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Abstract

This paper incorporates information uncertainty and social interaction among investors

into a random utility framework and develops an evolutionary equilibrium model of asset

pricing and investor choice dynamics. We show that strong social interaction can lead

to endogenous switching between two persistent regimes for the mean choice and return

volatility, which can simultaneously generate time-series momentum and volatility clus-

tering in asset returns. By using StockTwits post volume as a proxy for social interaction,

we provide empirical evidence for the model predictions for various equity indices.
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SOCIAL INTERACTION, VOLATILITY CLUSTERING, AND MOMENTUM 1

1. Introduction

Two stylized facts about asset returns in equity markets have puzzled finance re-

searchers: namely, volatility clustering and time-series momentum. First, volatility clus-

tering refers to the fact that large (small) price changes tend to be followed by large (small)

price changes of either sign. It was first noted by Mandelbrot (1963) and is widely observed

in financial markets.1 With notable asset pricing implications, volatility clustering is the

focal point of investment and risk management. The widespread ARCH and GARCH

models2 provide rich econometric techniques to characterize these features and have moti-

vated various efforts to provide theoretical explanations. However, these explanations are

often exogenous, relying on exogenous time-varying preferences, persistent information ar-

rival, and heterogeneous trading frequency, sometimes introducing volatility regime shifts

directly.3 Second, time-series momentum, that is, the strong positive predictive ability of

a security’s own past returns, has been documented and explored by Moskowitz, Ooi and

Pedersen (2012). Explanations for short-run momentum and long-run reversal are often

based on behavioral theories.4

Motivated by recent studies linking social interaction to investor trading behavior, we

propose the social interaction of investors as an endogenous explanation for volatility

clustering. By incorporating uncertainty from noisy signals on fundamentals and social

interaction of investors into a random utility framework, we develop an equilibrium model

of asset pricing and population dynamics of investor mean choice. We show that driven by

the peer-group effect from strong social interaction, the mean choice can switch between

two persistent regimes: the high mean choice regime is characterized as a regime with a

more informative asset price and hence low return volatility, while the low mean choice

regime displays a less informative asset price and hence high return volatility. With the

persistence of the mean choice in each regime, large shocks to fundamental and public

signals can occasionally trigger endogenous switches between the two regimes, generating

volatility clustering. Moreover, this type of endogenous switching can also generate the

1More explicitly, “returns...have surprisingly large numbers of extreme values, and both the extremes

and quiet periods are clustered in time” (Engle, 2004).

2See, e.g., Engle (1982), Bollerslev (1986), and Engle (2004).
3See, e.g., Hamilton and Susmel (1994), Andersen and Bollerslev (1997), Muller et al. (1997), Cao et

al. (2002), Engle (2004), Marquering and Verbeek (2004) and Fleming et al. (2006).
4See, for example, Barberis, Shleifer and Vishny (1998), Daniel, Hirshleifer and Subrahmanyam (1998)

and Hong and Stein (1999).

Electronic copy available at: https://ssrn.com/abstract=2916490



2 SOCIAL INTERACTION, VOLATILITY CLUSTERING, AND MOMENTUM

time-series momentum characterized by the short-term predictive ability of a security’s

own past returns at the monthly level. Using StockTwits post volume as a proxy for

social interaction, we provide empirical evidence on the model predictions on volatility

clustering and time-series momentum for various equity indices.

Fundamental information is noisy. The informativeness of the observed noisy funda-

mental information can be either high or low. In equilibrium, the mean choice refers

to investors’ average choice of beliefs about this informativeness. When investors up-

date their beliefs based on perceived fundamental innovations, they adapt their behavior

through social interaction, with a peer-group effect inducing a tendency for conformity

in behavior across investors. Following the static random utility approach of Brock and

Durlauf (2001) and the dynamical population game model of Blume (2003) and Blume and

Durlauf (2003), we model the mean choice as a stochastic process of individuals’ response,

where investors adapt their own strategic choice to that of the population. Thus, the

steady states of a deterministic approximation of the stochastic model are characterized

by the static Nash equilibria of the mean choice. When social interaction is weak (below a

threshold value), there exists a unique (symmetric) steady state for the mean choice, and

investors’ choices are equally divided. However, when social interactions are strong (above

the threshold value), the peer effect of social interaction generates two additional (asym-

metric) steady states. More importantly, with increasing social interaction, the change in

stability from the symmetric steady state to the two asymmetric steady states reflects the

(local) persistence of the mean choice in each regime. Intuitively, when one choice is made

by the majority of investors, it becomes more attractive for individual investors. We also

follow Blume (2003) and introduce a relative performance measure based on the prediction

errors as the private utility component in the random utility framework, which we refer

to as private utility shocks. With the combination of the (local) persistence of the mean

choice in each regime, fundamental shocks and public signals then trigger endogenous

regime switching in the population’s choice dynamics.

In equilibrium, the asset price is the population-weighted average equilibrium price un-

der investors’ choice of beliefs. When one choice is made by the majority of investors,

they pull the price to their own valuation. Therefore, the mean choice affects price infor-

mativeness and hence asset return volatility. With strong social interaction, a high mean

choice leads to a low-volatility regime, where the majority of investors choose to believe

that the public signal is relatively more informative. As the aggregate market perceives

less uncertainty, asset returns are less volatile. On the other hand, a low mean choice
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leads to a high-volatility regime, where the majority of investors choose to believe that

the public signal is relatively less informative. Hence, asset returns are more volatile.

Consequently, endogenous regime switching in the population’s choice dynamics results in

endogenous regime switching in asset return volatility. Hence, social interaction can serve

as an endogenous mechanism driving the phenomenon of volatility clustering; i.e., return

volatility is serially correlated and switches between a high and a low regime.

Moreover, the switching intensity between the two regimes increases in the sensitivity to

private utility shocks, and the difference in volatility between the two regimes increases in

belief dispersion and social interaction. This is because high sensitivity to private utility

shocks enlarges the magnitude of their effect, which causes investors’ mean choice to switch

more often. Additionally, strong social interaction leads to a more polarized mean choice,

which, coupled with large dispersion in beliefs about informativeness, results in a greater

difference in volatility between the two regimes. Therefore, social interaction in a random

utility framework provides a microfoundation for the endogenous switching of investors’

beliefs as well as the switching intensity.

The mechanism behind volatility clustering also has implications for time-series mo-

mentum, that is, the predictive ability of a security’s own past returns at the monthly

level. By examining the autocovariance of asset returns, we find that when the mean

choice is persistent over short time horizons, the market price maintains a price trend

driven by the dominating group of investors, resulting in time-series momentum in the

short run. Therefore, social interaction also serves as an underlying mechanism for this

return predictability.

Finally, using data from StockTwits, a social media investing platform, we provide an

empirical validation of the theoretical model predictions. We observe that the autocor-

relation of volatility is significantly higher when social interaction is strong. A GARCH

analysis further shows significant volatility clustering with strong social interaction. We

also find that the returns of time-series momentum portfolios are significantly positive

when social interaction is strong but negative when social interaction is weak.

1.1. Related Literature. Our paper is closely related to a diverse literature on social

interaction and its implications for asset returns and investor choice dynamics in financial

markets.

Our first contribution to the literature is to present social interaction as a novel channel

of information uncertainty in asset pricing. The importance of social interaction based
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4 SOCIAL INTERACTION, VOLATILITY CLUSTERING, AND MOMENTUM

on the peer effect in various aspects of investing has been well documented in the lit-

erature and explains a variety of phenomena in financial markets.5 The literature also

explores the impact of social interactions on portfolio choice.6 The theoretical literature

suggests several factors giving rise to herding.7 Recent empirical studies demonstrate that

social interaction can increase active trading, affect investors’ investment and debt deci-

sion making and contribute significantly to the disposition effect (Heimer, 2016).8 Instead

of focusing on the mechanism that gives rise to the peer effect, we posit social interaction

as a mechanism driving the mean choice and hence the informativeness of observed noisy

fundamental information. We show that with information uncertainty, the level of market

informativeness, and hence return volatility, can be characterized by endogenous switching

in the mean choice between different regimes.

Second, this paper complements the literature that examines the nonlinear impact of

heterogeneity and social interaction on aggregate outcomes, particularly through multiple

steady states of market equilibrium. The pervasiveness of heterogeneity and social inter-

action in economics has been well documented.9 With noisy fundamental information,

investors face uncertainty regarding its informativeness. Considering either fixed types or

5For example, Hong et al. (2004) show that households that are more socially active are also more likely

to invest in the stock market. Kaustia and Knüpfer (2012) present evidence of outcome-based influence

and show that local peers’ recent experience with stock returns affects an individual’s stock market entry

decision, particularly in areas with better opportunities for social learning.
6Hong et al. (2005) show that mutual fund managers tend to buy stocks that their local peers have

bought in the recent past.
7Scharfstein and Stein (1990) attribute it to reputation concerns and the unpredictable components to

investment outcomes. Another well-known example is the information cascades of Banerjee (1992) and

Bikhchandani et al. (1992), whereby investors who have imperfect information optimally give some weight

to prior investors’ decisions. Shiller (1995) argues that the differences across groups in herding behavior

may be more due to differences in the nature of information transmission.
8In related studies, Feng and Seasholes (2004) provide evidence when dividing investors geographically in

China that trades are highly correlated. In Finland, Shive (2010) shows that social learning is a significant

predictor of stock market trading. In the US, Ivković and Weisbenner (2007) find that investors are more

likely to purchase stocks from a particular industry if their neighbors purchase stocks from that industry.

Welch (2000) finds that analysts are more likely to revise their recommendations toward prior consensus

recommendations than away from them. Jegadeesh and Kim (2010) indicate that analysts’ recommendation

revisions are partly driven by their tendencies to herd. Han and Hirshleifer (2012) demonstrate that social

interaction contributes to the growth of active strategies.

9See, e.g., Keynes (1936), Becker (1974), Heckman (2001), and Brock and Durlauf (2001).
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constant population fractions of heterogeneous investors, the rational expectations equilib-

rium asset pricing literature falls short in capturing the effect of time-varying population

characteristics and hence the informativeness of noisy fundamentals for asset pricing.10 In

this paper, we follow Brock and Durlauf (2001), Blume (2003) and Blume and Durlauf

(2003) to model the time-varying mean choice of the investor population. The resulting

nonlinear model can have multiple steady states. Driven by the relative performance of

investors in their private utility component, the nonlinear interaction of the time-varying

investor choice with the market price can lead to endogenous switching between different

steady states. This provides a simple mechanism to explore more complicated market

behavior than the traditionally linear equilibrium can rationalize. Furthermore, social in-

teraction provides a microfoundation for endogenous switching and switching intensity for

models in which switching is typically assumed exogenous (see, e.g., Hamilton and Susmel,

1994).

Third, this paper posits social interaction as a novel economic explanation for the sto-

chastic volatility, particularly volatility clustering, that is empirically described by the

(G)ARCH model and its extensions (Engle, 1982, Bollerslev, 1986). GARCH models have

offered econometric tools to successfully explain volatility dynamics (Engle, 2004). Some

models have been developed to explore the economic mechanisms underlying stochas-

tic volatility by introducing, for example, volatility regime shifts directly (Hamilton and

Susmel, 1994), persistence in exogenous information arrival (Engle, 2004; Andersen and

Bollerslev, 1997; Cao et al, 2002; Fleming et al, 2006), heterogeneous trading frequency

(Muller et al, 1997), parameter uncertainty (Johnson, 2001), and time-varying risk aver-

sion (McQueen and Vorkink, 2004). In contrast to these exogenous approaches, this paper

posits social interaction as an endogenous mechanism behind volatility clustering.

Fourth, this paper offers an approach different from that of heterogeneous agent models

(HAMs) in explaining volatility clustering. From a complex systems perspective, HAMs

assume heterogeneous (e.g., fundamental and trend-following) expectations and model the

heuristic switching of agents based on the performance of different trading strategies.11 By

examining the impact of the nonlinearity on complex price behavior, HAMs can explain

10See, e.g., Dumas, Kurshev and Uppal (2009) and Cao and Ou-Yang (2009).
11We refer to Hommes (2006), LeBaron (2006), Chiarella, Dieci and He (2009), and Dieci and He (2018)

for surveys in this literature.
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various stylized facts, including volatility clustering and market anomalies.12 Instead of

assuming exogenous heuristic switching, we provide an endogenous switching mechanism

through Nash equilibrium in this paper.

Finally, this paper also offers a complementary explanation of short-run time-series

momentum, which has mostly been explained based on certain behavioral theories in the

literature.13 Moskowitz et al. (2012) empirically investigate time-series momentum defined

by a strong positive predictive ability of a security’s own past returns. Complementarily to

this literature, we posit endogenous regime switching via a social interaction channel as an

explanation for time-series momentum. In the different regimes, the asset price maintains

a price trend driven by the dominant group of investors. Buffeted by noisy signals, asset

prices fluctuate persistently and switch stochastically between different regimes, resulting

in time-series momentum in the short run.

The paper is organized as follows. We first develop an evolutionary equilibrium of the

asset price and investor choice dynamics in Section 2. Section 3 focuses on the choice

dynamics. Regime switching and volatility clustering are examined in Section 4, while

time-series momentum is studied in Section 5. Section 6 presents the empirical analysis,

and Section 7 concludes. All the proofs, additional analyses, and empirical background

are provided in the Appendices.

2. The Model

Consider an economy with two assets: a risk-free asset in perfectly elastic supply with a

constant interest rate r and a risky asset in zero net supply that pays dividend Dtdt over

a time interval [t, t+ dt]. The dividend follows

dDt = ftdt+ σDdZD,t, (1)

where σD is a constant, ZD,t is a standard Wiener process, and ft follows a mean-reverting

process

dft = λ(f̄ − ft)dt+ σfdZf,t, (2)

12See, e.g., Lux (1995), Brock and Hommes (1997a), Brock and Hommes (1998), Lux and Marchesi

(1999), Chiarella and He (2002), LeBaron (2006), Gaunersdorfer and Hommes (2007), He and Li (2007,

2015b, 2015a), Di Guilmi et al. (2014), and He et al. (2016).
13Barberis et al. (1998) argue that momentum is the result of systematic errors that investors make

when they use public information to form expectations about future cash flows. The models of Daniel

et al. (1998) with a single representative investor and Hong and Stein (1999) with different trader types

attribute the underreaction to overconfidence and the overreaction to biased self-attribution.
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where λ ≥ 0 measures the speed of mean reversion, f̄ is the long-run mean, σf is the

constant volatility of ft, and Zf,t is a standard Wiener process independent of ZD,t. We

assume that ft represents the fundamental state of the economy, which is unobservable to

investors.

There is a continuum of investors, indexed by i ∈ (0, 1), who observe the dividend

changes dDt and a public signal st, which follows

dst = σsρdZf,t + σs
√

1− ρ2dZs,t. (3)

When ρ > 0, the public signal st is informative about the fundamental state ft, where

ρ measures the level of informativeness. When ρ = 1, st fully reveals ft. On the other

hand, st is purely noise when ρ = 0. We assume that investors may disagree about the

informative parameter ρ.

2.1. Information Uncertainty and Investors’ Beliefs. We assume that at time t,

investors can choose between two different beliefs about the fundamental, namely, f̂At and

f̂Bt , that characterize the uncertainty about the informativeness of the public signal. Let

φt denote the population fraction of investors who choose belief f̂At and 1−φt the fraction

of those who choose belief f̂Bt . Moreover, each belief, f̂kt , k = A,B, about the fundamental

state is based on the Bayesian updating rule,

df̂kt = λ(f̄ − f̂kt )dt+
γk
σD

dZkD,t + ρkσfdZs,t, (4)

where ρk is the signal informativeness. We assume that ρA = ρ(1 + ε) and ρB = ρ(1− ε),

with ε ≥ 0 measuring the degree of disagreement.14 Furthermore,

dZkD,t =
dDt − f̂kt dt

σD
, dZs,t =

dst
σs
, (5)

are independent Wiener increments, and the variance of the stationary distribution for f̂kt

is given by

γk =
[√

λ2 + (1− ρ2k)σ2f/σ2D − λ
]
σ2D, k = A,B. (6)

The following subsections examine how investors make their portfolio and belief choices.

At time t, each investor i follows a two-stage process to select her belief f̂ it about the

fundamental and optimal portfolio xit (number of shares held in the risky asset). We first

describe the portfolio selection process.

14We choose a mean-spread symmetric dispersion of the informativeness to highlight the effect of the

degree of the dispersion; the results hold for any choices of ρA and ρB .
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2.2. Portfolio Choices and Equilibrium Price. At the portfolio selection stage, we

take investor i’s belief choice f̂ it as given, i.e., f̂ it = f̂At or f̂Bt . To simplify the exposition,

we first consider a discrete-time model with time increment ∆t between periods t and

t+ 1; then, we take the continuous-time limit as ∆t→ 0.

Assume investor i maximizes a mean-variance utility over the next period’s wealth; i.e.,

investor i’s objective is

max
xit

Eit
[
W i
t+1

]
− 1

2
γVarit

[
W i
t+1

]
, (7)

where

W i
t+1 = RW i

t + xit (Pt+1 +Dt+1 −RPt)

is the portfolio wealth, R = 1 + r∆t, and Pt is the market price of the risky asset. Then,

the optimal demand of investor i for risky asset xi∗t is given by

xi∗t =
Eit [Pt+1 +Dt+1 −RPt]

γVarit [Pt+1 +Dt+1 −RPt]
. (8)

We assume a common conditional variance of excess return, i.e.,

Varit [Pt+1 +Dt+1 −RPt] = σ2t∆t,

where σ2t is the annualized variance. Moreover, we assume that each investor forms her

expectation about the next-period payoff as

Eit [Pt+1 +Dt+1] = RPt + κt
(
P it − Pt

)
∆t, (9)

where P it is equal to either PAt or PBt and

P kt =
∞∑
s=1

Ekt
[
Dt+s

Rs

]
, k = A,B (10)

is the equilibrium price should everyone subscribe to belief f̂kt about the fundamental state.

Intuitively, with information uncertainty, investors have heterogeneous valuations of the

risky asset, and they seek to learn about their own valuation by making inferences from the

equilibrium price. Consequently, investor i expects the equilibrium price to revert back to

what she currently believed the fundamental price to be over the time interval [t, t+ ∆t],

and the speed of mean reversion is κt∆t. Under (9), investor i’s optimal portfolio is given

by

xi∗t =
κt
γσ2t

(
P it − Pt

)
. (11)

By the market clearing condition, φtx
A∗
t + (1− φt)xB∗t = 0, the equilibrium price is given

by

Pt = φtP
A
t + (1− φt)PBt . (12)
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When we take the continuous-time limit as ∆t→ 0, we obtain

P kt = Ekt
[∫ ∞

t
e−r(s−t)Dsds

]
=
Dt

r
+

1

r2

[
r

r + λ
f̂kt +

λ

r + λ
f̄

]
, k = A,B. (13)

The intuition behind the weighted average of prices in (12) is as follows. Investors who

are more optimistic (pessimistic) about the fundamental state take a long (short) position

in the stock. Therefore, when the market fraction increases for optimistic (pessimistic)

investors, they pull the price closer to their valuation, and the equilibrium price must

increase (decrease) to clear the market.

2.3. Belief Choices and Market Fractions. Next, we model investors’ belief choice in

the first stage, i.e., how investors choose between beliefs f̂At and f̂Bt about the fundamental

state, and determine the population fraction φt. Each investor i at time t makes a binary

choice ωit ∈ {−1, 1}, in which ωit = 1 corresponds to the choice of f̂ it = f̂At while ωit = −1

corresponds to the choice of f̂ it = f̂Bt . Therefore we can use

mt ≡
∫ 1

0
ωitdi (14)

to measure the mean choice of investors. Note that φt = (1 + mt)/2. With a high (low)

mean choice, a majority of the investors believe that the public signal, st, is more (less)

informative about the fundamental state, ft.

We follow the random utility model of Brock and Durlauf (2001) to decompose investor

i’s utility into three components; that is, investor i’s preference over ωi is given by

ui(ωi) = (hωi + k) + Jωimi + ξi(ωi). (15)

The first component hωi + k measures private utility. The second component, Jωimi,

measures social utility, where mi is investor i’s expectation of the mean choice level.

Intuitively, when J > 0, investor i has an incentive to conform to the mean choice. The

third component, ξi(ωi), measures random utility, which generates heterogeneity among

investors.

A key result from Brock and Durlauf (2001) is that when the random utility component

satisfies

P(ξi(−1)− ξi(1) ≤ x) =
1

1 + e−βx
, x > 0, β > 0, (16)

the probability of which choice investor i makes is then characterized by the discrete-choice

model

P(ωi|mi) =
eβω

i
t(h+Jm

i)

eβωi(h+Jmi) + e−βωi(h+Jmi)
, ωi ∈ {−1, 1} (17)
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10 SOCIAL INTERACTION, VOLATILITY CLUSTERING, AND MOMENTUM

while the mean choice level is given by

m = 1 · P(ωi = 1) + (−1) · P(ωi = −1) = tanh[β(h+ Jm)]. (18)

To develop a dynamic model for mean choice mt, we follow Blume and Durlauf (2003)

and transpose (17) into an independent Poisson process with switching rate15

ηit ≡ lim
s→0

1

s
P(ωit+s 6= ωit|ωit,mt) = e−βω

i
t(ht+Jmt), (19)

where mt is the current mean choice level and ht measures the relative accuracy of beliefs

f̂At and f̂Bt at time t. Intuitively, investor i is more likely to switch her choice when

ωit(ht +Jmt) < 0, i.e., when her current choice either does not align with the mean choice

level or does not align with the realized dividends and public signals (and hence private

utility is relatively low). Motivated by Brock and Durlauf (2001), we choose

ht = b(δBt − δAt ), (20)

where parameter b ≥ 0 measures sensitivity to the relative accuracy parameter and16

δkt =
[1

θ

∫ t

t−θ
dDu − f̂kt

]2
=
[Dt −Dt−θ

θ
− f̂kt

]2
, k = A,B. (21)

The idea behind (20) and (21) is simple. A choice is relatively more accurate if the inferred

fundamental state f̂kt has a smaller realized (squared) error from the average change in

dividends (Dt − Dt−θ)/θ over a moving time horizon θ (> 0). In particular, investors

consider all historical dividends when θ →∞ but only the current dividend surprise when

θ → 0.

Corresponding to the switching rate of investor i’s choice in (19), Blume and Durlauf

(2003) derive the following mean choice dynamics of the investor population,

dmt

dt
= tanh

[
β(ht + Jmt)

]
−mt, (22)

which has the same steady states of the static Nash equilibrium (18).17

15We refer the reader to Barucci and Tolotti (2012) for a general discussion on this dynamic decision

process when agents are heterogeneous with a time-varying degree of conformism.
16Alternatively, we can replace (Dt − Dt−θ)/θ with Mt =

∫ t
t−∞ e

−ι(t−u)dDu, which satisfies dMt =

dDt −Mtdt when ι = 1. We can show that the main results still hold with this choice.
17Instead of the relative accuracy ht, (17) reduces to the discrete-choice model where investors update

their choices based on some fitness measure (see, e.g., Brock and Hommes, 1997b; He and Li, and 2012).
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2.4. Equilibrium Return Dynamics. From (11), (22), and φt = (1 + mt)/2, we see

that the equilibrium price is the population-weighted average of the fundamental values

perceived by investors. Next, we characterize the dynamics of the instantaneous asset

return. Note that the perceived expected instantaneous return varies across investors due

to their different beliefs about the fundamental state. In the following, we assume an

objective belief f∗t , which is based on the true informativeness parameter ρ, with

df̂∗t = λ(f̄ − f̂∗t )dt+
γ∗

σD
dZ∗D,t + ρσfdZ

∗
s,t, (23)

where

dZ∗D,t =
dDt − f̂∗t dt

σD
, dZ∗s,t =

dst
σs

(24)

and

γ∗ =
[√

λ2 + (1− ρ2)σ2f/σ2D − λ
]
σ2D. (25)

The return dynamics are then given by

dRt = dPt +Dtdt = (rPt + µt)dt+ VD,tdZ
∗
D,t + Vs,tdZ

∗
s,t, (26)

where µt measures the risk premium and VD,t and Vs,t are the volatility coefficients.

When ε = 0 and all investors subscribe to belief f̂∗t about the fundamental state based

on informativeness ρ, we have a benchmark price

P ∗t =
Dt

r
+

1

r2

[
r

r + λ
f̂∗t +

λ

r + λ
f̄

]
, (27)

and the return dynamics follow

dRt = rPtdt+

[
σD
r

+
γ∗

r(r + λ)σD

]
dZ∗D,t +

σfρ

r(r + λ)
dZ∗s,t. (28)

The assumption of an objective informativeness coefficient that differs from ρA and ρB

reflects the uncertainty about the informativeness of the observed noisy fundamental. This

assumption is important to ensure the long-run stationarity of the mean choice distribu-

tion. Suppose that either ρA or ρB coincides with ρ; then, in the long run, one would

expect the private utility component to dominate investors’ choices, and eventually all

investors’ belief choices about the fundamental state would converge to either f̂At or f̂Bt .

Therefore, to ensure long-run heterogeneity, we assume that the true value lies somewhere

in between, i.e., ρB < ρ < ρA (for ε > 0). The following proposition fully characterizes

the equilibrium return dynamics with respect to the risk premium µt and volatilities VD,t

and Vs,t.
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12 SOCIAL INTERACTION, VOLATILITY CLUSTERING, AND MOMENTUM

Proposition 2.1. The instantaneous return of the risky security follows (26), where the

risk premium and the volatility coefficients are given by

µt =
1

r

{[
1 +

γA
σ2D(r + λ)

]
φt(f̂

∗
t − f̂At ) +

[
1 +

γB
σ2D(r + λ)

]
(1− φt)(f̂∗t − f̂Bt )

}
︸ ︷︷ ︸

heterogeneous-beliefs

+
1

2r(r + λ)
(f̂At − f̂Bt )

{
tanh

[
β[ht + Jmt]

]
−mt

}
︸ ︷︷ ︸

social-interactions

, (29)

VD,t =
σD
r

+
1

r(r + λ)σD
[φtγA + (1− φt)γB], (30)

Vs,t =
σf

r(r + λ)
[φtρA + (1− φt)ρB] =

σfρ

r(r + λ)
[1 +mtε], (31)

where φt = 1
2(1 +mt) and the mean choice mt follows (22), with ht defined in (20).

Proposition 2.1 implies that the risk premium µt in (29) consists of two components,

namely, a heterogeneous beliefs component and a social interaction component. The for-

mer is positive (negative) when the mean choice-weighted average belief is overly pes-

simistic (overly optimistic). In contrast, the second component is independent of f̂t, and

its contribution to the risk premium depends on the product (f̂At − f̂Bt )dφt. Intuitively, a

positive risk premium is expected when the mean choice moves toward the relatively more

optimistic belief.

The equilibrium return dynamics in Proposition 2.1 show the dependence of the risk

premium and volatility on the mean choice mt. In the following sections, we first analyze

the mean choice dynamics in the population and the stationarity of the mean choice

distribution and then explore the implications for volatility persistence, regime switching,

volatility clustering, and time-series momentum.

3. Population’s Choice Dynamics

This section first provides results on the existence and stability of multiple steady states

of the mean choice in the absence of private utility, as in Brock and Durlauf (2001). By

considering random shocks to private utility, we then numerically examine the long-run

stationarity of the population’s dynamic mean choice distribution.

3.1. Multiple Steady States and Regimes. To better understand the mean choice

dynamics in the population in (22), we first consider a special case without private utility

(i.e., b = 0 and hence ht = 0 in (20)). In this case, Brock and Durlauf (2001) show that the

symmetric steady state is the unique equilibrium of (18) when βJ ≤ 1. However, when
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SOCIAL INTERACTION, VOLATILITY CLUSTERING, AND MOMENTUM 13

βJ > 1, there are two additional asymmetric equilibria. In the dynamic setting, the choice

dynamics in the population are determined by an ordinary differential equation (ODE)

dmt

dt
= tanh(βJmt)−mt, (32)

which shares the same steady states but with different stability levels, summarized in the

following corollary.

Corollary 3.1. (Existence and stability of multiple equilibria) The mean choice dynamics

of the population (32) have

(i) a unique steady state m∗0 = 0, which is globally asymptotically stable, when βJ < 1;

(ii) three steady states m∗+ = m∗ > 0, m∗0 = 0 and m∗− = −m∗ < 0 when βJ > 1

satisfying tanh(βJm∗) = m∗ for m∗ > 0; in addition, m∗+ and m∗− are locally

asymptotically stable, and m∗0 = 0 is unstable.

0 0.5 1 1.5 2

 J

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

Figure 1. The steady states of the mean choice as functions of social

interaction βJ and their stability, with (red) solid lines indicating stable

and (blue) dotted lines indicating unstable steady states.

In the absence of private utility shocks, Corollary 3.1 shows that the symmetric equi-

librium m∗0 is the unique and globally stable equilibrium when social interaction is weak

(βJ < 1). In this equilibrium, investors’ choices among the two beliefs are equally divided.

However, when social interaction is strong (βJ > 1), the change in the stability of the

symmetric equilibrium bifurcates, leading to two locally stable asymmetric equilibria, so

that the mean choice converges to either m∗+ > 0 or m∗− < 0, depending on its initial value.

Intuitively, when one choice is made by the majority of investors, then it becomes more

attractive for individual investors. This generates two regimes: at m∗+, more investors

choose to believe that the public signal is more informative about the fundamental, while
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14 SOCIAL INTERACTION, VOLATILITY CLUSTERING, AND MOMENTUM

at m∗−, more investors choose to believe that the public signal is less informative about the

fundamental. The results are illustrated in Fig. 1, showing the steady states (or regimes)

of the mean choice as a function of social interactions βJ , together with their stability.

3.2. Stationarity of the Mean Choice. With private utility (b > 0), the population’s

choice dynamics are affected by random shocks from the dividend and public signal. We

now examine the long-run stationarity of the distribution of the population’s choice dy-

namics in (22) by simulating random paths for φt. Indeed, we find that the distribution

of φt across 100 paths becomes stationary (i.e., changes in the distribution become neg-

ligible) after a long period of time. With the baseline parameter values (unless stated

otherwise) in Table 1, Fig. 2 reports the stationary distribution of φt at time t > 2, 000

for four combinations of parameter values of J and b to show the joint impact of social

interactions and private utility, leading to two observations.

Parameters λ σf ρ ε f̄ θ σD b β J r

Values 1 0.05 0.5 0.9 0.05 5 0.05 100 1 1.15 0.05

Table 1. Baseline parameter values used in numerical simulations.

First, in regards to social interaction, Figs. 2 (a) and (b) show that with weak social

interaction (βJ < 1), the mean choice and hence φt have a unimodal distribution centred

around φ∗0 = 1/2 (i.e., m∗0 = 0). However, with strong social interaction (βJ > 1), Figs. 2

(c) and (d) show that φt displays bimodal distributions, corresponding to the two mean

choice regimes around the two steady states, consistent with the two locally stable steady

states m∗± in Corollary 3.1 for b = 0.

Second, in regards to private utility, by comparing the left and right panels, Fig. 2 shows

that the distribution of the market fraction is more dispersed for larger values of b, which

is true for both the unimodal and bimodal cases. Intuitively, for small b, the social utility

component tends to dominate the private utility component in affecting investors’ choices

in the long run. In this case, when social interaction is weak, due to global stability, φt is

pulled toward the unique steady state. When social interaction is strong, φt converges to

one of the two stable steady states, while switching happens occasionally when shocks to

private utility, i.e., ht, are sufficiently large. The dominance of social utility over private

utility in general is demonstrated by the more peaked distributions in Figs. 2 (b) and (d),

consistent with Corollary 3.1 for b = 0. In contrast, for large b, large private utility shocks
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(a) J = 0.5 and b = 100.
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(b) J = 0.5 and b = 10.
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(c) J = 1.15 and b = 100.
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(d) J = 1.15 and b = 10.

Figure 2. Distribution of φt for weak social interaction (a) and (b) (J =

0.5(< 1)) and strong social interaction (c) and (d) (J = 1.15(> 1)) for two

values of b = 10 and 100. The other parameters are the same as in Table

1.

occur more frequently, which can potentially offset the social utility component, Jmt,

even when mean choice mt is close to 1 or −1. Therefore, with weak social interaction,

the tendency of φt towards the unique steady state is perturbed constantly by the shocks

to private utility, characterized by a less peaked distribution in Fig. 2 (a) (in comparison

with that in Fig. 2 (b)). When social interaction is strong, the perturbations of private

utility shocks increase switching between the two regimes.18 This is illustrated by more

persistent switches among the two locally stable regimes in Fig. 2 (c) (in comparison with

those in Fig. 2 (d)).

18More precisely, due to the continuous dynamic process in the population, switching here means a

gradual transition, instead of a jump, between regimes. For convenience, we use the term switching, as in

the regime-switching literature, this is not necessarily characterized by a jump in a process in general.
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(b) Sentiment with b=20
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(d) Switching intensity

Figure 3. Time series of mean choice for (a) b = 10, (b) b = 20, (c) b =

100, and (d) the switching intensity with respect to b; the other parameters

are given by Table 1.

3.3. Regime Switching. With strong social interactions, the mean choice mt is charac-

terized by two locally stable regimes. The length of each switching cycle, i.e., the time

that it takes to switch from one steady state to another, depends on the size of private

utility shocks, which is controlled by b, and the basin of attraction for each regime. Fig.

3 (a) shows that for b = 10, the market fraction φt rarely switches between regimes. With

small fundamental shocks, the market fraction evolves closer to one steady state over

time. However, a large shock can push the fraction into the basin of attraction of the

other steady state. Therefore, switching occurs with occasional large shocks. The “switch

size” depends on the difference between the two steady state levels. A larger difference

leads to more significant switching among the population. As b increases to b = 20 in Fig.

3 (b) and then b = 100 in Fig. 3 (c), switching becomes more frequent.
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We can further measure the dependence of switching intensity on parameter b. To

measure the switching intensity, we first define a switch as follows. Suppose that mt is

in one of its steady states at time t0, e.g., mt0 = m∗+. The earliest time at which mt,

t > t0 can reach the other steady state is denoted as t1, i.e., mt1 = m∗−. The earliest time

after t1 when mt can switch back to the steady state (at time t0) is denoted as t2, i.e.,

mt2 = m∗+. Similarly, we denote t3 as the nearest time when mt switches to m∗−, · · · , and

tN as the time of the Nth switching. As a result, we obtain a time-series of switch times,

for which the number of switches per unit of time is given by N/(tN − t1). We then define

the switching intensity of the mean choice as the average number of switches per unit of

time based on Monte Carlo simulations. Based on 1,000 simulations, Fig. 3 (d) reports

the switching intensity against b. It shows that the switching intensity increases with b.

Therefore, social interaction plays an important role in the choice dynamics in the popu-

lation, leading to the existence of multiple mean choice regimes, and private utility shocks

affect the persistence and switching intensity between the two regimes. The following sec-

tion shows that the combination of persistent switching between different regimes provides

an underlying mechanism of the two important stylized facts characterizing equilibrium

asset returns in equity markets, namely, volatility clustering and time-series momentum.

4. Volatility Clustering

This section first establishes the connection between the two mean choice regimes and

the two volatility regimes and then explores the impact on volatility dynamics. We show

that social interaction is the underlying mechanism driving volatility switches between the

two regimes, which leads to volatility clustering.

4.1. Volatility Regimes. Corresponding to the stable steady states of the mean choice in

(32), the conditional variance, σ2t = (VD,t)
2+(Vs,t)

2, can have different regimes, depending

on social interaction βJ .

Corollary 4.1. (Volatility Regimes) For b = 0, corresponding to each stable steady state

of the mean choice, we have the following volatility regimes:

(i). for βJ ≤ 1, there is a unique volatility regime

σ20 =

[
σD
r

+
γA + γB

2r(r + λ)σD

]2
+

[
ρσf

r(r + λ)

]2
for m∗0 = 0; (33)
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(ii). for βJ > 1, there are two volatility regimes

σ2+ =

[
σD
r

+
1

r(r + λ)σD

(
1 +m∗

2
γA +

1−m∗

2
γB

)]2
+

[
σfρ(1 +m∗ε)

r(r + λ)

]2
for m∗+ = m∗ > 0; (34)

σ2− =

[
σD
r

+
1

r(r + λ)σD

(
1−m∗

2
γA +

1 +m∗

2
γB

)]2
+

[
σfρ(1−m∗ε)
r(r + λ)

]2
for m∗− = −m∗ < 0, (35)

where

σ2− − σ2+ =
8rm∗ρ2ε[σf/(r(r + λ)]2√

λ2 + [1− ρ2(1 + ε)2]σ2f/σ
2
D +

√
λ2 + [1− ρ2(1− ε)2]σ2f/σ2D

> 0. (36)
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Figure 4. Dependence of the difference in volatility between two regimes,

σ2− − σ2+, on (a) ρ and ε and (b) J . The parameters are given by Table 1.

Intuitively, the equilibrium mean choice affects return volatility. Corollary 4.1 implies

that with strong social interaction, there is a low-volatility regime corresponding to m∗+ >

0, where the majority of investors choose to believe that the public signal is relatively

more informative. Thus, the aggregate market perceives less uncertainty, and asset returns

become less volatile. On the other hand, there is a high-volatility regime corresponding to

m∗− < 0, where the majority of investors choose to believe that the public signal is relatively

less informative. In particular, conditional volatility is the highest when all investors

choose to believe that the public signal is pure noise (i.e., φt = 0 and ρB ≡ ρ(1− ε) = 0)

with

σt = σmax :=
σD
r

1 +
1

r + λ

√λ2 +
σ2f
σ2D
− λ

 (37)
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and the lowest when all investors choose to believe that the public signal is perfectly

informative (i.e., φt = 1 and ρA ≡ ρ(1 + ε) = 1) with

σt = σmin :=
σf

r(r + λ)
. (38)

Moreover, the difference in volatility, σ2−−σ2+, between the two regimes, m∗− and m∗+, in

(36) increases in signal informativeness (ρ), dispersion of beliefs about this informativeness

(ε), and social interactions (J), which is illustrated in Fig. 4.19 This is because strong social

interaction leads to a more polarized mean choice, which, coupled with large dispersion

in beliefs about signal informativeness, results in a greater difference in volatility between

the two regimes.

4.2. Time-Series Simulation. To better understand the underlying mechanism for regime

switching and volatility clustering, we first perform time-series simulations to explore some

properties of the full model. With strong social interaction (J = 1.15), based on a typical

simulation, Fig. 5 illustrates time-series of (a) asset price Pt (red solid line) and benchmark

price P ∗t when every investor believes the true ρ (blue dotted line), (b) asset returns dPt

(in price changes), (c) mean choice and hence the population fraction φt, and (d) private

utility ht.
20 From Fig. 5, we have three observations.

First, the equilibrium price Pt fluctuates around the benchmark fundamental price

P ∗t in general but can sometimes differ significantly, as illustrated in Fig. 5 (a). This

demonstrates the effect of information uncertainty and different interpretations of signal

informativeness on the asset price, with the mean-preserved spread in the informativeness

not canceling out in equilibrium. However, does it cancel out on average? By comparing

the equilibrium price with the benchmark price, we have

Pt − P ∗t =
1

r(r + λ)

[
φt(f̂

A
t − f̂∗t ) + (1− φt)(f̂Bt − f̂∗t )

]
. (39)

It can be verified that based on the dividend dynamics in (1) and (2), the unconditional

expectation E[f̂kt − f̂∗t ] = 0 (k = A,B). Therefore, when the mean choice stays constant,

the equilibrium and benchmark prices converge in expectation. However, this is no longer

true when the mean choice is time varying, driven by both the private and social utility

components.

19Due to rescaling, we fix β = 1 in our discussion.
20We report the simulation results for the last 5, 000 periods (approximately 20 years) after a burn-in

period of 25, 000 (approximately 100 years) to ensure that the distribution of the population fraction φt is

stationary.
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(a) Equilibrium price Pt and benchmark price P ∗t
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Figure 5. Time series of (a) the asset price (red solid line) and the fun-

damental price (blue dotted line), (b) the asset returns, (c) the population

fraction and (d) the private value; the rest of the parameters are given in

Table 1.

Second, Figs. 5 (b) and (c) show that both the population and return volatility are time

varying and persistent in each regime but can switch between the two regimes (explored

in Section 3). Correspondingly, asset returns exhibit persistent volatility in both of the

two volatility regimes, while switching regimes from time to time. More explicitly, φt does

not settle into either one of the two regimes in the long run (even after a burn-in period

of approximately 100 years), and returns are more (less) volatile when the mean choice is

low (high). This is consistent with Corollary 4.1 and further demonstrated by the negative

correlation Corr[(dPt)
2, φt] = −0.24.

Third, Fig. 5 (d) shows that private utility ht fluctuates around zero with occasionally

(positive or negative) large spikes. Intuitively, these occasional but large spikes in ht are

driven by large dividend and public signal shocks, which can potentially trigger switching
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of the mean choice between the low and high regimes. This is further demonstrated by

the fact that ht and φt are weakly and positively correlated with Corr[ht, φt] = 0.08.
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(a) Daily volatility ACFs for J=0.5 and 1.15
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Figure 6. Average autocorrelation functions (ACFs) of (a) daily volatility

(dP )2 with J = 0.5, 1.15 over 200 days and (b) first-order monthly volatility

(dP )2, ACF(1), with respect to J ; the other parameters are given by Table

1.

4.3. Volatility Autocorrelation and Clustering. Fig. 6 (a) shows the autocorrelation

pattern for the simulated daily squared returns for up to 200 lags.21 First, if we use squared

returns as a measure of volatility, current volatility is most affected by the most recent

return shock, and then the effect decays over longer lags at a very slow rate; i.e., volatility

is highly persistent. This autocorrelation pattern of volatility is commonly observed in

equity market indices. Furthermore, we also observe that the autocorrelation at the first

lag, i.e., ACF(1), is higher for larger values of J . This is further demonstrated in Fig. 6

(b), where we plot the monthly ACF(1) against values of J , which shows that stronger

social interaction can significantly increase ACF(1), i.e., the impact of the return shock

in the previous month on the return volatility in the current month. The autocorrelation

pattern of volatility with respect to social interaction leads to the following observation

on volatility clustering, together with the underlying mechanism and intuition.

With social interaction, investors have incentives to conform to the mean choice of

the population. According to Proposition 2.1, the volatility coefficients, VD,t and Vs,t, are

linear functions of the mean choice (via the market fraction, φt). Supposing that the mean

21The results are based on 1,000 simulations. Without social interaction, the time variation in the mean

choice becomes minimal; as a result, the ACFs become insignificant.
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choice is a constant, past returns would have no impact on volatility, which would stay

constant. Therefore, the impact of past returns on current volatility is directly affected

by the mean choice.

When social interaction is weak, m∗0 is the unique steady state for the mean choice. This

corresponds to the unique volatility regime σ20. Past returns, which translate to private

utility shocks, may cause the mean choice to fluctuate. Because of the global stability

of m∗0, the mean choice tends to revert back to the steady state, so the impact of past

returns on current volatility is relatively weak. Therefore, the effect of past return shocks

is mitigated, and volatility is less persistent.

However, when social interaction is strong, investors have more incentives to conform

to the mean choice of the population. This leads to two additional steady states for the

mean choice, m∗− < 0 and m∗+ > 0. They correspond to two volatility regimes, a high

regime σ2+ and a low regime σ2−. Channeled by private utility shocks, past returns can

have a much larger impact on the current mean choice and hence volatility. Because of

the local stability of the mean choice steady states, m∗− and m∗+, private utility shocks

(from past returns) can have two effects. First, occasionally large shocks can potentially

lead volatility to switch between the high- and low-volatility regimes, which amplifies the

effect of past return shocks on current volatility. Second, with small shocks most of the

time, volatility becomes more persistent in either the high- or the low-volatility regime

(due to local stability). Therefore, with strong social interaction, volatility becomes more

persistent and clustered; high volatility tends to be followed by high volatility, and low

volatility tends to be followed by low volatility, as illustrated in Fig. 5 (b).

4.4. Excess Volatility. We also show that strong social interaction can lead to excess

volatility ; i.e., price volatility, measured by the standard deviation of price changes, can

exceed the level in the benchmark case.22 Particularly, price volatility is affected by

fluctuations in f̂ it and hence the mean choice. When βJ > 1, due to the persistence of

multiple steady states, the mean choice can experience large swings over time between

the two regimes; thus, price volatility increases. Additionally, price volatility decreases in

true informativeness ρ. As ρ decreases, the public signal becomes less informative about

the fundamental, which increases price volatility. Furthermore, when social interaction is

strong, a larger dispersion in informativeness makes prices more volatile.

22See Appendix B for details.
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5. Time-Series Momentum

Moskowitz et al. (2012) investigate time-series momentum, that is, the strong positive

predictive ability of a security’s own past returns at monthly level. Zhou and Zhu (2014)

demonstrate that the risk-sharing function provided by trend-following trading rules gives

rise to positive autocovariance of returns. In examining autocovariance of asset returns,

we posit social interaction as an alternative channel for the momentum observed in the

time-series of equity index returns.

The autocovariance of asset returns under the objective probability measure P∗ is de-

fined as 〈Pt−Pt−τ , Pt+τ −Pt〉, where t and τ are at the monthly level.23 We first examine

the benchmark model without information uncertainty. The autocovariance of the funda-

mental asset returns is characterized by the following proposition.

Proposition 5.1. The autocovariance of asset returns in the benchmark without infor-

mation uncertainty is given by

〈P ∗t − P ∗t−τ , P ∗t+τ − P ∗t 〉 = − γ

rλ2

(1

r
− 1

r + λ

)
(1− e−λτ )2

− 1

2λ3

(1

r
− 1

r + λ

)2( γ2
σ2D

+ ρ2σ2f

)
(1− e−λτ )2

(
1 + e−λ(2t−τ)

)
.

(40)

Proposition 5.1 shows that the autocovariance is negative for the benchmark case. This

is due to the fact that the stochastic trend ft is a mean-reverting process. Next, we examine

return autocovariance in the case with information uncertainty and social interaction.

Proposition 5.2. The autocovariance of the asset returns in the full model with social

interactions is given by

〈Pt − Pt−τ , Pt+τ − Pt〉 =
1

rλ2

(1

r
− 1

r + λ

)
Φ +

1

2λ3

(1

r
− 1

r + λ

)2( 1

σ2D
Ψ1Ψ2 + σ2fΨ3Ψ4

)
,

(41)

where Φ, Ψ1, Ψ2, Ψ3 and Ψ4 are given in Appendix A.2. In particular, when the population

fraction is fixed, for example, φt = φ̄,

〈Pt − Pt−τ , Pt+τ − Pt〉 =− 1

rλ2

(1

r
− 1

r + λ

)
(1− e−λτ )2[φ̄γA + (1− φ̄)γB]

− 1

2λ3

(1

r
− 1

r + λ

)2{ 1

σ2D
[φ̄γA + (1− φ̄)γB]2

+ σ2fρ
2[1 + ε(2φt − 1)]2

}
(1− e−λτ )2

(
1 + e−λ(2t−τ)

)
.

(42)

23We study the case with the same lookback period and holding period for parsimony. In general, they

can be different in the empirical literature.
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Proposition 5.2 shows that the autocovariance of asset returns can be either positive or

negative over time due to social interaction. Particularly, without social interaction, the

market fraction is constant, and asset returns are always negatively correlated.

When the mean choice is time varying, it can be shown (see Appendix A.2) that when

(φt+τ − φt)(φt − φt−τ ) > 0, the autocovariance is positive over small time horizons. This

observation implies that social interaction can lead to momentum (in the sense of positive

return autocovariance) when the mean choice is persistent. Intuitively, when one choice is

made by the majority of investors, it becomes more attractive for individual investors. As

a result, they pull the price closer to their valuation. In particular, when the mean choice

is persistent over a short time horizon, the market price maintains a price trend driven by

the dominant group of investors, resulting in time-series momentum in the short run.

0 0.2 0.4 0.6 0.8 1 1.2

J

-0.02

-0.01
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(a)

Figure 7. Estimated slope coefficient from the regression of next month’s

return onto a constant and past average returns over lookback periods of

1, 6, and 12 months using the model-generated data with parameters given

by Table 1.

We further conduct a numerical analysis to verify the above theoretical results and

intuitions. Fig. 7 reports the average slope coefficient from the regression of next month’s

return onto past average returns over τ = 1, 6 and 12 month lookback periods.24 It shows

that the coefficient is increasing in J , becoming more significant with a longer lookback

period. Intuitively, with weak social interaction, the mean choice tends to converge to

24We numerically simulate the system based on daily parameters and convert the daily returns to

monthly returns (21 days a month). Then, we run the following regression using the monthly returns:

rt = a + b 1
τ

∑τ
s=1 rt−s + ε. Fig. 7 plots the average slope coefficient based on 1,000 simulations against

social interactions J .
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the only stable steady state, leading to a small or negative monthly coefficient. However,

with strong social interaction, the short-term persistence of the mean choice in each regime

tends to generate a significantly positive coefficient, which leads to price momentum in the

short run. This is consistent with the findings in the literature, e.g., in Fama and French

(1988), Poterba and Summers (1988), Culter, Poterba and Summers (1991), and He and

Li (2015a). The results are also consistent with the above analysis. In fact, over a short

period such as one month, φt (or mt) is governed by the ODE in (22), whose solutions

fluctuate between 0 and 1 gradually and smoothly.25 When switching intensity is low (less

than once a month), it is more likely that (φt+τ−φt)(φt−φt−τ ) > 0 holds for the simulated

sample path, which generates positive autocorrelation and hence momentum in the short

run.

6. Empirical Analysis

In this section, we provide an empirical validation of our theoretical model predictions,

namely, that volatility clustering and time-series momentum are more prominent under

strong than under weak social interaction. We propose using StockTwits (stocktwits.

com) post volume as a measure of social interaction.26 Intuitively, a high post volume tends

to reflect high social interaction. StockTwits and Twitter data have recently been used in

the literature to measure investor sentiment (Oliveira et al., 2013; Agrawal et al., 2018;

Cookson and Niessner, 2020) and disagreement and attention (Sprenger et al., 2014) and

to study their effects on stock market variables, such as returns, volatility, and liquidity

(Antweiler and Frank, 2004; Oliveira et al., 2013; Chen et al., 2014; and Li et al., 2016).

6.1. Data. We use daily data for five market indices (S&P 500, Nasdaq Composite in-

dex, NYSE Composite index, Dow Jones Industrial Average, and Wilshire 5000) from 1

January 2010 to 30 September 2019. Closing daily price data are from Thomson Reuters

Datastream. As mentioned above, we use the number of daily posts on StockTwits as

a measure of social interaction. Our data on the daily number of posts exchanged on

StockTwits cover the same period.

25In particular, when ht = 0, φt (or mt) is governed by a one-dimensional ODE whose solutions are

monotonic. In this case, the condition (φt+τ − φt)(φt − φt−τ ) > 0 always holds for small τ .
26StockTwits is an online financial platform with a total monthly audience of approximately 1.5 million

users, with 60% of its users under 44. Like Twitter tweets, StockTwit messages are of a small size (maximum

140 characters) and consist of ideas, links, charts and other data. However StockTwits is exclusively about

investing.
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Given that the number of StockTwits users has increased exponentially since 2010

together with the volatility of the daily number of posts exchanged on the platform, we

first perform a log-transformation to eliminate heteroskedasticity in the data and then

detrend.27 Fig. 8 shows the transformed social interaction series, which is referred to as

Intert.

Figure 8. Transformed social interaction time series (Inter) after log

transformation and removal of the trend from the time series of the daily

number of posts exchanged on StockTwits.

Since several stationarity tests confirm the stationarity of the transformed social inter-

action series,28 we use a unique threshold for the entire sample period to identify days with

strong/weak social interaction. Specifically, we use the top 30% of daily social interaction

to identify days with strong social interaction and the bottom 30% to identify days with

weak social interaction. The dichotomous variable for strong social interaction (SIstrong)

is equal to one on day t when social interaction on day t is greater than the 70th percentile

of daily social interaction and zero otherwise. Similarly, the dichotomous variable for weak

27We use the time-series decomposition by Loess proposed in Cleveland at al. (1990) to remove the

trend component.
28These tests include the Kwiatkowski-Phillips-Schmidt-Shin test, the Phillips-Perron unit root test,

and the augmented Dickey-Fuller test.
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social interaction (SIweak) is equal to one on day t if social interaction on day t is less

than the 30th percentile of daily social interaction and zero otherwise.29

In what follows, we use squared returns and the GARCH model to study the relationship

between social interaction and volatility. Squared returns measure historical volatility. Fig.

9 shows the cross-correlation function of volatility at time t, measured by squared returns,

with social interaction at time t − k. We can observe that for all the market indices,

volatility is significantly positively correlated with social interaction on the same day and

at 1 and 2 day lags. This implies that social interaction has a positive and significant

impact on current and future volatility up to two days ahead.

Figure 9. Cross-correlation function (CCF) between Intert−k and V olt,

measured by the correlation between volatility (in squared returns) and

lagged social interaction.

6.2. Regression Analysis on Squared Returns. In this subsection, we examine the

impact of social interaction on the serial correlation of squared returns for equity indices by

using the detrended time series Inter and consider its interaction with the lagged squared

returns. More specifically, we run the following regression by ordinary least squares (OLS),

log(1 + V olt) = α+ β1log(1 + V olt−1) + β2Intert × log(1 + V olt−1) + εt, (43)

where V olt is the volatility, measured by squared returns, on day t and Intert is the

transformed social interaction on day t. In (43), we are interested in the sign of the β2

coefficient. Specifically, a positive and significant β2 coefficient would imply that the serial

correlation in squared returns increases with social interaction.

Table 2 reports the OLS estimates of Eq. (43) for 5 equity indices. It shows that

consistently across all the indices, β2 is positive and highly significant. This finding con-

firms the model prediction that volatility clustering is more prominent with stronger social

interaction since squared returns are more serially correlated when the proxy is high.

29We also conduct the analysis with alternative percentile thresholds for daily social interaction, and

the results are qualitatively the same.
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S&P 500 Nasdaq NYSE DJIA Wilshire 5000

Constant 0.723∗∗∗ 0.992∗∗∗ 0.779∗∗∗ 0.636∗∗∗ 0.758∗∗∗

(0.100) (0.117) (0.125) (0.078) (0.108)

log(1 + V olt−1) 0.172∗∗∗ 0.149∗∗∗ 0.141∗∗∗ 0.196∗∗∗ 0.164∗∗∗

(0.035) (0.026) (0.029) (0.044) (0.032)

Intert × log(1 + V olt−1) 0.282∗∗∗ 0.332∗∗∗ 0.305∗∗∗ 0.284∗∗∗ 0.285∗∗∗

(0.055) (0.041) (0.042) (0.084) (0.048)

R2 0.077 0.069 0.076 0.077 0.079

Adjusted R2 0.077 0.068 0.076 0.076 0.078

∗∗∗p < 0.01, ∗∗p < 0.05,∗p < 0.1

Table 2. Volatility and social interaction (continuous variable) – The ta-

ble reports the OLS estimates of the model in Eq. (43), where Newey-West

standard errors are reported in parentheses. The constant term is reported

in basis points.

To explore the effect of weak and strong social interaction, we run the following regres-

sion:

log(1 + V olt) =α+ βlog(1 + V olt−1) + βsSIstrong,t × log(1 + V olt−1)+

βwSIweak,t × log(1 + V olt−1) + εt.
(44)

We include the interaction terms of lagged squared returns with the dichotomous variables

for strong and weak social interactions, SIstrong × log(1 + V olt−1) and SIweak × log(1 +

V olt−1), respectively. A positive (negative) and significant βs (βw) coefficient would imply

that the serial correlation in squared returns is higher (lower) when social interaction is

stronger (weaker) than when it is at normal levels (between the 30th and 70th percentiles).

This is confirmed by the results in Table 3, though βw is not statistically significant. Again,

these results are very much in line with the model prediction.

6.3. GARCH Analysis. The GARCH model is commonly employed in modeling fi-

nancial time series that exhibit time-varying volatility and volatility clustering. In this

section, we explore the relationship between social interaction and volatility clustering by
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S&P 500 Nasdaq NYSE DJIA Wilshire 5000

Constant 0.711∗∗∗ 0.964∗∗∗ 0.761∗∗∗ 0.633∗∗∗ 0.744∗∗∗

(0.080) (0.090) (0.117) (0.051) (0.093)

log(1 + V olt−1) 0.116∗∗∗ 0.112∗∗∗ 0.076∗∗∗ 0.119∗∗∗ 0.105∗∗∗

(0.040) (0.031) (0.029) (0.041) (0.037)

SIstrong,t × log(1 + V olt−1) 0.302∗∗∗ 0.279∗∗∗ 0.331∗∗∗ 0.298∗∗∗ 0.309∗∗∗

(0.069) (0.074) (0.056) (0.090) (0.061)

SIweak,t × log(1 + V olt−1) −0.032 −0.036 −0.011 −0.005 −0.022

(0.056) (0.040) (0.033) (0.064) (0.050)

R2 0.088 0.071 0.085 0.088 0.088

Adjusted R2 0.087 0.069 0.084 0.087 0.087

∗∗∗p < 0.01, ∗∗p < 0.05,∗p < 0.1

Table 3. Volatility and social interaction (dichotomous variables) – The

table reports the OLS estimates of the model in Eq. (44), where Newey-

West standard errors are reported in parentheses. The constant term is

reported in basis points.

estimating the following GARCH(1,1) model:30

rt =γ + εt

εt =ηt
√
νt, η ∼ N(0, 1)

νt =ωn + αnε
2
t−1 + βnνt−1 + SIstrong,tωs + SIstrong,tαsε

2
t−1 + SIstrong,tβsνt−1+

SIweak,tωw + SIweak,tαwε
2
t−1 + SIweak,tβwνt−1,

(45)

where rt is the return on day t, η is white noise with zero mean and unit standard deviation,

νt is the variance on day t, and SIstrong (SIweak) equals one when social interaction is

strong (weak) and zero otherwise. To guarantee that νt is positive, we impose the following

conditions: ωn > 0, αn ≥ 0, βn ≥ 0, ωn+ωs > 0, αn+αs ≥ 0, and βn+βs ≥ 0, ωn+ωw > 0,

αn + αw ≥ 0, and βn + βw ≥ 0. We also impose the stationarity conditions αn + βn < 1,

αn + αs + βn + βs < 1, and αn + αw + βn + βw < 1.

In the GARCH model, volatility depends on all past shocks to volatility. In fact,

consider a standard GARCH(1,1) model, νt = ω+αε2t−1 + βνt−1, which can be written in

the following form:

νt =
ω

1− β
+ αε2t−1 + α

∞∑
s=1

βsε2t−s−1. (46)

30The GARCH(1,1) model is selected based on the Akaike information criterion by comparing different

orders of the GARCH model.
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S&P 500 Nasdaq NYSE DJIA Wilshire 5000

αn 0.143∗∗∗ 0.115∗∗∗ 0.120∗∗∗ 0.146∗∗∗ 0.131∗∗∗

(0.018) (0.015) (0.016) (0.018) (0.017)

αs 0.083∗∗∗ 0.086∗∗∗ 0.090∗∗∗ 0.089∗∗∗ 0.078∗∗∗

(0.028) (0.026) (0.026) (0.029) (0.026)

αw −0.049∗∗ −0.048∗∗∗ −0.010 −0.055∗∗∗ −0.039∗∗

(0.022) (0.020) (0.021) (0.022) (0.021)

βn 0.785∗∗∗ 0.819∗∗∗ 0.805∗∗∗ 0.7867∗∗∗ 0.792∗∗∗

(0.022) (0.020) (0.022) (0.022) (0.022)

βs −0.016 −0.049 −0.016 −0.023 −0.003∗∗∗

(0.042) (0.043) (0.041) (0.043) (0.042)

βw 0.102∗∗∗ 0.076∗∗∗ 0.081∗∗∗ 0.097∗∗∗ 0.096∗∗∗

(0.031) (0.031) (0.032) (0.033) (0.031)

γ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

ωn 0.028∗∗∗ 0.034∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.031∗∗∗

(0.008) (0.012) (0.008) (0.008) (0.008)

ωs 0.030∗∗ 0.060∗∗ 0.024∗ 0.025∗ 0.024∗

(0.016) (0.028) (0.016) (0.016) (0.016)

ωw -0.011 0.004 -0.014 -0.009 -0.014

(0.015) (0.024) (0.016) (0.014) (0.016)

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 4. Maximum likelihood estimates of GARCH(1,1) and social inter-

action (dichotomous variable) model (45), with standard errors in paren-

theses. Omega parameters are reported in basis points.

Here, α measures the impact of the initial return shock on current volatility, and β mea-

sures the persistence rate. Our model predicts that social interaction should increase α

but not necessarily β, which is exactly what we see in the results reported in Table 4.

Table 4 reports the maximum likelihood estimates of the above GARCH(1,1) model.

We observe that strong social interaction increases the impact of the initial return shock

by 7.8 to 9%, whereas weak social interaction reduces the impact by 3.9 to 5.5% (except

for the NYSE); both of these effects are highly significant. The persistence rate β tends

to increase under weak social interaction and decrease under strong social interaction,

although the latter effect is not statistically significant.

In summary, the empirical results reported in Tables 3 and 4 lend support to our model

prediction about the relationship between volatility and social interaction. Both theory
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and empirical evidence show that the effect of volatility clustering intensifies during periods

of strong social interaction and fades during periods of weak social interaction.

6.4. Time-Series Momentum. Time-series momentum implies that the past 12 month

excess return of an equity index is a positive predictor of its future return. To investi-

gate the relationship between social interaction and time-series momentum, we study the

profitability of time-series momentum strategies in the two social interaction regimes. A

time-series momentum strategy longs the index if the excess return over the past k months

is positive and shorts the index if the excess return over the past k months is negative.

Thus, for asset i, the return of the time-series momentum strategy with a k month look-

back period and a one month holding period is given by the following formula (Moskowitz

et al., 2012):

r
TSM(k),i
t,t+1 = sign(rit−k,t)r

i
t,t+1, (47)

where rit−k,t is the excess return of asset i from t − k to t. The function sign(·) gives

1 when its argument is positive and -1 when its argument is negative. We estimate the

time-series momentum returns by controlling for the Carhart four factors (Carhart, 1997),

r
TSM(k),i
t = αn+αsSIstrong,t+αwSIweak,t+β1MKTt+β2SMBt+β3HMLt+β4UMDt+εt,

(48)

where SIstrong,t (SIweak,t) equals one when more than 30% of the days in month t experi-

ence strong (weak) social interaction and zero otherwise. The risk-adjusted return of the

time-series momentum strategy is given by αn for neutral social interaction, by αn + αs

for strong social interaction and by αn + αw for weak social interaction. Note that to

be consistent with the time-series momentum literature, in this section, we use data at

monthly frequency.

Table 5 reports the risk-adjusted returns (with Newey and West (1987) standard errors

in parentheses) of the time-series momentum strategy – with controls for the Carhart four

factors – for strong and weak social interactions, αn+αs and αn+αw, respectively. It shows

that the time-series momentum strategy reports higher alphas when social interaction is

strong than when it is weak. Moreover, the risk-adjusted returns are always positive

for strong social interaction and always negative for weak social interaction, although

the alphas are not statistically significant in some cases. For example, the time-series

momentum strategies on the S&P500 with a six month lookback period deliver an alpha

of 1.27% per month during periods of strong social interaction and an alpha of -1.195%

per month during periods of weak social interaction. Overall, the risk-adjusted returns
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Lookback period (months)

6 9 12

Interaction Strong Weak Strong Weak Strong Weak

S&P 500 1.270∗∗∗ −1.195∗ 0.775∗ −1.333 0.678 −1.452

(0.192) (0.113) (0.249) (0.127) (0.231) (0.141)

Nasdaq 1.698∗∗∗ −0.647 1.019∗∗ −1.218 1.197∗∗∗ −1.064

(0.208) (0.118) (0.221) (0.120) (0.233) (0.139)

NYSE 0.378 −1.389∗∗ 0.566 −0.857 0.178 −0.738

(0.229) (0.136) (0.247) (0.148) (0.238) (0.159)

DJIA 1.196∗∗ −1.600∗∗ 0.667 −1.225 1.180∗∗ −1.401∗

(0.180) (0.099) (0.231) (0.120) (0.194) (0.122)

Wilshire 5000 1.256∗∗∗ −0.642 0.776∗ −1.403 0.603 −1.430

(0.211) (0.115) (0.258) (0.128) (0.239) (0.144)

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 5. Risk-adjusted returns of time-series momentum strategies in

strong and weak social interactions (thresholds 30-40-30) with different

lookback periods and a one month holding period and with the alphas (in-

tercepts) for strong (αn + αs) and weak (αn + αw) social interaction from

time-series regressions of (48) with lookback periods of 6, 9, and 12 months.

Newey and West (1987) standard errors in parentheses. The alphas are ex-

pressed as a percentage.

are higher when social interaction is strong than when it is weak, which is true for all the

indices with a 6 month lookback period, for three indices with a 9 month lookback period,

and for two indices with a 12 month lookback period. These results are consistent with

the model prediction that serial correlations in returns increase with social interaction and

that returns tend to be positively (negatively) correlated when social interaction is strong

(weak).

7. Conclusion

In this paper, we incorporate social interaction and information uncertainty into a ran-

dom utility framework to develop a simple evolutionary equilibrium model of asset pricing

and population dynamics. We show that social interaction influencing investors’ belief

choices can potentially provide a joint explanation for volatility clustering and short-run

time-series momentum. As social interaction increases, investors’ mean choice bifurcates
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from a unique stable steady state to two locally stable and asymmetric steady states,

which leads to two volatility regimes. When social interaction is weak, shocks to private

utility cause investors’ mean choice and thus the population fractions corresponding to

the different beliefs about signal informativeness to fluctuate around the unique steady

state. The nonlinear interaction of these time-varying population fractions with the asset

price then makes conditional volatility correlated and persistent. In contrast, when social

interaction is strong, investors’ mean choice switches between two steady states, leading

to high- and low-volatility regimes, with volatility persistent in each regime. This type

of constant switching between two persistent population fraction and volatility regimes

can simultaneously generate mispricing, volatility clustering, and short-run time-series

momentum.

Using StockTwits post volume as a proxy for social interaction for various equity indices,

we further provide empirical evidence for our model predictions, showing autocorrelation

in return volatility and the profitability of time-series momentum trading strategies driven

by strong social interactions. The findings provide insights into the predictive power of

time-varying investor population characteristics for returns.
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Appendix A. Proofs

A.1. Proof of Corollary 3.1. It is easy to verify that system (32) has a unique steady

state m∗0 = 0 when βJ < 1 and has three steady states m∗+ > 0, m∗0 = 0 and m∗− < 0

when βJ > 1.

When βJ < 1, we rewrite (32) as

dmt

dt
= βJmt

tanh(βJmt)

βJmt
−mt. (A.1)

Applying variation of constants to (A.1), we have

mt = m0e

[ ∫ t
0 βJ

tanh(βJms)
βJms

−1
]
ds
. (A.2)

As t→∞,

|mt| = |m0|e
∫ t
0

[
βJ

tanh(βJms)
βJms

−1
]
ds
≤ |m0|e

∫ t
0 (βJ−1)ds = |m0|e(βJ−1)t → 0. (A.3)

Therefore, m∗0 = 0 is globally stable.

When βJ > 1, the characteristic equation of system (32) at m∗ is given by

x− {[1− tanh2(βJm∗)]βJ − 1} = 0. (A.4)

It is easy to verify that the eigenvalue x is positive when m∗ = m∗0 and negative when

m∗ = m∗+ and m∗ = m∗−. This completes the proof. �

A.2. Proofs of Propositions 5.1 and 5.2. Proposition 5.1 is a special case of Propo-

sition 5.2. Note that

〈Pt − Pt−τ , Pt+τ − Pt〉 = 〈Pt, Pt+τ 〉 − 〈Pt, Pt〉 − 〈Pt−τ , Pt+τ 〉+ 〈Pt−τ , Pt〉. (A.5)

It suffices to calculate the autocovariance of 〈Pt, Pt+τ 〉 for all τ ≥ 0. It follows from (12)

and (13) that

〈Pt, Pt+τ 〉 =
〈Dt, Dt+τ 〉

r2
+

1

rλ

(1

r
− 1

r + λ

)
[〈Dt, φt+τ f̂

A
t+τ + (1− φt+τ )f̂Bt+τ 〉+

〈φtf̂At + (1− φt)f̂Bt , Dt+τ 〉]

+
1

λ2

(1

r
− 1

r + λ

)2
〈φtf̂At + (1− φt)f̂Bt , φt+τ f̂At+τ + (1− φt+τ )f̂Bt+τ 〉

(A.6)
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where

〈Dt, Dt+τ 〉 = σ2Dt,

〈Dt, φt+τ f̂
A
t+τ + (1− φt+τ )f̂Bt+τ 〉 = [φt+τγA + (1− φt+τ )γB]

e−λτ

λ
(1− e−λt),

〈φtf̂At + (1− φt)f̂Bt , Dt+τ 〉 = [φtγA + (1− φt)γB]
1

λ
(1− e−λt),

〈φtf̂At + (1− φt)f̂Bt , φt+τ f̂At+τ + (1− φt+τ )f̂Bt+τ 〉

=
e−λτ

2λ
(1− e−2λt)

[ 1

σ2D
(φtγA + (1− φt)γB)(φt+τγA + (1− φt+τ )γB)

+ σ2f (φtρA + (1− φt)ρB)(φt+τρA + (1− φt+τ )ρB)
]
.

(A.7)

Therefore, the autocovariance 〈Pt, Pt+τ 〉 is given by (41), where

Φ = (1− e−λτ ){[φt+τγA + (1− φt+τ )γB]e−λτ − [φtγA + (1− φt)γB]},

Ψ1 = [φt+τγA + (1− φt+τ )γB]e−λτ − [φtγA + (1− φt)γB],

Ψ2 = (1− e−2λt)[φtγA + (1− φt)γB]− (e−λτ − e−2λt+λτ )[φt−τγA + (1− φt−τ )γB],

Ψ3 = ρ[1 + ε(2φt+τ − 1)]e−λτ − ρ[1 + ε(2φt − 1)],

Ψ4 = (1− e−2λt)ρ[1 + ε(2φt − 1)]− (e−λτ − e−2λt+λτ )ρ[1 + ε(2φt−τ − 1)].

�

As an implication, when τ is small, e−λτ → 1. We have the following results for (A.6):

Φ→ 0,

Ψ1 > 0⇔ φt+τ < φt,

Ψ2 > 0⇔ φt < φt−τ ,

Ψ3 > 0⇔ φt+τ > φt,

Ψ4 > 0⇔ φt > φt−τ ,

(A.8)

and hence

Ψ1Ψ2 > 0⇔ (φt+τ − φt)(φt − φt−τ ) > 0,

Ψ3Ψ4 > 0⇔ (φt+τ − φt)(φt − φt−τ ) > 0.
(A.9)

Therefore, the autocovariance is positive for small horizons if there is strong social inter-

action. In this case, φt keeps the same trend in a period of 2τ : (φt+τ −φt)(φt−φt−τ ) > 0.

If τ is sufficiently large, then e−λτ → 0 and hence

Φ < 0, Ψ1 < 0, Ψ2 > 0, Ψ3 > 0, Ψ4 < 0. (A.10)
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The autocovariance in this case becomes negative.

Appendix B. Conditional Volatility

We write the difference σ2t − (σ∗)2 as a function of the population fraction φt as follows:

f(φt) := (σt)
2 − (σ∗)2 = âφ2t + b̂φt + ĉ, (B.1)

where

â =
(γA − γB)2 + σ2fσ

2
D(ρ− ρB)2

r2(r + λ)2σ2D
,

b̂ =
2γB(γA − γB) + 2(γA − γB)(r + λ)σ2D + 2σ2fσ

2
DρB(ρA − ρB)

r2(r + λ)2σ2D
,

ĉ =
(γB − γ)2 + 2(γB − γ)(r + λ)σ2D + σ2fσ

2
D(ρ2B − ρ2)

r2(r + λ)2σ2D
.

(B.2)

The axis of symmetry of the parabola in (B.1) is −b/2a > 0 and

f(0) = 2σ4Dr
[√

λ2 + (1− ρ2B)σ2f/σ
2
D −

√
λ2 + (1− ρ2)σ2f/σ2D

]
,

f(1) = 2σ4Dr
[√

λ2 + (1− ρ2A)σ2f/σ
2
D −

√
λ2 + (1− ρ2)σ2f/σ2D

]
.

(B.3)

Thus, f(0) (f(1)) is positive when ρB < ρ (ρA < ρ). According to the properties of the

parabola, we have the following observations:

(i) if ρB < ρ < ρA, then σ2t − (σ∗)2 is positive for a small φt closer to 0 and becomes

negative for a large φt closer to 1;

(ii) if ρ ≤ ρB < ρA, then σ2t − (σ∗)2 is always negative for all φt ∈ [0, 1];

(iii) if ρB < ρA ≤ ρ, then σ2t − (σ∗)2 is positive for either a small φt closer to 0 or a

large φt closer to 1. When ρ− ρA is sufficiently large, σ2t − (σ∗)2 becomes positive

for all φt ∈ [0, 1].

Fig. B.1 clearly illustrates σ2t − (σ∗)2 for the above three cases. Consistent with obser-

vation (iii), only when ρ−ρA is sufficiently large do we obtain σ2t > (σ∗)2 for all φt ∈ [0, 1].

In summary, asset returns are more likely to exhibit excess volatility when investors on

average underreact to the signal process. In fact, investors underreact to the signal when

they are doubtful about its information value, which leads them to overreact to innova-

tions in the dividend process due to overstating the posterior variance γi (i = A,B). As

a result, asset returns become more volatile.
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Figure B.1. Parabola (B.1). Here r = 0.05, λ = 0.01, σD = 0.05, σf =

0.05 and (a) (ρA, ρB, ρ) = (0.55, 0.45, 0.5), (b) (ρA, ρB, ρ) = (0.8, 0.4, 0.1),

and (c) (ρA, ρB, ρ) = (0.4, 0.1, 0.8).

We now focus on cases ρA = ρ(1 + ε) and ρB = ρ(1 − ε) and numerically show that

strong social interaction can lead to excess volatility. Fig. B.2 plots the price volatility

across 100 simulations as a function of the level of social interaction J , belief disparity ε

and sensitivity of private utility to belief accuracy b.

0 0.2 0.4 0.6 0.8 1 1.2

J

0.078

0.08

0.082

0.084

0.086

0.088

0.09

std(dP)

=0
=0.3
=0.5

0 0.2 0.4 0.6 0.8 1 1.2

J

0.078

0.079

0.08

0.081

0.082

0.083

0.084

0.085

0.086

std(dP)

=0
=0.5
=0.9

0 0.2 0.4 0.6 0.8 1 1.2

J

0.077

0.078

0.079

0.08

0.081

0.082

0.083

0.084

0.085

0.086

std(dP)

b=1
b=10
b=100

Figure B.2. Standard deviation of dP as functions of J for different values

of (a) ρ, (b) ε and (c) b based on 100 simulations. The parameters are given

by Table 1.

There are several observations from Fig. B.2. First, a common feature across all three

panels is that the standard deviation increases more significantly in parameter J when it

exceeds the threshold of 1. Intuitively, price volatility is affected by fluctuations in f̂ it and
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hence the mean choice. When βJ > 1, due to the persistence of multiple steady states,

the market sentiment and hence φt can experience large swings over time between the two

regimes; thus, price volatility increases.

Second, the left panel shows that price volatility decreases in the true informativeness ρ.

Note that when ρ = 0, all investors believe that the public signal is pure noise; thus, price

volatility is given by (37). As ρ increases, the public signal becomes more informative

about the fundamental, which resolves uncertainty and thus reduces price volatility.

Third, the middle panel shows a very interesting phenomenon. When social interaction

is weak (βJ ≤ 1), a larger dispersion in interpretations about informativeness offsets the

effects of these beliefs and reduces price volatility. However, the opposite is true when

social interaction is strong (βJ > 1): a larger dispersion between ρA and ρB makes

prices more volatile. Finally, the right panel of Fig. B.2 shows that an increase in the

sensitivity (b) to private utility also increases excess volatility, particularly with strong

social interaction (as indicated in Fig. 1).
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