The frontier of simulation-based inference

DataLearning seminars, Imperial College London February 8, 2022

> Gilles Louppe g.louppe@uliege.be

Scientific simulators

 $heta, z, x \sim p(heta, z, x)$

This results in the likelihood $p(x| heta) = \int p(x,z| heta) dz$ to be intractable.

Problem statement

Start with

- a simulator that lets you generate N samples $x_i \sim p(x_i | heta_i)$,
- observed data $x_{
 m obs} \sim p(x_{
 m obs}| heta_{
 m true})$,
- a prior $p(\theta)$.

Then,

Inference algorithms

Inference algorithms

Approximate Bayesian Computation (ABC)

Issues

- How to choose x'? ϵ ? $|| \cdot ||$?
- No tractable posterior.
- Need to run new simulations for new data or new prior.

Neural Ratio Estimation (NRE)

The Bayes rule can be rewritten as

$$p(heta|x) = rac{p(x| heta)p(heta)}{p(x)} = r(x| heta)p(heta) pprox \hat{r}(x| heta)p(heta),$$

where $r(x| heta) = rac{p(x| heta)}{p(x)}$ is the likelihood-to-evidence ratio.

The ratio can be learned with machine learning, even neither the likelihood nor the evidence can be evaluated!

The solution d found after training approximates the optimal classifier

$$d(x, heta)pprox d^*(x, heta)=rac{p(x, heta)}{p(x, heta)+p(x)p(heta)}.$$

Therefore,

$$r(x| heta) = rac{p(x| heta)}{p(x)} = rac{p(x, heta)}{p(x)p(heta)} pprox rac{d(x, heta)}{1-d(x, heta)} = \hat{r}(x| heta).$$

Showtime!

Some applications of physics and astrophysics.

Case 1: Hunting new physics at particle colliders

With enough training data, NRE gets the likelihood-ratio statistic right.

Using more information from the simulator improves sample efficiency substantially.

Case 2: Dark matter substructure from gravitational lensing

Case 3: Constraining dark matter with stellar streams

Palomar 5 (Pal5) stream Pal5 was discovered in 2001 as the first thin stream formed from a globular cluster. Its current orbit takes it far over the galactic center.

GD1 stream -

Discovered in 2006, GD1 is the longest known thin stream, stretching across more than half the northern sky. It contains a gap that could Image chaitse spark of a dark matter collision 500 million years ago.

Gap

Milky Way

Preliminary results for GD-1 suggest a preference for CDM over WDM.

50

3.5

3.0

10

20

30

 $m_{\rm WDM}$

40

50

0.005

0.000

Ó

10

20

30

 $m_{\rm WDM}$

40

Diagnosing inference

How to assess that approximate posteriors are not too wrong?

Coverage

- For every $x, \theta \sim p(x, \theta)$ in a validation set, compute the 1α credible interval based on $\hat{p}(\theta|x) = \hat{r}(x|\theta)p(\theta)$.
- The fraction of samples for which θ is contained within the interval corresponds to the empirical coverage probability.

If the empirical coverage is larger that the nominal coverage probability $1-\alpha$, then the ratio estimator \hat{r} passes the diagnostic.

All benchmarked algorithms can produce non-conservative posterior approximations.

The frontier of

simulation-based inference

Averting a crisis in simulationbased inference?

DataLearning seminars, Imperial College London February 8, 2022

> Gilles Louppe g.louppe@uliege.be

Summary

- Much of modern science is based on simulators making precise predictions, but in which inference is challenging.
- Machine learning enables powerful inference methods, which work in problems from the smallest to the largest scales.
- Advances in simulation-based inference will translate into scientific progress.
- However, further work is needed to make these methods more robust and reliable.

The end.