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Abstract. Full waveform inversion is a seismic imaging method which requires to solve a large-4
scale minimization problem, typically through local optimization techniques. Most local optimization5
methods can basically be built up from two choices: the update direction and the strategy to control6
its length. In the context of full waveform inversion, this strategy is very often a line search. We7
here propose to use instead a trust-region method, in combination with non-standard inner products8
which act as preconditioners. More specifically, a line search and several trust-region variants of the9
steepest descent, the limited memory BFGS algorithm and the inexact Newton method are presented10
and compared. A strong emphasis is given to the inner product choice. For example, its link with11
preconditioning the update direction and its implication in the trust-region constraint are highlighted.12
A first numerical test is performed on a 2D synthetic model then a second configuration, containing13
two close reflectors, is studied. The latter configuration is known to be challenging because of multiple14
reflections. Based on these two case studies, the importance of an appropriate inner product choice15
is highlighted and the best trust-region method is selected and compared to the line search method.16
In particular we were able to demonstrate that using an appropriate inner product greatly improves17
the convergence of all the presented methods and that inexact Newton methods should be combined18
with trust-region methods to increase their convergence speed.19
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1. Introduction. Full waveform inversion is a high-resolution seismic imaging23

technique formulated as a data fitting problem, whose aim is to recover some model24

parameters by minimizing the discrepancy between recorded data and data simulated25

by solving wave propagation problems [29, 35]. By nature these data are oscillatory26

and consequently the misfit quantifying the discrepancy features local minima [4, 21].27

Global optimization techniques should ideally be used but the typically very high28

dimensions of the search space prohibits their use and only local optimization tools29

can practically be employed, with care [8]. A straightforward direction to iteratively30

update the model properties is of course the gradient, i.e. the direction of steepest31

decrease. However it is well-known that the inverse Hessian plays a crucial role in32

the reconstruction in addition to offering the possibility to account for coupling effects33

between parameter classes for multi-parameter inversion [3, 24, 26, 29, 38]. A theoreti-34

cally simple way to incorporate these second-order derivatives is to minimize the misfit35

using Newton methods. In practice however the pure Newton method is too compu-36

tationally intensive to implement, because it requires inverting the Hessian operator.37

In addition, the misfit is not necessarily quadratic, thus the exact Newton direction38

is not necessarily appropriate. Consequently, it is natural to turn to inexact New-39

ton methods, where the search direction is constructed iteratively to approximate the40

pure Newton direction, or to quasi-Newton methods. State-of-the-art methods rely41

on the quasi-Newton l-BFGS algorithm, which implicitly builds an approximation of42

the inverse Hessian operator from l previously saved gradients and model parameters43

[23]. However it has been illustrated that on some specific cases involving multiple re-44

∗Submitted to the editors March 8, 2022.
Funding: This research was funded by the Fonds de la Recherche Scientifique de Belgique

(F.R.S.-FNRS) and by the ARC “WAVES” grant 15/19-03 from the Wallonia-Brussels Federation

of Belgium. Computational resources were provided by the Consortium des Équipements de Calcul
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flections, such quasi-Newton methods fail to converge where inexact Newton methods45

do succeed [20]. The latter compute the descent direction through a few iterations of46

a linear system involving the Hessian operator (the Newton system). One advantage47

over l-BFGS is the locality of the quadratic approximation: such methods do not48

rely on the convergence history of the algorithm, which might yield inaccurate inverse49

Hessian approximation for non quadratic misfit functions. The bottleneck of these50

methods lies in the compromise to find between a direction built in few iterations, but51

which hardly takes the Hessian into account and a nearly exact direction which is very52

expensive to compute. A complementary strategy to reduce this number of inner it-53

eration is to apply a preconditioner to both sides of the Newton system [6, 16, 25, 36].54

To implement any of the three above mentioned schemes, one can rely either on line55

search algorithms, or on trust-region methods. In the former case, once a direction56

is chosen, the outer iteration is completed by finding the optimal length of the step57

that should be performed along that direction. Among the non linear optimization58

community, it is sometimes argued however that line search is not well suited with59

Newton directions, especially when the Hessian is nearly singular. Indeed when the60

Hessian is nearly singular, the Newton direction becomes excessively long such that61

the local quadratic approximation implicitly made when computing it ceases to hold.62

Much computational effort must then be made by the line search procedure to reduce63

the step size [23]. Stopping the iterative solution of the Newton system earlier ap-64

pears as a solution to this problem. For example, its convergence requirements could65

be relaxed such that they reflect the accuracy of the local quadratic approximation66

[9, 19]. Alternatively, a trust-region method could be used instead [18, 37, 39, 40].67

The latter limits the length of the update direction depending on the accuracy of the68

local quadratic approximation. The length of a direction is given by its norm, itself69

induced by the inner product chosen for the model parameters space. The choice of70

this inner product is thus pivotal in the implementation of a trust-region method.71

Moreover changing the inner product modifies both the gradient and the Hessian and72

is equivalent to applying a preconditionner [7, 12, 22, 17, 41]. Consequently it also73

has a major impact on line search based local optimization methods.74

In this paper, we tackle the three following important questions:75

• Which descent direction to compute: the gradient, the l-BFGS direction or76

an inexact Newton direction?77

• Which globalization method to select: a line search method or a trust-region78

method?79

• Which preconditioning strategy to apply? How to enforce it?80

Answering these three questions and determining the good combinations (good prac-81

tices) between them is crucial for effective full waveform inversion. From our study, it82

appears that preconditioning is essential and that enforcing preconditioning through83

the inner product is elegant and, more interestingly, implies no modification to the84

practical implementation of the optimization algorithms. The l-BFGS method is85

found to be the most efficient method for the considered single-parameter inversions.86

It is also found to be insensitive to the globalization choice. Inexact Newton methods87

should not be discarded though, as considering the exact Hessian might lead to better88

model parameter decoupling in the case multi-parameter inversions. When using in-89

exact Newton methods, our case studies show that using a trust region globalization90

consistently improves convergence.91

The paper is organized as follows. In the first part, full waveform inversion is92

stated very generally. The optimization problem and its solution procedures using93

either a line search or a trust-region are introduced. The Newton system, which is94

pivotal in local minimization theory, is also derived. A particular emphasis is given to95

the inner product choice. More specifically, its link with preconditioning the Newton96

system is established. Local minimization methods commonly used in the context97

of full waveform inversion are then recalled. In the second part, the application98
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to acoustic imaging is detailed. The (adjoint) procedure to compute gradients and99

Hessian vector products is given and its computational cost is explained. The overall100

computational cost of each optimization method is then deduced. Finally, convergence101

results on the acoustic Marmousi case study are analyzed to determine the best inner102

product and the best parameters for a trust-region method. This best candidate is103

then compared to line search methods on both the Marmousi model and on a case104

study involving strong reflectors.105

2. Local optimization methods. Full wave inversion is an imaging method106

based on the minimization of a misfit functional J , which exclusively depends on107

some model parameters m. The recovered model parameters m∗ are defined as the108

minimizer of this misfit, i.e. m∗ = arg min J(m). Local optimization techniques are109

based on a local quadratic expansion of the misfit J around the current model estimate110

(2.1) J(m+ δm) ≈ J(m) + {DmJ}(δm) +
1

2
{D2

mmJ}(δm, δm).111

This expansion can also be written in terms of the gradient j′ and the Hessian operator112

H once an inner product 〈·, ·〉M is chosen for the model space M113

(2.2) J(m+ δm) ≈ J(m) + 〈j′, δm〉M +
1

2
〈Hδm, δm〉M .114

The pure Newton direction pN is then defined as the minimizer of this local quadratic115

expansion, which is also the solution of a linear system116

(2.3) pN = arg min
p∈M

J(m) + 〈j′, p〉M +
1

2
〈Hp, p〉M or HpN = −j′.117

The large-scale nature of this linear system requires either the use of approximate118

Hessian operators that are straightforward to invert, or the use of Hessian-free iterative119

methods. Both approaches are usually referred to as quasi-Newton methods and120

inexact Newton methods. In the latter case, the conjugate gradient method is the121

ideal candidate for the iterative solver because the Hessian operator is symmetric. The122

conjugate gradient method is however designed for positive definite operators while123

the full Hessian can be indefinite, especially far from the global minimum [29, 20].124

As a consequence, either an additional safeguard is added to exit prematurely when125

directions of negative curvature are encountered or the exact Hessian is modified such126

that it becomes positive definite, e.g. using the Gauss-Newton approximation [25].127

2.1. Globalization methods. As mentioned in the introduction, the misfit is128

not necessarily quadratic and thus the pure Newton direction or its approximations129

are not always the best directions. For that reason the length of the search direction is130

often tweaked using a line search or a trust-region method, which ensures convergence131

towards the nearest local minimum [9, 11, 10, 23].132

2.1.1. Line search. When using a line search procedure, a direction p must first133

be identified. An appropriate length γ is then given to this direction p, ideally the134

global minimum along the line m+γp. In practice however less stringent satisfactory135

conditions are used instead to spare expensive wave problem resolutions. Maybe the136

best example are strong Wolfe conditions137

J(m+ γp) ≤ J(m) + c1γ{DmJ(m)}(p)(2.4)138

|{DmJ(m+ γp)}(p)| ≤ c2 |{DmJ(m)}(p)|(2.5)139140

for some constant c1 and c2 such that 0 < c1 < c2 < 1. The first condition is called the141

sufficient decrease condition. It ensures that updating the model in the direction γp142
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produces a decrease smaller than a fraction c1 of what is expected from a local linear143

approximation of the misfit. The second condition, called the curvature condition,144

ensures that the updated model m+ γp is sufficiently close to a local minimum along145

the line, where the directional derivative {DmJ(m+γp)}(p) would be zero. When this146

derivative is very smaller (resp. larger) than zero, then a larger (resp. smaller) step147

could produce a significantly bigger decrease. We choose here a line search algorithm148

that satisfies strong Wolfe conditions and accepts steps easily (Algorithm 3.2 from149

[23] with c1 = 10−4, c2 = 0.9). The outer loop is finally obtained by repeating these150

two steps iteratively until convergence.151

2.1.2. Trust region. At the opposite when using a trust-region method, first152

a maximum length ∆ is chosen. Then the best approximate solution, meaning the153

direction that minimizes a local prediction of the misfit but smaller than this length,154

is used155

(2.6) p = arg min
p∈M,‖p‖M≤∆

[
Jpred(m; p) := J(m) + 〈j′(m), p〉M + 0.5

〈
H̃(m)p, p

〉
M

]
.156

This local misfit prediction Jpred is typically constructed based on the local quadratic157

approximation (2.2) through a particular choice of some approximate Hessian operator158

H̃. Of course the approximate Newton direction H̃p = −j′ is the solution of this159

problem if it lies inside the trust region. There are several possibilities to choose160

this length ∆ and our particular choice is detailed later. More importantly, as we161

pointed out in the introduction, the length constraint is formulated in terms of the162

norm induced by the inner product ‖p‖2M = 〈p, p〉M ≤ ∆2. Modifying this inner163

product therefore changes the shape of the trust region and it is then desirable to164

choose it carefully. The size of the trust region is actually controlled by the outer165

iterations. The decision of modifying the trust region is based on the accuracy of the166

local prediction of the misfit. When the prediction is accurate but the updates are167

limited by the length constraint, then the trust region radius is increased. At the168

opposite, when the updates are out of the range of validity of the prediction, then169

the trust region radius is decreased. The decrease (resp. increase) rate of the radius170

is controlled by some parameter c0 < 1 (resp. c1 > 1). The quality of the prediction171

is quantified by the ratio between the actual decrease δJa := J(mn) − J(mn+1) and172

the decrease predicted by the local prediction of the misfit. There are two ways to173

compute this predicted decrease [10]. On the one hand the expansion can be written174

in terms of the gradient and the Hessian operator at the previous model estimate175

J(mn+1) = J(mn + pn)(2.7)176

≈ J(mn) + 〈j′(mn), pn〉M + 0.5
〈
H̃(mn)pn, pn

〉
M

= Jpred(mn; pn)(2.8)177
178

which defines the prospective predicted decrease179

δJp,p := J(mn)− Jpred(mn; pn)(2.9)180

= −〈j′(mn), pn〉M − 0.5
〈
H̃(mn)pn, pn

〉
M
.(2.10)181

182

On the other hand, it can also be written in terms of the gradient and the Hessian183

operator at the next model estimate184

J(mn) = J(mn+1 − pn)185

≈ J(mn+1)− 〈j′(mn+1), pn〉M + 0.5
〈
H̃(mn+1)pn, pn

〉
M

= Jpred(mn+1;−pn)186
187
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which defines the retrospective predicted decrease188

δJp,r := Jpred(mn+1;−pn)− J(mn+1)(2.11)189

= −〈j′(mn+1), pn〉M + 0.5
〈
H̃(mn+1)pn, pn

〉
M
.(2.12)190

191

These ratios between the actual decrease and one of both the predicted decreases ρp :=192

δJa/δJp,p and ρr := δJa/δJp,r are actually both equal to one when the approximate193

Hessian in the update direction and the second order expansion (2.2) are exact. When194

the misfit is not quadratic or the Hessian approximation is not accurate, then these195

ratios can go away from one. Using anything else than the full Newton method can196

degrade these ratios, even if the misfit is quadratic. In particular for a pure quadratic197

misfit, neglecting the negative definite part of the Hessian makes the prospective ratio198

bigger than one (δJp,p is underestimated) and the retrospective ratio smaller than one199

(δJp,r is overestimated).200

Standard trust-region methods directly control the radius ∆. However it is an201

absolute quantity, in the sense that it is compared to ‖p‖M , which depends on the202

inner product. Thus, it seems more natural to control this radius relatively to the203

gradient norm (∆ = µ ‖j′‖M ), which provides a length reference for the (approximate)204

Newton system. In this way, even when the (approximate) Newton system changes205

scale from one iteration to another, the trust region remains relevant. This particular206

variant (Algorithm 2.1) has been first introduced in [11].207

Algorithm 2.1 Fan trust-region algorithm

Require: retrospective or prospective, 0 ≤ ρ0 < ρ1 < 1 and 0 < c0 < 1 < c1
µ0 = 1
loop

∆n = µn ‖j′(mn)‖M

pn =


− µnj

′
n

(2.28) with ∆ = ∆n

Algorithm 2.5 with ∆ = ∆n

δJa = J(mn)− J(mn + pn) and δJp,p = J(mn)− Jpred(mn; pn)
ρp = δJa/δJp,p
if ρp ≥ ρ0 then mn+1 = mn + pn else mn+1 = mn

if prospective or ρp < ρ0 then
ρ = ρp

else if retrospective then
δJp,r = Jpred(mn+1;−pn)− J(mn+1)
ρ = ρr = δJa/δJp,r

end if
if ρ < ρ1 then µn+1 = c0µn

else if ρ ≥ ρ1 and ‖pn‖M > 0.5∆n then µn+1 = c1µn

else then µn+1 = µn

end loop

According to this algorithm, a direction pn is rejected when the prospective misfit208

prediction Jpred
n used to compute it is not accurate, in the sense that the prospective209

ratio is smaller than some threshold ρ0. If not rejected, then the trust region size210

is updated according to either the prospective or the retrospective ratio, based on a211

comparison with a second threshold ρ1. Because the updated radius ∆n+1 constrains212

the direction search around the next model estimate mn+1, it makes sense to use213

the retrospective ratio which also involves the next model estimate mn+1 and not214

the prospective ratio which involves the current model estimate mn. Using the ret-215

rospective ratio is however slightly more expensive because the next (approximate)216

Hessian operator in the current direction must be computed in addition. Moreover217
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the accuracy of the retrospective prediction might be good in the direction −pn while218

still being bad in the direction pn+1 and inversely. There is also no safeguards for219

large value of the ratios, which means that when the model is not accurate but the220

predicted decrease underestimates the true decrease, the radius can still be increased.221

Three sets of values for the threshold ρ1 and the rates c0/c1 have been tested. The222

acceptance threshold ρ0 is always tiny such that steps are often accepted, similarly to223

the line search algorithm.224

(A) ρ0 = 10−4, ρ1 = 0.25 and c0 = 0.20, c1 = 5.225

(B) ρ0 = 10−4, ρ1 = 0.75 and c0 = 0.25, c1 = 2.226

(C) ρ0 = 10−4, ρ1 = 0.90 and c0 = 0.50, c1 = 2.227

The first one (A) is very similar to what was originally proposed in [10]. The other228

two (B,C) are more cautious because they modify the radius more rarely and when229

they do, it increases by a smaller factor. Note that the second one (B) is also close230

to what is proposed in [23].231

2.2. Inner product. The choice of the inner product plays a central role in the232

inversion because it defines through the norm how directions length are measured but233

also because it defines both gradients and Hessian operators. Indeed the equivalence234

between both expansions (2.1) and (2.2) is granted by the defining property of the235

gradient and the Hessian operator in terms of directional derivatives236

〈j′, δm1〉M := {DmJ} (δm1) ∀δm1,(2.13)237

〈Hδm2, δm1〉M :=
{
D2

mmJ
}

(δm1, δm2) ∀δm1, δm2.(2.14)238239

This link between directional derivatives and kernels is actually a straightforward240

application of the Fréchet-Riesz representation theorem [15].241

The model parameter space is a function space defined on some region Ω and242

conventionally, the inner product is chosen as the L2(Ω) inner product243

(2.15) 〈m2,m1〉M = 〈m2,m1〉 :=

∫
Ω

m1(x)m2(x) dΩ.244

This straightforward choice leads to the conventional gradient j′L2
and the conven-245

tional Hessian operator HL2 , that can both be computed efficiently using the adjoint246

state method [1, 13, 28]. As an illustration, a conventional gradient is represented247

in Fig. 1b. It is actually the first gradient computed during the acoustic imaging248

of the Marmousi model. As can be seen, shallow contributions have much greater249

amplitudes than deeper parts. This actually reflects the bad scaling properties of this250

inner product and motivates the use of a spatially weighted inner product251

(2.16) 〈m2,m1〉M :=
〈
m2

√
w,
√
w m1

〉
,252

with an appropriate spatially dependant weight w. Insights on how to design w can253

be gained by relating the conventional and the weighted gradients. Indeed, both are254

defined by (2.13) then by transitivity of the equality255

(2.17)
〈
j′L2

, δm1

〉
=
〈
j′
√
w,
√
w δm1

〉
∀δm1 such that j′ = w−1j′L2

.256

The same reasoning can be applied to both Hessian operators (H = w−1HL2). Choos-257

ing this weight close to the Hessian operator then makes the gradient closer to the258

pure Newton direction and the Hessian operator closer to the identity. In other words,259

the Newton system (2.3) is better conditioned and iterative solvers are therefore ex-260

pected to converge faster. We choose here to take this weight as the diagonal part261

of the Gauss-Newton Hessian (w = diag (HGN)) because it can be computed semi-262

analytically for a given model at no extra computational cost under certain circum-263

stances [25]. A weight that has the same units than the Hessian also has the advantage264
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Fig. 1: Diagonal part of the Gauss-Newton Hessian (a). Conventional gradient
(b). Weighted gradient (c). Weighted and thresholded gradient (d). Weighted and
smoothed gradient (e). The stabilization parameter ε is given graphically in the top
figure and a smoothing length 2πlc = 0.250 [km]) is chosen.

that the corresponding weighted gradient has the same units than the model param-265

eters. Model parameters, weighted gradients and weighted Hessian vector products266

therefore all have the units of model parameters and the coefficients between them,267

for example the length γ and µ involved respectively in line search and trust region268

techniques, are then always dimensionless and thus easier to interpret. The weights269

and the corresponding weighted gradient are given in Fig. 1a and 1c respectively. As270

expected, the weighted inner product compensates for the geometrical spreading and271

restores balance between shallow and deep contributions. It is however dangerous272

to use this weight alone because it can be very close to zero in poorly illuminated273

zones as for example in the corners of the model. In these regions, the weighted inner274

product is insensitive and consequently the preconditioner is unstable. The simplest275

stabilization strategy consists in the introduction of a threshold ε in the weights276

(2.18) 〈m2,m1〉M :=
〈
m2

√
w,
√
w m1

〉
+ ε 〈m2,m1〉 .277

The corresponding preconditioning effect is to keep silent regions where the weight is278

much smaller than the threshold. Another strategy is to use an inner product with279

the following stabilization term280

(2.19) 〈m2,m1〉M :=
〈
m2

√
w,
√
w m1

〉
+ ε l2c 〈∇m2,∇m1〉281

where lc is a characteristic length. This second term, related to spatial derivation,282

increases the norm of directions that are rapidly varying and also prevents the inner283

product from being insensitive in regions where the diagonal Hessian is close to zero.284

In regions where the diagonal Hessian is close to the threshold, then directions with285

details smaller than the characteristic length lc are penalized with respect to smoother286

directions. This inner product is actually very similar to the one introduced in [41],287

except that the Gauss-Newton diagonal Hessian weight is used in addition. As far288

as preconditioning is concerned, this inner product can be reformulated through an289
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8 X. ADRIAENS, L. MÉTIVIER, AND C. GEUZAINE

integration by parts as290

(2.20) 〈m2,m1〉M := 〈w m2,m1〉+ ε l2c 〈∆m2,m1〉 .291

Then as previously, conventional and preconditioned gradients are linked292

〈j′, δm1〉M =
〈
j′L2

, δm1

〉
∀δm1(2.21)293 〈(

w + ε l2c∆
)
j′, δm1

〉
=
〈
j′L2

, δm1

〉
∀δm1 ⇔ j′ =

(
w + ε l2c∆

)−1
j′L2

.(2.22)294295

From the point of view of preconditioning, this inner product generates a rescaling296

thanks to the Gauss-Newton diagonal Hessian weight and a Laplacian filtering, whose297

smoothing length equals 2πlc where the diagonal Hessian equals the threshold. The298

effect of these inner products is illustrated in Fig. 1d and 1e. In addition of stabilizing299

the weights, [41] have shown that a filtering inner product can help the convergence300

of full waveform inversion by mitigating its non linearity.301

In general, any inner product that can be related to the conventional inner prod-302

uct (2.15) through some preconditioner P yields a preconditioned gradient and a303

preconditioned Hessian operator304

(2.23) 〈m2,m1〉M = 〈Pm2,m1〉 ⇒ j′ = P−1j′L2
and H = P−1HL2

.305

Changing the inner product is formally equivalent to preconditioning both the gradient306

and the Hessian operator. We choose to introduce preconditioning through a change307

in the inner product rather than through the application of an operator because it308

appears more elegant and rigorous to us. Moreover, this approach has the pedagogical309

advantage to include preconditioning inside the inner product choice and thus it does310

not need to appear explicitly in the description of the optimization algorithms. In311

terms of practical implementation, it implies that the optimization routines must312

not be rewritten, only the subroutine which computes the inner product have to be313

modified, hence providing a lot of flexibility. Basically, a different choice for the inner314

product does not modify the pure Newton direction because the same preconditioner315

is applied to both sides of the Newton system (2.3), but does modify the subspace316

constructed by the conjugate gradient method and does modify norms which are317

involved in any stopping criterion. A good choice can thus lead to better approximate318

directions and better truncation rules.319

2.3. Steepest descent. The steepest descent is actually the simplest local opti-320

mization algorithm. It consists in taking the search direction as the opposite gradient.321

This is the best direction at first order (H̃ = 0) but it can also be seen as a quasi-322

Newton step where the approximate Hessian operator is the identity operator (H̃ = I).323

In practice however, this approximation is very crude because the Hessian operator324

is far from the identity operator, even after preconditioning. The downside of this325

simple method is its linear convergence rate. This slow convergence speed is one of326

the main motivation for the investigation of higher order algorithms.327

2.3.1. Line search globalization. No length information can be captured328

from the approximate Hessian operator in this case, because it is simply the iden-329

tity operator (H̃ = I). The first trial step length is then chosen based on the330

history of the outer iterations to save as many step length trials as possible e.g.331

γ = 2(J(mn)− J(mn−1))/{DmJ}(−j′) [23].332

2.3.2. Trust region globalization. Trust-region methods are barely used with333

steepest descent. Mostly because the linear misfit prediction334

(2.24) Jpred(m; p) := J(m) + 〈j′(m), p〉M335

is not accurate enough. Moreover the solution to the trust-region sub-problem (2.6) is336

trivially p = −µj′ and is always on the boundary, because of the absence of a second337
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order term. An upper bound on the relative size of the trust region (µ) is then added338

to compensate the fact that the trust-region algorithm will never keep it constant.339

This bound is set to µmax = 4, 4, 5 for parameter sets A, B, C respectively.340

2.4. Limited memory BFGS method. Quasi-Newton methods are expected341

to provide a huge improvement over the steepest descent and an attractive alternative342

to Newton methods because they do not involve any expensive Hessian vector prod-343

uct. In place of the exact Hessian, an approximation H̃ = B is used instead. This344

approximation is built only with the successive gradients and model parameters of345

each iteration. Moreover, since expensive Hessian vector product are avoided, quasi-346

Newton methods are sometimes more efficient than Newton methods. The Broyden-347

Fletcher-Goldfarb-Shanno algorithm, abbreviated BFGS, is maybe the most widely348

used quasi-Newton method. This method constructs a symmetric and positive defi-349

nite approximation of the Hessian operator based on all the previous gradients and350

model parameters. This approximation Bn+1 is chosen such that it verifies the secant351

equation352

(2.25) Bn+1∆mn = ∆j′n with ∆mn = mn+1 −mn and ∆j′n = j′n+1 − j′n353

while being close to the previous approximation Bn and positive definite. Note that354

imposing the positive definiteness of this approximation also imposes that the update355

direction must satisfy the (BFGS) curvature condition 〈∆mn,∆j
′
n〉M > 0. One of the356

biggest advantage of the BFGS algorithm is that it is possible to directly build the357

approximate inverse Hessian operator B−1
n from the memorized gradients and model358

parameters. However building explicitly this inverse operator in the context of large-359

scale optimization is still prohibitively expensive, as well as storing in memory all360

the previous gradients and model parameters. For these reasons, a limited memory361

version of the algorithm has been derived. Instead of memorizing all the previous362

iterates, it only requires the l last iterates and above all, it comes with a two-loop re-363

cursive procedure to compute the application of the inverse operator on any direction.364

The approximate Newton direction associated with the l-BFGS operator is therefore365

straightforward to compute. This two-loop recursive l-BFGS algorithm is given in366

Algorithm 2.2 [23].367

Algorithm 2.2
Inverse l-BFGS operator application

Require: q, ∆mk, ∆j′k, ∀k ∈ [n− l, n−1]
for k = n− 1 down to k = n− l do
αk = 〈∆mk, q〉M / 〈∆j′k,∆mk〉M
q = q − αk∆j′k

end for
ξ = 〈∆mn−1,∆j

′
n−1〉M / 〈∆j′n−1,∆j

′
n−1〉M

r = ξ q
for k = n− l up to k = n− 1 do
βk = 〈∆j′k, r〉M / 〈∆j′k,∆mk〉M
r = r + (αk − βk)∆mk

end for

return r
(
= B−1

n q
)

Algorithm 2.3
Direct l-BFGS operator application

Require: q, ∆mk, ∆j′k, ∀k ∈ [n− l, n−1]
for k = n− l up to k = n− 1 do
bk = ∆j′k/

√
〈∆j′k,∆mk〉M

ak = B0
n∆mk

for i = n− l up to i = k − 1 do
ak = ak + 〈bi,∆mk〉 bi − 〈ai,∆mk〉 ai

end for
ak = ak/

√
〈∆mk, ak〉M

end for
r = B0

n q
for k = n− l up to k = n− 1 do
r = r + bk 〈bk, q〉M − ak 〈ak, q〉M

end for
return r (= Bn q)

368

It is important to highlight here that this method also benefits from the modification369

of the inner product. Indeed the building blocks of this approximate Hessian operator370

are the successive gradients, which are preconditioned through the inner product. By371

measuring gradient variations, this method constructs a representation of the misfit372

which is good enough to produce super-linear convergence, a great improvement over373
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the steepest descent, at no extra cost. This approximation is however positive definite374

while the exact Hessian might be indefinite, especially during the early iteration of375

the inversion. In such cases, this quasi-Newton method may fail to converge while376

Newton methods may not [20].377

2.4.1. Line search globalization. The unit step length γ = 1 is always tried378

first because the length information should be captured by the inverse approximate379

Hessian. Importantly, it can be showed that the (BFGS) curvature condition is always380

satisfied if the strong Wolfe conditions (2.4) and (2.5) are enforced [23]. Therefore381

the l-BFGS algorithm combined with a line search will always construct a positive382

definite approximate Hessian operator B.383

2.4.2. Trust region globalization. Finding the exact solution to the trust-384

region sub-problem (2.6) with the l-BFGS predicted misfit385

(2.26) Jpred(m; p) := J(m) + 〈j′(m), p〉M + 0.5 〈Bp, p〉M386

is difficult for a general trust region radius. However when this radius is large enough,387

in particular larger than the unconstrained solution pu := −B−1j′, then it is ac-388

tually also the exact constrained solution. On the other hand, when the radius is389

small enough, the quadratic term in the misfit prediction is negligible and the sub-390

problem is equivalent to the steepest descent, which indicates to follow the gradient391

up to the boundary. Based on these solutions for extreme value of the radius, the392

exact solution to the sub-problem (2.6) might be substituted by an interpolation be-393

tween these two solutions. Namely, the gradient is followed each time the minimum394

of the misfit prediction along the gradient, i.e. the Cauchy point pc = −αj′ (with395

α = 〈j′, j′〉M / 〈Bj′, j′〉M ), is outside the radius. Then for intermediate radii, which396

contains this Cauchy point but not the unconstrained solution, an interpolation be-397

tween both is done398

(2.27) p(∆) = pc + τ∗ (pu − pc) with 0 < τ∗ < 1 such that ‖p‖M = ∆.399

Finally for large radii, the unconstrained solution is accepted. In summary400

(2.28) p(∆) =


pu when ‖pu‖M ≤ ∆,

− µj′ when ‖pc‖M ≥ ∆,

pc + τ∗(pu − pc) when ‖pc‖M ≤ ∆ ≤ ‖pu‖M .

401

The approximate solution (2.28) to the trust-region sub-problem (2.6) is called the402

dogleg method [23].403

A huge difference with the line search implementation of the l-BFGS algorithm404

is that now the direct application of the approximate Hessian operator B on some405

directions must be computed. Unfortunately there is no equivalent to Algorithm 2.2406

for the direct l-BFGS operator and its application must then be computed from its407

recursive definition408

Bnq = B0
nq +

n−1∑
k=n−l

bk 〈bk, q〉M − ak 〈ak, q〉M(2.29)409

with ak =
Bk∆mk√

〈Bk∆mk,∆mk〉M
and bk =

∆j′k√
〈∆j′k,∆sk〉M

.(2.30)410

411

It is important to highlight that the sequence of directions ak could not be memo-412

rized because at each iterations the oldest information is discarded, which modifies413

the whole ak sequence. A complete procedure to compute the application of the direct414
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l-BFGS operator is given in Algorithm 2.3. Faster but more sophisticated procedure415

do exist [23]. However manipulations in the model parameter space are computation-416

ally negligible with respect to wave propagation problems hence the speedup would417

also be negligible. Thanks to this procedure the prospective and retrospective pre-418

dicted decrease (2.10) and (2.12) can be evaluated. Interestingly, the prospective419

decrease is evaluated with the current Hessian approximation Bn while the retrospec-420

tive decrease is evaluated with the next Hessian approximation Bn+1. The retro-421

spective ratio is therefore expected to be more often close to one because this next422

Hessian approximation Bn+1 is specifically constructed from the update direction423

pn = ∆mn = mn+1 −mn.424

2.5. Newton methods. In contrast with quasi-Newton methods, Newton meth-425

ods use the Hessian operator explicitly, as they try to solve the Newton system (2.3).426

The interest of these method lies in their independence on the convergence history427

and in their quadratic convergence rate in the vicinity of the minimum. Far from this428

minimum, the Hessian operator might however be indefinite, which complicates the429

solution procedure for the Newton system. For that reason, it is frequent to make the430

Gauss-Newton approximation (H̃ = HGN), which consist in keeping only the positive431

definite part of the Hessian operator. The downside of this approximation is then432

that the second order representation (2.2) of the misfit is less accurate, especially if433

the negative definite part of the Hessian is not negligible, which might prevent the434

method from converging. In this section, we present inexact Newton methods based435

on a line search procedure or a trust region method. Both are valid for the full Hessian436

and for its Gauss-Newton approximation.437

Algorithm 2.4 Conventional
conjugate gradient algorithm

p0 = 0, r0 = j′, q0 = −j′
if 〈Hj′, j′〉M ≤ 0 then return −j′
loop

if 〈Hqk, qk〉M ≤ 0 then return pk

αk = 〈rk, rk〉M / 〈Hqk, qk〉M

pk+1 = pk + αqk and rk+1 = rk + αHqk
if ‖rk+1‖M<η ‖j

′‖M then return pk+1

βk+1 = ‖rk+1‖2M / ‖rk‖2M
qk+1 = −rk+1 + βqk

end loop

Algorithm 2.5 Steihaug
conjugate gradient algorithm

p0 = 0, r0 = j′, q0 = −j′

loop
if 〈Hqk, qk〉M ≤ 0 then
τ∗ = τ > 0 | ‖pk + τqk‖M = ∆
return pk + τ∗qk

end if
αk = 〈rk, rk〉M / 〈Hqk, qk〉M
if ‖pk + αkqk‖M ≥ ∆ then
τ∗ = τ > 0 | ‖pk + τqk‖M = ∆
return pk + τ∗qk

end if
pk+1 = pk+αkqk and rk+1 = rk+αkHqk
if ‖rk+1‖M<η ‖j

′‖M then return pk+1

βk+1 = ‖rk+1‖2M / ‖rk‖2M
qk+1 = −rk+1 + βk+1qk

end loop

438

2.5.1. Line search globalization. Newton methods can be combined with a439

line search procedure. In this case a direction p is first found by solving the Newton440

system approximately with the conventional conjugate gradient method (Algorithm441

2.4) [23]. This algorithm constructs iteratively the solution of a linear system without442

requiring the explicit expression of the Hessian matrix but only its action in particular443

directions. The iterative procedure is stopped when the residuals have decreased more444

than some threshold, called the forcing sequence η, which is typically close to zero445

(2.31) (‖rk‖M :=) ‖Hpk + j′‖M < η ‖j′‖M (= η ‖r0‖M ) .446
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12 X. ADRIAENS, L. MÉTIVIER, AND C. GEUZAINE

Over-solving is here avoided through this forcing term η, which is not systematically447

close to zero but which is instead chosen to reflect the accuracy of the second-order448

expansion. Three possible choices for this sequence have been described and studied449

by [9]. These three choices were then compared in the context of acoustic imaging in450

[20], who advise to use the forcing sequence451

(2.32) ηn =
‖j′(mn)− j′(mn−1)− γn−1H(mn−1)pn−1‖M

‖j′(mn−1)‖M
.452

If the accuracy of the local quadratic approximation is good then this forcing term453

is close to zero and the Newton system is solved accurately. If not, then iterations454

are truncated sooner. This forcing sequence plays a similar role than the prospective455

ratio for trust-region method. It is however based on a (prospective) expansion of the456

gradient while the prospective ratio is based on an expansion of the misfit. Additional457

safeguards are also added to prevent this forcing term to decrease too fast or to increase458

above η0 = 0.9. Interestingly, directions of negative curvatures are never investigated,459

except if it is the gradient. As previously an appropriate length γ is then given to460

this direction p through a line search. The unit step length γ = 1 is again tried first461

because it is the best choice if the misfit were quadratic.462

2.5.2. Trust region globalization. When the Newton method is associated463

with a trust-region technique, the direction is found by minimizing the local quadratic464

expansion of the misfit465

(2.33) Jpred(p) := J(m) + 〈j′, p〉M + 0.5 〈Hp, p〉M466

inside a sphere of radius ∆. The constraint ‖p‖M ≤ ∆ limits the size of the direction467

and aims at preventing over-solving. This trust-region sub-problem can be solved ap-468

proximately with the Steihaug conjugate gradient method (Algorithm 2.5) [33]. This469

method actually exploits two properties of the conjugate gradient algorithm: succes-470

sive approximate solutions always grow in norm (‖pk‖M < ‖pk+1‖M ) while the misfit471

prediction always decrease (Jpred(pk) > Jpred(pk+1)). The underlying idea of the472

method is then to minimize the second order expansion of the misfit iteratively using473

the conventional conjugate gradient algorithm until either convergence is achieve, ei-474

ther the boundary is reached. Basically there are only two modifications compared475

to Algorithm 2.4. First, the inner iterations are cropped to the trust region radius476

∆ when the unconstrained solution increases beyond it. Second, when a direction of477

negative curvature is encountered, it is followed up to the boundary of the trust region478

and the algorithm is stopped. Interestingly these directions were never investigated in479

the conventional version. The convergence criterion is unchanged but here the forcing480

term is kept constant (η = 0.5).481

3. Numerical investigations. Numerical studies are performed in the context482

of subsurface acoustic imaging in the frequency domain [29, 32]. In that particular483

case, the misfit is conventionally chosen as the least-squares distance between some484

acoustic pressure measurements dωer (at some receiver r, for several excitation sources485

e and for different frequencies ω) and the corresponding computed acoustic pressures486

pωe(xr), obtained by solving the Helmholtz equation487

(3.1) J(s2) = 0.5
∑
ω,e,r

∣∣pωe(xr; s2)− dωer

∣∣2 with ∆p+ ω2s2p = δ(x− xe).488

It is here chosen that the subsurface model parameter is the slowness squared distri-489

bution s2 [s2/km2] (also called the sloth), as could be guessed from the expression of490

the Helmholtz operator Aω(s2) := ∆ + ω2s2. The slowness squared s2 is actually the491

squared inverse of the velocity v. Several other parametrizations are also possible but492
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it has been shown that the slowness squared can yield a fast convergence and accurate493

results [2, 5, 14, 27]. Implementation of any of the above described local optimization494

algorithms requires an efficient procedure to compute the misfit and the gradient for a495

given slowness squared distribution s2 and the action of the Hessian operator for any496

given slowness squared perturbation δs2. The well-known adjoint state method has497

been developed for that specific purpose. It is summarized here below and detailed498

in [1, 13, 28]. The two terms in gray should be removed under the Gauss-Newton499

approximation.500

1. Find the forward fields pωe such that501

Aω(s2)pωe = δ(x− xe).(3.2)502503

504 2. Find the adjoint fields p†ωe such that505

Aω(s2)p†ωe =
∑
r

(pωe(xr)− dωer)δ(x− xr).(3.3)506

507

508 3. Find the preconditioned gradient j′ such that509

Pj′ = −
∑
ω

ω2
∑
e

p†ωepωe.(3.4)510

511

512 4. Find the perturbed forward fields δpωe such that513

Aω(s2)δpωe = −ω2δs2pωe.(3.5)514515

516 5. Find the perturbed adjoint fields δp†ωe such that517

Aω,e(s
2)δp†ωe =

∑
r

δpωe(xr)δ(x− xr)−ω2δs2p†ωe.(3.6)518

519

520 6. Find the preconditioned Hessian operator Hδs2 in the direction δs2 such that521

PHδs2 = −
∑
ω

ω2
∑
e

(δp†ωepωe+p
†
ωeδpωe).(3.7)522

523

524 Independently of any practical solver for these wave propagation problems, a misfit525

evaluation only requires to perform step 1 and thus only requires to solve a single526

wave propagation problem. A gradient evaluation requires steps 1 to 3, thus a single527

supplementary wave propagation problem must be solved if the misfit has already been528

computed. Similarly, steps 1 to 6 are necessary for the application of the (Gauss-529

)Newton Hessian operator in a particular direction, thus again two supplementary530

wave propagation problems if the gradient has already been computed for the same531

model parameters.532

Consequently the steepest descent and the l-BFGS directions require to solve533

two wave problems while any Newton-based direction has an initial cost of four wave534

propagation problems and each supplementary conjugate gradient iteration requires535

two more wave problems. To the price of the directions must be added the cost536

of the line search or the trust-region methods. Line search typically accepts a step537

length if it verifies sufficient conditions (2.4) and (2.5) which involves the misfit and538

its gradient. Thus it requires one or two additional wave problems each time a trial539

step length is rejected. Prospective trust-region has no additional cost because the540

evaluation of the trust region only depends on quantities already computed. At the541

opposite, retrospective (Gauss-)Newton trust-region requires the application of the542

Hessian operator on the preceding direction and thus needs to solve two additional543

wave propagation problems. The table here below summarizes this accounting.544

Base CG LS TR
SD 2 - 2NLS -
l-BFGS 2 - 2NLS -
LS-NCG 2 - 2NLS -
TR-NCG (P) 2 2NCG - 0
TR-NCG (R) 2 2NCG - 2

545
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It is interesting to highlight here that the first inner iteration of any conjugate gradient546

Newton method is simply the steepest descent but it is twice more expensive because547

the curvature is computed. Subsequent inner iterations must therefore provide large548

decrease of the misfit to compensate this high entry cost. This phenomenon is even549

worse with the retrospective trust region algorithm because there is a systematical550

additional cost to update the trust region radius.551

In this work, solutions to partial differential equations (3.2) to (3.7) are obtained552

numerically with the finite element method. In what follows, we specify the exact553

numerical procedure in that context. Note however that the analysis would nearly554

be identical with finite differences. Finite element discretization assembles operators555

into matrices and source terms into vectors. Wave propagation problems (3.2), (3.3),556

(3.5) and (3.6) therefore transform into a linear system whose left-hand-side matrix557

A is always the same for a given frequency while the right-hand-side source b is558

different for any field type, frequency and excitation index. The solution of this559

system is obtained by first computing its lower-upper factorization then by performing560

an upward-backward substitution for each right-hand-side source561

(3.8) Ap = b ⇔ A = LU, Lq = b and Up = q.562

Huge computational reduction is therefore obtained because only one matrix per fre-563

quency is assembled and factorized. The computation of any wave field then requires564

the assembly and the upward-backward substitution of a vector per excitation source,565

but no more matrix factorization. The numerical equivalence of the preceding six566

steps procedure is given here below.567

1. • Factorize wave propagation operators (nω)568

• Substitute forward sources (nω × ne)569

2. • Substitute adjoint sources (nω × ne)570

3. • Factorize the preconditioner (1)571

• Substitute the conventional gradient (1)572

4. • Substitute perturbed forward sources (nω × ne)573

5. • Substitute perturbed adjoint sources (nω × ne)574

6. • Substitute the conventional Hessian (1)575

It is interesting to highlight that model problems (steps 3 and 6) are negligible with576

respect to wave problems. Indeed while wave problems involve a matrix per frequency577

and a vector per excitation source, model problems only involve a single matrix (i.e the578

preconditioner) and a single source vector (i.e the conventional gradient or Hessian).579

Moreover the model discretization is usually coarser than the wave field discretization.580

Consequently not considering these model problems when quantifying the computa-581

tional complexity is not dramatic. It should however be highlighted that forward582

problems are more expensive than the corresponding adjoint problem, because the583

matrix factorization is reused. Moreover the perturbed forward problem and the per-584

turbed adjoint problem are slightly heavier than the adjoint problem, because both585

their sources are dense, at the opposite of forward and adjoint sources, which are586

sparse. Nevertheless we weight equally all of these four problems when quantifying587

the computational complexity.588

In the next two sections, two synthetic numerical case studies are investigated.589

The first one is based on the widely used Marmousi benchmark [34] while the sec-590

ond one, replicated from [20], is inspired from a near-surface imaging of close concrete591

structures and features important multiple scattering. Multiple scattering is responsi-592

ble for the indefiniteness of the Hessian operator, which, as mentioned in the previous593

part, is challenging for optimization algorithms. This second example is thus chosen594

to emphasize which optimization methods are able to overcome such difficulties. For595

both case studies, the influence of the inner product choice on the convergence speed596

and the quality of the inverted model is studied first. Once the inner product is cho-597

sen, prospective and retrospective trust-region methods with different parameter sets598
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are compared and the best option is selected. Advantages and drawbacks of trust-599

region methods in the context of full waveform inversion are then finally discussed600

based on a comparison with the corresponding line search methods. In the remainder601

of this section, data misfit are normalized such that the misfit corresponding to the602

initial model is one and computational complexity is measured in numbers of forward603

problems solved, as explained above.604

3.1. Case study 1. Numerical inversions are performed on the 2D Marmousi605

model (Fig. 2a) [34] in the frequency domain. Three frequencies (4, 6 and 8 [Hz]) are606

inverted simultaneously. The surface acquisition system is composed of 122 equally607

spaced (72 [m]) excitation sources and 243 equally spaced (36 [m]) receivers. Outer608

iterations are stopped when satisfying the convergence criterion J(s2)/J(s2
init) < 10−3.609

A smoothed version of the exact Marmousi model is used as an initial guess (Fig. 2b).610

This initial model is computed with a Laplacian filter s2
init = (1 + (lc/2π)2∆)−1s2

exact611

with lc = 2 [km]. Slowness squared fields and pressure fields at the three frequencies612

are discretized on a square grid (36 [m]) by hierarchical finite elements, respectively613

of order 1 and of order 2, 3, 4. A water layer (216 [m]) is also added at the top of the614

model but it is kept constant during the inversion. The model is spatially truncated615

by Sommerfeld boundary conditions [31]. Recorded data are generated synthetically616

using the same hierarchical finite elements setting than for the inversion. An inversion617

result, i.e. an estimated squared slowness, is shown in (Fig. 2c). From a relatively618

low resolution initial guess, full waveform inversion indeed provides a high-resolution619

estimation of the exact model. Images obtained with the other methods do not differ620

significantly.621
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Fig. 2: Marmousi model (a), initial guess (b) and inversion results using a line search
l-BFGS algorithm with a weighted and thresholded inner product (c).

3.1.1. Inner product. As explained earlier, the inner product has an influence622

on both the gradient and the Hessian. Its choice is therefore expected to influence623

the convergence speed but also the particular minimizer that is reached. To illustrate624

both these effects, the line search l-BFGS algorithm has been applied with the four625

different inner products introduced in this work, i.e. the conventional inner prod-626

uct (2.15), the weighted inner product (2.16) and its regularized variants (2.18) or627

(2.19). Corresponding convergence curves and error maps are given in Fig. 3 and628

4 respectively. Both these figures are also summarized in Table 1. As can be seen629

from these figures, all weighted inner product increase the convergence speed with630

respect to the conventional, i.e. unweighted, one. However the minimizer obtained631

with the weighted inner product alone is further away from the exact solution, in632

particular in the right corner of the model. Avoiding such artifacts is precisely one633
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of the reasons for the introduction of regularized inner products, as they dampen634

the contributions in these poorly illuminated regions. Both the thresholding and the635

smoothing strategy perform similarly in reducing the error back to the same level than636

the unweighted solution but the thresholding strategy converges faster. It is thus kept637

for the sequel of this case study. The advantages of the smoothing inner product will638

be highlighted during the second case study. In the next three subsections, the be-639

haviour of the steepest descent method, the l-BFGS method, the full Newton and the640

Gauss-Newton methods is analysed. Convergence curves and interesting statistics for641

all these methods are given in Fig. 5 and Table 2 respectively.

0 20 40 60 80

10−3

10−2

10−1

100

Fig. 3: Data misfit as a function of the computational complexity for the line search l-
BFGS algorithm with a conventional (• •), only weighted (- •), weighted and stabilized
(- -) or weighted and smoothed (–) inner product.

Wave sol. (tot) Error rms ([s2/km2])
Conventional 78 0.0174
Weighted only 61 0.0202

and stabilized 57 0.0174
and smoothed 68 0.0173

Table 1: Computational complexity and root-mean squared error for the line search
l-BFGS algorithm with different inner products.
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Fig. 4: Final inversion error for the line search l-BFGS algorithm with a conven-
tional (a) or a weighted (b) inner product. Inversion errors for both regularized inner
products are not shown because these are very similar to those obtained with the
conventional inner product.

642 3.1.2. Steepest descent. There is no dramatic improvement when using one643

or another direction scaling method, because actually the direction itself is bad. Nev-644

ertheless, it appears that methods which reject less frequently the proposed update645

direction are faster, i.e the prospective trust-region method with the more cautious646

parameters sets (B and C) and the line search method. Retrospective radius update647

does not speed up convergence. Actually we observed that the retrospective predicted648

decrease (2.12) sometimes largely underestimates the actual decrease, illustrating that649

the retrospective misfit prediction is very not accurate, but still producing an increase650

of the trust region radius. Finally, among the three best methods, the slope is slightly651

steeper for the two trust-region methods, probably because they systematically try to652

increase the length given to the gradient direction.653
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SD

LS 244 111 10 - - -
TR-P (A) 396 198 - 40 100 -
TR-P (B) 280 140 - 6 100 -
TR-P (C) 264 132 - 5 100 -
TR-R (A) 328 164 - 20 100 -
TR-R (B) 354 177 - 20 100 -
TR-R (C) 330 165 - 25 100 -

LB

LS 57 27 - 7 - -
TR-P (A) 58 29 - 3 10 -
TR-P (B) 58 29 - 3 34 -
TR-P (C) 64 32 - 13 50 -
TR-R (A) 58 29 - 3 10 -
TR-R (B) 56 28 - 0 11 -
TR-R (C) 56 28 - 0 11 -

FN

LS 139 17 2.9 12 - 29
TR-P (A) 178 22 3.0 32 77 0
TR-P (B) 106 13 3.1 0 69 0
TR-P (C) 106 16 2.3 0 75 0
TR-R (A) 144 14 3.1 14 64 0
TR-R (B) 128 14 2.6 0 79 0
TR-R (C) 142 17 2.2 0 82 0

GN

LS 124 15 3.13 0 - -
TR-P (A) 130 11 4.9 0 10 -
TR-P (B) 98 10 3.9 0 30 -
TR-P (C) 98 10 3.9 0 30 -
TR-R (A) 152 11 4.9 0 10 -
TR-R (B) 132 14 2.7 0 79 -
TR-R (C) 184 24 1.8 0 83 -

Table 2: Statistics related to the implementation of the steepest descent (SD), the
l-BFGS (LB), the full Newton (FN) method and the Gauss-Newton (GN) methods
combined with a line search (LS) or a trust region (TR) with a prospective (P) or
retrospective (R) radius update with different parameter sets (A,B,C).

3.1.3. Limited memory BFGS method. There is hardly no difference be-654

tween all the methods combined with the l-BFGS algorithm. We observed that the655

line search method only rejects the unit step length γ = 1 for the first two iterations.656

Similarly, we observed that the retrospective ratio is always very close to one, such657

that the trust region radius for retrospective methods quickly becomes large and thus658

the pure l-BFGS direction is always accepted after the first few iterations. An algo-659

rithm that unconditionally follows the pure l-BFGS direction would therefore already660

be very good and neither a line search nor a trust-region method can actually dras-661

tically improve it, as far as convergence speed is concerned. Nevertheless the more662

cautious prospective trust-region methods (B,C) also converge fast, which shows that,663

on the other hand, constraining the size of the update directions does not slow down664

the inversion.665

3.1.4. Newton methods. As far as trust-region methods are concerned, it first666

clearly appears that the retrospective radius update is not worth its computational667

cost. Indeed it does not require less wave solutions than the best prospective ones,668

even if the computation cost of the retrospective predicted decrease is withdrawn (two669

wave solutions per outer iterations). Retrospective radius update has been introduced670
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Fig. 5: Data misfit as a function of the computational complexity for the steepest
descent (a), the l-BFGS (b), the full Newton (c) and the Gauss-Newton (d) methods
combined with either a line search ( ) or a prospective trust region (A ( ), B ( ),
C ( )) or a retrospective trust region (A ( ), B ( ), C ( )).

to anticipate and prevent failures. However the prospective Newton method combined671

with the more cautious parameters sets (B and C) does already not reject any direction672

and there is then no interest in computing the retrospective ratio.673

Among the prospective methods, it appears that the two more cautious (B and674

C) yield the fastest convergence. Convergence speed decreases when using parameter675

set A with both the full Newton method and the Gauss-Newton method but for two676

different reasons. With parameter set A, the trust-region radius grows quickly and the677

full Newton method is thus allowed to explore large directions, beyond the validity of678

the exact second order expansion (2.2). Such directions produce a high rejection rate679

(32%) and thus a waste of computational effort. At the opposite, the Gauss-Newton680

method never rejects a direction and the explanation for its slower convergence can681

therefore not be the same. During the earliest iterations, far from the global minimum,682

the Gauss-Newton approximation is not valid (because data residuals are not small683

yet) and thus the Gauss-Newton Hessian is quiet different from the full Hessian. The684

misfit prediction under the Gauss-Newton approximation is thus cruder than the exact685

second order expansion (2.2) and the ratio ρp is even more likely to be away from686

one. This ratio ρp is given in Fig. 6c. As can be seen, during the first few iterations,687

this ratio is actually very larger than one, which indicates that the misfit prediction688

is indeed not accurate. Nevertheless, the trust region radius is still increased and the689

system is solved accurately while the Hessian and the misfit are not approximated690

accurately. This effect generates over-solving the system at the earliest iteration and691

slows down the Gauss-Newton method, as can be seen by comparing the initial slopes692

between variant A and B/C in Fig. 5d. This effect would be even more dominant693

if the convergence requirements, i.e. the forcing sequence η, was smaller. With the694

large value η = 0.5 chosen here, convergence of the conjugate gradient algorithm is695

attained relatively fast. Actually variant B and C perform better than variant A only696

because it takes more iterations for the trust region constraint to become inactive.697

Starting with a larger initial radius would result in the same convergence speed than698

variant A. Also, it is interesting to highlight that when using the retrospective radius699
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Fig. 6: Prospective ratio ρp (a,c) or retrospective ratio ρr (b,d) during the outer
iterations of the full Newton method (a,b) and the Gauss-Newton method (c,d) with
different parameter sets using a prospective radius update (a,c) (A ( ), B ( ), C
( )) or a retrospective radius update (b,d) (A ( ), B ( ), C ( )).
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Fig. 7: Inner iterations per outer iteration for the full Newton method (a,b) and the
Gauss-Newton method (c,d) with different parameter sets using a prospective radius
update (a,c) (A ( ), B ( ), C ( )) or a retrospective radius update (b,d) (A ( ), B
( ), C ( )).

update with the Gauss-Newton approximation, the situation is reversed because the700

retrospective ratio is then smaller than one. Instead of over-solving, under-solving701

then appears. Therefore we believe that it is better to use trust-region methods with702

the full Newton Hessian, because it constructs the best possible misfit prediction while703

it does not introduce supplementary difficulties.704

The full Newton method and the Gauss-Newton method are slightly slower when705

combined with a line search method. As far as the full Newton method is concerned,706

directions of very small curvature can produce large update directions, far beyond707

the validity of the expansion (2.2). In such cases the initial length γ = 1 is rejected708

and some computational cost must be involved to reduce it to satisfy Wolfe condi-709

tions. This effect has actually been observed twice using the full Newton method.710

Moreover during the first fifth outer iterations, the full Newton method using the line711

search globalization stops because a direction of negative curvature is encountered.712

At the opposite of its trust-region counterpart, the line search variant of the conjugate713

gradient algorithm discard any direction of negative curvature, thus wasting the as-714

sociated computational cost. Of course within the Gauss-Newton approximation this715

second effect can not appear (and the first one was actually not observed). The line716

search globalization therefore seems more suited with the Gauss-Newton approxima-717

tion. Nevertheless it is not much faster. In the context of line search globalization,718

the accuracy of the second order local expansion is expressed through the forcing719

sequence η, which is, as can be seen in Fig. 8, away from zero during the first few iter-720

ations. Consequently, the convergence of the conjugate gradient algorithm is quickly721

This manuscript is for review purposes only.
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reached and only a few inner iterations are performed per outer iterations as can be722

seen from Fig. 7c. Fig. 7c actually show how hard it is to stop the Gauss-Newton723

inner iterations at the right time: the fastest method is the prospective trust region724

B/C and it performs less inner iterations then the variant A but more than the line725

search method. The difficulty to pick up an appropriate stopping criterion for the726

Gauss-Newton method is another motivation to use the full Newton method instead.727

Using the full Newton method, the line search variant actually suffers from directions728

of small or negative curvature while trust-region methods do not. Based on this case729

study, we would therefore recommend to use the full Newton method combined with730

a trust-region method and a prospective radius update.731

(a)
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0.4

0.6

0.8

1.0
(b)

0 2 4 6 8 10 12 14 16 18 20 22
0.4

0.6
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Fig. 8: Forcing sequence η for the full Newton (a) and the Gauss-Newton (b) methods
combined with a line search method ( ). The forcing sequence for methods combined
with a trust-region is constant (η = 0.5).

3.2. Case study 2. The configuration of this second case study is replicated732

from [20]. The true velocity distribution is given in Fig. 9a. It presents two T-shaped733

concrete structures (vc = 4 [km/s]) embedded in a homogeneous background (vb = 0.3734

[km/s]) with a horizontal layer reflector in the bottom (vr = 0.5 [km/s]). The depth735

of investigation is limited to 3 [m] while the width is 30 [m]. The aspect ratio and736

the propagation scales are thus very different from the Marmousi model. These two737

concrete foundations, buried at few meters deep, generate high-amplitude reflections738

because of the very high velocity contrast with the background. Moreover, important739

multiple scattering appears between the two structures, as they are relatively close to740

each other. The acquisition system is divided into three segments: one on the surface741

and the two others inside boreholes on both lateral sides. Sources and receivers are742

equally spaced (15 [cm]) along these three segments. Note that the surface sources743

and receivers that would lie inside the two concrete structures are not considered744

in the modelling, leading to an actual number of sources and receivers totaling 227.745

Nine frequencies (100, 125, 150, 175, 200, 225, 250, 275, and 300 [Hz]) are inverted746

simultaneously from an initial model composed of the homogeneous background and747

the bottom reflector only. For this second case study, a logarithmic slowness squared748

parametrization is used m := ln s2. This parametrization has the advantage to be749

unable to produce negative values of the slowness squared. Inverting the slowness750

squared actually drives it into negative values, because of the two concrete structures751

whose slowness squared is really close to zero. Outer iterations are stopped when752

satisfying the convergence criterion J(ln s2)/J(ln s2
init) < 10−2. Slowness squared753

fields and pressure fields at the nine frequencies are discretized on a square grid (15754

[cm]) by hierarchical finite elements, respectively of order 1 and of order 2, 3, 4. At755

the light of the first case study, trust-region methods with parameter sets A and C756

will no longer be considered, as both were systematically outperformed by parameter757

set B.758

3.2.1. Inner product. Illumination of the medium is nearly perfect and conse-759

quently, the diagonal part of the Gauss-Newton Hessian that we previously used as a760

weight can reasonably be approximated by a constant hGN. However the part related761

to the change of variable is varying spatially δs2 = ds2

d ln s2 δ ln s2 = s2 δ ln s2. Hence the762

weight for the inner product is chosen as w = hGN s4. As previously, the line search763
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Fig. 9: Near-surface concrete structures velocity model (a) and inversion results using
a line search l-BFGS algorithm with a conventional (b), a weighted only (c) or a
weighted and smoothed (d) inner product.
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Fig. 10: Data misfit as a function of the computational complexity for the line
search l-BFGS algorithm with a conventional (• •), only weighted (- •) or weighted
and smoothed (–) inner product.

l-BFGS algorithm has been applied with the four different inner products introduced764

in this work. Convergence curves are given in Fig. 10 while inversion results are given765

in Fig. 9. For the weighted and smoothed variant, the threshold is set as ε = hGN s4
b766

while the characteristic length for the smoothing inner product is set to lc = 3 [m]. It767

is important to highlight that this length is greater than the smallest wavelength in768

the background medium (1 [m]) while for the first case study, this length was actually769

close to the smallest wavelength. The weighted and thresholded variant has been770

tested for several values of the threshold, from ε = hGN s4
c to ε = hGN s4

b but none771

of them provided inversion results significantly different from the conventional or the772

weighted inner products. Only the smoothing inner product is able to reconstruct the773

model parameter accurately. This smoothing inner product actually mitigates the774

non-linearity of the misfit, because spatial roughness is incorporated progressively in775

the model parameter [41]. During the inversion, the model parameter never explores776

extremely high velocity values, at the opposite of the other variants. It is thus able777

to converge to an accurate solution while more straightforward optimization is not.778

Consequently, this inner product is used for the remainder of this study. The perfor-779

mance of the three optimization methods is described in the next three subsections.780

Convergence curves, inversion results and statistics are given in Fig. 12 and 11 and in781

Table 3 respectively.782
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Fig. 11: Inversion results for the steepest descent (a), the l-BFGS (b), the full Newton
(c) and the Gauss-Newton (d) methods combined with trust-region method using a
prospective radius update (B). Note the the upper color scale limit is only 2 [km/s].
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Fig. 12: Data misfit as a function of the computational complexity for the steepest
descent (a), the l-BFGS (b), the full Newton (c) and the Gauss-Newton (d) methods
combined with either a line search ( ) or a trust-region with a prospective (B ( ))
or a retrospective (B ( )) radius update. Dots on (Gauss)-Newton curves indicate
outer iterations.

3.2.2. Steepest descent. The steepest descent method is not able to reach783

convergence in a reasonable amount of computations. Progressively decreasing the784

smoothing length lc during the inversion would accelerate the convergence [41], but785

it is not needed for more sophisticated methods and thus it is not done here neither.786

As for the first test case, the slope of trust-region methods is slightly steeper than the787

line search method. The prospective radius update rejects less often directions and788

hence converges faster than the retrospective radius update.789
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SD
LS∗ 803 400 - 1 - -
TR-P (B)∗ 800 400 - 9 100 -
TR-R (B)∗ 800 400 - 18 100 -

LB
LS 186 88 - 8 - -
TR-P (B) 174 87 - 1 23 -
TR-R (B) 174 87 - 2 6 -

FN
LS 359 28 5.0 29 - 25
TR-P (B) 376 33 4.7 0 70 0
TR-R (B) 516 38 4.8 8 68 0

GN
LS∗ 923 60 6.6 8 - -
TR-P (B) 680 38 7.9 0 42 -
TR-R (B) 672 39 6.6 0 41 -

Table 3: Statistics related to the implementation of the steepest descent (SD), the
l-BFGS (LB), the full Newton (FN) and the Gauss-newton (GN) methods combined
with a line search (LS) or a trust-region (TR) with a prospective (P) or retrospective
(R) radius update with parameter set B. Star marker ∗ indicates methods that have
been stopped before convergence.

3.2.3. Limited memory BFGS method. Similarly to the first test case, the790

influence of the globalization method on the convergence speed is small. Trust-region791

methods actually spare a part of the line search cost, but it already represents only792

a tiny fraction (20 wave solutions) of the overall computational cost (186 wave solu-793

tions). Retrospective ratio is again always very close to one and the only difference794

between retrospective and prospective radius update is the frequency the size con-795

straint is active, although it does not influence the convergence speed.796

3.2.4. Newton methods. For this case study, the full Newton method clearly797

outperforms the Gauss-Newton method, independently of the globalization method798

used. On the one hand, the convergence speed is much higher and on the other799

hand the accuracy of the inversion results is superior. As demonstrated in [20], the800

missing negative definite part of the Hessian can prevent the Gauss-Newton method801

from reaching convergence. Here, thanks to the inner product preconditioning, every802

method is able to find the minimum but the invalidity of the Gauss-Newton approx-803

imation impacts the convergence speed and the inversion results. Interestingly, for804

the Gauss-Newton method, the retrospective radius update succeeds to compensate805

its cost (2 wave solutions per outer iteration). Indeed, during the earliest outer iter-806

ations when the Gauss-Newton and the full Hessian are different, we observed that807

the retrospective ratio is smaller than one while the prospective ratio is bigger than808

one. Consequently the retrospective method performs less inner iterations per outer809

iterations than the prospective method (Fig. 13b), and thus avoids early over-solving.810

In the end both methods still converge at the same speed, but the retrospective811

method has spent less time in the computation of linear system solutions (680 versus812

672 − 2 × 39 = 594 wave solutions). At the opposite, for the full Newton method,813

the retrospective method spent even more time in the computation of linear system814

solutions than the prospective method. The prospective method is actually already815

efficient because the prospective misfit prediction is accurate. The line search glob-816

alization also provides fast convergence in this case, despite the fact that directions817

of negative curvature are often encountered (14 wasted wave solutions) and that the818
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unit step length is often rejected. However the flow of the method is very different819

from trust-region methods. Indeed line search methods have a tendency to compute820

a single very accurate system solution, followed by several very inaccurate system821

solutions as can be seen from Fig. 13a and from the dots spacing in Fig. 12c while822

trust-region methods perform a nearly steadily increasing number of inner iterations823

per outer iteration. Whether a flow is better than the other has not been emphasized824

by our case studies. In the case of noisy data, we however believe it could have an825

influence.

(a)

0 5 10 15 20 25 30 35 40 45
1
8
15
22
29
36

(b)

0 5 10 15 20 25 30 35 40 45
1
8
15
22
29
36

Fig. 13: Inner iterations per outer iteration for the full Newton method (a) and the
Gauss-Newton method (b) combined with either a line search ( ) or a trust-region
with a prospective (B ( )) or a retrospective (B ( )) radius update.826

4. Conclusion. In this work, we investigated the use of trust-region methods827

in the context of full waveform inversion in the frequency domain. At the heart of828

any trust-region method is the trust-region constraint, which is expressed in terms of829

the inner product chosen for the model parameter space. Consequently we begun our830

analysis by investigating different inner product choices that could be implemented.831

We showed that changing the inner product does not only modify how lengths are832

measured but also acts as a preconditioner on both the gradient and the Hessian833

operator. Based on two numerical case studies, we showed that moving from a con-834

ventional inner product to a smoothed and/or weighted inner product can accelerate835

the convergence and mitigate the non-linearity of the misfit, for any optimization836

method independently of the globalization method (line search or trust region).837

In parallel with this inner product choice, we also introduced line search and838

trust-region variants of the steepest descent, the l-BFGS and the (Gauss-)Newton839

methods. The number of wave propagation problems to be solved for each method840

was derived in order to compare them fairly. For each optimization method, the line841

search and the trust-region globalizations were then compared based on two different842

case studies. Thanks to the inner product preconditioning, every combination actu-843

ally already yields very satisfying results. Nevertheless, we showed that trust-region844

methods outperform line search methods in numerous situations. In particular, we845

observed that the steepest descent converges slightly faster, because the trust-region846

methods always tried to increase the step length. As far as the l-BFGS method is847

concerned, very few differences were noted, but interestingly, constraining the size of848

the update direction did not decrease the convergence speed. The more dramatic dif-849

ferences appeared when using the full Newton method. Trust-region methods actually850

overcome the difficulties that appeared when using a line search method with the full851

Newton method. The Gauss-Newton approximation is not required with trust-region852

methods and actually degrades their performances, because this approximation also853

degrades the misfit prediction.854

We believe that more sophisticated optimization methods, for example combining855

l-BFGS and Newton methods, could increase even more the convergence speed. Future856

works should also investigate the behaviour of inner product preconditioned trust-857

region methods in the presence of noise, possibly with new inner products that involve858

prior information on the model parameter space. We believe that the size constraint859

could act as a regularization method per se. Based on our study and these potential860

extensions, trust-region methods and inner product preconditioning seem to be two861

very useful tools for full waveform inversion.862
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