3) N Pref(D’ ;, ,)) and w™z ¢ Fac(Xj). [ ]
Remark 3.4.16. In the proof of the necessary condition of Theorem [3.4.10
the parameters {r,i1,...,%,,q,G1,...,Gq, ...} may not coincide with those in
the necessary condition of Theorem In fact, it may happen that there
exist i,7 € [0,p — 1] such that d;(i)(l) >lex d;‘;(j)(l) whereas 62@) (acﬁm -
1) <jex £* m(xﬂ(j) — 1). For instance, this is illustrated in Examples [2.4.28
and






CHAPTER

4

SPECTRUM AND
NORMALIZATION IN
ALTERNATE BASES

In this chapter, we study the algebraic properties of alternate base expansions
and we generalize the normalization function in real bases to the setting of
alternate bases. For this purpose, we generalize the spectrum in real bases
to the complex base and alternate base frameworks.

In order to define the spectrum of numeration systems associated with
alternate bases B8 = (fo, ..., p—1), one needs to consider the spectrum of
8= Hf:_g B; with a more general alphabet of non-integer digits. Hence, we
first study the spectrum X4 () in the general framework of a complex base §
such that |0] > 1 with a finite alphabet A C C. We prove that the set Z (4, A)
of d-representations of zero over A is accepted by a finite Blichi automaton
if and only if the spectrum X4(§) has no accumulation point. In doing so,
we also define and study an associated zero Biichi automaton Z(4, A).

Second, we define the spectrum associated with an alternate base 3 as a
particular case of the complex spectra. We then prove that the alternate base
spectrum has no accumulation point if and only if the set of 3-representations
of zero is accepted by a finite Biichi automaton, and furthermore, if and only

103
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if the alternate zero automaton is finite.

Third, using the spectra associated with alternate bases, we study the
algebraic properties of the Parry alternate bases. In particular, we show that
if 8= (Po,...,Bp—1) is a Parry alternate base, then the product g = Hf:_ol 2
is an algebraic integer and all of the bases Sy, ..., 8,—1 belong to the algebraic
field Q(B). On the other hand, we also give a sufficient condition: if 5 is a
Pisot number and fy, ..., Bp—1 € Q(B), then B is a Parry alternate base.

Finally, we show that if 8 is a Pisot number and each of the bases f;
belongs to the algebraic field Q(S5) then the greedy and lazy normalization
functions in the alternate base 3 are computable by finite Biichi automata,
and we effectively construct such automata.

The results presented in this chapter are from [CCMP22]. Since this
chapter generalizes the spectrum and normalization in real base expansions
to the alternate base framework, Sections and are related prelim-

inaries.
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4.1 Spectrum and representations of zero in com-
plex bases

The spectrum of a real number § > 1 and a finite alphabet A C Z was
introduced by Erdés et al [EJK90]. For our purposes, we use a generalized
concept with § € C and A C C and study its topological properties. In
particular, in this section, we generalize Theorem to the setting of
complex bases and general alphabets of complex digits.
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Definition 4.1.1. A complez base is a complex number ¢ such that |6 > 1.
For a complex base § and a finite alphabet A of complex numbers, we define
the set of d-representations of zero over A by

Gnp
Z(6,A)={ac AV: ) st = 0}
neN
and the spectrum of § over the alphabet A by
/-1
X46) = {Z a0l EN, ag,a1,...,a0-1 € A}. (4.1)
n=0

We say that a word ag---ap_1 over A corresponds to the element
Zf;:lo and*~17" in the spectrum X4(0).

For the remaining part of this section, we consider a fixed complex base
0 and a fixed finite alphabet A C C.

Consider the right congruence ~z(;5 4) over A* (see Deﬁnition. For
the sake of simplicity, we simply write ~5 4. For a,b € A*, we have a ~54 b
whenever for all s € AN, we have

as € Z(6,A) < bs € Z(0,A).

Obviously, the language A*\ Pref(Z(4, A)) is one of the equivalence classes of
~s . In the context of real bases 3 and integer digits, this right congruence
may be interpreted in terms of the remainders of the Euclidean division of
polynomials in Z[x| by = — §; see [Fr092]. This interpretation is no longer
possible in the present context of complex digits.

Lemma 4.1.2. Let a,b € Pref(Z(6,A)) be such that |a] = k and |b| = ¢.
We have a ~5 4 b if and only if

k—1 /-1
Z andk—l—n _ Z bn(sé—l—n,

that is, the words a and b correspond to the same element in the spectrum
X4(0).

Proof. Suppose that a ~s 4 b. Since a and b belong to the set Pref(Z(d, A)),
there exists s € AN such that as,bs € Z(5, A). We get

s k—1 -1
n k—1— —1—
P IF D DU DU

neN
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Conversely, suppose that a ;5 4 b. Without loss of generality we can suppose
that as € Z(, A) and bs ¢ Z(5, A) for some s € AN. Then

k—1 /—1
=S s S
n=0 n=0

neN

Lemma 4.1.3. If the spectrum X4(8) has an accumulation point in C then
there exists an infinite word in Z(6, A) with pairwise non-equivalent prefizes
with respect to the right congruence ~5 4. In particular, the right congruence
~g A has infinitely many classes.

Proof. Suppose that the spectrum X4 (6) has a complex accumulation point.
Then there exists an injective sequence (z(9));cy in X4(8) such that

lim; 4 2U) is finite. For each j € N we let p(j) denote the minimal expo-

nent such that there exists a representation of () in the form a:(()] ). :L'E)](;.)il €
A* that is
p(i)-1
200 — Z g gpla)—1=n,
n=0

Obviously, the sequence (p(j));en is unbounded, and without loss of general-
ity we can assume that (p(j));en is strictly increasing. Thus lim;j_, o p(j) =
400 and we get

‘ SU(J) ‘ p(i)—1 557(3)
5 = e 2 e =0 (42)

With this, we will show the existence of the desired d-representation a of
zero over A. Set ag as a digit in A which occurs infinitely many times among

) with j € N. Inductively, for n > 1, set a,, as a digit in A which occurs

infinitely many times among :c$$ ), where j € N runs through the indices such
that w(()]) gV = ag---ap—1. By (4.2)), we get that

n—1
29
Z gt — 0

neN

(J
Lo

that is, that a = agajaz - - - belongs to the set Z (4, A).
We will show that no pair of distinct prefixes of the infinite word a belong
to the same equivalence class. To show this by contradiction, we consider
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k.l € N such that ag---ap—1 ~54 ao---ap—1 with k > £. By construction,
there exists j € N such that ag - - - ag_1 is a prefix of CL‘éj) e xff(;)_l
by Lemma [4.1.2] we get

. Moreover,

(1
= grU)—k Z P Z z3)gpl)—1-n
n=0 n=k
p(3)—k+e-1

-1
_ Z an(;p(j)fk+€flfn + Z xfljlk_éép(j)flﬂr@flfn.
n=0

n=>~¢

Thus, we have found a representation ag - - - ag,la:(j ). xﬁ)]&')q of () which
is shorter than x(()j Vo 95,%-),1- This contradicts the definition of p(j). [

Similarly as what is done in [Fro92], we define a zero Biichi automaton.

Definition 4.1.4. The zero automaton in base § over the alphabet A is the
Biichi automaton Z(4, 4) = (Q,0,Q, A, E) where

M
Q=X45N{zeC:|z| < 5 -}
with M = max{|a| : « € A}, and the transitions are given by the triplets
(z,a,20 +a)in @ x A X Q.

Proposition 4.1.5. The zero automaton Z(6, A) accepts the set Z (9, A).

Proof. Let a be an infinite word accepted by Z(d, A). For each ¢ € N,
the prefix ag---ap_q labels a path in Z(d, A) from the initial state 0 to
the state Zfz;lo a,0“"17", that is, its corresponding element in the spec-
trum X4 (). By definition of the set of states Q, we get that the sequence
(Zf;lo a6 "17™)4en is bounded. Hence, we obtain that

-1 {—1—n
Gnp, llm Zn:() a”l’L(S

= =0.
gn+l l—~00 5¢

neN
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Conversely, consider an infinite word a over A that is not accepted by

Z(9, A). Then there exists £ € N such that ]Zn b andt1m| > ‘5?/[1 Then

_ l—n—1 M
s ’Zn 0and " = 5ty

Z T - aF ot

_An_
5n+1

5n+1
neN n=0

We are now ready to state and prove the main theorem of this section,
which is a generalization of Theorem This solves a problem that was
left open in [FP18].

Theorem 4.1.6. Let § be a complex number such that |0] > 1 and let A be an
alphabet of complex numbers. Then the following assertions are equivalent.

1. The set Z(6, A) is accepted by a finite Biichi automaton.
The right congruence ~s 4 has finitely many classes.

The spectrum X“(8) has no accumulation point in C.

> e e

The zero automaton Z(9, A) is finite.

Proof. Suppose that Z(0, A) is accepted by a finite Biichi automaton. By
Theorem we get that the right congruence ~js4 has only finitely
many classes. Hence (1) = (2). The implication (2) = (3) is given
by Lemma [£.1.3] The implication (3) = (4) follows directly from the
definition of the zero automaton. Finally, the implication (4) = (1)
follows from Proposition |4.1.5 |

Note that the zero automaton is deterministic. Therefore, the previous
result shows in particular that if the set Z(4, A) is accepted by an arbitrary
Biichi automaton, possibly non-deterministic, then it must be also accepted
by a deterministic one.

4.2 Spectrum and representations of zero in alter-
nate bases

From now on, we consider a fixed positive integer p and an alternate base
A -1
B = (Bo--.,0p-1), and we set 5 =[]~
For the purpose of this chapter, we extend the definition of 3-representa-
tions of real numbers (see Definition [2.1.4)) in order to allow negative digits.
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That is, we say that a (-representation of a real number z is an infinite
sequence a of integers such that valg(a) = .

Definition 4.2.1. An alternate alphabet of length p is a sequence
D = (Dy,...,Dp-1,Dq,...,Dp_1,...)
where Dy, ..., D,_; are finite alphabets of integers containing 0. We write

D = (Dy,...,Dp1).

As for alternate bases, we use the convention that for all n € Z,
Dy = Dy modp and D™ = (D, Dyyyp1).

From now on, we consider an alternate alphabet D = (D, ..., Dp_1) of
length p.

Definition 4.2.2. Let Dig(3, D) denote the digit set defined by
Dig(3, D) = {Z aifiv1 - Bp_1: Vi€ [0,p—1], a; € D;}. (4.3)

Grouping terms p by p, Equality (3.1)) can be written as

= Z Zz 0 amp-i—zﬁz-‘rl /Bp—l.

ﬁerl

If we add the constraint that each letter a,, belongs to D,,, then we obtain a
B-representation of x over the alphabet Dig(3, D).

Let ®,enD,, denote the set of infinite words over the alphabet Uf;ol D;
such that for all n € N, the (n + 1) letter belongs to the alphabet D,:

®Dn—{a€(up,01 N :VneN, a, € D,}.
neN

Definition 4.2.3. Let Z(83, D) denote the set of B-representations of zero
the (n 4 1) digit of which belongs to the alphabet D,,:

Z(B8,D) ={a € Q) Dy : an 5 = 0}.

neN neN

The set Z(3, D) can be seen as a subset of (Uf:_olDi)N.
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For 8 = Hf;ol B; and the alphabet Dig(83, D), the corresponding spec-
trum XP8B-D)(3) defined in (1)) can be rewritten as

p—1
xPigB.D) () = ZXDZ' (B) - Bix1- Bp-1.
=0

For the sake of simplicity, for each ¢ € [0,p — 1], we let X (i) denote the
spectrum built from the shifted base 6(’) and the shifted alternate alphabet
D In particular, we have X (0) = XPie(3:D)(3),

Lemma 4.2.4. For each i € [0,p — 1], we have X (i) - B; + D; = X (i + 1)
where it is understood that X (p) = X (0).

Proof. For each i € [0,p — 1], we have
p—1
X(i) = ZXDi+j(5) Bitj+1- Bigp—1-
j=0

Since
(XPi(B) - Bix1 - Birp) - Bi + Dy = XPi(B) - B+ Dy = XPi(B),

the conclusion follows. [ |

Lemma 4.2.5. For all £ € N, we have
-1
ZDn “Brg1- - Be—1 € X (£ mod p).
n=0

Proof. We prove the inclusion by induction. If £ = 0, it is immediate. Sup-
pose the result true for £ € N. We have

l -1
> DuButrBe= (D Dn-Burr-Bi1)Be+ Di.
n=0 n=0

By induction, we get

1
> Dy g1+ Be € X(£mod p) - B + D
n=0

The conclusion follows by Lemma [4.2.4] |
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In view of the previous lemma, if for each n € [0,¢ — 1], the digit a,
belongs to the alphabet D,, then we say that the finite word ag...ap_1
corresponds to the element Zfz;lo apPn+1 - Be—1 of the spectrum X (¢ mod

p)-
Let us now generalize the notion of zero automaton to the context of
alternate bases.

Definition 4.2.6. For each i € [0,p — 1], we define
max (D min(D
MO = and
Z Hk zﬁk Z Hk zﬁk

where max(D,,) and min(D),,) respectively denote the maximal and minimal
digit in the alphabet D,,.

As usual, for n € Z, we set M = M(rmodp) and () = yp(nmodp),

Definition 4.2.7. The zero automaton associated with the alternate base
3 and the alternate alphabet D is the Biichi automaton

2(67 D) = (Qﬁ,Da (07 O)a Q,@,D? Uf:_(}Dza E)
where

o Qpp =" ({i} x (X(1) N [-MD, —m)))

e [ is the set of transitions defined as follows: for (i, s), (j,t) € Qg,p and
a € Uf:_olDi, there is a transition (i,s) — (j,¢) if and only if j =i+ 1
(mod p), a € D; and t = ;s + a.

Observe that since we have assumed that all the alphabets D; contain
the digit 0, the initial state (0,0) is indeed an element of Qg p. Moreover,
if s € X(i) and a € D; then B;s +a € X (i + 1) by Lemma [4.2.4

Proposition 4.2.8. The zero automaton Z(3, D) accepts the set Z(3, D).

Proof. Let a be an infinite word accepted by Z(8, D). For each ¢ € N, the
prefix ag - - - ag—1 labels a path in Z(3, D) from the initial state (0,0) to the

state
-1

(¢ mod p, Z anBnt1 - Br-1).

n=0
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Therefore, the sequence (Zf;_:lo AnfBnt1 - ﬁg_l) ten 18 bounded. Hence, we
get
(7% — ZE ! anﬁn-ﬁ-l 5271
R R -1
Hk:O 519 {=ro0 Hn:(] n
Conversely, consider an infinite word a such that a,, € D,, for all n € N
and that is not accepted by Z(8, D). Then, there exists £ € N such that
/—1

(6mod p,» " anBui1---Bi-1) ¢ Qp.p.

n=0

=0.

neN

In view of Lemma [4.2.5] we get

/-1
Z anBns1 - Be—1 §é [—M(e), _m(e)]‘
n=0
Suppose that
-1
> anBusr e Bro1 > —mlY

(the other case is symmetric). We have
X min(D,,)
%Hk 0Pk Z sz oﬁk z:g [T5—o Br
:Zﬂ 0 OnBnt1 - Be—1 +m®
HnZO /Bn

>0.

Example 4.2.9. Consider the alternate base 8 = (H%/ﬁ, 5+%/ﬁ) and the
pair of alphabets D = ([-2,2],[—1,1]). Then

MO = valg((21)*) ~ 1.67994

and
MW = val g ((12)%) ~ 1.86852.

The zero automaton Z(3, D) is depicted in Figure [4.1] where the states with
first components 0 and 1 are colored in pink and purple respectively, and
where the edges labeled by —2,—1,0,1 and 2 are colored in dark blue, dark
green, red, light green and light blue respectively. For instance, the infinite
words 1(10)* and (012121)% have value 0 in base 3 (where 1 and 2 designate
the digits —1 and —2 respectively).
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=6t A

Figure 4.1: The zero automaton Z(8,D) for 3 = (1+§/ﬁ, 5+%/ﬁ) and

D = ([-2,2],[-1,1]). The conventions for colors are described within Ex-

ample

Theorem 4.2.10. Let B be an alternate base of length p and let D be an
alternate alphabet. Then the following assertions are equivalent.

1. The set Z(B, D) is accepted by a finite Biichi automaton.
2. The spectrum XDig(ﬁ’D)(B) has no accumulation point in R.

3. The zero automaton Z(B, D) is finite.

Proof. By Lemma if the spectrum XP8(3:P)(3) has no accumulation
point in R then for all ¢ € [0,p — 1], the spectrum X (i) based on the cyclic
shift ,B(i) of the base and the corresponding shifted alternate alphabet D®
has no accumulation point in R either. The implication (2) = (3) then
follows directly from the definition of the set of states of the zero automaton.
The implication (3) = (1) follows from Proposition [1.2.8

Let us show that (1) = (2). Suppose that the set Z(3, D) is accepted
by a finite Biichi automaton A = (Q, qo, F, Uf:_ol D;,E). In view of Theo-
rem it suffices to construct a finite Biichi B automaton accepting the
set Z(j,Dig(3, D)) in order to obtain that XP8B:P)(3) has no accumula-



114 Chapter 4. Spectrum and normalization in alternate bases

tion point in R. Consider the finite Biichi automaton

B = (Qx{f,f}, (. fo),Q x {},Dig(8, D), E')

where fy = f if the initial state g is final and fy = f otherwise, and the
transitions in E’ are defined as follows. For ¢,q' € Q, z, 2’ € {f, f} and
ap € Do, ...,ap—1 € Dp_1, there is a transition

p—1
((g, ), Z aiBit1 - Bp-1, (¢, 2"))
=0

in E' if there is a path labeled by ag - -+ ap—1 from g to ¢’ in A and 2’ = f if
the path in A goes through a final state and 2’ = f otherwise.
We prove that B accepts Z(5,Dig(3, D)). Consider

be Z(B,Dig(B, D)).

For all n € N, there exists a, o € Do,...,anp-1 € Dp_1 such that

p—1
b, = Zan,iﬁiﬂ o Bpo1.
=0

Clearly, the infinite word a = (ago---aop—1)(a1,0---a1p—1)--- belongs to
Z(B,D). Hence, there exists an accepting path labeled by a in A. Let
(gn)nen be the sequence of states of this path. Then there is a path labeled
by b in B and going through the sequence of states ((gnp, fn))nen where for
n € N>1, f, = f if there exists i € [1,p] such that q,—1)p4; € F and f, = f
otherwise. Since there are infinitely many n such that ¢, € F, we obtain
that there also are infinitely many n such that f, = f. Thus, the path in B
labeled by b going through the states ((gnp, fn))nen is accepting.

Conversely, consider an infinite word b over Dig(8, D) accepted by B5.
Let ((gn, fn))nen be the sequence of states of an accepting path labeled by
b in B. By definition of the automaton B, for all n € N, there exists a, 0 €
Dy, ... ,anp—1 € Dp—1 such that

p—1
bn = Z an,i/@i—&-l o Bp—l
=0

and a path from ¢, to g,4+1 in A labeled by a0 ---anp—1, and moreover,
there is such path going through a final state in A if and only if f, = f.
Hence, since there exist infinitely many n such that f, = f, there is an
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accepting path labeled by a = (ap,0---aop—1)(a10---a1p—1)--- in A. Since
A accepts the set Z(3, D), we get that

bn
Z ot = valg(a) = 0.

neN

Remark 4.2.11. In the proof of Theorem if the Biichi automaton
A is deterministic, it is possible that the Biichi automaton B is not. This is
not problematic since we do not require that the set Z(3, D) is accepted by
a deterministic finite Biichi automaton. However, if the map

p—1
fs.p: D = Dig(B, D), (ao, ... ,ap-1) — > _aifit1-Bp-1
=0

is injective and A is deterministic then B is deterministic as well.

4.3 Algebraic properties of Parry alternate bases

An algebraic description of Parry numbers 5 > 1 is not obvious. However, we
have links with algebraic and Pisot numbers (see Remark: any Parry
number is an algebraic integer and any Pisot number is a Parry number. The
aim of this section is to give such algebraic properties for Parry alternate
bases (see Definition [3.3.1).

Recall that we fixed an alternate base 8 = (f, ..., Sp—1) of length p, we
set 8 = Hf:_& ; and we fixed an alternate alphabet D = (Dy,...,Dp_1).

4.3.1 A necessary condition to be a Parry alternate base

The following theorem gives a necessary condition on 3 to be a Parry alter-
nate base. By Section we know that the definition of a Parry alternate
base can be equivalently stated by using the periodicity of the greedy, quasi-
greedy or quasi-lazy 8(-expansions. In this section, we use the periodicity
of the greedy B _expansions of 1.

Theorem 4.3.1. If 3 is a Parry alternate base, then [ is an algebraic integer
and B; € Q(B) for all i € [0,p — 1].

In order to give intuition on the algebraic techniques that will be used in
the proof, we start with an example.
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Example 4.3.2. Let 3 = (fo, 1, 82) be an alternate base such that the
expansions of 1 are given by

dg(1) =30, dgay(1) =110,  dgea (1) = 1(110)“. (4.4)
We easily derive that By, 81, 82 satisfy the following set of equations
3 1 1 1 1 1\ B
—:17 — + :1, +< +> :17
Bo B Biba B2 B2 B) B-1

where 8 = [yf182. Multiplying the first equation by 3, the second one by
B1P2 and the third one by (8 — 1)f2, we obtain identities

312 —B =0, —pBifo+pa+1=0, B+ (2-B)p+p—-1=0.

In a matrix formalism, we have

(5,00 () = () »

T

The existence of a non-zero vector (5152, f2,1)" as a solution of this equation
forces that the determinant of the coeflicient matrix is zero, that is, that
B? —98 +9 = 0. Hence we must have § = 9‘%7‘/5 = 3¢? where ¢ = 1+—2‘/5
is the golden ratio. Solving (4.5)) for this 3, we obtain 3102 = g = ¢? and
fBo = Bifa —1 = ¢?> -1 = ¢, and finally f; = 1 + é = . Consequently,
By = 51‘% = 3. Indeed, the triple B8 = (3, ¢, ¢) is an alternate base giving
precisely (4.4]) as the expansions of 1, as already observed in Example

In the previous example, for obtaining the values By, 81,82 from the
known ultimately periodic expansions we have used the fact that Sy, 51, 5o
and 8 = [pf1P2 are solutions of a system of polynomial equations in four
unknowns xg, r1, T2, y, in our case

3x1T9 — Y 0
—xix9+29+1 = 0

rixo+ (2—y)lrzea+y—1 = 0
r1xoxr3 = Y.

The solution of the system yielded that § is a root of a monic polynomial
with integer coefficient, that is, is an algebraic integer. The same strategy
can be applied to any Parry alternate basis, that is, to any alternate base
where all the expansions dg) (1), with 7 € [0, p— 1], are ultimately periodic.

In the proof of Theorem [.3.1 we will work with formal power series
whose coefficients are given by ultimately periodic sequences. Let us prepare
explicit form of these sums.
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Definition 4.3.3. For given m € N, k € N>, we define P, ;, as the set of
polynomials in Z[y] of degree at most m + k — 1 of the form

m—1 k—1
=D ™ )+ Y gt (4.6)

where ag,...,amip_1 € Z. We say that the polynomial (4.6) is associated
with the integers ag,...,am+k—1. Note that this polynomial has maximal
degree m + k — 1 if ag # 0.

Lemma 4.3.4. Let a be an ultimately periodic sequence of integers with
preperiod m € N and period k € N>1, that is,

w
a = apag - 'am—l(amam+1 e 'am+k—1) .

Then, we have

O
yrtt o ym(yk —1)

neN
where g 1s the polynomial in Py, . associated with the integers ag, . .., Qpmik—1-
Proof. We have
a o =X q
n n n
Z gt Z yn+l ™ Z g+l
neN n=0 n=m
m—1 k—1
an 1 Am+n 1 1
=Y +—<Z—)(1+—+—+m)
+1 +1 k 2k
U ymAe= oyt vy
m—1 k—1
Ay, 1 Am+n 1
S ()
1 )7 L
A yra YT =
-1 a, k=1 am+n
YT - D05 ) Yt (a0 )
y™(yF —1)
-1 _1— k—1 1
B (yk o 1)(an:0 anym 1 n) Jrznzo aernyk 1-n
y™(yF —1)
_ g
y™(yF —1)
where g is the polynomial in P, j, associated with the integers ag, . . ., @pm4r—1-
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Lemma 4.3.5. Suppose that 1 has an ultimately periodic B-representation
a of preperiod mp and period kp with m € N and k € N>1. Then

p—1
BB —1) = 3" gi(B)Bjs1 - Bpt
7=0

where for each j € [0,p—1], g; is the polynomial in P, associated with the
integers aj, Qjyp - - - Gjt (mtk—1)p-
Proof. Rewrite (3.1) as
p—1 a
np+j
1=2 2 G B

j=0 neN

Since for every j € [0,p — 1], the sequence (anp+;j)nen is ultimately periodic
with preperiod m and period k, the result follows from Lemma [£.3.4] [ |

Whenever all p expansions dﬂm (1) are ultimately periodic, for i € [0,p—
1], we associate a system of polynomial equations, which we call the 3-
polynomial system by analogy to the B-polynomial for real bases 8 [Par60],
as follows.

Without loss of generality, we suppose that for all i € [0,p — 1], the
expansion dﬁ(i)(l) has a preperiod m;p and a period k;p with m; € N and
k; € No. Then, for all i € [0,p—1], we let g; 0, i1, ..., 9ip—1 be the associated
polynomials in P, 5, as in Lemma so that

p—1
B (BN = 1) = gii(B)Bitsar - Bitp-1.
=0

For each i € [0,p — 1], since the first digit of d,@(i)(l) is |B;i] > 1, the degree
of giois ki + m; — 1.

Definition 4.3.6. The 3-polynomial system is the system of p 4+ 1 polyno-
mial equations in p + 1 variables xg, x1,...,7p—1,y given by

p—1
Yy = 1) = gijiije1 o Tigpo1, fori € [0,p—1]
=0

p—1
y=]]=
=0

where, as usual, we use the convention x,, = Zy mod p for n € Z.

(4.7)
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By construction, the p-tuple (So, ..., By—1,3) is a solution of the associ-
ated B-polynomial system.

Example 4.3.7. We resume Example By writing each of the expan-
sions from (4.4) with a preperiod 3 and a period 3, that is,

dgo) (1) = 300(000)*, d

5w (1) =110(000)*  and  dge (1) = 111(011)%,

we get goo = 3(y — 1), 910 = 11 = 920 =y — 1, g21 = g22 = y and
901 = go2 = g1,2 = 0. The associated B-polynomial system is

y(y —1) =3(y — Dz122

y(y —1) = (y — Daozo + (y — o
y(y—1)=(y — Dzoz1 +yz1 +y
Y = Tor122.

By multiplying the second equation by x1x2 and the third one by x and by
substituting xgxi1z2 by y, we get the three equations

y(y —1) =3(y — Dz122
y(y — Darze =y(y — s +y(y — 1)
y(Z/ - 1)532 = (y — Dy + yx122 + ye.

Placing the first equation in the last line, this can be rewritten as

-yly-1) yly-1)  yly—-1 T129 0
Y y—yly—-1) yly-1) z | =1{0
3(y—1) 0 —y(y —1) 1 0

The matrix of this system is equal to M (y) — y(y — 1)I3 where

g12 Ygi1,0 Y911
M(y)= 1921 922 Y920
go,o 9o, 90,2

and I3 is the identity matrix of size 3.

Proof of Theorem[{.3.1] Let m € N and k € Ny be such that the expansions
dl@(i)(l) all have preperiod mp and period kp, for i € [0,p — 1]. Then we
consider the associated polynomial system (4.7)), where m; = m and k; = k
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for all ¢ € [0,p — 1]. We index the equations of this system from 0 to p. For
each i € [1,p — 1], we multiply the i*" equation by Hz;i x), which becomes

p—1 p—1 2p—1
v - D) [T =D (g5 [ a0
k=i §=0 k=i+j+1
By substituting g - - - ,—1 by ¥, the latter equation can be rewritten as
p—1 p—i—1 p—1 p—1 p—1
y"(y" 1) H T = Z (y9i,5 H z) + Z (9i.5 H T).
k=i §=0 k=it+j+1 j=p—i k=i+j+1-p

Now, the first p equations of the system can be written in the matrix form
(M(y) = y™ (" = V)Ip)V (21, ., 2p-1) = 0 (4.8)

where I, is the identity matrix of size p, 0 is the zero column vector of size

b,
x1$2...$p_1

xz...$p_1
7(.%’1, e ,a;p_l) =
Tp—1
1
and
91p-1 Y910 - Y91p-3 YGip-2
92p-2 G2p-1 " Y9G2p-4  YGg2,p-3
9p—-11 YGp-12 " Gp—1,p-1 YGp-1,0
90,0 go1 -+ Gop-2 90,p—1
Since (Bo, ..., Bp—1, B) is a non-trivial solution of the original system, we get

that 8 is a root of the polynomial
h=det(M(y) — y™ (y* — 1)1)

of Z[y]. By construction, for every i,j € [0,p — 1], the polynomial g; ; has
degree at most m + k — 1. Therefore, the highest degree of h is obtained
from the product Hf;ol (gip-1—y™(y*—1)). This shows that h has leading
coefficient (—1)P. Since f is a root of h, we get that 3 is an algebraic integer.

It remains to prove that ; € Q(53) for all i € [0,p —1]. To that purpose,
we will apply the famous Perron-Frobenius theorem (see for example [Rigl4]
Theorem 2.67]). First, thanks to Lemma we know that the matrix
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M(B) has non-negative entries. Then, by Lemma and since any (3-
expansion starts with a non-zero digit, the entries

Bg1o0(B), Bg20(B), .-, Bgp-10(B), g0,0(53)

of M(/3) in respective positions

0,1), (1,2), ..., (p—2,p—1), (p—1,0)
are positive. Therefore, the matrix M () is irreducible. By the Perron-
Frobenius theorem, the vector 7(51, ..., Bp—1) is the unique positive eigen-

vector of M(/3) having 1 as its last entry and the corresponding eigenvalue
B™(B* — 1) is the Perron-Frobenius eigenvalue of M (). Moreover, the rank
of the matrix M (B) — f™(B* — 1)I is p — 1. Thus, the corresponding linear
system in the unknowns

Cl =122 Tp—1, C2 =T2" " Tp-1, ---, Cp—1 = Tp—-1

is equivalent to that obtained by deleting one its p equations. The obtained
system has full rank p — 1. Since all entries of M(3) — 8™(3* — 1)I belong
to the field Q(5), any solution vector of the latter system has components ¢;
in Q(B). Hence, the products 8182 Bp—1,02 - Pp—1,--.,Pp—1 all belong
to Q(8). We obtain in turn that f£i,...,0,—1 € Q(f5). Since moreover
ﬁO :ﬁ/(/Bl"'ﬁp—l)v we also get that /BO EQ(/B) u

Let us emphasize that the greediness of the representations was not
necessary in the proof of Theorem We only need that each B
representation of 1 starts with a non-zero digit. Therefore, we have actually
proved the following stronger result.

Theorem 4.3.8. If 1 has ultimately periodic ﬁ(i)—representations for all
i € [0,p — 1], then B is an algebraic integer. If moreover these p repre-
sentations have non-negative digits and they all start with a non-zero digit,

then Bo, ..., Bp—1 € Q(B).

From the proof of Theorem we deduce the following result about
the uniqueness of the base.

Proposition 4.3.9. Suppose that oo = (aw, - .., 0p—1) and B = (Bo, . .., Bp—1)
are two alternate bases such that Hf;ol o = Hf;ol Bi, and suppose that there
exists p ultimately periodic sequences a®, ..., a?Y of non-negative integers
such that ag’) > 1 and val ;) (a?) = Valﬁ@)(a(i)) =1 for everyi € [0,p—1].
Then a = (3.
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Proof. Using the same notation as in the proof of Theorem given the
product 8 = Hf:_ol B3;, the vector 7(51,...,@3_1) is the unique positive
eigenvector of M(f) having 1 as its last entry. Therefore, we must have
7(041,...,041)_1) = 7(51,...,@)_1), hence o; = f3; for all i € [1,p]. More-
over, we have ag = /(1 -~ ap—1) = B/(B1 -+ Bp—1) = Po. [

In particular, we get the following two corollaries.

Corollary 4.3.10. Let o = (ap, ..., ap—1) and B = (Bo, ..., p—1) be two
alternate bases such that Hf:_ol o = Hf;ol ; and suppose that for every
i€ [0,p—1], the oD _ezpansion of 1 and ,B(i)—expansz'ons of 1 coincide and
are ultimately periodic. Then o = 3.

Corollary 4.3.11. If dgi (1) = dg(1) for all i € [0,p — 1] and dg(1) is
ultimately periodic, then B; = Py for all i € [0,p — 1].

Proof. Apply Corollary 4.3.10| to 8 and ,8(1). |

4.3.2 Spectrum and a sufficient condition to be a Parry al-
ternate base

In Section [£.3.1], we have derived a necessary condition for an alternate base
to be Parry. Namely that the product S of the bases is an algebraic integer
and all 8; with j € [0,p — 1] belong to the field Q(5). In this section, we
give a sufficient condition.

We adopt the same notation and convention as in Section [I.2} we fix
an alternate base 8 = (fo,...,Bp—1), we set f = Hf:_ol ;, we consider an
alternate alphabet D = (Dy,...,D,_1) and we let Dig(8, D) be the corre-
sponding alphabet of real numbers as defined in .

Proposition 4.3.12. If D; 2 [— 5], [5i]] for all i € [0,p — 1] and if
the spectrum XPEBD)(8) has no accumulation point in R, then dﬁm(l) 18
ultimately periodic for alli € [0,p — 1].

Proof. Suppose that dg(1) is not ultimately periodic. Then the sequence

of remainders (rg_1(1))sen of the greedy algorithm (see Definition is
injective. For all z € [0,1] and ¢ € N, we have

/—1
rep1(z) = plo =Y dnptT " (4.9)
n=0



4.3. Algebraic properties of Parry alternate bases 123

where

p—1
dp = Zgnp%(x)ﬂz’ﬂ o Bp-1-
i=0

Since D; O [— |Bi] , | Bi]] for each i € [0,p—1], we get that for all £ € N, the
remainder g, 1(1) is an element of XP#B:DP)(3). Since the remainders all
belong to the interval [0, 1), the spectrum X P&(B-P)(5) has an accumulation
point in R. By Lemma either all the spectra X (i) based on the cyclic
shifts ,B(i) of the alternate base and the corresponding shifted alternate al-
phabet DY for ; € [0,p — 1] have an accumulation point or none of them
has. The result follows. |

Proposition 4.3.13. If 8 is a Pisot number and B; € Q(B) for all i €
[0,p — 1] then the spectrum XP&BDP)(B) has no accumulation point in R.

Proof. The set Dig(83, D) is a finite subset of Q(3) where (3 is an algebraic
integer. Hence, since every integer is an algebraic integer and since the set of
all algebraic integers is a ring (see Proposition , there exist a positive
integer ¢ and a finite subset A of the ring of algebraic integers in Q(/3) such

that .
Dig(8, D) U (Dig(8, D) ~ Dig(8, D)) = A

Let 2,y € XP8B:D)(B) such that z # y. There exists ¢ € Nand ag, ..., a_1 €
A such that

1(—1
T—y = fZanﬁ".
qn:()

We obtain that ¢(z —y) is an algebraic integer. Let d denote the (algebraic)
degree of B and let Bs,...,034 be the Galois conjugates of 5. Moreover,
set f1 = . Then, by Proposition by using the isomorphisms from
Definition [1.1.7] we get

d d
1< | [ vela(z — )] = alz =yl [ I¢x(a(@ — )|
k=1 k=2

Since ( is a Pisot number, for all k € [2,d], we have || < 1 and hence

M
1 — | Bl

-1
[r(a(z — ) < MDY |B" <
n=0
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where M = max{|¢i(a)| : k € [2,d], a € A}. We get that

d
1H1—!ﬁk\
— > — _
= y|*qk_2 M

The latter inequality states that the distance between distinct elements x,y
of the spectrum X P8P (5) is bounded from below by a constant uniformly
for all pairs x,y. |

As a consequence, we get the following theorem.

Theorem 4.3.14. If 8 is a Pisot number and B; € Q(B) for alli € [0,p—1]
then B is a Parry alternate base.

Proof. First apply Proposition with
D= ([[_ LBOJ ) LﬁOJ]L R [[_ Lﬂp—lJ ) LBp—l“])

and then apply Proposition [4.3.12 [ |

Let us make several remarks concerning the previous result. First, the
following example shows that the condition of 8 being a Pisot number is
neither sufficient nor necessary for 3 to be a Parry alternate base

Example 4.3.15. Being a Pisot number is not necessary to be a Parry
number even for p = 1 since there exist Parry numbers which are not Pisot
(see Remark and Example . To see that it is not sufficient for
p > 2, consider the alternate base 3 = (1/B, /) where 3 is the smallest Pisot
number. The product § is the Pisot number 5. However, the B-expansion
of 1 is equal to d s5(1), which is known to be aperiodic. This follows from
the fact that the only Galois conjugate of v/3 is —/3, and thus /3 is not a
Perron number, hence not a Parry number either.

Furthermore, the bases By, ...,8p,—1 need not be algebraic integers in
order to have the property that dﬁ@)(l) is ultimately periodic for all i €

[[O,p—l]].

Example 4.3.16. Consider the alternate base 8 = (1+§/ﬁ, 5+(‘3/ﬁ). We have

dgw) (1) = 2010 and dga) (1) = 110“. However, 2EV13 g not an algebraic
integer.

a
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As illustrated in the following example, for the same non-Pisot algebraic
integer [, there may exist two length—p alternate bases a = (ap, -+, 1)

and B8 = (By---Bp—1) such that Hz 0 = Hp_l =B, apy...,0p_1 €
Q(B), Bos---,Bp—1 € Q(B) and for all i € [0,p — 1], the expansion da(, (1) is
ultimately periodic whereas there exists i € [0, p—1] such that dg (1) is not.
The technique used for showing aperiodicity is inspired by the work [LS12].

Example 4.3.17. Consider the real root 3 > 1 of the polynomial z% —2°—1.
This number is an algebraic integer but it is not a Pisot number since two
of its Galois conjugates have modulus greater than 1 (see Example [1.1.12)).
1487 5%
BT 1487

Consider the alternate base ac = ( ). We can compute that

da(1) = 1010 and d (1) = 10'%102°(10*7)~.

Now consider B = (5, 58). We prove that dg(1) is not ultimately periodic.
Let v be a Galois conjugate of § such that |y| > 1 and let ¥: Q(8) — Q(y)
be the corresponding field isomorphism induced by ¥ (8) = 7. We prove
that (r12n,-1(1))nen is not ultimately periodic, where we set r_1(1) = 1. To
do so, it is enough to prove that (|¢(r12n_1(1))])neN is ultimately strictly
increasing. It can be computed that the word 102 is a prefix of dl’,g(l) and

ri(z) € {8z} U{B% — 8% : k € [0,5]} U {B%z — ¥ : k € [0,5]}.

Hence, for all z € [0,1] N Q(B), we have

P (@) € U@} U (%) - 2 k€ [0,5])
U{y*(@) ="+ k € [0,5]}.

Since |y < £, we get

[$(r11(2))] = W[ ()] = 7]

Thus, if we have

y1°
> ~ 5.49

then we obtain |¢(r11(z))| > |¢(z)|. It can be computed that



126 Chapter 4. Spectrum and normalization in alternate bases

is the prefix of dg(1) of length 84. Hence, by using (4.9) again, we get

rsg(1) = B2 — g1 Y — 3183 — B18%° — B1BY — BB
This implies

5 5 5 5 5
1 42 _ 9 42 2. 35 92 21 0 20 96
drss(1) =77 = 77 = g7 =7 = g1 g0

Now for x = rg3(1), we have |[¢(x)| ~ 6.23 > 5.49. We get

[ (rin(x))] > |i(2)]

where 711(x) = 795(1). Iterating the argument, we obtain that the sequence
(I(r12n—1(1))|)n>7 is strictly increasing.

4.4 Alternate bases whose set of zero representa-
tions is accepted by a finite Biichi automaton

Once again, we use the notation introduced in Section namely we use
fixed B, 8, D and then we work with the corresponding digit set Dig(3, D),
set of representations of zero Z(3, D) and spectrum XP8B:D)(5). We com-
bine the previously established results in order to characterize for which
alternate bases the set Z(3, D) is accepted by a finite Biichi automaton. In
doing so, we generalize Theorem[1.4.31]to alternate bases. We need one more
lemma.

Lemma 4.4.1. If the spectrum XDbig(B.D) (8) has no accumulation point in
R and if there exists j € [0,p — 1] such that [— [B] +1,[B] — 1] C D;, then
B is a Pisot number.

Proof. Suppose that XPig(B.D )(ﬁ) has no accumulation point in R and let j
be an index as in the statement. Since

p—1

xDig(B.D)(g) = ZXDi (B)Bit1 -+ Bp—1,

=0

the spectrum X i (3) has no accumulation point in R. By hypothesis on j,
the spectrum X W*l(ﬁ) has no accumulation point in R either. By Theo-
rem we get that £ is a Pisot number. [ |

Theorem 4.4.2. The following assertions are equivalent.
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1. The set Z(B, D) is accepted by a finite Biichi automaton for all alter-
nate alphabet D = (Do, ..., Dp_1).

2. The set Z(B3, D) is accepted by a finite Biichi automaton for one al-
ternate alphabet D = (Dy, ..., Dy_1) such that D; O [— |Bi] , [ Bil] for
alli € [0,p—1] and |B;] > [B] — 1 for some j € [0,p — 1].

3. B is a Pisot number and B; € Q(B) for all i € [0,p — 1].

Proof. The implication (1) = (2) is straightforward. Now, suppose that

(2) holds. By Theorem and Proposition the greedy expansions
dg (1) are ultimately periodic for all i € [0,p—1]. Then, by Theorem
we get that 8 is an algebraic integer and 3; € Q(p) for all ¢ € [0,p — 1IJ.
Moreover, since there exists j € [0, p—1] such that |3;] > [8]—1, we obtain
from Theorem and Lemma [{.4.7] that 3 is a Pisot number. Hence, we
have shown that (2) = (3). Finally, the implication (3) = (1) is
obtained by combining Proposition £.3.13] and Theorem [4.2.10} [

4.5 Greedy and lazy normalizations in alternate
bases

In this section, we apply our results in order to show that the greedy and lazy
normalizations in alternate base are computable by finite Biichi automata
under certain hypotheses, in which case we construct such automata.

Definition 4.5.1. The greedy normalization function
-1 -1
va.p: (UZg D) — (U0, 8,7 — 1D

is the partial function mapping any B-representation a € ®nenD,, of a real
number x € [0, 1) to the greedy B-expansion of x. We say that vg p is com-
putable by a finite Biichi automaton if there exists a finite Biichi automaton
accepting the set

{(u,v) € QD x [0, [8,] —1]) : valg(u) € [0,1) and v = vg p(u)}.

neN

Such a Biichi automaton is called a greedy normalizer in base 3 over D.
Similarly, the lazy normalization function

Vot (WZg DN — (U0, [8;] — 1N
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is the partial function mapping any SB-representation a € ®,cnD,, of a real
number z € (zg — 1,zg] to the lazy B-expansion of z. We say that V,/G,D
is computable by a finite Biichi automaton if there exists a finite Biichi au-
tomaton accepting the set

{(u,v) € QD x [0, [B,] = 1]) : valg(u) € (zg — 1,34] and v = v p(u)}.
neN

Such a Biichi automaton is called a lazy normalizer in base 3 over D.

4.5.1 Alternate base converter

Following the same lines as in the real base case, we start by constructing a
converter by using the zero automaton Z(3, D) defined in Section
Consider two alternate alphabets

D= (Dy,...,Dyp_1) and D’'=(Dj,... Dy, q).
We let D — D’ denote the alternate alphabet
(Do — Dy, ...,Dp—1 — D;)_l).

Definition 4.5.2. The converter from D to D’ is the Biichi automaton

C(Bv D x D,) = (Qﬁ,D—D’) (Ou 0)7 QfLD—D/’ Uf;ol(Dl X D;)’ E/)
where E’ is the set of transitions defined as follows: for (i, s), (j,t) € Qg p_pr
and for [{] € Uf:_&(Di x D}), there is a transition

(5) 2 .0
if and only if [§] € D; x D} and there is a transition (i, s) a-b, (j,t) in
Z(3,D - D).

Proposition 4.5.3. The converter C(3, D x D') accepts the set

{[4] € Q)(Dn x D,,) : valg(u) = valg(v)}.
neN

Proof. This is a direct consequence of Proposition [4.2.8 [ |

Proposition 4.5.4. If § is a Pisot number and 3; € Q(B) for all i € [0,p—
1], then the converter Cg py pr is finite.

Proof. By Theorems [4.4.2| and [4.2.10} the zero automaton Z(3, D — D’) is
finite. Hence, so is the converter Cg py p- |
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4.5.2 Biichi automata accepting Dg and Dj

In Chapter [3] we proved that when 3 is a Parry alternate base, the associ-
ated deterministic finite automata Ag and Aj accept Fac(Dg) and Fac(Dj)
respectively.

As in Remark we consider a modification of these automata in
order to get Biichi automata accepting Dg and D’ﬁ.

Suppose that 3 is a Parry alternate base and write

_ 4@ (@) ) (@) w
for all i € [0, p—1]. Without loss of generality, we suppose that d 50 (1) has a
non-zero preperiod for all ¢ € [0, p—1], that is, in the case of a purely periodic
expansion (tg---ty,—1)¥, we work with the writing to(t1 - - - tn,—1t0)“ instead.
Moreover, we suppose that n; is a multiple of p. By Proposition we
get
U (Xg0n — 1) = 08 () )

where ) = [Bign] —1— £ for all n € [0, m; +n; —1].

Since we supposed that n; is a multiple of p, consider the automata

As = (@, 1, F, [0, max [5;] — 1], E)

and
o - /
Ap = (@ I, F, [0, max [5;] — 1], &)

from Definitions [3.4.4] and [3.4.11] obtained by only preserving the set

{Qi,(i+k) mod p,k * (S [[Oap - 1]]7 k€ [[O7ml +n; — 1]]}

of accessible states (see Lemma[3.4.12)and ([3.6)). Moreover, as in Chapter [3]
for the sake of clarity, we now denote g;  instead of g; (i4%) mod p,i Since the
second index is completely determined by the other two.

We define associated Biichi automata as follows.

Definition 4.5.5. Let Bg and Bb denote the Biichi automata defined by
Bs = (Q, q0, F5, [0, max [B;] — 1], E)
0<i<p

and
= (Q F m 1 —1], E).
Bﬁ ( 7q0,07 B; [[07 OS’?%XP ’Vﬁz-‘ ]]7 )
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where the set of states @ is the one of the (accessible) automata Ag and A,
the transition functions £ and E’ are the same as the ones of the automata
Ag and .Af@ respectively and the set of final states Fp is given by

Fp = {qi702’i€ [[O,p— 1]]}

Proposition 4.5.6. If 3 is a Parry alternate base then the Biichi automaton
Bg (resp., Bg) accepts the set Dg (resp., Dyg).

Proof. An infinite word is accepted by Bg if and only if it can be factored as
uguiug - - - where each factor u,, corresponds to a first return to a final state,
that is, for all n € N, there is a path labeled by w,, from a state of the form g; o
to a state of the form ¢; ¢ and u,, is the shortest next factor with this property.
Since we have built Bg by using a non-zero preperiod for each dg(i) (1), each

such factor u, must belong to the set Y (@uol+Fun-1) 14, 1y from Defini-
tion [3.:4.1] The conclusion for the greedy case follows from Proposition [3.4.2]

Moreover, as in Lemma [3.4.15] by Lemma |3.4.13}, a word w € Ag is accepted
in Bg if and only if 0g(w) is accepted in 5. The conclusion follows since

B
05(Dg) = Dj by Proposition [2.4.39 [ |

Example 4.5.7. Consider again the alternate base 3 = (L%/ﬁ, SJFT@)

We have dﬁm)(l) = 2010% and dﬁm(l) = 110%, hence dg(l) = 200(10)* and
d;(l)(l) = (10)¥. As explained above, since d;(l)(l) is purely periodic, we

consider the writing 1(01)* instead of (10)*. Moreover, we have (5(zg—1) =
012(02)“ and E*B(l)(xﬂm — 1) = 0(20)“. We obtain the Biichi automata Bg

and Bj depicted in Figure

4.5.3 A sufficient condition for the greedy and lazy normal-
izations to be computable by finite Biichi automata

We are now able to state a generalization of Theorem [1.4.42

Theorem 4.5.8. If B is a Pisot number and 5; € Q(5) for alli € [0,p—1],
then the greedy and lazy normalization functions vg p and V/B p are com-
putable by finite Bilichi automata.

Proof. If 8 is a Pisot number and g; € Q(3) for all ¢ € [0,p — 1], then
by Theorem the alternate base 3 is a Parry alternate base. First,
consider the greedy case. By Proposition the finite Biichi automaton
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0
1
1
2 0 0 0
s
—»140,0 0 » 40,1 L » 40,2 2 » 40,3 q0,4
—
0
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0
0,1 0 1
1,2 1
0
1 2
—
q1,0 0 1,1 q1,2
—
1
0

Figure 4.2: A Biichi automaton accepting Dg (red labels) and Dj (blue
— (113 5+V13
labels) for 8 = (LRH2, 213,

Bg accepts the set Dg. Thanks to this automaton, we construct a finite
Biichi automaton accepting the set

{(u,0) € @(Dn x [0, [Ba] —1]) : Tz € [0,1), v = dg(z)}.
neN

By computing the product of the latter Biichi automaton and the converter
C(B,D x D') where

D' = ([[07 [60] - 1]]7 SRR HO’ (ﬁp—l-l - 1]])’

which is finite by Proposition[£.5.4] we get a finite Biichi automaton accepting
the set

{(u,0) € Q)(Dy x [0, [Ba] — 1]) : valg(u) = valg(v) and

neN

Jdz €10,1), v=dg(x)}
= {(u,v) € ®(Dn x [0, [Bn] —1]) : valg(u) € [0,1) and v = vg p(u)}.
neN

Therefore, the so-constructed finite Biichi automaton is a finite greedy nor-
malizer in base B over D. Similarly, by Proposition the finite Biichi
automaton B’ﬁ accepts the set D’ﬁ. Thanks to this automaton, we construct
a finite Blichi automaton accepting the set

{(u,v) € ®(Dn x [0,[Bp] —1]) : 3w € (zg — 1, 28], v =L3(x)}.

neN



132 Chapter 4. Spectrum and normalization in alternate bases

By computing the product of the latter Biichi automaton and the finite
converter C(3, D x D’), we get a finite Biichi automaton accepting the set

{(u,v) € ®(Dn x [0, [Bn] —1]) : valg(u) = valg(v) and

neN
Jr € (xg — 1L, zg], v="_g(x)}

= {(u,v) € RQ(Dn x [0, [Bn] — 1]) : valg(u) € (zg — 1,24] and
neN

v = VbD(u)}

The so-constructed finite Biichi automaton is a finite lazy normalizer in base
B over D. ]

Example 4.5.9. Consider again the alternate base 3 = (L%/ﬁ, M’T@)
Following the same steps as described in the proof of Theorem from
the automata depicted in Figures and we obtain a finite Biichi au-
tomaton computing the greedy normalization function in base 3 over the
pair of alphabets D = ([-2,2], [-1, 1]).



CHAPTER

5

DYNAMICAL PROPERTIES OF
ALTERNATE BASE
EXPANSIONS

In this chapter, we generalize the greedy and lazy [-transformations for a
real base ( to the setting of alternate bases 3 = (0o, ..., 8p—1). Asin the real
base case, these new transformations, denoted T;g and Lg respectively, can be
iterated in order to generate the digits of the greedy and lazy 3-expansions of
real numbers. The aim of this chapter is to describe the measure theoretical
dynamical behaviors of Tjg and Lg.

We first prove the existence of a unique absolutely continuous (with re-
spect to an extended Lebesgue measure, called the p-Lebesgue measure)
Ts-invariant measure. We then show that this unique measure is in fact
equivalent to the p-Lebesgue measure and that the corresponding dynamical
system is ergodic and has entropy %log(ﬂ) with 8 = Hf;ol Bi.

Then, we express the density function of this measure and compute the
frequencies of letters in the greedy (3-expansions. We also obtain the dynami-
cal properties of Lg by showing that the lazy dynamical system is isomorphic
to the greedy one. We also provide an isomorphism with suitable extensions
of the real base shift.

Finally, we show that the B-expansions can be seen as [-representations

133
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over general digit sets with g = H?;(} ; and we compare both frameworks.

The results presented in this chapter are from [CCD2I]. Since this chap-
ter generalizes the dynamical properties of real base expansions to the alter-
nate base framework, Sections [T.4.4] and [T.4.5] are needed preliminaries
for the good understanding of the contents of this chapter.

Contents of the Chapter

.1 Definition of the 5-transtormations| . . . .. ... .. .. 134
b.1.1  The greedy B-transtormation| . . . ... ... .. 134
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B13 A noteon Cantorbased . . ... ......... 145

[5.2  Dynamical properties of Tjgf. . . . . ... ... ... ... 146
[5.2.1  Unique absolutely continuous 7 g-invariant measure|l46
b22 Fxfended measurel . ... ... ... ....... 152
5.2.3  Density tunctions| . . . . . . ... ... ... ... 154
b.2.4  Frequencies| . . .. ... ... oL 158

[5.3  Dynamical properties of Lg|. . . . . ... .. .. ... .. 159

p.3.1  Isomorphism between greedy and lazy |
| [B-transformations | P 159

[5.3.2  Unique absolutely continuous Lg-invariant measurefl61

p.3.3  Density tunctions and frequencies|. . . . . . . . . 162
5.4 Isomorphism with the G-shifts] . . . . ... ... ... .. 163
[5.5  B-Expansions and some ({3 ... 3,_1)-expansions| . . . . . 165
b.5.1  Digit set built thanks to all the p-tuples| . . . . . 166
5.5.2  Digit sets built thanks to admissible p-tuples] . . 173

5.1 Definition of the B-transformations

In this chapter, we let 3 be a fixed alternate base, we let p be its length
and we let 8 be the product Hf;& Bi. In this case, recall that zg from (2.9)
satisfies xg < 400.

5.1.1 The greedy B-transformation

As said in Chapter [2] the greedy B-expansion can be obtained by alternating
the f;-transformations: for all x € [0,1) and n € N,

€n((17) = Lﬁn(Tﬁnfl ©---0 TﬁO(IL‘))J .

This can symbolically be seen in the subsequent example.
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Figure 5.1: The transformations 7', 3 (blue) and T, 135 (green).
2 6

0o @O 2 © 1 0 @O 2 O 1 0 10O

/

a -

N : //i / /i
/7 // / [ b iy
/ 1Y ‘ [/ PABIVAE |

Figure 5.2: The first five digits of the greedy B-expansion of 1+—5‘/5 are 10102
— (14+V/13 5413
for B8 = (=52, ==2).

Example 5.1.1. Consider the alternate base 8 = (1+27\/ﬁ’ %) already

studied in Chapters and [4 The greedy B-expansions are obtained by

alternating the transformations T4, 43 and T, 13, which are both depicted
6

in Figure Moreover, in Figure we see the computation of the first

.. . 145
five digits of the greedy B-expansion of =2-2.

We define the transformation associated with the greedy B-expansions.

Definition 5.1.2. The greedy B-transformation is the transformation de-
fined by

Ta: [0,p—1] x [0,1) = [0,p — 1] x [0, 1),
(i,2) = ((i + 1) mod p, Tp,(z)). (5.1)

In order to see that the greedy B-transformation generates the digits of
the greedy (-expansions, we define p + 1 maps.
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Definition 5.1.3. Define the maps

m: NXxR =R, (n,z) —» =z
and

0i: R—={i} xR, z— (i,2)
with i € [0,p — 1].

Therefore, for all x € [0,1) and n € N, we have

8n(aj) = Lﬁn(ﬂ'g O Tg o 50(LE))J

and
T‘n(l‘) = T O Tngl o 50(2?)

That is, the greedy (-expansions of real numbers in [0,1) can be obtained
by alternating the p maps

mp0Tgod; 0,1) —[0,1)

|0,1)° [
with ¢ € [0,p — 1].

As in Section the greedy B-transformation can be extended to
intervals of real numbers bigger than [0,1) thanks to the definition of zg.
Recall le link between the values T g(n) and T g(n+1), for all n € N, given in
Proposition [2.4.5f we have

Definition 5.1.4. The extended greedy (B-transformation, denoted TE"t, is
defined by

p—1 p—1
75t | ({3 < 0,250)) = | ({i} x [0,250)), (5.2)
i=0 i=0
(i) s {((z + 1) mod p, Bz — | Biz] ) if x €0,1)
’ ((z + 1) mod p, Bix — ([Bi] — 1)) ifx e [1,xﬁ(i)).

We extend the definition of the greedy (3-expansions of real numbers to
the interval of real numbers [0,23). The (extended) greedy B-expansion of
x € [0,zg) is defined as the concatenation of the digits obtained thanks to
the remainders defined by alternating the p maps

9 O TBXt o 52‘ [07 37[3(1')) — [07 xﬁ(i+1))

[Ouxﬁ(l) ) ’
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L g(1)
g
1
0 10121 T3 T
Bo B Bo

Figure 5.3: The maps w5 o TEXt o (50“0 25) (blue) and 7y 0 TB’“ o (51‘[0 2 1)
9y b ﬁ

(green) with B = (1+27\/ﬁ’ %)

with i € [0,p — 1]

Example 5.1.5. Let 8 = (H;/ﬁ, 5*%/ﬁ) be the alternate base of Exam-
ple The maps

T O TEIXt o 50’[0@'6) : [0, xg) — [0, $,3(1))

and

WQOTBXtO&M )): [0,$ﬂ(1)) — [O,x,@)

07335(1

are depicted in Figure |5.3

Remark 5.1.6. Following Remark [2:3.16] it is important to note that here,
when [y € N>a, the greedy B-expansion of 1 is (5y — 1)d5<1)(1) instead of
Bo0% as in Chapter Pl Note that, as said in Remark the quasi-greedy
B-expansion built on this greedy (B-expansion of 1 coincides with the one
defined and used in Chapter 2] Hence, this chapter can make use of results

from Sections [2.3.3] 2:3:4] 2:3.5] and

The restriction of the extended greedy (3-transformation to the domain
[0,p — 1] x [0,1) gives back the greedy [B-transformation initially defined
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in (5.1). Moreover, the subspace [0,p — 1] x [0,1) is an attractor of TBXt in
the sense given by the following proposition.

Proposition 5.1.7. For each (i,x) € Uf;ol ({i} x [O,x,@u))), there ezists
N € N such that for alln > N,

(T§*)"(i,x) € [0,p — 1] x [0,1). (5.3)

Proof. Let (i,x) € Uli):_()l ({i} x [O,mﬁ(i))). On the one hand, if
(T§)" (i,2) € [0,p — 1] x [0,1)

for some N € N, then clearly (5.3 occurs for all n > N. On the other hand,
if
(TEXt)n(i7m) ¢ [[Oap - 1]] X [07 1)

for all n € N, then we would get that z = T g0 since at each step n, the
greedy algorithm would pick the maximal digit [B+n] — 1. |

We now prove a result linking the iterations of the extended greedy maps
and the lexicographic order on n-tuples. In what follows, we suppose that,
for all n € N, the set of n-tuples H:.L:_Ol [0, [Bi] — 1] is equipped with the lexi-

cographic order: (co, ..., cn—1) <lex (b, ---,C},_1) if there exists i € [0,n—1]
such that ¢ = ¢y, ...,ci-1 =¢,_; and ¢; < ¢

Proposition 5.1.8. For all z € [0,2g8) and n € N, we have

n—1
70 (T§)" 0 Bo(x) = 20~ Bur — 3 ciBist -~ s
k=0
where (cg, ..., cn—1) is the lexicographically greatest n-tuple in HZ;& [0, [Br]—

n—1
1] such that Hisighlee=t <o

Proof. We proceed by induction on n. The base case n = 0 is immedi-
ate: both members of the equality are equal to x. Now, suppose that
the result is satisfied for some n € N. Let « € [0,z23). Let (co,...,cn-1)
be the lexicographically greatest n-tuple in Hz;é [0, [Bk] — 1] such that

22;3 ckBri1Bn-1
Bo+Bn-1
is the lexicographically greatest (m + 1)-tuple in [[;" , [0, [Bx] — 1] such

that W < z. In fact, otherwise they exists a (m + 1)-tuple
(¢hy -y 0) in TTig [0, [Bi] — 1] such that (cg,...,¢),) >ex (Cos---)Cm)

< z. Then it is easily seen that for all m < n, (co,...,cm)
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and Z’“:Lk:ﬁm < z. Therefore, by setting ¢}, ; = --- =¢,,_; = 0, the

Bo---B
n-tuple (cp,...,c,_1) in HZ;(I) [0, [Bk] — 1] is lexicographically greater than
(co,...,cn—1) and satisfies

—1
Z:o CZ/BkH Bt _ 221:0 025k+1 - Bm <

=7,
Bo -+ Bn-1 Bo -+ Bm
which is absurd. Now, set y = mgo0 (Tg‘t)” 0do(z). Theny € [0,z 4()) and by

induction hypothesis, we obtain that y = 8y - - - 5n—1—zz;(1) CpBra1 - Brn-1-
Then, by setting

) ityen
" [ﬁn—| -1 ify € [Lx@(n))

we obtain that
n
w0 (TE*)" o do(x) = B0+ Bu — D ckBri1 - Bu-
k=0
In order to conclude, we have to show that

) Zzzock.tg'k-u“ﬁn <z

a Bo-B

b) (co,...,c,) is the lexicographically greatest (n + 1)-tuple in
[T [0, [Bx] — 1] such that [a)] holds.

By definition of ¢,, we have ¢, < yf3,. Therefore,

n n—1
Z CkBr+1 Bn = (Z CkBrt1 anl)/gn +cn
k=0 k=0
- (1}50 o Bre1 — y)ﬁn + cn

This shows that Eﬂ holds.
Let us show |B_7|by contradiction. Suppose that there exists (¢, ..., d,) €

ren
[T [0, [8x]—1] such that (ch, -, c}) iex (cos .., €) and Zi=0kenPn o
z. Then there exists m < n such that ¢; = ¢o,...,¢,_ 1 = ¢n—1 and

¢, > cm + 1. We again consider two cases. First, suppose that m < n.

Since (¢, ..., ) >1ex (Coy -+, Cm), We get w > 7. But then
0 m BO ﬁm

chcﬁk—l—l"'ﬁn > (chcﬁk+1"'ﬁm)ﬁm+l"'ﬁn > 280 Bn,
k=0 k=0
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a contradiction. Second, suppose that m = n. Then

n n—1
2B B = > ChBrit B = Y ckBrsr Bt en + 1,
k=0 k=0

hence yB, > ¢, +1. If y € [0,1) then ¢, + 1 = |yBn] +1 > ybBp, a
contradiction. Otherwise, y € [l,x,@(n)) and ¢, + 1 = [B,]. But then ¢, >
[Bn], which is impossible since ¢, € [0, [5,] — 1]. This shows |b)| and ends
the proof. [ |
5.1.2 The lazy @-transformation

Let us now define the lazy B-transformation.

Definition 5.1.9. The lazy B-transformation is the transformation defined

by
p—1 p—1
Lg: U ({Z} X (0,:EB(¢)]) — U ({Z} X (O,I‘B(i)]), (5.4)
=0 i=0

(i,2) = ((i +1) mod p, Bz — [Bix — x 51 1)

The lazy B-transformation Lg generates the digits of the lazy B-expan-
sions of real numbers in the interval (zg — 1,2g] as follows. For all z €
(zg —1,z8] and n € N, we have

&n(x) = [ﬁn (m 0 Lo do(z)) — azﬁ(nH)-‘

and
sp(x) =m0 Lg"'l o0 0o ()

As for the greedy B-transformation, the lazy B-transformation Lg can
be extended to a bigger interval.

Definition 5.1.10. The extended lazy B-transformation, denoted L‘Z,Xt, is
the transformation defined by

p—1 p—1
Lt U (i} x (0,250]) = U (i} x (0,250)),
1=0 =0

((i + 1) mod p, Biz — mm - x5<i+1>1 ) iz e (rg0 — Lzgm)]
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Therefore, we define the (extended) lazy B-expansion of z € (0,zg] as
the concatenations of the digits obtained thanks to the remainders defined
by alternating the p maps

Ty 0 Lext |(0x ol (O,xﬁ(i)] — (O’xﬁ(i+1)]
B 1

for i € [0,p —1].
Example 5.1.11. Consider again the length-2 alternate base

8= (H‘ﬁ 5+\ﬁ) from Examples|5.1.1jand [5.1.5, We have zg 5+7‘ﬁ
1.67 and 24¥13 ~ 1.86. The maps

g(l)

M9 O Lext o 50‘(0 2] : (0, xlg] — (0, xﬁu)]

and
T oLﬂ 051‘ Ox o (Oaxﬁ(l)] — (O’xﬁ]

are depicted in Figure[5.4] In Figure we see the computation of the first

five digits of the lazy B-expansion of 1+—5‘/5

Note that for each i € [0,p — 1],

Lg* ({i} x (zg0 — Lagw]) € {(i + 1) mod p} x (g6 — Lagae].

Therefore, the restriction of the extended lazy B-transformation LeﬁXt to the
domain Uf;ol ({2} X (xg6) — 1,xﬁ(i)]) gives back the lazy (B-transformation
L initially deﬁned in (5.4). Similarly to the greedy case, we obtain that the
subspace Up ({i} x (= Tg6) — l,azﬁ(i)]) is an attractor of L%Xt.

Proposition 5.1.12. For each (i,x) € Uf;ol ({i} x (O,xﬁm]), there exists
N € N such that for alln > N,

p—1

(L5 G x) € | ({1} x (@go — Lagn). (5.5)

=0
Proof. Let (i,z) € |-, ({z} (0, ﬁ(i)])~ On the one hand, if
p—1

(LN @) € | ({1} x (wg0 — Lagn))

=0
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17/3(1)

xrp

_2 _ 1 xrp  Tg)
T8~ 3, B B A

.'l‘ﬂlljle

Figure 5.4: The maps 73 o LeﬁXt o 5O|(0,xﬁ] (blue) and 75 o L%Xt o 51}(0’%(1)]
; _ (1413 54113
(green) with 8 = (18, 2H¥13),

© 1 2 0o @O 0 @ 2 0o O 0 1@

A A I A

/
% % /

N |

Figure 5.5: The first five digits of the lazy B-expansion of % are 01112
_ (1+V13 5+V13
for B = (F5==, ==2).

for some N € N, then clearly (5.5 occurs for all n > N. On the other hand,
if

(L%xt)n(i’.ﬁ) ¢ U ({’L} X (:L‘ﬁ(i) — l,xﬁ(i)])
=0

for all n € N, then we would get that x = 0 since at each step, the lazy
algorithm would pick the minimal digit, which is always 0. |

The following proposition is the analogue of Proposition for the lazy
B-transformation.
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Proposition 5.1.13. For all x € (0,28) and n € N, we have

n—1
my o (L") o do(x) =aBo- Bu1 — D ckBrit B
k=0
where (co, . .., Ccn—1) is the lexicographically least n-tuple in HZ;& [0, [Bx]—1]

S Za kB Bn—1 + [Brn]=1
such that =h=tzt=2t + e IToh = %

Proof. We proceed by induction on n. The base case n = 0 is immediate:
both members of the equality are equal to . Now, suppose that the result
is satisfied for some n € N. Let z € (0,zg]. Let (cop,...,cn—1) be the
lexicographically least n-tuple in [[{—y [0, [8x] — 1] such that

S kBt Bt = [Bm] — 1

TEA N LA R (5.6

Bo-- Bn-1 mzzzn ITro Be )

Note that inequality (5.6) wan be rewritten as
n—1
—0 CkPrk41 - Bn—1 + Tgm
k= k1= P B > (5.7)
Bo -+ Bn—1

Then it is easily seen that for all m < n, (cg, ..., cn) is the lexicographically

e CkBrt1 Bm+T g(m
least (m+1)-tuple in [}~ [0, [B%] — 1] such that Liczo ckBett Tolmth)

Bot, Z
x. In fact, otherwise they exists a (m+1)-tuple (cg, ..., ¢;,) in [ [, [0, [Bk]—

2 k0 B4 1 Bm T g (m
1] such that (c),...,c\) <iex (Co,- .-, Cm) and Z22E k;glnﬁm pmty
/

yCm =
Therefore, by setting ¢, 1 = [Bmy1] —1,...,¢,_1 = [Ba1] — 1, the n-
tuple (cp,...,c,_1) in Hz;(l) [0, [Br] — 1] is lexicographically smaller than
(co,...,cn—1) and satisfies

Z;(l) C;ﬂkﬂ e Buo1 F Tgn) Z;cnzo C;;Bk’-i—l < B+ Z g(m+1)
Bo -+ Bn-1 Bo -+ Bm B
which is absurd. Now, set y = ma0 (Lg*)"0do(z). Then y € (0, z4m] and by

x,

induction hypothesis, we obtain that y = 8y - - - 511—1—22:(1) CBr+1 - Brn-1-
Then, by setting

0 if y € (O,xﬁ(m —1]
C =
" yBe —zgnen] iy € (zm) — Liagm]
we obtain that

g O (L%Xt)""'1 0 dp(x) =mg 0 L%Xt 0 dp(y)
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:yﬁn — Cn

=2B0- B — Y _ ckBrr1- P

k=0

In order to conclude, we have to show that

> k=0 CkBrt1 Bt 5
a) k=0 CkPk+1 B( +1) > T
Bo*+Bn =

b) (co,...,¢n) is  the lexicographically least (n + 1)-tuple in
[Tr_o [0, [Bx] — 1] such that [a)] holds.

By definition of ¢,, we have ¢, > y3, — T g(n+1) - Therefore,

n n—1
> crBrar Bn= (D ckBri1 - Bn1)Bn + cn
k=0 k=0

= (xBO o Buo1 — y)ﬁn +cn
> 2P PBn — Tgmtn)-

This shows that EZ] holds.
Let us show [b)| by contradiction. Suppose that there exists (cf, ..., c},) €
[1i—o [0, [Bk] — 1] such that (cf,...,c),) <iex (co,...,cn) and

ZZ:O C;CBkJrl o Bn+ xﬁ(n-H)
/80 to /Bn o

Then there exists m < n such that ¢, = co,...,¢),_; = ¢m—1 and ¢, +

1 < ¢pn. We again consider two cases. First, suppose that m < n. Since

D ohe CBra1Bm AT (1)
(s ) <tex (€0s--.,Cm), We get o g < z. But then

x.

n

/
Z CkﬁkJrl o 577, + xlg(n-H)
k=0

< (Zczﬁk-i-l .. -ﬂm)ﬁerl .. ﬁn + Z ([ﬁk—| — ]-)ﬂk—i-l .. /Bm + xﬂ(n+1)
k=0 k=m+1

= (ZCZBk-’-l e /Bm)ﬁm-i-l .. /671 + xﬁ(m+1)/8m+1 . /Bn
k=0

< (3350 < Bm — $5(m+1))ﬂm+1 < B+ Jfﬁ(mﬂ)ﬁmﬂ < B
=xBo -+ Bn,
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a contradiction, where the first equality is obtained by iterating (2.10]). Sec-
ond, suppose that m = n. Then

n
w0+ B < Y b1 B+ Tgimin)
k=0

n—1

= Z kBt Bn + €y + Tgmin)
k=0

n—1
< Z Ckﬂk-I—l t Bn +cp—1+ xﬁ(n+1)a
k=0

hence y8, < ¢, — 1+ L g(nt1) - Ify € (0,3:5(”) — 1] then ¢, = 0. But
then ¢, + 1 < 0 which is impossible since ¢/, € [0,[5,] — 1]. Otherwise,
y € (z5m — 1,50 ] and we have

cn— 1+ (L'ﬂ(n+1) = ’—yﬂn — (L'ﬂ(n+1)-| -1+ m[ﬂ"*”
< yﬂn - xﬂ(n+1) + CUIB(nJrl)
= yBn,

a contradiction. This shows @ and ends the proof. |

5.1.3 A note on Cantor bases

Since the greedy algorithm described in Section is well defined in the
context of Cantor bases, a natural question is to ask if the notion of itera-
tion of a greedy B-transformation can be extended to this framework. The
following proposition is a generalization of Proposition [5.1.8 when restricted
to [0,1) but in the general framework of a Cantor base 8 = (5,)nen.

Proposition 5.1.14. For all x € [0,1), n € N and all By, ..., fn-1 > 1, we

have
n—1

Tﬁn—1 ©---0 Tﬂo ('7;) =zf0- - Bn-1— Z Ckﬁk—‘rl < B
k=0

where (co, . .., cn—1) 18 the lexicographically greatest n-tuple in Hz;é M0, [Br]—

n-—1 e
o E s <

For all k € [0,n—1], the B;-transformation Lg, is defined on (x5, —1,24,].
So, the transformations Lg,, ..., Lg, , cannot be composed to one another in
general. Therefore, even if the lazy algorithm can be defined for Cantor bases,
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provided that xg < 400, we cannot state an analogue of Proposition
in terms of the lazy transformations for Cantor bases.

Even though this chapter is mostly concerned with alternate bases, let
us emphasize that some results are indeed valid for any sequence (3, )nen €
(]R>1)N , and hence for any Cantor base. This is the case of Proposition

Theorem Corollary and Proposition [5.2.19

5.2 Dynamical properties of T}

In this section, we study the dynamics of the greedy B-transformation. First,
we generalize Theorem to the transformation T on [0,p — 1] x [0,1).
Second, we extend the obtained result to the extended transformation Tg"t.
Third, we provide a formula for the density functions of the measures found
in the first two parts. Finally, we compute the frequencies of the digits in
the greedy (-expansions.

5.2.1 Unique absolutely continuous 7s-invariant measure

In order to generalize Theorem [1.4.46] to the alternate base framework, we
start by recalling a result of Lasota and Yorke [LY82, Theorem 4].

Theorem 5.2.1. Let T: [0,1) — [0,1) be a transformation for which there
exists a partition [ag, a1),...,[ax—1,ax) of the interval [0,1) with ag < --- <
ag such that for each k € [0,K — 1], T is convex, T'(ar) = 0,

‘[akvak+l)
T'(ar) > 0 and T'(0) > 1. Then there exists a unique T-invariant absolutely
continuous probability measure. Furthermore, its density function is bounded
and decreasing, and the corresponding dynamical system is exact.

We then prove a stability lemma.

Lemma 5.2.2. Let Z be the family of transformations T: [0,1) — [0,1)
for which there exist a partition [ag,a1),...,|ax—1,ax) of the interval [0,1)
with ag < --- < ag and a slope s > 1 such that for all k € [0, K — 1],
apr1— ap < % and for all x € [ag,ar+1), T(x) = s(x —ay). Then T is closed
under composition.

Proof. Let S,T € Z. Let [ag,a1),...,|ax—1,ar) and [by,b1),...,[br—1,bL)
be partitions of the interval [0,1) with ag < -+ < ag, by < --- < by, and let
s,t > 1 such that for all k € [0, K — 1], ag41 —ax < 1, for all £ € [0, L — 1],
bey1 — by < % and for all z € [0,1), S(x) = s(z — ag) if x € [ag,ar+1) and
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T(x) = t(x —by) if x € [by,bey1). For each k € [0, K — 1], define Ly to be
the greatest ¢ € [0, L — 1] such that ax + bf < ag+1. Consider the partition

b b bro— b b
{a0+—0,a0+—1>,...7 {a0+£sao+ﬂ)ﬁ[ao+ﬂyal>
s s s s s

by b b _ br by, .
{!IK71+?O-,LZK71+%)-,--~«,[GK71+ LK: 17!1K71+ L’;H)«[(U{—l‘F L’:'#m)

of the interval [0, 1). For each k € [0, K — 1] and ¢ € [0, Ly — 1], ar + bZT“ —
ap— 2 < Land ap1 — ap — bLT’“ = (ag+1 — ag — bL’;H) + bL’“t_bLk <+

Now, let € [0,1) and k& € [0, K — 1] be such that = € [ag,ag+1). Then
S(z) = s(x —ag) € [0,1). We distinguish two cases: either there exists
¢ € [0, Ly —1] such that x € [ak—l—bf,ak—i-b’z;”), orzx € [ak—l—bLT’“,akH). In the
former case, S(x) € [bg, bey1) and T'o S(x) = t(S(x) —by) = ts(z — (ar + bf))
In the latter case, since a1 — ap < bL’“%, we get that S(x) € [br,,br,+1)
and hence that T'o S(z) = t(S(z) — br,) = ts(x — (ar + bLT’“)) This shows
that the composition T o S belongs to Z. |

The following theorem provides us with the main tool for the construction
of a Tg-invariant measure.

Theorem 5.2.3. For all n € N>y and all Po,...,Bn—1 > 1, there exists a
unique (Tp,_, o---oTgy)-invariant absolutely continuous probability measure
p on B([0,1)). Furthermore, the measure p is equivalent to the Lebesgue
measure on B([0, 1)), its density function is bounded and decreasing, and the
dynamical system

([07 1), B([07 1))7M7Tf3n71 00 Tﬁo)

is exact and has entropy log(Bo - - Bn—1).

Proof. The existence of a unique (T3, , o---0Tpg,)-invariant absolutely con-
tinuous probability measure p on B([0, 1)), the fact that its density function
is bounded and decreasing, and the exactness of the corresponding dynamical
system follow from Theorem and Lemma With a similar argu-
ment as in [DK10, Lemma 2.6], we can conclude that %‘\ >0 A-a.e. on [0,1).
It follows that p is equivalent to the Lebesgue measure on B([0,1)). More-
over, the entropy equals log(fo - - - fn—1) since Tg, , o---0Tp, is a piecewise
linear transformation of constant slope 3y - - - 8,—1 [DK21), Roh61]. [ |
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The following consequence of Theorem will be useful for proving
our generalization of Theorem [1.4.46

Corollary 5.2.4. Let n € N>y and Bo,...,Bn—1 > 1. Then for all B €
B([0,1)) such that (Tp, , o---0Tp,) ' (B) = B, we have A\(B) € {0,1}.

Definition 5.2.5. For each i € [0,p — 1], we let ug; denote the unique
(T,_,0---0Tp,_,)-invariant absolutely continuous probability measure given
by Theorem [5.2.3

We use the convention that for all n € Z, g, = 18,5 mod p-

Note that if p = 1, the measure ugo is the unique invariant measure
found independently by Gel’fond in 1959 [Gel59] and Parry in 1960 [Par60]
(see Theorem [1.4.46)).

Lemma 5.2.6. For i €[0,p— 1], we have pg; = pg,i—1 ° Tﬁ:il.

Proof. Let i € [0,p—1]. By definition of p14;, it suffices to show that pg ;10
Ty, il is a (Tp,_, o -+ o Tp,_, )-invariant absolutely continuous probability
measure on B([0,1)). First, we have pg,;_1 (Tﬂ:il([o, 1))) = pg,-1([0,1)) =
1. Second, for all B € B(]0,1)), we have

HB,i-1° T_il ((T/Bifl 00 Tﬁz‘fp)_l(B))
= ppi-1((Tg, 00 Ts ,0Tp, )" (D))
= pgi1((Ts 00 Tp , ) (T (B)))
= pgi-1(T5", (B)).

Third, for all B € B([0,1)) such that A(B) = 0, we get that A(T,' (B)) =

0 by Remark |1.4.47, and hence that ”ﬁFl(TB_iil(B)) = 0 since pg;—1 is

absolutely continuous. |

Definition 5.2.7. Consider the o-algebra

p—1
Tp = { Ui x B) : vi e [0,p—1], BiEB([O,l))} (5.8)

1=0

T thank Julien Leroy for suggesting this lemma, which allowed me and my co-authors
to simplify several proofs.
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over [0,p — 1] x [0,1). We define a probability measure pg on the o-algebra
T, as follows: for all By, ..., Bp—1 € B([0,1)), we set

p—1 p—1

, 1

Mﬁ( U ({7} Bi)) = - ZMﬁ,i(Bi)- (5.9)
i=0 Pz

We now study the properties of the probability measure ug.

Proposition 5.2.8. The measure ug is Tg-invariant.

Proof. For all By,...,B,—1 € B([0,1)),

p—1 p—1

1a (Tﬁl ( J{i} Bi))) = Mﬁ( Ty ({i} Bi))
i=0 1=0
( 1

- Ma( Ui » B»)

1=0

where we applied Lemma for the fourth equality. [

Corollary 5.2.9. The quadruple ([[O,p—l]] x10,1), Tp, 13, Tg) is a dynamical
system.

Let us define a new measure over the o-algebra 7,, which extends to the
“p-dimensional setting” the Lebesgue measure.

Definition 5.2.10. For all By, ..., B,_1 € B([0,1)), we set

p—1 p—1
Ap< i} x B») - ;Z A(BY). (5.10)

1=0 =0

We call this measure the p-Lebesgue measure on T,.
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Proposition 5.2.11. The measure pg is equivalent to the p-Lebesgue mea-
sure on Tp.

Proof. This follows from the fact that the p measures ugy,...,ugp—1 are
equivalent to the Lebesgue measure A on B([0,1)). [

Next, we compute the entropy of the dynamical system ([[O, p — 1] x
[0,1),7p, 13, T@). To do so, we consider the p induced transformations

Tg;: {i} x [0,1) = {i} x [0,1), (i,x) — Tg(i,x)

for i € [0,p — 1]. Note that indeed, for all (i,z) € [0,p — 1] x [0,1), the
first return of (i, z) to {i} x [0, 1) is equal to p. Thus Tg; = Tg‘{i}x[o " For

each i € [0,p — 1], the induced transformation T, is measure preserving
with respect to the measure vg; on the o-algebra {{i} x B : B € B([0,1))}
defined as follows: for all B € B([0,1)),

1pi({i} x B) = pup({i} x B).

Lemma 5.2.12. For every i € [0,p — 1], the map (5Z~‘[0 % [0,1) — {i} x

[0,1), z — (i,x) defines an isomorphism between the dynamical systems

([07 1)7 B([O’ 1))7 HB,is Tﬂi—1 -0 Tﬁi—p)

and

({i} x [0,1), {{i} x B : B € B([0,1))},78., I3.1)

Proof. Let ¢ € [0,p — 1]. For the sake of clarity, in this proof, we simply

denote the map 5i|[0 D by ;. Clearly, §; is measurable, bijective and

52‘ o (Tﬁi—l O---0 Tﬁi—p) = Tﬁﬂ‘ o} 51
Moreover, for all B € B([0,1)), we have
v8i({i} x B) = ppg({i} x B) = pp.i(B) = pg;o (6:) " ({i} x B).

We are now ready to calculate the entropy of the greedy dynamical sys-
tem. Recall that 5 = [[*—, 8.
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Proposition 5.2.13. The entropy of the dynamical system
([[O,p - 1]] X [0’ 1)?%?”5’113)
is %log(ﬂ).

Proof. Let i € [0,p — 1]. By Abramov’s formula (see Theorem [1.3.33)), we

have
1

hug(Tp) = up({i} x [0,1)) oy, (Ti) = ];hmi (T3,)-

Since the entropy is an isomorphic invariant, it follows from Theorem [5.2.3

and Lemma [5.2.12[ that h., . (Tjg,:) = log(f). [ |

Finally, we prove that any Tg-invariant set has p-Lebesgue measure 0 or
1.

Proposition 5.2.14. For all A € T, such that Tﬂ_l(A) = A, we have
Ap(A) € {0,1}.

Proof. Let By, ..., Bp_1 be sets in B([0, 1)) such that

p—1 p—1
Ts 1<U<{z’} x Bo) = J@ = B,
This implies that
Ty' (Bi) = Bi—1)modp forallie [0,p—1]. (5.11)

We use the convention that B,, = By, meap for all n € Z. An easy induction
yields that for all i € [0,p — 1] and n € N,

(Tﬁi—l 00 Tﬂi—n)il(Bi) =B .
In particular, for n = p, we get that for each ¢ € [0,p — 1],
(Tﬁi—l 00 Tﬂi_p)il(Bi) = B;.

By Corollary for each i € [0,p — 1], A(B;) € {0,1}. By definition
of \p, in order to conclude, it suffices to show that either A\(B;) = 0 for
all i € [0,p— 1], or A(B;) = 1 for all ¢ € [0,p — 1]. From and
Remark we get that for each i € [0,p — 1], A(B;) = 0 if and only if
A(Bi+1) = 0. The conclusion follows. [ |



152 Chapter 5. Dynamical properties of alternate base expansions

We are now able to state the announced generalization of Theorem [1.4.46
to alternate bases.

Theorem 5.2.15. The measure ug 1s the unique Tg-invariant probability
measure on T, that is absolutely continuous with respect to \,. Furthermore,
pg is equivalent to A\p on T, and the dynamical system

(10,p = 1] x [0,1), Ty, 3, T3)

is ergodic and has entropy Z%log(ﬁ).

Proof. By Propositions [5.2.8 and [5.2.11}, ug is a Tg-invariant probability
measure that is absolutely continuous with respect to A, on B([0,1)). Then
we get from Proposition 5.2.14| that for all A € 7, such that Tgl(A) = A,
we have ug(A) € {0,1}. erefore, the dynamical system ([0,p — 1] x
[0,1),7p, 1, 1) is ergodic. Now, we obtain that the measure pg is unique
by Theorem The equivalence between pg and A, and the entropy of
the system were already obtained in Propositions [5.2.11] and [5.2.13] [

Remark 5.2.16. For p greater than 1, the dynamical system

([[O,p - 1]] X [Oa 1)’7;7NB’TB)

is not exact even though for all ¢ € [0,p — 1], the dynamical systems

([07 1)7 B([()? 1))7/’1‘[371'71—;31'71 0---0 Tﬁifp)

are exact. It suffices to note that the dynamical system
([[Ovp - 1]] X [07 1)77;7”“,37 Tg)

is not ergodic for p > 1. Indeed, Tﬁ_p({O} x [0,1)) = {0} x [0,1) whereas
up({0} x [0,1)) = 1.

5.2.2 Extended measure

In order to study the dynamics of the extended greedy B-transformation
defined in (5.2)), we first define an extended o-algebra 7238“ and eztended

ext

measures pgz" and )\eﬁ"t by extending the domain of the measures pg and A,
defined in (5.9) and (5.10]) respectively.
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Definition 5.2.17. Define a o-algebra 75 on Uf;gl ({i} x [O,xﬁu))) as
follows:

T = { O({i} x B;):Vie[0,p—1], B; € B([O,%(i)))}-

=0

For A € TE'“, we set

15" (A) = pa(An ([0,p — 1] x [0,1)))

and
AGH(A) = M\ (AN ([0,p — 1] x [0,1))).

Note that, in the previous section, we could have denoted the o-algebra
Tp by Ts and similarly, the measure \, by A\g. We chose to only emphasize
the dependence in p since the definitions of 7, and A, indeed only depend
on the length p of the corresponding alternate base (3.

Theorem 5.2.18. The measure ueﬁ"t 1s the unique TEXt-mvarmnt probability

measure on 7§Xt that is absolutely continuous with respect to )\%Xt. Further-

more, ,u%Xt s equivalent to )\eﬁ"t on TBeXt and the dynamical system

p—1

(U ({Z} > [0,.27[3(1'))) Text’ ext Text)

1=0

1s ergodic and has entropy %log(ﬁ).

Proof. Clearly, ug" is a probability measure on 75*". For all A € Tg*', we
have

pGH(T5) ~H(A))

ua(TE*) ™ (A) N ([0,p — 1] x [0,1)))

pa(TE) " (AN ([0,p —1] x [0,1))) N ([0,p — 1] x [0,1)))
= up(Tg (AN ([0,p - 1] x [0,1))))

Mﬁ(Aﬁ [0,p—1] x [0,1)))
= ug*(4)

where we used Proposition for the fourth equality. This shows that
M%"t is Tg‘t—invariant on 75**. The conclusion then follows from the fact that
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the identity map from [0,p — 1] x [0,1) to Uf;& ({z} X [O,x,@(i))) defines an
isomorphism between the dynamical systems

([[O,p — 1] x [0, 1))%?”5’Tﬁ)

and
p—1
(U ({Z} X [O7xﬁ(i)))>7§Xta/“L%XthgXt)'
=0

5.2.3 Density functions

In the next proposition, we express the density function of the unique mea-
sure given in Theorem [5.2.3]

Proposition 5.2.19. Consider n € N>y and B, ..., Bn—1 > 1. Suppose that
e K is the number of not onto branches of T, , o---0Tpg,

o for j € [1,K], ¢j is the right-hand side endpoint of the domain of the
§t not onto branch of T3, ,o0---0Tg,

e T:[0,1) — [0,1) is the transformation defined by
T(z) =Tp, 4 00 Tp()
forxz ¢ {c1,...,cx} and

T(Cj) = lim Tﬂnfl 0---0 Tﬂo (l‘)

z—>c]-_
for j €L K]
o S is the matriz defined by S = (S;j)1<i,j<x where

o (T (ei) > ¢;)
5= 2 T e

mENZl
where §(P) equals 1 when the property P is satisfied and 0 otherwise
e 1 is not an eigenvalue of S

e dy=1 and (dld}() = (1---1) (—S—i—[d[()*l
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0 11 Bkl 2]
B1Bo  Bo B1Bo Bo

Figure 5.6: The composition T}, o T, with 8 = (H‘/E 5+\/ﬁ).

X[0,T7™ (c;)]

o C = fol <d0 + Zszl d; ZmeNzl m) dX is the normalization
constant.

Then the density function of the (I, , o --- o Tg,)-invariant measure given
by Theorem |5.2.4 with respect to the Lebesgue measure is

1 =~ X077 (c;)]
C(do—F;dj > o B )’ (5.12)

mENzl 0

Proof. This is an application of the formula given in [G6r09, Theorem 2]. W

In [Gér09], Géra conjectured that 1 is not an eigenvalue of the matrix S
if and only if the dynamical system is exact. Thus, if Géra’s conjecture were
true, thanks to Theorem the hypothesis that 1 is not an eigenvalue
of the matrix S could be removed from the statement of Proposition
In particular, Proposition [5.2.19] would then provide the density function of
the (1, , o---oTp,)-invariant measure given by Theorem without any
further conditions.

ﬂ

Example 5.2.20. Consider again the alternate base 3 = (H'2 13 5+%/ﬁ)

The composition Ty, o Tjg, is depicted in Figure E Since ﬁ% = p1 — 1,
keeping the notation of Proposition [5.2.19} we have K =3, ¢; = 5, ¢ = ﬁ%
and c¢3 = 1. We have T'(¢1) = T(CQ; = 2 (c3) = c1. Therefore, all elements
in S equal 0, d0:d1:dzzdgzlandCzqum:l—F%. The

0
density function of the unique absolutely continuous (7, o T, )-invariant

|
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probability measure pg is

(14 goves)

C ﬁoX[O’leo} .
For example, ,uﬁo( ,5% ) 13+‘/ﬁ. Moreover, it can be checked that
18.0((Ts, © Tp,) 70, 7)) = gl »50))

We obtain a formula for the density function d)\ by using the density

functions dZ‘;’ for i € [0,p — 1] given in Proposition |5.2.19, We first need a
lemma.

Lemma 5.2.21. Foralli € [0,p—1], all sets B € B([0,1)) and all B(]0,1))-
measurable functions f: [0,1) — [0,400), the map fomy: [0,p—1] x[0,1) —
[0, +00) is Tp-measurable and

/' fo7r2d)\p—1/fd)\.
{i}xB PJB

Proof. First, consider a B(]0,1))-measurable function f: [0,1) — [0, +00).
The map fomg is measurable. In fact, it is sufficient to check Definition[T.3.16]
for intervals of the form [0,y) with y > 0 and we have

(fom) ([0,9)) = {(i,2) € [0,p = 1] x [0,1) : fom(i,z) <y}
— {Gm) el0,p—1]x[0,1) : f(z) <)
p—1
U Ui e el fa) < u})
i=0
p—1
= U (i< £1(0,0))
i=0
where the set f~1([0,y)) belongs to the o-algebra B([0, 1)) since f is mea-
surable. Hence, we get (f o m2)~1([0,y)) € Tp.
Second, consider ¢ € [0,p — 1] and B € B([0,1)). The integral equality
follows from standard arguments by using the definition of the integral via
simple functions (see Definition [1.3.17)). In fact, we have

/ fO7T2 d)\p
{i}xB

= /(foﬁ) X{i}xB AAp
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_ sup{/g Dy g€ SH([0.p— 1] x [0,1),75).9 < (f o) x{i}xg}
(5.13)

and

= [
- sup{/h d\:h e ST([0,1),B(]0,1))),h < (;f) XB}. (5.14)

We then prove the desired equality by double inequality between the values
of the suprema ([5.13)) and (5.14). We show that the value is smaller
than or equal to (5.14]), the other inequality can be done in a similar fashion.
Consider a simple function g € S*([0,p — 1] x [0,1),7,) such that g <
(f om2) X{iyxp- There exist n € N>1, By,..., By € B([0,1)), a1,...,an >0
such that U1 By = B, B, = [0,1)\ B, B, N By = 0 if k, k" € [1,n] and
k# k', a, =0 and for all (j,z) € [0,p— 1] x [0,1),

, arp if j=iand x € By, k€ [l,n—1]
g(],l’) = .
0  otherwise.

We set h € ST([0,1),B([0, 1

h(z) = {

We obtain h < (}D f) xB and, by the definition of the p-Lebesgue measure
and the definition of integral of simple functions, we get

~—

)) defined by
ar ifz e By, ke[l,n—1]

otherwise.

[an B TSN

n—1

/g dr, = Y aphp({i} x By)

k=1
n—1 1

= ) ar=A(By)
k=1 p

= /hd)\.

Proposition 5.2.22. The density function ?LT‘; of ug with respect to the
p-Lebesgque measure A, on Tp is

1377:
' <d/\ O7T2>‘X{i}><[0,l)- (5.15)
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Proof. Let A € T, and let By, ..., B,—1 € B([0,1)) such that A = Uf:ol({z} X
B;). It follows from Lemma [5.2.21] that

p—1 du p—1 ,u
/Z( Byt )x{l}x[mdA =Y / ‘“omdx

=0rinx B,

177 ra
Z/ 201 g

ZOB

1%
:E ; ,u,@,i(Bz)
=np(A).
[ |

Note that the formula also holds for the extended measures ue’“
and AF* on 75"

5.2.4 Frequencies

We now turn to the frequencies of the digits in the greedy B-expansions of
real numbers in the interval [0,1). Recall that the frequency of a digit d
occurring in the greedy B-expansion apajas--- of a real number z in [0, 1)
is equal to

lim #{O<k<n ar = d},

n—+oo N

provided that this limit exists.

Proposition 5.2.23. For A-almost all x € [0, 1), the frequency of any digit
d occurring in the greedy B-expansion of x exists and is equal to

*ZMﬁZ<gvdgzl [071))-

Proof. Let x € [0,1) and let d be a digit occurring in dg(z) = agaras---.

Then for all k € N, ax = d if and only if mo(T, (0 x)) € [,52’ %) N[0,1).

Moreover, since for all k£ € N, Tg(O, x) € {k mod p} [0,1), we have

XL, 2 [o,1) (m2(T5(0,2))) = Xk mod px ([, 42)n(0,1)) (T5(0.2))
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p—1

- k
- ; X< (1, 400, (T5(0,2)).

Therefore, if it exists, the frequency of d in dg(z) is equal to

n—1p—1

Yet, for each i € [0,p — 1] and for pg-almost all y € [0,p — 1] x [0,1), we
have

n—1

nEToonZX{z}x([d ¢)no,1)) (T5w)

N /[[O,pl]]x[o 1) Xiyx ([%d—fl)m[o,n) dpg

= na({i} x ([£. %) n o, 1))
:;Nﬁz([ﬁd il (} 1))

where we used Theorem [5.2.15]and the Ergodic theorem for the first equality.
The conclusion now follows from Proposition [5.2.11 |

Note that, when p = 1, Proposition [5.2.23| gives back the classical formula

for the frequency of the digit d, where ug is the measure given in Theo-

rem [1.4.40

5.3 Dynamical properties of Lg

We now turn to the dynamical study of the lazy B-transformation. To do
so, we first prove that the greedy and lazy dynamical systems are isomorphic
and then we deduce the dynamical properties of the lazy dynamical system
thanks to the ones of the greedy dynamical system studied in the previous
section.

5.3.1 Isomorphism between greedy and lazy B-transformations

We first define a map which will then be proved to be an isomorphism be-
tween the greedy (B-transformation and the lazy B-transformation.



160 Chapter 5. Dynamical properties of alternate base expansions

Definition 5.3.1. Consider the map

¢p: |J (i} < [0,1)) = | ({i} x (20 — Lwgnl), (5.16)
1=0 =0

(i,I) — (i,xﬁ(i) — x)

and the o-algebra

p—1
Lg= { U({z} x B;):Vie[0,p—1], B; € B((»”%(z‘) - 1»37@“)])}

i=0
on U2y ({i} % (w50 — 1, 2g00])-

Remark that we let £3 denote the lazy o-algebra since there is a depen-
dence on the alternate base 3 and not only on its length p as in the greedy
case.

Theorem 5.3.2. The map ¢g is an isomorphism between the dynamical
systems

([0,p — 11 x [0,1), Ty, 115, T5)

and
p—1

(U () x (wg00 — Lagn]), Lo, pg o 05", Lp)-
i=0

Proof. Clearly, ¢g is a bimeasurable bijective map. Hence, we only have to
show that ¢g 0T = Lg o ¢g. Let (i,2) € J'Zy ({i} x [0,1)). Then
¢p 0 Tp(i,x) = ((i + 1) mod p, a1y — Bz + | Bix] )
and
Lg o ¢p(i,z) = ((i + 1) mod p, Bi(z g0 — ) — {&(l‘gw —x) - ‘Tﬂ(’ﬂrl)—‘ )-
We easily get that ¢g o Tg(i,x) = Lg o ¢g(i,x) by using linking the

values @46 and @g11). u

Remark 5.3.3. We deduce from Theorem that if the greedy B-expan-
sion of a real number x € [0,1) is a = agpajag - - -, then the lazy B-expansion
of xg —x is

0g(a) = ([Bo] =1 —ao)([B1] =1 —a1)([B2] =1 —az)---

as already shown in the wider context of Cantor bases in Proposition [2.4.12
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Moreover, if we extend the lazy o-algebra and the map ¢g as follows, we
can similarly prove that the extended greedy and lazy dynamical systems are
also isomorphic.

Definition 5.3.4. Consider the extended o-algebra

£eﬁxt — { L_J({Z} X Bz) Vi e [[O,p— 1]], B; € B((O,mﬁ(l)])}

1=0

We also set

p—1 p—1
QZ)G,BXt: U ({Z} X [0,$,6(z‘))) — U ({Z} X (071'@(2')]),
=0 1=0

(i,2) — (i,:vﬁ(i) — :U)

Theorem 5.3.5. The map qﬁ%’(t is an isomorphism between the dynamical
systems

p—1
(U (i} x 10.250)). T8 15", T5)
=0
and
p—1
(U (3} % 0, g0)), £5% 15" o (65%) 1, L5Y).
i=0

5.3.2 Unique absolutely continuous Lg-invariant measure

Thanks to Theorems [5.3.2] and [5.3.5] we obtain two analogues of Theo-
rems [5.2.15] and [5.2.18] for the lazy B-transformation. Recall that 8 =

-1
Hf:o i

Theorem 5.3.6. The measure ug o qb;al is the unique Lg-invariant proba-
bility measure on Lg that is absolutely continuous with respect to Ag o qbgl

Furthermore, pg o ngBl is equivalent to Ag o qﬁgl on Lg and the dynamical
system
p—1

( U ({Z} X (xﬁ(i) - 17$ﬁ(i)])7£ﬁvuﬂ o (bBlaL,@)
1=0

is ergodic and has entropy %log(ﬂ).
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Theorem 5.3.7. The measure g (gbe’“) is the unique L%Xt-invariant
probability measure on EeXt that is absolutely continuous with respect to Ap o
(¢%Xt)_1. Furthermore, ,ue’(t (qﬁeXt) is equivalent to \p o (¢9Xt) Lon E%Xt
and the dynamical system

p—1

(U ({3 x (0,250]), £5%, 15" o (6571, L5")

=0

is ergodic and has entropy %log(ﬂ).

5.3.3 Density functions and frequencies

Thanks to Theorem [5.3.6] we obtain formulae for the density function of the
measure associated with the lazy dynamical system and the frequencies of
digits in lazy B-expansions.

d(pgods")

Proposition 5.3.8. The density function ———5 of pg o ¢t with respect
d(Apodg") B

to the measure \p o ¢51 s

d,u;; L dug,;
)2 —1
% = (Z( I 07?2) ’X{z‘}x[(),l)) °pg

=0

Proof. Consider A € Lg. We have

dug dug
J ot desgh = [ G = we(a5(a)
A ¢g' (A)

The conclusion follows from Proposition [ |

Proposition 5.3.9. For A-almost all v € (xg — 1, 2], the frequency of any
digit d occurring in the lazy B-expansion of x exists and is equal to

ZMB) ( [511 1-d ’—ﬂzﬂ]l_d) N [0’1)>

Proof. Let x € (xg — 1,2g] and let {g(x) = apaiaz--- and dg(zg — x) =
bobibs - - -. Consider a digit d occurring in £g(x). By Remark for all
k € N, ap = d if and only if by = [Br] — 1 — d. The conclusion follows from

Proposition [5.2.23] [



5.4. Isomorphism with the 3-shifts 163

5.4 Isomorphism with the 3-shifts

The aim of this section is to generalize the isomorphism from Theorem
between the greedy [-transformation T and the f-shift Sz (using the no-
tion of cylinders from Definition to the framework of alternate bases.
Moreover, the analogue lazy result is given.

Definition 5.4.1. Consider the o-algebra

p—1

gﬁ = U ({Z} X (CAﬁ N Sﬂ(i)))

1=0

on [ J'= ({i} x Sg). We define

p—1 p—1
ap: | J{i} x Sgw) = [J i} x Sga), (i, w) = ((i + 1) mod p, o(w))
=0 1=0
p—1
Tl)B: [[Oap - ]']] X [07 ]-) — U({Z} X S[@("L))’ (7’7$) = (ivdﬁ(i) ('1:))
=0

Note that the transformation o, is well defined by Proposition [2.3.39}

Theorem 5.4.2. The map g defines an isomorphism between the dynam-
ical systems

([[O,p - 1]] X [Oa 1)77;)7/‘[3711,3)

and

p—1
( U({i} x Sg), Ga, g © wgl,aI,).

i=0
Proof. 1t is easily seen that
Ygolg =o0,01g (5.17)
and that 13 is injective. Moreover, we have
Ya([0,p— 1] x [0,1)) = U5 ({i} x Dga)

and
na(g! (UZg ({i} x Dgi)) = 1.
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Note that (5.17)) is a 2-component version of Proposition [2.3.10

However, although 13 is continuous, it does not define a topological
isomorphism since it is not surjective.

Remark 5.4.3. In view of Theorems |5.4.2| and |1.4.50L the set Uf;&({z} X
Sﬁ(i)) can be seen as the “greedy B-shift”, that is, the generalization of
the greedy B-shift Sz to alternate bases. However, in Chapter [2, what we
called the greedy (@3-shift is the union ¥g = Uf;ol Sﬁ@). This definition was
motivated by Theorem In summary, we can say that there are two
ways to extend the notion of S-shift to alternate bases 3, depending on the
way we look at it: either as a combinatorial object or as a dynamical object.

Thanks to Theorem we obtain an analogue of Theorem for

the transformation o,.

Theorem 5.4.4. The measure jig o 1/151 is the unique op-invariant proba-
bility measure on Gg that is absolutely continuous with respect to Ay o wgl.

Furthermore, pg o wlgl s equivalent to A, o ¢,§1 on Gg and the dynamical

system
p—1

( U({Z} X S[;(i)),gﬁ,/tg o 1/151,0'19)

=0
is ergodic and has entropy %log(ﬁ).

In order to have an analogue of Theorem in the lazy framework, we
now define an isomorphism between the dynamical system

p—1

(U ({i} x Sg(i))v gﬂa KB ©° ¢El7o-p)

=0

and its analogue lazy one.

Definition 5.4.5. We consider the g-algebra

p—1

G = {J ({i} x (Cag N S)

=0
on Uf:_ol({z} X S;aﬁ)) and we define the maps

p—1 p—1

o Ui} x Se) = | J (i} x Sy, (w) o (i 4 1) mod p,o(w))

=0 =0
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p—1 p—1
O (i} x Sg) = i} x S, (i) = (1,050 (a)).
=0 1=0

Theorem 5.4.6. The map Og defines an isomorphism between the dynam-
ical systems

p—1
( U({Z} X Sﬁ(i))vgﬁ’uﬁ © w,gl’gp>

i=0
and
p—1
( U ({7} x S/ﬂ(i))u gb,,ug o ¢51 o @51, a;)
i=0
Proof. This immediately follows from Proposition [

The following result is a consequence of Theorems [5.3.2] [5.4.2] and [5.4.6]

Corollary 5.4.7. The map ©g o g o ¢,§1 s an isomorphism between the
dynamical systems

p—1
(U [} x (@g0 — L2g0]), Lo, g 0 05" L)
i=0
and
p—1
( U({Z} X Slﬁ(i))7gllgaﬂﬁ ° 1/151 o @51,0‘2).
i=0

It is easy to check that, as expected, that for all (i,x) € Uf:_ol ({i} x
(:UI@(i) -1, $ﬁ(i)], we have

O 0vpodg'(i,x) = (i,Lgm (7).

5.5 [-Expansions and some (... [, 1)-expansions

We can see the greedy and lazy B-expansions of real numbers as S-representa-
tions, with 8 = Hf;ol Bi, over the digit set Dig(3, D) from Chapter (see
Definition {4.2.2), where

D = ([[07 [50-‘ - 1]]7 T [[07 ’—/Bp—l—l - 1]])
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In fact, by rewriting Equality (3.1)) from Chapter 3| we get

_apBrPBp1taiBe Byt +ap

T = 5.18
3 (5.18)
n apfBi - Bp—1+ apr1f2- - Bp1+ -+ a1
32
_|_ e

For the sake of simplicity, from now on, we fix D as the alternate alphabet
above and we omit the dependence on D in the writing Dig(3, D), that is,
we write

1=0

p—1
Dig(,@) = { Zciﬁi-i—l .. ‘ﬁp_l Vi e [[O,p — 1]], c; € [[0, [ﬁz-l — 1]]}

5.5.1 Digit set built thanks to all the p-tuples

In this section, we examine some cases where by considering the greedy (resp.,
lazy) B-expansion of a real number x € [0,1) (resp., z € (vg — 1,23]) and
rewriting it as ((5.18]), the obtained representation is the greedy (resp., lazy)

(8, Dig(B))-expansion of x (see Section [1.4.5)).

Definition 5.5.1. We define the map

p—1 p—1
fo: [ 10,181 =11 = R, (co,--.cp1) = Y ciBiy1-- Bp1.
i=0 i=0

The map fg is in fact the map fgp from Remark where D =

([[Oa [60—‘ - 1]]a SRR [[07 ’V/Bp—1—| - 1]])
Note that fg is not injective in general. The digit set Dig(3) has car-

dinality at most Hf:_ol [Bi] and can be rewritten Dig(8) = im(fg). Let us
write

Dig(B) = {do,d1 ..., dn}
with dy < dy < --- < d,,,. We have

do = f5(0,...,0) =0,
di = f3(0,...,0,1) =1

and

dm = fa([bo] =1, [Bpa] = 1)
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In what follows, as in Section we suppose that [[?Z, [0,[8i] — 1] is
equipped with the lexicographic order.

Recall that all along this section, we let S denote the product Hf;ol .
Lemma 5.5.2. The set Dig(3) is an allowable digit set for .
Proof. We need to check Condition (|1.4), which means in this case
dpm — do
dipy1 —di) < .
ke[[%l,?nx—l]]( k1 = di) < B—1
We have dyp = 0 and

I
—

p

dm = fa([Bo] =1, [Bp—1] = 1) = > (Bi = 1)Biv1-+Bp-1 =81,

7

Il
o

Therefore, it suffices to show that for all £ € [0,m — 1], dp+1 — dp < 1.

Thus, we only have to show that f(c,...,c,_1) = f(co,...,cp-1) < 1 where
(co,...,cp—1) and (cp, . . . 701/0—1) are lexicographically consecutive elements of
Hf:_ol [0, [B;] — 1]. For such p-tuples, there exists j € [0,p — 1] such that
Co = 66, sy Cio1 = C;#l? Cj = C;- —1, Cj+1 = [5j+1—| —1, sy Cp—1 = [Bp,ﬂ —1
and ¢,y =---=c¢, 1 =0. Then
f(cg,...,cgofl) — flco, .-y cp-1)
p—1
= Bi1-Bpr— > ([B] = 1DBi1 -+ Bp
i=j+1
p—1
< Bir2 Bpr— Y ([Bi] = DBis1-- By
i=j+2

< Bp-1 = ([Bp11 = 1)
<1

Since zg = %, it follows from Lemma that every point in [0, 23)
admits a greedy (3, Dig(3))-expansion.

Proposition 5.5.3. For all z € [0,z3), we have

T,B,Dig(ﬁ) (:IZ') <mgo0 (TBXt>p o] (50(.7}) (5.19)
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and
L@Dig(ﬂ)(a}) Z 79 O (Leﬁxt)p o (50(1‘) (5.20)

Proof. Let x € [0,2g8). On the one hand, we have

Tspig(p) (@) = fr —d

where d is the greatest digit in Digits(3) such that % < z. On the other
hand, by rephrasing Proposition [5.1.§in terms of the map fg when n equals
p, we get

m2 0 (TF")P 0 do(a) = B — fa(c)

where ¢ is the lexicographically greatest p-tuple in Hf:_g [0, [Bi]—1] such that

fBT(C) < z. By definition of d, we get d > fg(c). Therefore, we obtain ([5.19)).
The inequality (5.20]) then follows from Theorem [5.3.2] [

In what follows, we provide some conditions under which the inequalities
of Proposition happen to be equalities.

Proposition 5.5.4. The transformations
xt
Ts.pigp)  and ma o (T57) 0 0o,

coincide if and only if the transformations

Lo.pig(e) and. w20 (L) 0oy, . )

do.

Proof. We only show the forward direction, the backward direction being
.. _ Xt
similar. Suppose that Tj pig(g) = m2 0 (T§)P o 50’[0’%) and let = € (0, zg].

P

Since xg = % and Dig(3) = Dig(3), we successively obtain that
Lg,pig(s)(*) = L pig(8) © P5.0ig(5) (¥ — )
= 95,0ig(8) © Ts,pig(s) (28 — )
= $5.ig(8) © 72 © (T5")" 0 do(wp — x)
=m0 ¢F" o (T5") 0 do(zp — x)
=m0 (LY 0 65" 0 do(p — )
= my 0 (LF*)P 0 do(x).
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The next result provides us with a sufficient condition under which the
transformations Tjg pig(g) and w3 o (TEXt)p o 50‘[0 25) coincide. Here, the non-
g

decreasingness of the map fg refers to the lexicographic order: for all ¢, €
Hf;(} [[07 [BJ - 1]]7 € <lex d = fﬂ(c) < fﬂ(cl)'

Theorem 5.5.5. If the map fz is non-decreasing then

Tspig(s) = m2 0 (T5%)" o 50}[0,%)'

Proof. We keep the same notation as in the proof of Proposition Let
¢ e 1%y [0,[3:] — 1] such that d = fa(¢/). By definition of ¢, we get
¢ >1ex ¢. Now, if fg is non-decreasing then fg(c) > fg(c) = d. Hence the
conclusion. [

The following example shows that considering the length-p alternate base

B = (B,...,8) with p € N>3, it may happen that T pis(g) differs from
T 0 (Tg")P o (50“0 )’ This result was already proved in [DdVKLI2, Propo-
B

sition 2.1].

Example 5.5.6. Consider the alternate base 8 = (¢2, 92, ?). Then

Dig(B) = {g04co + 90201 + ¢ co, 1,09 € {0,1,2}}.

Dajani et al. [DdAVKLI12, Proposition 2.1] proved that Tgn pig(g) = T} for all
n € N if and only if fg is non-decreasing. Since

£8(0,2,2) = 2¢* +2 > ¢* = f5(1,0,0),

the transformations 76 pig(g) and m2 o (TB’“)?’ o 50‘[0’13) differ.

Whenever fg is not non-decreasing, the transformations Tj pig(g) and
Ty O (Tg’“)p o do ‘ 0,g) C3D either coincide or not. The following two examples
26

illustrate both cases. In particular, Example shows that the sufficient
condition given in Theorem [5.5.5|is not necessary.

Example 5.5.7. Consider the alternate base 3 = (¢, ¢, v/5). Then

Dig(8) = {V5pco + Vier + 2 : e, 1 € {0,1}, 2 € {0,1,2}}.

However, fg(0,1,2) = v/5 + 2 ~ 4.23 and f(1,0,0) = v/5p ~ 3.61. It can
be easily checked that there exists « € [0, zg) such that

T /52 pig(g)(¥) # T2 0 (TE’“)?’ o 8o ().
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g g

0 0

rp rp

Figure 5.7: The transformations T’ z » ;) (left) and 79 o (TEXt)S o 50’[0 »
(right) with 8 = (¢, ¢, V5).

For example, we can compute T’z Dig(ﬁ)(0'75) ~ 0.15 and 7 o (TL‘?,’“)3 o
d0(0.75) ~ 0.77. The transformations T /z Dig(g) and T2 © (Tgxt)3 o 60’[0 )
’ X3

are depicted in Figure where the red lines show the images of the in-

terval [ﬁ;g, \/\/5%4:21) ~ [0.72,0.78), that is, where the two transformations

differ. Similarly, the transformations L s » p;, ) and m o ( L%xt)3 o 60’(

0,z
are depicted in Figure 5.8 As illustrated in red, the two transformations

differ on the interval ¢z s i, BM?@ZS’ Jjg;l)) ~ (0.82,0.89].

Example 5.5.8. Consider the alternate base 3 = (%,%,4). We have
Dig(8) = [0,13]. The map fg is not non-decreasing since we have fz(0,1,3)

= 7 and fg(1,0,0) = 6. However, Ty pigg) = m20 (Tg‘t)3050‘[0m ) and
2B
Lg pig(g) = T2 0 (L,%xt)3 o 50|[0x )’ The transformation Ty pig(g) is depicted
bl s B b
in Figure [5.9

The next example illustrates that it may happen that the transforma-
tions T} pig(g) and mz o (T§)P o (50‘[0 o) indeed coincide on [0, 1) but not on
26

[0,.%'@).

Example 5.5.9. Consider the alternate base 8 = (@,%,g). Then

f8(0,1,1) > f5(1,0,0) and it can be checked that the maps T' 515 Dig(8) and
=
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.17/3—1 .135—1
0 0

735—1 J;,@ 73,@—1 :Uﬁ

Figure 5.8: The transformations L /z 2 pi.g) (left) and 79 o (Leﬁxt):z o 50“0713)

(right) with B = (¢, ¢, V/5).

g

1 rp

Figure 5.9: The transformations Ty pig(g) where 8 = (%, %, 4).
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: : 0,1,1 1,0,1
9 © (TBXt)?’ o 50‘[0@3) differ on the interval [fgz(mﬁo)’ fgz(mﬁo)) ~ [1.28,1.44).

However, the two maps coincide on [0, 1).

Finally, we provide a necessary and sufficient condition for the map fg
to be non-decreasing.

Proposition 5.5.10. The map fg is non-decreasing if and only if for all
j € [[Lp - 2]];

p—1
Z([Bﬂ = DBit1-+Bp-1 < By PBp-1- (5.21)

=7

Proof. If the map fg is non-decreasing then for all j € [1,p — 2],

p—1
Z(Wﬂ = 1)Bit1 Bp—1 = fp(0,...,0,0,[B;] = 1,....[Bp—1] — 1)
i=j

< f5(0,...,0,1,0,...,0)

=B Byr.

Conversely, suppose that (5.21]) holds for all j € [[1 p — 2] and consider
two p-tuples (co, ..., cp-1) and (cp, ..., ¢,_y) in [T—, 1[0, [8:] — 1] such that
(€oy-- vy p—1) <lex (cf),..., ¢p—1). Then there exists j € [0,p — 1] such that

/ /
Co =Cpy.--yCj—1 =C,_

g 1andcjgcj—l. We get

J

fa(co,- -y ep1) Y s+ Bp1 = Bip1 - Bt

1=0

+ Z ([8i] = 1)Biv1 -+ Bp-1

i=j+1

Mu.

514—1 6}7—1

IA
-

= 1

/'\ =]

N

i

L

S~—

Corollary 5.5.11. If p = 2 then Tg g, pig(3) = T2 © (TE,"‘:)2 050‘[03: X In
]

particular, Ty, Dig(8 =Tp, 0Tp,.

i0.1)
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rp rp

3 —1 (700NN AUTUTURY AU

0 1 z3 0 zg—1 3
Figure 5.10:  The transformations o0 (Tg"t)2 o (50“0 25) (left) and
2B

0 (Leﬁxt)2 o 50‘(0@6} (right) for 8 = (1+27\/ﬁ’ 5+67\/ﬁ)

Proof. This follows from Theorem and Proposition [5.5.10) n

Example 5.5.12. Consider once more the alternate base 3 = (1+27\/ﬁ’ %)

from Example [5.1.1] Then Dig(8) = {0,1, /1,51 + 1,261,261 + 1} and

pa — 26141 _ 5+7v/13
B = BiBo—1 — 8

9 © (Le,(_,"t)2 o 50‘(0 zg] 2T€ depicted in Figure |5.10 By Corollary |5.5.11} they
e

The transformations g o (T,['gxt)2 o 60|[0 25) and
e

coincides with T 5, pig(g) and Lg,s, pig(g) respectively.

5.5.2 Digit sets built thanks to admissible p-tuples

As said in the previous section, by considering the greedy (B-expansion of a
real number z € [0,1) and rewriting it as , the obtained representation
is a (3, Dig(3))-representation of x. However, since the greedy B-expansions
of real numbers in [0,1) are greedy B-admissible sequences characterized by
the combinatorial property given in Theorem [2.3.33] not all p-tuples of letters
can be the preimage of a digit. Since the set Dg is closed for the power-p
of the shift map, that is o?(Dg) = Dg, a p-tuple (co,c1,...,cp—1) of letters
can appear if coc1 ---¢,—1 € Pref(Dg). Hence, the obtained representation
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is more precisely a (8, Adm(3))-representation of z where

p—1
Adm(B) = { Z CiBit1- - Bp—1:coc1- - Ccp_1 € Pref(Dg)}.
i=0

Similarly, by considering the lazy B-expansion of a real number z in (zg —
1,zg] and rewriting it as (.18, the obtained representation is a
(8, Adm’(B))-representation of z where

p—1
Adm'(B) = { ZCi/BiJrl < Bp—1:coCrCp—1 € Pref(Db)}.

=0

Clearly, the digit sets Adm(8) and Adm’(3) are subsets of the digit set
Dig(8) studied in the previous section. Moreover, we have

Adm(B) = fg({(co,...,¢p-1) : coc1 -+ - ¢p-1 € Pref(Dg)})

and
Adm'(,@) = fﬁ ({(Co, R ,Cp_l) 1CpC1Cp—1 € Pref(D’ﬁ)}).

The goal of this section is to study whether while considering a greedy
(resp., lazy) B-expansion of a real number z € [0,1) (resp., z € (zg —
1, z8]) and rewriting it as , the obtained representation is the greedy (3,
Adm(3))-expansion (resp., the lazy (3, Adm’(3))-expansion) of z.

We start with the study of the digit sets Adm(83) and Adm’(3).

Lemma 5.5.13. For any real number a, we have

p—1
a€Adm(B) <= S ([8] 1)1 By1—a € Adw'(8).

=0

Proof. Consider a real number a € Adm(3). There exists a p-tuple
(co,...,cp—1) such that cg---cp—1 € Pref(Dg) and a = fg(co,...,cp—1). By
Proposition we get ([Bo] —1—co) -~ ([Bp—1] =1 —c¢p-1) € Pref(Dp).
Therefore, the real number fg(([80] —1—co) -+ ([Bp—1] —1—¢p—1)) belongs
to the digit set Adm’(3) where

fa(([Bol =1 —co) -~ ([Bp-1] =1 —¢p-1))
p—1
= ([Bi] =1 —=ci)Bit1 Bp—1

=0
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p—1 p—1
=> ([B1 = 1)Bis1-Bp1— > _ ciBip1 -+ By
i=0 i=0
p—1
=> ([Bil = VD)Bit1- Bp-1 — falcos- -5 cp-1).
i=0
This ends the forward direction, the backward direction being similar. B

As a consequence, we obtain that the digit sets Adm(3) and Adm’(B3)
have the same cardinality. Let us write

Adm(IB) = {(Z(), atg,. .. 7an} and Adm'(,@) — {a{),a'l, ey CL%}

with ap < a1 < -+ < a, and a < @} < -+ < a],. Since, in general, not all
p-tuples in Hf:_g [0, [B:i] — 1] are admissible, we have n < m, where m + 1 is
the cardinality of the digit set Dig(3) from the previous section.

A major difference with respect to the previous section is given by the
following proposition, where the increasingness of the map fg refers to the
lexicographic order: for all ¢, ¢’ € Hf;ol [0, 8] — 1], ¢ <iex ¢ = [fa(c) <
fa(d).

Proposition 5.5.14. The map fg is increasing when restricted to the sets

{(coy-.-,cp—1) 1 co- - cp—1 € Pref(Dg)}

and

{(co,...,cp-1) s co---cp1 € Pref(Dj)}.
Proof. First, consider two p-tuples (co, ..., cp—1) and (cy, . . . 761/9—1) such that
(cos--vsep-1) <tex (Cps---5¢p_1) and co---cp-1, cy- -,y € Pref(Dg).
There exists j € [0,p — 1] such that co = ¢j,...,¢cjm1 =4, ¢; < ¢ — 1.

Moreover, since ¢g - - - ¢p—1 € Pref(Dg), we have ¢jp1 -+ ¢p—1 € Pref(Dgii)).
-1
Hence, we have Z‘f:jﬂ Cifit1 - Bp—1 < Bj+1- - Bp—1. We have

fﬁ(Co, ceey Cp_l)

p—1
= Z ¢ifiv1 - Bp—1
i=0

J—1 p—1
= iy Bpr Bt B+ Y b1 B
i=0

i=j+1
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Jj—1 p—1
<Y B By + (G =V Bor+ > ciBirieBpa
i=0 i=j+1
j—1
<Y ¢Biv1-Bp1 + By Bpot
i=0
We obtain
J p—1
folco, - cp-1) < chﬂi—l—l o fBpo1 < ZCQ@'H o Bp1 = fa(ch, -5 )
i=0 i=0
Second, consider two p-tuples (co,...,cp—1) and (cg, ..., ¢, ) such that
(€05 Cp—1) <lex (s -5 1) and co -+ cp-1, 4" Cppq € Pref(D’B). The
p-tuples
([B0-| —-1- Coy -+ [ﬁp*ﬂ -1- Cpfl)
and

([601 -1- 66’ R [ﬁp—l-‘ —-1- c;)fl)
are such that
((BO—I - 1_007 ceey [6}7—11 _1_CP—1) >lex ([601 _1_667 B [517—11 - 1—0;_1)

and the length-p words ([Bo] —1—co) - ([Bp—1] —1—c¢p—1) and ([Bo] —1—

cp) - ([Bp-1] — 1 —c},_;) belong to Pref(Dg) by Proposition [2.4.12, By the
first part of the proof, we have

fo([Bol=1=co, ..., [Bp-1l=1=cp-1) > fa([Bo] =1=cp, ..., [Bp-1]=1=c, 1)

We get

¥
L

(1Bi] = 1)Big1- - Bp—1 — falco, ..., cp-1)

@
Il
- o

> ((BZ—I _1)6i+1."ﬁp—1_fB(Cé)?"'?C;)—l)v

)

=

that is,
falcos- - cp1) < Fa(chs- - Chy)-
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From now on, for all ¢ € [0,p — 1], we write d;@-) (1) = t(()i)tgi)t;i) -+ and
é;au) (xgn —1) = E((f)fgz)ﬂg) ---. As a consequence of the previous proposition,
we have

a0 = f5(0,...,0) =0
and

an = fﬁ(t((]o), e ,t;o_)l)
since t(()o) . t(o)

»—1 belongs to Pref(Dg) by Corollary [2.3.48 and, by Theo-
rem [2.3.33] no lexicographically larger length-p word do. Similarly, we have

ah = fa(ed”, ..., e

since E(()O) x -5;0_)1 belongs to Pref (Db) by Proposition [2.4.44] and, by Theo-
rem [2.4.41] no lexicographically smaller length-p word do, and

a;’l/ = fﬁ([ﬁd -1,..., [B;D—l—‘ - 1)'

It is important to note that, in general, we have Adm(3) # Adm’(3).

Example 5.5.15. Consider the alternate base 3 = (H27‘/ﬁ, %) By
Example [2.4.26, we have dj(1) = 200(10)“, d;m(l) = (10)%, f5(zg — 1) =
012(02)* and £ (z50) —1) = (02)“. Hence, by Theorems|2.3.33|and 2.4.41}
we respectively get

Adm(ﬁ) = fﬁ({(0,0), (07 1)7 (17 0)7 (17 1)7 (27 0)})
={0,1,51,81 + 1,281}

and

Adm'(8) = f3({(0,1),(1,0),(1,1),(2,0),(2,1)})
={1,51,61 + 1,261,261 + 1}.

Moreover, we have

—_—

Adm(8) = {0, 81 — 1, 81,261 — 1,261} # Adm’(B).

Lemma 5.5.16. We have
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Proof. The first equality is straightforward since ag = 0 and the fourth one
is immediate by definition of xg. Moreover, we have

an = fa(t),.. 40
p—1
= tho)/)’m o Bp—1
i=0
(0) +oo (0)
= mm 5 mm
(mZeN [Tito 51) mzp [T~y Br
> B-1

Finally, we have

ay= faty),....0)
= fa([B0] — 1=t .., [Bpa] — 1=t
= SollB0] =L [Bper] = 1) = folty” - %)

/
= a, — an.

Therefore, we get

/

!/
ay a, — an an
= = ——X — 1.
B—1" -1 PTp-1="
This ends the proof. [ |

Lemma 5.5.17. The sets Adm(B) and Adm’(83) are allowable digit sets for
3.

Proof. First, we consider the set Adm(3). We need to check Condition ([1.4)),

which means in our case

an,

i (om0 < 525

By Proposition and Lemma [5.5.16] it suffices to show that for all
k€ [0,m—1], fa(ch,- .. cp1)—fp(co,s .-, cp—1) < 1 where (co, ..., cp-1) and

(cp--- ,c;)_l) are lexicographically consecutive elements in {(co,...,cp—1) :

co---cp—1 € Pref(Dg)}. There exists j € [0,p — 1] such that ¢y = ¢, ...,
j+1 j+1

Cj—1=Cj_q, ¢;=¢; — 1, ¢cjp1 = tgj ),...,cp_l = t](ffjf)z and ¢ = =

c¢,—1 = 0. We have

fﬂ(dM <o 76;,0—1) - fﬁ(c()? B Cp—l)
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= B Bp1 — (¢ = 1)Bjs1- - Bp1 — Z tﬂ?l Biv1 By

i=j+1
(J+1)
= Bj+1- Bp-1— ( > =) B B
meN Hk 05J+1+k
(5+1)
- Z 5 )
m .
m=p—j—1 Hk:p—j—l 6]+1+k
+oo (+1)
_ m
B [T, i1 Biti+k
m=p—j—1 k=p—j—1FJ1+ +
<1.

Second, we consider the set Adm’(3). In this case, Condition (1.4) means

al, — af
oy < dn
ker[[%i}il]](ak+l ar) < 51
where, by Lemma [5.5.16] we have
u > 1.
p—-1 =
Again, it suffices to show that for all £ € [0,m — 1], flg(c{),...,c;,_l) -
fa(cos ..., cp-1) < 1 where (co,...,cp-1) and (cg, ..., ¢, 1) are lexicograph-
ically consecutive elements in {(co,...,cp-1) : co- - ¢p—1 € Pref(Djg)}. The
p-tuples ([Bo]—1—cp, .., [Bp—1]—1—c,_y) and ([Bo] —1—co,..., [Bp-1]—1—
¢p—1) are lexicographically consecutive elements in {(co, ..., cp—1) 1 co- - cp—1

€ Pref(Dg)}. The conclusion follows by the first part of the proof since we
have

f8([Bo]l =1 —coseooy [Bp—1] =1 —cp_1) = ap, — fa(co, -, Cp1)

and

fﬁ([ﬁO—l —1- 667 SRR [ﬁp—l—‘ —-1- C;ofl) = a;?, - fﬂ(céb s 70;71)'
[ |

By the previous two lemmas, we get that any real number z € [0, 1) has
a greedy (4, Adm(/3))-expansion and any real number x € (g — 1, 2] has a
lazy (8, Adm’(3))-expansion. We are now ready to prove the main result of
this section.
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Theorem 5.5.18. We have

Tj,adm(@) = m20 (Tg)P ody  on [0,1)
and

Lg aam'(g) =20 (Lg)’ 0 by  on (zg—1,28].

Proof. First, consider the greedy maps and let € [0,1). On the one hand,
we have

T3 Adm(g)(z) = Br —d
where d is the greatest digit in Adm(3) such that % < z. On the other hand,

by rephrasing Proposition in terms of the map fg when the parameter
n from the statement equals p, we get

my o (1) o do(x) = Br — fa(cos- .-, Cp-1)

where (cp, . .., cp—1) is the lexicographically greatest p-tuple in Hf;ol [0, [Bi]—
1] such that %‘w < z. By Proposition [2.3.15, the word cg---cp—1 is
the length-p prefix of dg(x). Hence, the p-tuple (co,...,cp—1) belongs to
the set {(co,...,cp—1) : co---cp—1 € Pref(Dg)}. By definition of d, we get

d > fg(co,---,cp-1). Let (cp,...,c, 1) such that cy--- ¢, ; € Pref(Dg) and
d= fp(cp;---,Cp_1). By definition of (co, ..., cp—1), We get (co, ..., Cp—1) Zlex

(cs---»Cp_1)- By Proposition [5.5.14} we get
falco, .. ep—1) > fal(ch,- .-y c;)_l) =d.

Second, consider z € (zg — 1,28]. We have

Lﬂ,Adm/(ﬁ)('T) = 51’ — d
where d is the least digit in Adm’(3) such that

d X o
ERDI) ==
B =6
By Lemma [5.5.16] this inequality can be rephrased as
d+ B

> x.

On the other hand, by rephrasing Proposition by using and in
terms of the map fg when the parameter n from the statement equals p, we
get

mp 0 (Lg)P o do(z) = Bz — fa(co, ..., cp-1)
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where (co, ..., cp—1) is the lexicographically least p-tuple in Hf;& [0, [Bi]—1]
such that {8(C0r-UFTp > x. By Proposition [2.4.18, the word co---c¢p—1
is the length-p prefix of {g(x). Hence, the p-tuple (co,...,c,—1) belongs to
the set {(co,...,cp—1) 1 co-+-cp—1 € Pref(Djg)}. By definition of d, we get
d < faleo, ... cp-1). Let (g, ..., c,_q) such that cj--- ¢, | € Pref(Dj) and
d= fg(cp;---,¢p_1). By definition of (co, ..., cp-1), we get (co, ..., Cp—1) Siex

(s -+ +s¢p_1)- By Proposition [5.5.14} we get
fa(co, ... cp—1) < fg(cé)7 . ’02771) =d.
Hence the conclusion. [ |

Note that, compared to the proofs in Section [5.5.1} in Theorem [5.5.18
the lazy equality cannot be immediately deduced from the greedy one since

Adm(B) # Adu'(6).

As a consequence of the previous theorem, we get and improvement of

Theorem [(.5.5

Lemma 5.5.19. We have

Adm(B) C Dig(8) N[0, 8)

and

Adm'(8) € Dig(8) N (a), — B,d,].

Moreover, we have
Adm(B) =Dig(B)N[0,8) <=  Adm'(8) = Dig(8) N (a}, — B, ay].

Proof. We have Adm(3) C Dig(8) and Adm'(8) C Dig(3). Moreover, we
have Adm(8) = {ag,...,a,} with 0 =a9 < --- < a, and

an = fﬁ(t(()o), e ,téo_)l) < ﬁ

Hence, we get Adm(3) C Dig(3) N [0,5). By Lemma [5.5.13] for any real
number a, we have a € Adm(3) if and only if a}, — a € Adm'(3). We obtain

Adm'(B) € Dig(B) N (a;, — B, ay,].

Now, we turn to the second part of the statement. Since Dig(8) =
Dig(8), for any real number d, we have d € Dig(8) if and only if d,,, — d €
Dig(83), where d,, = a,. We get

Adm(8) = Dig(B) N[0, 5)

—_—
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< {a,, —a:a € Adm(B)} = {a), — d: a € Dig(B) N [0,8)}
<= Adm'(B) = Dig(B) N (a,, — B, az,].

|
Proposition 5.5.20. The transformations
TﬁvDig(B)“m) and w0 (Tg)P o 50‘[071)
coincide if and only if the transformations
L'B’Dig(ﬁ)’(zgfl,x;a] and w0 (L) 50‘(%*1@3}
do.
Proof. The same proof as that of Proposition can be applied. [ |

Theorem 5.5.21. We have

T pig(s) = m20 (Ig)" b0 on [0,1)
if and only if

Adm(B) = Dig(B) N[0, B).

Similarly, we have

Lg pigigy =m0 (L)’ odo  on (v —1,24]
if and only if

Adm'(8) = Dig(B) N (ay, — B, ap-

Proof. First, we consider the greedy part of the statement. Suppose that

Adm(B) = Dig(8) N [0, 3).

By Theorem 5.5.18] it is sufficient to prove that we have T pig(3) = T3, Adm(g)
on [0,1). For all z € [0,1), we have Tj pig(g)(7) = Bx — d where d is the

greatest digit in Dig(3) such that % < z. By assumption we have x < 1,
hence we obtain d < (. Therefore, since Adm(3) = Dig(8) N[0, ), the digit
d is the greatest digit in Adm(3) such that % < x. We obtain

Ts.pig3) () = T3,adm(@) (T)-

Conversely, suppose that

Adm(B) # Dig(8) N [0, B).
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By Lemma [5.5.19] there exists a digit

d € (Dig(8) N [0.5)) \ Adm(B).

If there exists k € [0,n — 1] such that ay < d < agy1. Without loss of gener-
ality, we suppose that there is no other digit d’ € (Dig(8) N[0, 3)) \ Adm(B3)
such that d < d’ < ag11 (otherwise we consider d’ instead of d). Then, for all
x € [%, akgl ), we have T3 pig(8)(z) = Bx —d whereas T Aqm(g)(z) = B —ay.
If d > ay, then for all x € [%, 1), we have Tg pig(g)(z) = Bxr — d whereas
T Adm(B) () = Bz — a,. Hence, the two maps differ and we conclude by
Theorem [(.5.18]

The lazy part of the statement follows by the first part of the proof by

using Lemma [5.5.19| and Proposition [5.5.20) [ |

Example 5.5.22. Consider the alternate base 3 = (%, %,4) from Exam-

ple We have Dig(8) = [0,13]. Since we have dj(1) = (102)“,

dg(l) 1) =11(102)* and d;(g)(l) = 3(102)%, we get

Adm(B) = fg({(0,0,0), (0,0,1),(0,0,2),(0,0,3),(0,1,0),(0,1,1),
(1,0,0),(1,0,1),(1,0,2)})
= [0,8]
= Dig(B) N [0,9).

Moreover, we have {3(zg — 1) = (011)%, %(1)(11350) — 1) = 02(011)“ and
6’;3(2) (zg@ — 1) = 0(011)“. Therefore, we get

Adm'(B8) = f3({(0,1,1),(0,1,2),(0,1,3),(1,0,2),(1,0,3),(1,1,0),
(1,1,1),(1,1,2),(1,1,3)})
= [5,13]
= Dig(8) N (4,13].

By Theorem [5.5.21} the maps Ty pig(g) on [0,1) and Lg pig(g) on [0, 1) re-
spectively coincide with 720 (Tj3)3 0 dp on [0,1) and 720 (Lg)3 0 dy on [0, zg).
This agrees with what was observed in Example [5.5.8

Remark 5.5.23. I found the results from this section after the publication
of the article [CCD21]. A direct consequence of Theorem [5.5.18]is that, for all
i € [0,p—1], the measure pug; from Deﬁnitionis the unique Tﬁ,Adm(ﬂ(i))‘
invariant absolutely continuous probability measure given by [DK10, Theo-
rem 2.10]. However, note that the digit set Dig(3) has its own advantage
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since, compared to Adm(3) and Adm’(3), it can be constructed without
any prior combinatorial check. In fact, in order to construct the set Adm(3)
(resp., Adm’(3)), one needs to first compute the quasi-greedy B _expansions
of 1 (resp., quasi-lazy B)_expansions of T — 1) for all 7 € [O,p — 1].



PERSPECTIVES

During this doctoral research, we studied questions related to a generalization
of [B-representations which have been studied a lot since 1960. Real base
representations have many related research groundwork to be generalized to
Cantor and alternate base frameworks. Still, a great deal of work remains to
be achieved in this new theory, which is good news for future research. We
end this dissertation by a brief summary of some potential future research
questions.

1. Real base expansions were generalized to the context of negative bases
in 2009 by Ito and Sadahiro [IS09]. In [CD20], in order to generalize real
bases and Cantor (integer) bases, Caalima and Demegillo work with
sequences of real numbers composed of positive and negative bases.
However, not all properties of this book had been studied by Caalima
and Demegillo who concentrated on a generalization of Parry’s theorem
characterizing greedy admissible sequences. In particular, they did not
work on lazy expansions, greedy and lazy (B-shifts, normalization or
dynamics. Hence, an open question is to generalize results from this
dissertation to sequences B = (8, )nen allowing positive and negative
bases.

2. In Chapter [3 we proved that an alternate base B is a Parry alter-
nate base if and only if the associated greedy (resp., lazy) B-shift is
sofic. Moreover, we illustrated that there exist non-finite type greedy
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3-shifts that are based on alternate bases 3 such that all greedy ,B(i)—
expansions of 1 are finite. An open question is to elucidate whether all
,B(i)—expansions of 1 have to be finite in order to have a greedy B-shift
of finite type.

. In the real base case, for every sequence of non-negative digits a =

apaias - - - satisfying the lexicographic condition apan4+16n4+2 -+ <jex @
for all n € N, there exists a unique § > 1 such that dz(1) = a [Par60]. It
is not clear yet whether for p integer digit sequences a(?, ..., a®=b sat-
isfying analogous lexicographic conditions, there exists a unique alter-
nate base (o, ..., Bp—1) such that dﬁ@(l) =a fori=0,1,...,p—1.
Corollary represents a first step towards this direction.

For g > 1, let Per(8) denote the set of real numbers in [0,1) having
an ultimately periodic S-expansion. Schmidt [Sch80] proved that if
Per(8) D QNJ0,1) then f is either a Pisot number or a Salem number
(that is a real algebraic integer greater than 1 such that all of its Galois
conjugates have modulus less than or equal 1 and at most one of them
has modulus exactly 1); and that if 8 is a Pisot number, then Per(5) =
Q(B) N [0,1). The question here is to generalize such results, that is
to understand which are the ultimately periodic B-expansions for an
alternate base 3, and in particular, for which alternate bases 3 do all
rational numbers have ultimately periodic B-expansions. We currently
work on this question with Emilie Charlier and Savinien Kreczman.

. In Chapter EI, we proved that if 8 = Hf;ol B; is a Pisot number and

Bo, - - -, Bp—1 belong to Q(f), then B is a Parry alternate base (see The-
orem. We have illustrated that 5 being Pisot is not a necessary
condition. For p = 1, Solomyak obtained algebraic properties of Parry
numbers [Sol94]. It would be interesting to study the analogy in the
context of alternate bases. In particular, to find bounds on the alge-
braic conjugates of 3.

. In Chapter EL we proved that if g = Hf;ol B; is a Pisot number and

Bi € Q(PB) for all ¢ € [0,p — 1], then the greedy and lazy normalization
functions are computable by finite Biichi automata. An open ques-
tion is to investigate if whether or not this sufficient condition is also
necessary.

For a real base 8 > 1, Theorem [1.4.30] tells us that if d > 8 — 1, then
the spectrum X () has no accumulation point in R if and only if 3 is
Pisot. In view of Theorems [£.2.10] and [£.4.2] from Chapter [i] we leave
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the following two questions open. Let 3 = (5o, ..., 3,) be an alternate
base, let 5 = Hf;ol i, let D = (Do, ..., Dp_1) be an alternate alphabet
and let Dig(83, D) be the associated real digit set.

(a) Suppose that the spectrum XP€BD)(4) has no accumulation
point in R and that D; 2 [— 8], [5:]] for all ¢ € [0,p — 1].
Can we deduce that the product S is a Pisot number and that
Bi € Q(B) for all i € [0,p — 1]7

(b) Suppose that the spectrum XP€3:DP)(3) has no accumulation
point in R and that D; D [— [B8;]+1, [#;] —1] for all i € [0,p—1],
(with or without the hypothesis that there exists j € [0,p — 1]
such that d; > [f] — 1, depending on item (a)). Can we deduce
that (3 is a Pisot number and that 3; € Q(f8) for all i € [0,p —1]?

8. In Chapter [5] we concentrated on measure theoretical aspects of alter-
nate base expansions. A natural question would be to consider the
topological point of view. For example, it would be of interest to
prove that the topological entropies of the topological dynamical sys-
tems under consideration coincide with the measure theoretical entropy
1% log(B) found, where 5 = Hf:_ol B;. In particular, this would prove that
the measure theoretical dynamical systems studied in Chapter [p]are all
of maximal entropy.

9. In Chapters [B] [4 and 5] we studied the properties of alternate base
expansions. An extension of these works can be investigated while
considering Cantor bases 3 that take only finitely many values and
such that for all n € N, the value of 3, can be “interpreted using
a computable method”. Since automata are in some way the simplest
model of computation, a first step can be to investigate the behaviors of
Cantor bases such that (5, )nen is an automatic sequence [AS03]. A fa-
mous example of such a Cantor base is a Thue-Morse Cantor base .
Related open questions are the following ones.

e Do such systems define sofic 3-shifts?

e What are the algebraic properties of the natural extension of the
spectra associated with such Cantor real bases?

e What kind of algebraic properties do we get?

e Given such a Cantor real base, can we find associated greedy and
lazy transformation, iterations of which generate the greedy and
lazy expansion respectively? Moreover, can we prove the existence
of associated unique absolutely continuous invariant measures?
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Chapter 5. Dynamical properties of alternate base expansions

10. Consider the set

/—1
Zﬁ = {:t Z anﬁl—l—n :LeN, apay ... ag_low € Dﬁ}.

n=0

Clearly, the set Zg is a subset of the spectrum X#171(3) of B over
the alphabet [—[8] 4+ 1,[8] — 1]. This set Zg was introduced by
Gazeau [Gaz97] and is called the set of B-integers. The set Zg has a
lot of properties.

e Zg = Z when (3 is an integer greater than or equal to 2.
e 73 has no accumulation point.

o Zpg is self-similar thus 3Zg C Zg.

e Zg is not invariant under translation if 8 ¢ N.

e Zg forms a Meyer set if 5 is a Pisot number [BEGK9S], that is,
Zg —Zg C Zg + F for a finite set F' C R.

o Zg = XIP171(B) if and only if 3 is a confluent Parry number
(sometimes called generalized multinacci numbers), that is, zeros
greater than 1 of polynomials

xd—mxd_l—m:pd_2—--'—mx—n

where d > 1 and m > n > 1.

From the first item, we know that when 3 is an integer greater than or
equal to 2, the distances between neighboring elements in Zg is always
1. If B is not an integer, the situation changes significantly, but still
the distances between neighboring elements can be characterized. Let
(zn)nen be an increasing sequence such that

Zg = +{xy : n € N}

The set Zg has finitely many distances x,4+1 — @, if and only if 5 is a
Parry number [Thu89]. If 8 is a Parry number, there exist a positive
integer k and real numbers Ay, ..., Ag such that {A; : i € [0, k]} is the
set of distances of Zg. This set of distances is intimately linked with
the values of prefixes of dz(1). We define an infinite word ug = (un)nen
defined by wu,, = i, with i € [0, k], if zp41 —zn, = Ay, for all n € N. The
word ug is the fixed point of a morphism [Fab95]. Moreover, the infinite
word ug is Sturmian, that is aperiodic of minimal factor complexity,
if and only if 5 is a quadratic Pisot number. An interesting research
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project I started working on with Emilie Charlier, Zuzana Masakova
and Edita Pelantova is to study properties of analogue 3-integers when
3 is an alternate base.

Let U be the set of univoque bases consisting of real numbers 5 > 1
such that 1 has a unique [-expansion. The set U has been widely
studied for nearly 25 years. To cite just a few:

e Erdos, Jo6 and Komornik [EJK90] showed that U is uncountable
and of zero Lebesgue measure.

e Dardczy and Kétai [DK95| showed that U has full Hausdorff di-
mension.

e Komornik and Loreti [KL98|, [KL02, [KLO7] found its smallest ele-
ment qx,, which is now called the Komornik-Loreti constant and
is related to the Thue-Morse sequence, and proved that the topo-
logical closure of U is a Cantor set, that is a non-empty compact
set having neither interior nor isolated points.

e Dajani, Komornik, Kong and Li [DKKLI8] proved that the alge-
braic difference U — U contains an interval.

A vast potential research project is to define and study an analogue set
of univoque Cantor (or alternate) bases.
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