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This paper presents a new micro-mechanical damage model accounting for inertial effect.
The two-scale damage model is fully deduced from small-scale descriptions of dynamic
micro-crack propagation under tensile loading (mode I). An appropriate micro-
mechanical energy analysis is combined with homogenization based on asymptotic
developments in order to obtain the macroscopic evolution law for damage.
Numerical simulations are presented in order to illustrate the ability of the model to
describe known behaviors like size effects for the structural response, strain-rate
sensitivity, brittle–ductile transition and wave dispersion.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The failure behavior of quasi-brittle materials is known to be sensitive to internal fractures, at scales of observation
smaller than that of the whole structure. For a proper description of this effect a constitutive model involving damage is
appropriate. The effect of damage is especially important in phenomena that involve rapid changes of stress level such as
earthquakes or underground explosions. At high loading rates, the evolution of damage is sensitive to the rate at which the
load is applied. The description of the damage evolution process under dynamic loading of quasi-brittle materials is
currently a real scientific challenge. One of the ways to address this issue is the analysis of micro-structural failure process in
order to better understand the overall degradation across the material. The modeling of the dynamic damage response
requires taking into account the mechanics of micro-cracks and their overall response to applied loading. For this, a model
obtained by homogenization from micro-structures with evolving micro-cracks is well suited.

Several models based on micro-mechanics have been developed to study damage process under dynamic compressive
response of brittle solids. At the small scale, the damage mechanism usually occurs in mode I (tensile), even if the
macroscopic loading is in compression. Nemat-Nasser and Deng (1994) studied an array of interacting and dynamically
growing wing cracks and estimated the rate-dependent dynamic damage evolution. Ravichandran and Subhash (1995)
developed a micro-mechanical model for ceramics based on non-interacting, uniformly distributed sliding micro-cracks
subjected to biaxial dynamic compressive loading and predicted effects of the rate sensitivity on failure strength. Huang
et al. (2002) developed a model that combined damage evolution theory with dynamic crack growth under uniaxial
dynamic compression. Paliwal and Ramesh (2008) developed a model based on evolution of tensile wing micro-cracks in
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the case of uniaxial compression under constant strain loading. Bhatt et al. (2011) developed a micro-mechanically
motivated damage model for brittle failure at high strain rates and incorporating crack dynamics.

In this paper we propose a new approach for dynamic damage propagation. Considering a locally periodic distribution of
evolving micro-cracks, we deduce a dynamic model of damage through the mathematical homogenization method based on
asymptotic developments (Benssousan et al., 1978; Sanchez-Palencia, 1980). The obtained model allows for the prediction of
advanced features like dependency of the size of the micro-structure, loading rate sensitivity and wave dispersion effects.

A two-scale approach for damage was deduced in Dascalu et al. (2008) for brittle damage. More general formulations of
this model, including non-brittle behaviors or more complex crack evolutions, were given in Dascalu (2009), François and
Dascalu (2010), Dascalu et al. (2010), Markenscoff and Dascalu (2012). The present development extends these results to the
case of dynamic propagation of micro-cracks.

The paper is organized as follows. First, the mathematical formulation of the two-scale problem is presented and the
macroscopic damage equations are deduced through the asymptotic homogenization procedure and an energy description
of dynamic fracture at the small scale. Then, numerical simulations of the local homogenized response are presented in
order to illustrate the ability of the model to reproduce known dynamic behaviors and comparison with experimental data
of impact tests is done. Finally, a one-dimensional analysis is performed in order to show that the damage model can predict
wave dispersion effects.

2. Two-scale problem

In this paper, we consider the dynamic evolution of the elastic solid containing a large number of micro-cracks (Fig. 1a).
We assume that the micro-crack distribution is locally periodic. We denote by ɛ the size of a periodicity cell or, equivalently,
the distance between the centers of neighbor micro-cracks and by l the micro-crack length. The length l is assumed to have
small spatial variations such that, locally, the distribution of micro-cracks may be considered as periodic. Each crack is
assumed to be parallel to the x1-axis and straight. We define the damage variable as the ratio between the micro-crack
length l and the period size:

d¼ l
ɛ

ð1Þ

taking values between 0 (for undamaged material) and 1 (for completely damaged material).

2.1. Elastodynamics equations

We consider the elastodynamics equations for the initial heterogeneous medium that we assume to be a two-
dimensional isotropic elastic mediumwith micro-cracks. Let BS ¼ B\C be the solid part of the full domain B, with C the union
of all micro-cracks inside B. The momentum balance equation is

∂sɛij
∂xj

¼ ρ
∂2uɛ

i

∂t2
in BS ð2Þ

and the linear elasticity constitutive relation is

sɛij ¼ aijklexklðuɛÞ ð3Þ

where aijkl is the elasticity tensor, sɛij is the stress field and uɛ
i is the displacement field. The strain tensor is calculated in the

small deformations hypothesis:

exij uɛð Þ ¼ 1
2

∂uɛ
i

∂xj
þ

∂uɛ
j

∂xi

� �
ð4Þ
Fig. 1. (a) Micro-fissured medium with locally periodic micro-structure, ɛ is the size of a period and l is the local micro-crack length. (b) Unit cell with
rescaled crack of length d.
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where the variables xi with respect to which the strain tensor is calculated are explicitly mentioned. In the particular case of
an isotropic elastic matrix, as considered in the present study, the elasticity tensor is expressed as a function of the elastic
constants, the Young Modulus E and the Poisson ratio ν, as follows:

aijkl ¼
νE

ð1þνÞð1�2νÞ δijδklþ
E

2ð1þνÞ δikδjlþδilδjk
� � ð5Þ

where δij is the Kronecker symbol.
Traction free conditions are assumed on the crack faces:

rɛN¼ 0 ð6Þ
where N is a unit normal vector on the crack faces (Fig. 2).

2.2. Asymptotic developments

The locally periodic micro-structure is constructed from a reference unit cell Y (Fig. 1b) referred to as microscopic
coordinates (y1,y2). Rescaled with the small parameter ɛ, the unit cell becomes the physical period of the material ɛY as in
Fig. 2. The unit cell Y contains the scaled crack CY and we denote by YS¼Y\CY its solid part.

We assume the micro-structural period ɛ to be small enough with respect to the characteristic dimensions of the whole
body and the wavelength of the elastodynamic fields. In this case, we can distinguish between the microscopic and the
macroscopic variations of the mechanical fields. We consider distinct variables at different scales: the macroscopic variable x
(at the scale of the whole structure) and the microscopic variable y¼x/ɛ (at the level of micro-cracks). While the
microscopic scale behavior is essentially determined by the presence of the cracks, at the global scale we retrieve a mean
(homogeneous) response without seeing the details of micro-heterogeneities. The homogenization procedure allows
obtaining this macroscopic behavior by taking into account the micro-structural aspects.

It is also assumed that the macroscopic acceleration is moderate such that the stress gradients are small and no
important inertial effects are present at the level of the micro-structural period. In particular, this means that high frequency
phenomena like multiple wave reflections on micro-cracks are not explicitly taken into account in the model. In the short
wavelength case, when microscopic inertia becomes relevant for the overall behavior, a different upscaling approach should
be considered (e.g. Craster et al., 2010).

For a mechanical field depending on both x and y the total spatial derivative takes the form

d
dxi

¼ ∂
∂xi

þ 1
ɛ

∂
∂yi

ð7Þ

Following the ideas of the asymptotic homogenization method (e.g. Benssousan et al., 1978; Sanchez-Palencia, 1980), we
look for two-scale expansions of uɛ and rɛ in the form:

uɛðx; tÞ ¼ uð0Þðx;y; tÞþɛuð1Þðx; y; tÞþɛ2uð2Þðx; y; tÞþ⋯ ð8Þ

rɛ x; tð Þ ¼ 1
ɛ
rð�1Þ x; y; tð Þþrð0Þ x; y; tð Þþɛrð1Þ x; y; tð Þþ⋯ ð9Þ

where uðiÞðx; y; tÞ and rðiÞðx; y; tÞ, xAB, yAY are Y-periodic.
The mass density and the stiffness tensor are assumed to depend on the microscopic variable:

ρɛ xð Þ ¼ ρ yð Þ ¼ ρ
x
ɛ

� �
ð10Þ
Fig. 2. Rescaling of the unit cell to the microscopic period of the material.
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aɛijkl xð Þ ¼ aijkl yð Þ ¼ aijkl
x
ɛ

� �
ð11Þ

where the functions ρðyÞ and aijklðyÞ are Y-periodic.

2.3. Homogenization analysis

Substituting the asymptotic development of rɛ and uɛ (8) and (9) in the elastodynamic equations (2)–(4) and taking into
account the derivation rule (7), one can obtain the following expressions:

∂sðIÞij
∂xj

þ
∂sðIþ1Þ

ij

∂yj
¼ ρ

∂2uðIÞ
i

∂t2
ð12Þ

sðIÞij ¼ aijklðexklðuðIÞÞþeyklðuðIþ1ÞÞÞ ð13Þ

These last equations have to be solved for each I.
(i) Eq. (12) for I¼ �2 and Eq. (13) for I¼ �1 give

∂sð�1Þ
ij

∂yj
¼ 0 ð14Þ

sð�1Þ
ij ¼ aijkleyklðuð0ÞÞ ð15Þ

The above equations (14) and (15) lead to boundary value problem of the zero order in ɛ as follows:

∂
∂yj

aijkleykl uð0Þ� �� �¼ 0 in YS ð16Þ

ðaijkleyklðuð0ÞÞÞNj ¼ 0 on CY ð17Þ

This shows that the function uð0Þ ¼ uð0Þðx; tÞ is independent of y variable, representing the macroscopic displacement field.
(ii) Eq. (12) for I ¼ �1 and Eq. (13) for I¼0 give

∂sð0Þij

∂yj
¼ 0 ð18Þ

sð0Þij ¼ aijklðexklðuð0Þ þeyklðuð1ÞÞÞ ð19Þ

For given uð0Þ, taking into account Eqs. (18) and (19) one obtains the boundary-value problem for the corrector uð1Þ:

∂
∂yj

aijkleykl uð1Þ� �� �¼ 0 in YS ð20Þ

ðaijkleyklðuð1ÞÞÞNj ¼ �ðaijklexklðuð0ÞÞÞNj on CY ð21Þ

with periodicity conditions on the external boundary of the cell. The microscopic corrector uð1Þ depends linearly on the
macroscopic deformations

uð1Þðx; y; tÞ ¼ ξpqðyÞexpqðuð0ÞÞðx; tÞ ð22Þ
Here the characteristic functions ξpqðyÞ are elementary solutions of Eqs. (20) and (21) for the particular macroscopic
deformations exijðuð0ÞÞ ¼ δipδjq (e.g. Benssousan et al., 1978; Sanchez-Palencia, 1980), where δip is the Kronecker symbol. The
equilibrium equation (18) shows that inertial effects are not directly present at the microscopic level.

(iii) Eq. (12) for I¼0 and Eq. (13) for I¼1 give

∂sð0Þij

∂xj
þ

∂sð1Þij

∂yj
¼ ρ

∂2uð0Þ
i

∂t2
ð23Þ

sð1Þij ¼ aijklðexklðuð1ÞÞþeyklðuð2ÞÞÞ ð24Þ

By introducing the mean value operator 〈 � 〉¼ ð1=jYjÞRYs
� dy, where jYj is the area of Y, applying it to Eq. (23) and

remembering that uð0Þ is y-independent, one can obtain

∂
∂xj

〈sð0Þij 〉¼ 〈ρ〉
∂2uð0Þ

i

∂t2
ð25Þ



Fig. 3. Homogenized coefficients for elastic parameters E¼2 GPa and ν¼0.3.
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We define the macroscopic stress Σð0Þ
ij � 〈sð0Þij 〉 that can be expressed as

Σð0Þ
ij ¼ CijklðdÞexklðuð0ÞÞ ð26Þ

where

Cijkl dð Þ ¼ 1
jY j
Z
YS

aijklþaijmneymn ξkl
� �� �

dy ð27Þ

are the homogenized coefficients.
We deduce the dynamic macroscopic behavior:

∂
∂xj

Σð0Þ
ij ¼ ρ

∂2uð0Þ
i

∂t2
ð28Þ

as describing the overall dynamic behavior of an elastic body with a given distribution of (non-evolving) micro-cracks.
We note that the microscopic stress (19) satisfies the equilibrium equation (18) without inertia effects at the small scale.

However, the inertia effects are present at the macroscopic scale, as it can be seen in Eq. (28). This is the result of the
separation of scales assumption, leading to relations (12) and (13). Such hypothesis is reasonable for physical phenomena for
which the microscopic accelerations have no strong impact on the overall response of the material.

The effective coefficients Cijkl depend on the state of damage and the elastic properties of the solid matrix (E and ν). The
coefficients Cijkl defined by (27) can be computed by solving the unit cell problems (20) and (21) for a large number of
dA ½0;1�. The FEAP finite element code (Taylor, 2008) has been used for the computation of these homogenized coefficients.
The obtained effective coefficients are represented in Fig. 3 as functions of the damage variable d.

The presence of the micro-cracks leads to induced anisotropy, the resulting effective elastic response being orthotropic.
This is due to predetermined orientations of micro-cracks leading to macroscopic anisotropy even if the solid part of the
medium BS is assumed to be isotropic (Eq. (5)). We also note the nonlinear dependence of the homogenized coefficients on
the damage variable d. With a horizontal crack line (direction 11), the damage-induced loss of rigidity is maximumwhen the
unit cell is loaded in the vertical direction (22), i.e. perpendicular to the crack (coefficients C2222 and C1122) while the rigidity
is much less affected when loaded in the horizontal direction (11), i.e. parallel to the crack (coefficient C1111). This is
characteristic of the damage-induced anisotropy observed at the macro-scale. For d¼1, the residual value of C2222 and C1122
is not zero because the micro-crack tips are assumed to remain in contact, even for fully damaged state. It produces a
residual rigidity of the unit cell.
3. Energy analysis

In this section we perform a micro-mechanical energy analysis within the homogenization framework. These results will
be used in the next section to construct the homogenized dynamic damage laws.
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3.1. Dynamic energy release rate

During crack propagation, the dynamic energy release rate can be written as a limit at the tip of a micro-crack as

Gdɛ ¼ lim
r-0

Z
Γr

UþTð Þn1�sɛijnj
∂uɛ

i

∂x1
dS ð29Þ

where

U ¼ 1
2 amnklexkl uɛð Þexmn uɛð Þ ð30Þ

T ¼ 1
2
ρ
∂uɛ

∂t
∂uɛ

∂t
ð31Þ

are respectively the energy of deformation and the kinetic energy densities (Freund, 1998). Here Γr is a circle of an
infinitesimal radius r surrounding the crack tip and n is the unit normal vector on Γr (see Fig. 2).

We consider a Griffith-type energy criterion: propagation occurs when a critical energy threshold Gc is reached. The crack
propagation is described by the following relations:

GdɛrGc;
dl
dt

Z0;
dl
dt

Gdɛ�Gc

� �
¼ 0 ð32Þ

where Gc is the critical fracture energy of the material.
Similar to the quasi-static case (Dascalu et al., 2008), one can establish the scaling relation:

Gdɛ ¼ ɛGd
y ð33Þ

with

Gd
y ¼ lim

r-0

Z
ΓYr

�aijkl eykl uð1Þ� �
nj

∂uð1Þ
i

∂y1

 ! !
þ 1

2
amnkleykl uð1Þ� �

eymn uð1Þ� �þ 1
2
ρc2

∂uð1Þ

∂y1

� �2 !
n1 dsy ð34Þ

In order to prove the above relation, we start with the first order terms in the development of strain and stress as results
from (8) and (9):

exklðuɛÞ ¼ exklðuð0ÞÞþeyklðuð1ÞÞ ð35Þ

sɛij ¼ aijklðexklðuð0ÞÞþeyklðuð1ÞÞÞ ð36Þ

Substituting these expressions in Eqs. (30) and (31), we get

U ¼ 1
2 amnkl exkl uð0Þ� �þeykl uð1Þ� �� �

exmn uð0Þ� �þeymn uð1Þ� �� � ð37Þ

T ¼ 1
2
ρc2

∂ðuð0Þ þɛuð1ÞÞ
∂x1

� �2

ð38Þ

Eq. (38) is obtained according to the behavior of the displacement near the moving crack tip for r close to 0 (Freund, 1998):

∂uɛ

∂t
¼ �c

∂uɛ

∂x1
ð39Þ

where c is the speed of crack propagation.
Substitution of sɛij, u

ɛ , T and U in Eq. (29) gives

Gdɛ ¼ lim
r-0

Z
ΓYr

�aijkl exkl uð0Þ� �þeykl uð1Þ� �!
nj

∂uð0Þ
i

∂x1
þ ∂uð1Þ

i

∂y1

 ! 
þ 1

2
amnkl exkl uð0Þ� �þeykl uð1Þ� �� �

exmn uð0Þ� �þeymn uð1Þ� �!   

þ1
2
ρc2

∂uð0Þ

∂x1
þ ∂uð1Þ

∂y1

� �2!
n1

!
ɛ dsy ð40Þ

where the change of variables dS¼ ɛdsy has been done in the integral (40). By taking into account the singularity of uð1Þ at
the crack tip (Freund, 1998) we can obtain the following relation:

Gdɛ ¼ ɛlim
r-0

Z
ΓYr

�aijkl eykl uð1Þ� �
nj

∂uð1Þ
i

∂y1

 ! !
þ 1

2
amnkleykl uð1Þ� �

eymn uð1Þ� �þ 1
2
ρc2

∂uð1Þ

∂y1

� �2 !
n1 dsy ð41Þ

where in the right member we recognize the scaled energy-release rate Gd
y . This proves the relation (33).

As we showed in the previous section, the cell problem (20) and (21) obtained in dynamics is identical with the one
obtained in quasi-statics (Dascalu et al., 2008).
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The scaled energy release rate (34) can be decomposed as

Gd
y ¼ lim

r-0

Z
ΓYr

�aijkl eykl uð1Þ� �
nj

∂uð1Þ
i

∂y1

 ! !
þ 1

2
amnkleykl uð1Þ� �

eymn uð1Þ� �� �
n1 dsyþ lim

r-0

Z
ΓYr

þ 1
2
ρc2

∂uð1Þ

∂y1

� �2

n1 dsy ð42Þ

The first integral of the right member of Eq. (42) is denoted by Gy and represents the scaled quasi-static energy release rate
(Dascalu et al., 2008), here calculated with the dynamic corrector.

Thus the relation between dynamic and quasi-static scaled energy release rates can be written as

Gd
y ¼ Gyþ

1
2
ρc2 lim

r-0

Z
ΓYr

∂uð1Þ

∂y1

� �2

n1 dsy ð43Þ

and by using (33) we obtain

Gdɛ ¼ Gɛþɛ
1
2
ρc2 lim

r-0

Z
ΓYr

∂uð1Þ

∂y1

� �2

n1 dsy ð44Þ

where Gɛ ¼ ɛGy.

3.2. Dynamic energy release rate and stress intensity factors

For an isotropic elastic medium, as assumed in the present study (Eq. (5)), the physical energy release rate in dynamics is
expressed as a function of the stress intensity factors as follows (Freund, 1998):

Gdɛ ¼ 1�ν2

E
Að_lÞðKdɛ

I Þ2 ð45Þ

where Kdɛ
I represents the dynamic stress intensity factor and Að_lÞ is a universal function of the crack speed. For the tensile

crack growth at nonuniform speed, Kdɛ
I can be expressed following Freund (1998) as

Kdɛ
I ¼ kð_lÞKɛ

I ð46Þ
where Kɛ

I is the static stress intensity factor that would have resulted from the applied loading if the crack tip had always
been at its instantaneous position represented by l(t).

By substituting Eq. (46) into Eq. (45) we can obtain the following relation:

Gdɛ ¼ 1�ν2

E
Að_lÞk2ð_lÞðKɛ

I Þ2 ð47Þ

For crack propagation in mode I, Freund (1998) established the relation

Að_lÞk2ð_lÞ ¼ 1�
_l
CR

 !
ð48Þ

where CR is Rayleigh wave speed and can be expressed by

CR ¼
0:862þ1:14ν

1þν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ρð1þνÞ

s
ð49Þ

By replacing (48) into (47), the physical energy release rate on dynamic load conditions becomes

Gdɛ ¼ 1�ν2

E
ðKɛ

I Þ2�
_l
CR

1�ν2

E
ðKɛ

I Þ2 ð50Þ

Comparing Eq. (44) to Eq. (50) the following equality can be identified:

ɛ
1
2
ρc2lim

r-0

Z
Γr

∂uð1Þ

∂y1

� �2

n1 dsy ¼ �
_l
CR

1�ν2

E
ðKɛ

I Þ2 ð51Þ

4. Dynamic damage evolution

The effective constitutive law presented in Section 2 (Eq. (26)) enables us to compute the stress–strain behavior of the
material at a given state of non-evolving damage. In this section, by assuming that the micro-cracks evolve, we deduce the
corresponding macroscopic damage evolution.

Under a given loading of the macroscopic structure, the resulting local state of stress leads to the activation of particular
families of micro-cracks. In what follows, we place ourselves in such a macroscopic point and we assume that in a small
vicinity a family of straight micro-cracks is activated and they are propagating in mode I, symmetrically with respect to their
middle-point.
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To deduce the macroscopic damage equation we will follow the method developed in Dascalu et al. (2008) for brittle
micro-fracture and Dascalu (2009) for quasi-brittle or subcritical micro-crack evolutions. In these contributions a general
damage model has been obtained by homogenization in the quasi-static framework. These results are extended here to the
case of dynamic propagation of micro-cracks including inertial effects in the momentum balance. Although we will consider
a brittle-type propagation criterion at the micro-scale, we will show that including the inertial effects may lead to non-
brittle overall responses.

In Dascalu et al. (2008) the following relation was deduced, based on quasi-static evolution of micro-cracks:

dd
dt

1
2
∂CijklðdÞ

∂d
exkl uð0Þ� �

exij uð0Þ� �þGy

� �
¼ 0 ð52Þ

This relation still holds in our case if Gy represents the scaled quasi-static energy release rate calculated with the dynamic
corrector as explained in Section 3.

By replacing (44) in (52) with Gɛ ¼ ɛGy and considering (33) we obtain

dd
dt

1
2
∂CijklðdÞ

∂d
exkl uð0Þ� �

exij uð0Þ� �þ Gdɛ

ɛ
� 1

2
ρc2lim

r-0

Z
Γr

∂uð1Þ

∂y1

� �2!
n1 dsy

 !
¼ 0 ð53Þ

Considering the relation (51), we obtain

dd
dt

1
2
∂CijklðdÞ

∂d
exkl uð0Þ� �

exij uð0Þ� �þ Gdɛ

ɛ
þ ɛ _d

CR

1�ν2

Eɛ
ðKɛ

I Þ2
 !

¼ 0 ð54Þ

By replacing ðKɛ
I Þ2 by its expression as a function of Gdɛ , as deduced from (50), it leads to the dynamic damage equation as

follows:

dd
dt

1
2
∂CijklðdÞ

∂d
exkl uð0Þ� �

exij uð0Þ� �þ Gdɛ

ɛ
1þ ɛ _d

CR�ɛ _d

 ! !
¼ 0 ð55Þ

Finally, when the Griffith criterion (32) is satisfied, we have Gdɛ ¼ Gc and we obtain the dynamic damage equation as follows:

dd
dt

1
2
∂CijklðdÞ

∂d
exkl uð0Þ� �

exij uð0Þ� �þ Gc

ɛ
1þ ɛ _d

CR�ɛ _d

 ! !
¼ 0 ð56Þ

The other two relations corresponding to (32) can be obtained in a similar way.
Upon micro-crack propagation, we can see that the quasi-static damage equation (52) represents the limit case of the

dynamic damage equation (56) when _l=CR51. This means that when the crack propagation speed _l is very small compared
to the material Rayleigh wave speed CR, the dynamic damage equation corresponds to the quasi-static case.

One of the fundamental assumptions of the mathematical homogenization theory (Benssousan et al., 1978; Sanchez-
Palencia, 1980) is that the size of the heterogeneity is infinitely small. This means that, once the asymptotic developments
have been inserted in the field equations, the macroscopic equations are obtained by considering the limit ɛ-0. In this limit,
by considering vanishingly small micro-structural periods, we actually neglect the aspects related to the finite size of the
micro-structure.

For models not depending on the micro-structural size, like the linear elasticity theory, this limit does not change the
initial form of the equations. This is the case for general size-independent models. But this is not true for the damage
evolution equation (56) in which ɛ explicitly appears. The damage equation (56) inherits the features of the micro-fracture
laws (32) that represent a size-dependent model.

In the present contribution we adopt the point of view of the asymptotic analysis, by studying the macroscopic system
represented by Eqs. (26), (28) and (56) for small values of the micro-structural parameter ɛ. This type of approach has been
considered, for instance, in Smyshlyaev and Cherednichenko (2000), Peerlings and Fleck (2004), Tran et al. (2012) in order to
obtain strain gradient elasticity models.

Finally, for evolving damage, we can rewrite (56) in the form:

dd
dt

¼ 2CR

ɛ
Gc

ɛ
∂CijklðdÞ

∂d
exkl uð0Þ� �

exij uð0Þ� � þ 1
2

0
BB@

1
CCA ð57Þ

as the dynamic evolution law for damage.
5. Local macroscopic response

For the analysis of the homogenized response in a macroscopic point, the input of Eq. (57) is the macroscopic strain
exklðuð0ÞÞ at each time t.
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For the given macroscopic strain history exklðuð0ÞÞ, the damage evolution equation (57) is solved by using an explicit time
integration scheme. The corresponding homogenized coefficients CijklðdÞ and the macroscopic stress Σð0Þ

ij ¼ CijklðdÞexklðuð0ÞÞ are
then computed.

We perform tension tests at constant strain rate, with the only non-vanishing component _e22. The numerical values of
the parameters used in the simulations are given in Table 1. They represent the reference parameters of the numerical
simulations performed below. However, in order to study the influence of the key parameters of the model, the following
sub-sections consider varying values of ɛ, _e22 and d0.

5.1. Influence of micro-structure size ɛ

At constant Gc, CR and imposed strain rate _e22 (numerical values reported in Table 1), the decrease of the micro-structure
size ɛ produces an increase of the tensile strength together with an important reduction of ductility (Fig. 4). On the one
hand, the strength increase is explained by the activation of damage propagation criterion which depends on the micro-
structure size ɛ. Smaller micro-structures are more resistant to damage. This known effect has been retrieved also in the
quasi-static models of damage (Dascalu et al., 2008; Dascalu, 2009) obtained by a similar homogenization procedure. As
remarked before, the quasi-static model is obtained from Eq. (56) for crack propagation speed much smaller than the
Rayleigh wave speed. On the other hand, the decrease of the micro-structural size leads to a more brittle macroscopic
response. This effect is specific to dynamics since it is not present in the quasi-static two-scale approaches obtained
previously.

The effect of micro-structure size on the peak stress is mainly marked for small size. On the contrary, as shown in Fig. 5,
for larger micro-structure size this strength tends asymptotically to a constant value which is no more affected by ɛ.

The strengthening of the material with decreasing micro-structural size is the consequence of the damage law (in which
the size ɛ appears) deduced from the Griffith fracture criterion assumed at the micro-scale. Except the periodicity
hypothesis, no micro-crack interactions are considered. In this case, each crack has an independent evolution and, following
the energy criterion, larger cracks propagate easier than smaller ones. This explains the dependency on ɛ predicted by the
model. It expresses the Linear Elastic Fracture Mechanics size effect (Bazant, 2002) upscaled to damage at the macro-level.

We finally remark that the present analysis assumes a critical fracture energy Gc independent on the micro-structural
size ɛ. A different approach may be obtained by considering in the damage law (57) a function GcðɛÞ determined
experimentally, in order to predict more specific size effects.

5.2. Influence of the rate of loading

The macroscopic responses for different rates of loading are represented in Fig. 6, for ɛ¼ 10�3 m. We remark that the
rate of loading does not affect the initiation of damage. However, it affects the ductility of the macroscopic response. While
for low strain rates the stress and damage evolution are brittle, for higher strain rates the response is much more ductile.

The obtained strain rate influence can be explained by the competition between the deformation of the elastic matrix
and the evolution of micro-cracks. For low strain rates the damage evolution is dominant leading to brittle response, while
for high strain rates the damage evolution is slower than the loading rate, leading to a more ductile response.

In this way, the increase of the strain rate leads to a transition from brittle to ductile behavior.
Table 1
Numerical values of parameters used in the simulations.

E (Pa) ν (–) ɛ (m) _e11 (s�1) _e22 (s�1) Gc ðJ=m2Þ ρ (kg/m3) d0 ( � )

3�1011 0.22 10�3 0 1�103 50.752 3800 0.2

Fig. 4. Effect of the internal length ɛ for a tension test at constant strain rate. Evolution of (a) stress (b) damage variable with strain.



Fig. 6. Effect of the strain rate _e22 on the macroscopic response, for ɛ¼ 10�3 m. Evolution of (a) stress and (b) damage variable with strain.
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Fig. 5. Evolution of the peak stress as a function of the micro-structural size ɛ, for a tension test at constant strain rate.

Fig. 7. Effect of the strain rate _e22 on the macroscopic response, for ɛ¼ 5� 10�5 m. Evolution of (a) stress and (b) damage variable with strain.
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In Fig. 7 we represented the responses for different strain rates when ɛ¼ 5� 10�5 m. We remark that the effect of small
values of ɛ, leading to very brittle behavior, is dominant. The strength and ductility increase with the strain rate become
negligible for such values of the micro-structural length.
5.3. Influence of the initial damage

The macroscopic responses for different initial damage values are represented in Fig. 8. As expected, the strength and the
stiffness increase with the decreasing initial damage d0. The damage evolution is governed by the damage law (56).
It predicts initiation of damage evolution from d0 for a particular value of the macroscopic deformation. The initial stiffness
depends on the initial damage through the homogenized coefficients, this stiffness being lower when the initial damage is
higher. For higher initial values of d0, the damage evolves more rapidly leading to lower strength values.



Fig. 8. Effect of initial damage d0 on the macroscopic response. Evolution of (a) stress and (b) damage variable with strain.

Fig. 9. Strain-rate sensitivity of tensile strength: comparison of model results with spalling test results.
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6. Model validation

In order to validate our dynamic damage model, we use the results of spalling tests carried out by Erzar and Buzaud
(2012) on AL23 alumina ceramic through the isentropic pressure wave generator machine (GEPI). The GEPI test generates a
uniaxial compressive wave in the specimen and the fragmentation occurs in a state of uniaxial strain. The dynamic tensile
strength of the tested alumina ceramic is directly computed by the classical acoustic approximation formulated by Novikov
et al. (1966):

sspalling ¼ 1
2 ρCLΔVpb ð58Þ

In this equation, the ultimate tensile stress sspalling is directly linked to the density ρ, the wave speed CL and the pullback
velocity ΔVpb. This last term corresponds to the difference between the maximum velocity measured on the rear free-
surface and the first rebound of velocity which is the evidence of the tensile damage within the core of the tested sample.

To prove our model efficiency we compare the strain-rate sensitivity of tensile strength curve of AL23 alumina ceramic
from the GEPI tests (Erzar and Buzaud, 2012) with the results obtained after calibration of our model (Fig. 9). The physical
parameters of the AL23 alumina ceramic have been considered (E¼300 GPa; ν¼0.3; Gc ¼ 50:752 J=m2; ρ¼3800 kg/m3). The
corresponding homogenized coefficients have been computed as a function of damage state with the FEAP finite
element code.

For the micro-structural size of ɛ¼ 3� 10�4 and initial damage values d0 ¼ 0:3, the dynamic damage model gives a good
agreement with the experimental results, as can be seen in Fig. 9.

Due to the lack of experimental data on the micro-structural characteristics of the material, the determination of d0 and ɛ
has been done by calibration in order to get the best agreement with the experimental results. So, it is worth mentioning
that the results of Fig. 9 consist mainly in calibration rather than blind predictions, even if E, ν, ρ and Gc have been taken as
close as possible to the representative values of AL23 alumina ceramic.
7. Wave dispersion analysis

Wave propagation in micro-structured materials is strongly affected by processes at internal space scales and many
attempts have been made to model these effects (Kunin, 1983; Capriz, 1989; Erofeeyev, 2003). They are particularly
important for micro-fractured solids, in which wave dispersion phenomena are observed. In this section we perform a one-
dimensional dispersion analysis for the dynamic damage model developed in Section 4.
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In the 1D framework, the equation of elastodynamics becomes

∂
∂x

C2222 dð Þex22 uð0Þ� �� �¼ 〈ρ〉
∂2uð0Þ

2

∂t2
ð59Þ

Since we aim obtaining analytical results, we approximate the homogenized coefficient C2222ðdÞ by the formula

C2222 dð Þ ¼ 1
3 ð3�d2�2dÞE ð60Þ

Substituting (60) into (59) we get

�2
3 1�dð ÞEd′ex22þ1

3 ð3�d2�2dÞEe′x22 ¼ 〈ρ〉 €uð0Þ
2 ð61Þ

where we used the notation e′¼ ∂e=∂x.
The dynamic damage evolution law (57) can be rewritten in the form

_dð1�dÞe2x22 ¼ A1þA2ð1�dÞe2x22 ð62Þ

with A1 ¼ 3CRGc=�ɛ2E and A2 ¼ CR=ɛ.
To illustrate the presence of dispersion we consider the linearization of Eqs. (61) and (62) around a constant state of

strain and damage variables ðξ;DÞ:
ex22 ¼ ξþξ0ðx; tÞ ð63Þ

d¼Dþd0ðx; tÞ ð64Þ

Substitution of (63) and (64) into (61) and (62) gives the linearized expressions of the damage evolution law (62) and the
elastodynamics equation (61) as

ð1þDÞξ2 _d0 ¼ A1þA2ð1þDÞξ2þ2A2ð1þDÞξξ0þA2ξ
2d0 ð65Þ

� 2
3

1þDð ÞEξd′0þ
1
3
ð3�D2�2DÞEξ′0 ¼ 〈ρ〉 €uð0Þ

2 ð66Þ

Introducing the change of variable

dn

0 ¼ d0þ
A1þA2ð1þDÞξ2

A2ξ
2 ð67Þ

Eqs. (65) and (66) become

ð1þDÞξ2 _dn

0 ¼ 2A2ð1þDÞξξ0þA2ξ
2dn

0 ð68Þ

�2
3 1þDð ÞEξdn′

0 þ1
3 ð3�D2�2DÞEξ′0 ¼ 〈ρ〉 €uð0Þ

2 ð69Þ

respectively.
From (63) we get for the displacement variable uð0Þ

2 ¼ ξxþuð0Þ
02 ðx; tÞ and (69) can be rewritten as

�2
3 1þDð ÞEξdn′

0 þ1
3 ð3�D2�2DÞEuð0Þ″

02 ¼ 〈ρ〉 €uð0Þ
02 ð70Þ

Consider a harmonic excitation for the displacement and damage variables:

uð0Þ
02 ðx; tÞ ¼ u1eiðkx�ωtÞ; dn

0ðx; tÞ ¼ d1eiðkx�ωtÞ ð71Þ

where i is the imaginary unit, ω is the circular frequency and k is the wave number. We remark that the present analysis
should be applied only to the regime of increasing values of the damage variable.

By substituting (71) into (68) and (70) we get the set of equations

�ð1þDÞiξ2ωd1�2A2ð1þDÞikξu1�A2ξ
2d1 ¼ 0 ð72Þ

�2
3 1þDð Þiξkd1�1

3 ð3�D2�2DÞEk2u1þ〈ρ〉ω2u1 ¼ 0 ð73Þ

A non-trivial solution exists for the system formed by (72) and (73) if

det
ðA2ξ

2�ð1þDÞiξ2ωÞ ð�2A2ð1þDÞikξÞ
� 2

3 1þDð ÞEiξk� �
〈ρ〉ω2� 1

3 ð3�D2�2DÞEk2
� �0

@
1
A¼ 0 ð74Þ



Fig. 10. Dispersion curves for different values of the internal length ɛ.
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This allows us to determine dispersion equation as

�ω2� ð1þDÞiω3ɛ
CR

þ ð7þ3D2þ6DÞEk2
3〈ρ〉

þ ð1þDÞð3�D2�2DÞik2Eɛω
3CR〈ρ〉

¼ 0 ð75Þ

where the expression of A2 in (62) has been taken into account.
Let us denote B1 ¼ ð1þDÞω3ɛ=CR, B2 ¼ ð7þ3D2þ6DÞEk2=3〈ρ〉 and B3 ¼ ð1þDÞð3�D2�2DÞEɛω=3CR〈ρ〉. If we consider the

wave number to be complex k¼ k1þ ik2, then k1 characterizes the propagation (υph ¼ ω=k1 is phase velocity of the wave),
and k2 characterizes wave dissipation. Eq. (75) can be solved analytically and for k1 we obtain

k1 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B1B3þω2B2

2ðB2
2þB2

3Þ
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

B1B3þω2B2

ðB2
2þB2

3Þ

 !2

þ �ω2

2B3
þ �ω2þB1B2B3þω2B2

2ðB2
2þB2

3ÞB3

 !2
vuut

vuuut ð76Þ

Taking the positive value of k1, which corresponds to the þ sign, we represented in Fig. 10 the dispersion curves for
different values of the internal length ɛ. The curves depend essentially on the micro-structural length which controls the
dispersion effects.

The dispersion effects appear as a consequence of the presence of the micro-structural parameter ɛ in the damage law
(56). This law predicts that the dispersion effects are not present if the damage does not evolve. They are intimately related
with damage evolution: the waves interact with micro-cracks making them propagate and this change of micro-structure
affects the wave properties. The size parameter ɛ, representing the distance between centers of neighbor micro-cracks,
influences this evolution. We note that wave dispersion effects due to inelastic dissipation have been already considered by
different authors (Liu et al., 1976; Müller et al., 2010). In our case, the inelastic behavior is that given by the evolution of
damage.

In Section 5.1 we showed that the damage evolution is more rapid for bigger values of ɛ. This results in a more important
amount of energy dissipated for micro-crack propagation. Since the dispersion effects are directly related to the way in
which damage evolves it is expected that they amplify with the increase of the micro-structural size ɛ. This is what the
model predicts as it can be observed in Fig. 10.

We finally note that such effects of the internal length on wave dispersion are also retrieved in the nonlocal models (e.g.
Papargyri-Beskou et al., 2009 for gradient elasticity), even if the physical origin is different.

8. Conclusions

A new damage model that accounts for dynamic effects has been proposed. The damage evolution law has been
completely deduced by asymptotic homogenization coupled with microscopic energy analysis for a locally periodic
distribution of micro-cracks propagation which propagate dynamically.

For real finite-sized micro-structures, the dynamic damage law contains a micro-structural length allowing for the
prediction of size effects. It has been shown that the presence of the micro-structural length also controls the wave
dispersion effects.

For low rate of loading, the damage model tends to the quasi-static criterion with a brittle response while the high rate of
loading produces a ductile behavior governed by inertial effect. The model incorporates strain-rate sensitivity of tensile
strength and the stress–strain behavior. Validation of the model is performed by comparing strain-rate dependency of the
tensile strength with the corresponding experimental results obtained from the spalling test.

In the present model, we assumed a locally periodic distribution of micro-cracks, with smooth variations of the crack
length at the macro-scale. One may combine the energy analysis for dynamic crack propagation at the micro-scale with
other upscaling schemes, like the ones assuming homogeneous strain or stress on the boundary of the elementary volume
or for non-periodic micro-structures (Briane, 1994).
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The present approach may be extended to compression loadings by considering wing-type cracks or crack emanating
from pores. Under compression loadings, such cracks are extending in mode I and one may construct a specific damage
model by homogenization by following the same lines as in the present approach.
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