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Abstract X-ray computed tomography is a powerful non-

destructive technique used in many domains to obtain the

three-dimensional representation of objects, starting from

the reconstitution of two-dimensional images of radio-

graphic scanning. This technique is now able to analyze

objects within a few micron resolutions. Consequently,

X-ray microcomputed tomography opens perspectives for

the analysis of the fabric of multiphase geomaterials such as

soils, concretes, rocks and ceramics. To be able to charac-

terize the spatial distribution of the different phases in such

complex and disordered materials, automated phase rec-

ognition has to be implemented through image segmenta-

tion. A crucial difficulty in segmenting images lies in the

presence of noise in the obtained tomographic representa-

tion, making it difficult to assign a specific phase to each

voxel of the image. In the present study, simultaneous

region growing is used to reconstitute the three-dimensional

segmented image of granular materials. First, based on a set

of expected phases in the image, regions where specific

phases are sure to be present are identified, leaving uncer-

tain regions of the image unidentified. Subsequently, the

identified regions are grown until growing phases meet each

other with vanishing unidentified regions. The method

requires a limited number of manual parameters that are

easily determined. The developed method is illustrated

based on three applications on granular materials, com-

paring the phase volume fractions obtained by segmentation

with macroscopic data. It is demonstrated that the algorithm

rapidly converges and fills the image after a few iterations.

Keywords Granular media � Sand–bentonite mixtures �
Segmentation � Simultaneous region growing � X-ray

tomography

1 Introduction

X-ray computed tomography (X-ray CT) is a powerful non-

invasive technique to obtain a three-dimensional represen-

tation of objects. From the radiograms of the objects, the

computer treatment of the set of images allows obtaining a

full three-dimensional gray-level picture representing the

X-ray attenuation of the material at the considered location.

Used nowadays for a wide variety of applications, this

technique was introduced initially for medical imaging [30].

A quite complete review of the possible use of X-ray CT can

be found in [33]. The first microscale tomography [X-ray

microcomputed tomography (X-ray lCT)] was performed

by Elliot and Dover [18], with a voxel resolution of 15 lm.

X-ray CT also made its way to geosciences for which a

wide range of issues can be treated. A review can be found

in [16, 34, 41]. Tomography carries the main advantage

that the microfabric of materials is not disturbed by the

observation technique, the method being non-invasive. The

tomography applications for porous media are mainly

focused on (1) the analysis of porosity and fluid flow [46],

(2) the evaluation of densities, water contents and volume

fractions in general [2, 51, 60 ] and (3) the characterization

of asphalt and concrete microstructures [57, 66].
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In addition, in a geomechanical context, tomography can

be used to characterize local deformations within a soil

sample in a mechanical testing device (see [38] for rock

materials and [15, 26, 27] for sandy soils). The technique

allows producing full three-dimensional numerical images

with details such as the shape of sand particles [65], their

spatial distribution and arrangement, as well as the pore

size distribution [35]. In [3], triaxial tests on different types

of sands were also analyzed in relation with the evolution

of the samples fabric to understand the development of

shear bands at the microstructural scale. For numerical

simulations, tomographic images can be directly translated

into models for mechanical analysis, as performed using

level-set segmentation in porous media for X-FEM

numerical simulations in [37]. Besides X-ray CT scanning,

other methods of tomography are currently being consid-

ered in geomechanical applications, such as neutron

imaging [31], magnetic resonance (mostly for water ana-

lysis) [5] and gamma ray computed tomography [48].

In image reconstitution, the main challenge consists of

treating 3D tomographic data to distinguish the different

phases in the heterogeneous material, based on the voxels’

gray values. With the naked eye, it seems possible to dis-

tinguish the regions occupied by each phase. However, due

to the large number of particles in granular materials,

visual intuition is practically not sufficient. The phase

segmentation must therefore be automated using compu-

tational methods to obtain quantitative results. Numerical

criteria must be defined to extract phase boundaries in a

fast, easy and systematic procedure. This treatment aiming

at the partition of the image into a limited number of

entities is called ‘image segmentation.’ A complete over-

view of digital image processing is presented in [50]. Many

methods have been developed for this purpose such as edge

detection [11, 40], split and merge [29], watershed [9],

stochastic watershed [4], level set [39, 56], region growing

[1, 47] and statistical region merging (SRM) [44]. For the

purpose of multiphase (or multilabel) segmentation, some

authors use the raw image as a result of an original image

behaving as a Gibbs distribution following Bayesian sta-

tistics. The retrieval of the original image can be made by

simulated annealing [22], by iterated conditional modes [8]

or using graph theory through graph cuts [25]. A faster

approach has also been developed by [10] in the field of

early vision segmentation. Multiphase image segmentation

can also be seen as a Potts model. A recent survey on

different solving algorithms for this model has been pre-

sented in [43]. The use of an appropriate relaxation

improves the efficiency of the problem solving such as the

convex relaxations presented in [67] or in [49]. Level-set-

based techniques have also been adapted to multiphase

images [62]. Alternatively, the random walker algorithm

can also be used as an efficient method of segmentation for

multiphase materials [24]. An optimization, called power

watershed, using a combination of the random walker,

graph cuts and watershed, has been proposed by [14].

For X-ray tomographic images of geomaterials, these

approaches could be used for segmentation. However, the

type of image to analyze is quite specific for geomaterials.

For such materials made of three (or a limited number of)

phases, the image is composed of three (or a limited

number of) almost-constant gray levels, homogeneously

distributed in a granular way into space. However, the

segmentation should face two artifacts: Gaussian noise and

partial volume effect (PVE). Consequently, existing seg-

mentation methods, initially disposed for classical pho-

tography, are not directly suited for geomaterials. In a way,

if the histograms of the different phases are separated, there

would be no need of a segmentation method as a simple

threshold on the gray levels would be sufficient. On the

contrary, if the histograms overlap, the simple thresholding

method cannot be selected, except if an edge-preserving

filter can be applied to decrease the width of the gray-level

distribution of each phase in order to remove the overlap-

ping and retrieving the method of simple thresholding. In

this paper, several filters can be taken into account such as

median, bilateral [61], morphological [55], anisotropic

diffusion [45] and total variation minimization [12]. For

comparison purposes, other ways to segment the tomo-

graphic image have been added in one validation example

of Sect. 5.

Consequently, specific image segmentation techniques

have been adapted for granular media. An overview of

different image processing methods and an investigation on

image enhancement is presented in [32]. Most of the

research effort has been devoted to the development of

approaches to segment biphasic geomaterials, using

watershed [21], gradient masks [54] or a combination of

both [59]. An improvement in the watershed method called

stochastic watershed [4] was shown to be suitable for

granular media [19, 23]. Dual filtering combining two

different filters together was used in [42] for two-phase

segmentation. In spite of these efforts, research is still

ongoing for geomaterials with more than 2 phases. In [36],

gradient masks followed by watershed are used to extract 3

phases of building stone samples.

The method presented in this paper is a region-growing

type segmentation that allows performing segmentations of

three-phase tomographic images of a granular material.

Therefore, for granular media, all the grains belong to one

phase and are embedded within a matrix consisting of two

other phases. The main idea is to use the region-growing

method simultaneously for each considered phase. The

approach is based on the assumption that the noise is

homogeneously distributed in the obtained image. The

illustrations of the methodology provided in this paper are
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mainly focused on granular soil tomography samples, but it

can be extended to other types of heterogeneous geoma-

terials such as concrete, rock, asphalt and ceramics.

The region-growing method in this paper is inspired

from the method as originally detailed in [1]. The differ-

ence lies in the definition of seeds and will be explained in

Sect. 2. Other region-growing criteria have also been

developed afterward. Instead of comparing the mean value

of the gray levels of pixels included in each region, Chang

and Li [13] developed an analysis of the feature of regions’

histogram. Hojjatoleslami and Kitter [28] use as growing

criteria, two discontinuity measurements: the average

contrast and the peripheral contrast. Wan and Higgins [64]

developed a method called symmetric region growing,

which solves the problem of seed-order dependency in

region growing.

Section 2 will first explain the motivations for the

development and the specificities of the proposed

approach, as well as the conditions for which the method is

effective. The complete procedure will then be detailed in

Sect. 3. The efficiency of the methodology will be assessed

and illustrated in Sect. 4, based on its applications for three

granular materials: a sand–bentonite mixture with voids, an

unsaturated spherical glass bead sample and an unsaturated

sand. The obtained results will be analyzed and discussed

in section in light of multiphase porous medium concepts.

2 Challenges in segmenting granular material images

2.1 Gaussian curve overlapping

In the ideal case, the segmentation of an image into dif-

ferent phases is made through a simple histogram threshold

as presented in Fig. 1. Figure 1a represents an image

obtained for an inclusion-based system. In Fig. 1b, this

image is represented by means of a histogram representing

the amount of pixels with respect to their gray value. The

dark and light phases are well separated, and two Gaussian

curves can be identified by a simple threshold giving a

satisfactory result as illustrated in Fig. 1c. However,

sometimes, the histogram of different phases can overlap

due to the presence of noise. Consequently, a single

threshold of the gray value is not sufficient to properly

distinguish the different phases. Figure 2a illustrates this

overlapping through a grain-scale tomography of a three-

phase material (sand–bentonite mixture including also void

space). The phases in the image are sand particles (the high

peak corresponding to bright gray), bentonite (large

Gaussian curve in the middle gray values) and air voids

(small step for low gray values). The histogram is such that

a simple threshold of the image will attribute a part of the

region of each phase mistakenly to other phases.

Conversely, the human eye has the ability to distinguish

and to locate properly each phase by accounting for the

geometry of the problem. The procedure recognizes that if

a voxel is surrounded by other voxels of approximately the

Fig. 1 a Image with two distinct gray values (from ImageJ): black dots

and white background, b simple threshold on the histogram of the image

giving and c good-quality segmented image

Fig. 2 a Microstructure of three-phase material (sand, bentonite and

voids), b simple threshold on the image and c corresponding poor

recognition of phases (color figure online)
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same gray value, it should be considered as belonging to

the same phase. This fact is not accounted for when using a

simple thresholding approach where voxels are taken

individually regardless of the surrounding neighbors.

Consequently, a proper thresholding must consider not

only the gray intensity of the voxels but also their relative

positions. A salient feature of Gaussian noise in images is

its homogeneity in space distribution: If for instance the

50 % brightest voxels belonging to one phase are thres-

holded, the other 50 % remaining voxels have a high

probability to be only a few pixels away from the first

50 %. For the application of sand and bentonite mixture,

Fig. 3 highlights, on the upper left corner, the 50 % highest

gray levels of sand. The corresponding histogram fraction

is depicted in red. The procedure of growth consists of

taking into account the direct neighbors of the partially

thresholded voxels. Since the image is three-dimensional,

there are six neighbors next to each voxel considered. In

Fig. 3, the six neighbors of the partially thresholded voxels

are represented by the dark green fraction of the histogram,

which represents the first growth of the partial threshold.

These neighbors practically fill the other half of the sand

phase. As more neighbors are selected, the sand Gaussian

curve is completely filled, but there is then a probability for

other phase voxels to be mistakenly selected as belonging

to the sand phase.

In Fig. 5a, the partial thresholdings are performed

simultaneously on the three phases of the sample of sand–

bentonite mixture. Sand, bentonite and macrovoid

partial thresholds are, respectively, shown in red, green and

blue. The selection made by partial thresholding is

homogeneously distributed in each phase. Consequently,

each partial threshold will exert a ‘barrier’ against other

phases, preventing them from growing toward its direction.

An illustration of how fast this method fills the image is

given, for each voxel outside any partial threshold, by its

distance from the nearest voxel inside the partial threshold.

The proper distance to use for this purpose is the L1

Fig. 3 Histogram of the neighbors of the partially thresholded voxels

of the sand phase represented in the upper left corner: after successive

growing, the selected voxels fill the other side of the sand’s Gaussian

curve (color figure online)

Fig. 4 The use of L1 distance is justified by the property of region

growing

Fig. 5 a Partial thresholding of all three phases simultaneously: sand

(red), bentonite (green) and voids (blue) (the PVE—defined in Sect.

2.2—has been removed from the bentonite phase); b distance field

(with L1 norm) of the picture a representing the distance from the

nearest phase selected in the partial threshold; c cumulative histogram

of distances in (b) (color figure online)
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distance because region growing is made by successive

dilations of each voxel into its six neighbors. The L1 dis-

tance between two voxels of coordinates x1 and x2 is

defined by

kx1 � x2k ¼ jx1 � x2j þ jy1 � y2j þ jz1 � z2j ð1Þ

where xi = (xi, yi, zi) are the 3D coordinates of the voxels.

A voxel located at x2 having a L1 distance of d from the

nearest partial threshold located at x1 will undergo the

region growth after the dth iteration as shown in Fig. 4.

The nearer the voxel outside the partial threshold, the

sooner it will be filled by region growing. Figure 5b shows

this distance map. Most of the voxels (more than 99 %)

outside these partial thresholds are far of 3 voxels or less.

To further illustrate this, the cumulative graph shown in

Fig. 5c represents the proportion of voxels selected as a

function of the distance to the nearest partial threshold. The

proportion of voxels in the partial thresholds is around

40 %, the six neighbors (touched by the first iteration) are

more than 30 % summing it up to around 77 %. This figure

shows how the simultaneous region-growing method can

rapidly fill all the space after a few iterations.

The partial thresholding is used to define the seeds of

each phase before region growing. In the original meth-

odology presented in [1], seed positions are selected

interactively by the user to locate the seeds by hand. When

dealing with granular media, it is not possible to use an

interactive method because of the number of seeds

required. Automated seeding can be made through edge

detection [20] or by defining criteria using the neighbors of

each pixel [58]. In our case, taking seeds from a gray-level

threshold is simple and fast. It is also efficient because the

seeds are located homogeneously throughout the phases,

thanks to the Gaussian noise.

2.2 Partial volume effect

Another issue of phase recognition is the problem of PVE.

In Fig. 1b, gray levels located between the two Gaussian

curves are due to PVE as a consequence of the image

resolution. This effect appears when two phases in reality

are taken into account into one voxel. This voxel is then

representative of both phases showing an intermediate gray

level corresponding to a balanced average of the gray

levels of two distinct objects. The gray value of PVE

depends on the percentage of each phase in the voxel. This

effect is especially critical for images where three phases

have to be considered. Thresholding the image by selecting

the middle phase will also select voxels located at the

interface between the two others due to PVE. The PVE

filtering has the goal to remove the seeds wrongly attrib-

uted to the middle phase due to PVE. Available corrections

of PVE consist mainly of removing PVE with an image

filter as if it resembled to blur [6, 52]. In the present

approach, the problem of PVE is taken into account as a

complement to refine the seed definition made by partial

thresholding. Since PVE is located at the edges of different

phases, the definition of PVE in seeds is made through the

use of a variance filtering, but other filters can be used to

localize boundaries and possible PVE locations (Laplacian,

Sobel, Kirsch, Canny, see [7] for a survey).

3 Enhanced segmentation procedure

Based on the above-mentioned considerations, the full

procedure followed for the image segmentation of granular

media will now be detailed. This procedure is divided into

four steps: (1) partial thresholding, (2) PVE filtering, (3)

simultaneous phase growing which constitutes the main

step and finally (4) interface filling. This complete proce-

dure will be explained here with illustrations on the sand–

bentonite mixture, keeping in mind that it can be applied to

any three-phase granular medium.

3.1 Partial thresholding

The first step of this method consists in seeding the regions

where each phase is present. This can be done by thres-

holding the gray values where the Gaussian curves are not

overlapping. This preliminary thresholding is performed

based on the shape of the gray-level histogram. This partial

threshold is crucial for the efficiency of the method. The

percentage of selected pixels must be a good compromise.

Selecting too few voxels would not allow having a good

predictor of the phase organization, while selecting too

many could incorporate voxels from another phase. A good

compromise consists of selecting the partial thresholds

based on the peaks on the histogram of the image. The

selection is represented in Fig. 6 that represents the histo-

gram of the sand–bentonite mixture presented in Fig. 2.

The thresholds are initially selected as follows. The sand

threshold isolates the 50 % upper part of the sand Gaussian

curve, and the void threshold isolates the 50 % lower part

of the void Gaussian curve. For the bentonite, since this is

the intermediate phase, the thresholds are defined to select

25 % dark (left) and 25 % bright (right) pixels starting

from the corresponding peak. This is achieved by locating

where the Gaussian curve of this phase decreases to 80 %

of its peak.

Note that the amount of each phase considered in the

partial thresholding may be chosen as a function of the

noise present in the image, due to its impact on the amount

of overlapping on the Gaussian curves. If the overlapping

becomes larger, the procedure shown in Fig. 6 should be

replaced by a graphical localization of selected voxels from
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successive thresholds. Good partial (initial) thresholding is

essential to avoid wrong seeds. Excessive overlapping

decreases the chances of finding good thresholds and may

result in failure of the proposed method. In this case, a

preliminary noise treatment could be recommended in

order to obtain histograms with less Gaussian curve over-

lapping and easier definitions of partial thresholds. The

fractions of each phase selected here may appear relatively

arbitrary. However, they will be shown to yield good

results not only for the sand–bentonite mixture but also for

other materials (see Sect. 4). Note, however, that these

proportions can be adapted as a function of the tested

materials and the shape of the histogram.

Of course, by definition of the X-ray tomography, this

method of segmentation is only possible if density contrast

between the different phases is sufficient to avoid any

overlapping of the peaks of the histogram, which would

make partial thresholding impossible.

3.2 Middle-phase PVE filtering

Figure 7 exhibits an example of the middle-phase partial

threshold. For a three-phase material (as in the present

case), four groups of voxels emerge after partial threshold:

the dark phase (B1), the middle phase (B2), the bright phase

(B3) and the remaining non-selected voxels (R).

From the partial threshold step, the PVE must be

properly identified. It consists of voxels of the group B2,

which have specific properties. The PVE between the

lowest gray phase and the highest gray phase gives a gray

value in the middle range.

The difference between the gray value of the middle

phase and the gray value caused by PVE can be noticed

from the surrounding of corresponding voxels. The sur-

rounding of a voxel from the middle phase is composed of

voxels having close gray values. A spherical selection

around this voxel will result in the histogram in an

approximate Gaussian curve centered on the middle-phase

gray value (see Fig. 8 in green). Conversely, the sur-

rounding of a voxel from the PVE region mostly contains

voxels from both the clear and dark gray phases, which

results in the histogram of the voxels selected on the sphere

in two Gaussian curves representing dark and clear gray

voxels (see Fig. 8 in red). In this paper, an optimal radius of

Fig. 6 Procedure to choose the partial thresholds for each phase: lower

half for void phase, upper half for sand phase and from the first to the

third quartile for the bentonite phase (meaning taking the Gaussian curve

until it decreases to 80 % of the peak) (color figure online)

Fig. 7 a Standard deviation increases from clearer to darker.

b Standard deviation threshold is taken on the inflexion point of the

histogram of standard deviations (color figure online)

Fig. 8 Difference between real phase and PVE: In the histogram, real

bentonite (green) is unimodal, whereas PVE (red) is bimodal (void

and sand) (color figure online)
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2 voxels is used for this spherical selection. Choosing a

radius of 1 voxel (representing the 6 nearest neighbors)

would not give sufficient information for the variance cal-

culation, while a larger radius would not consider the direct

neighborhood of the voxel. The standard deviation of the

voxels surrounding each voxel in B2 can be used to separate

the real middle-phase voxels from PVE voxels as illustrated

in Fig. 7a. Those in B2 with high standard deviation are then

excluded by using a threshold filtering of the standard

deviation. Figure 7b shows a histogram of the standard

deviations for the bentonite phase. This is related to the

voxels in B2 having close gray values on their neighbor-

hoods. The standard deviation of voxels representing PVE

is higher, causing, on the histogram, a small increase in high

standard deviation values. The threshold is here taken at the

inflexion point on the histogram. In Fig. 9a, the standard

deviation filter of all the voxels belonging to B2 with a gray

level representing the standard deviation is represented (as

shown in Fig. 7a). The result of the standard deviation

threshold is shown in Fig. 9b with the PVE at the top and

the filtered middle phase at the bottom. After PVE filtering,

voxels considered as PVE are excluded from B2 and put into

R. As can be observed, this adaptation shows a good effi-

ciency by filtering most of the voxels located at the interface

between voids and sand particles.

3.3 Simultaneous phase growing

At the beginning of this step, each voxel of the image

belongs to one of the four following sets: B1, B2, B3 or

the remaining voxels R. The method consists of growing all

three phases into R, only in the directions where no other

phase is present. The growth stops when all the voxels

belonging to R have at least two distinct phases as neigh-

bors. At this stage, these remaining voxels represent the

interface between different phases. This interface is not

assigned to any phase yet because it can belong to one of

the neighbor phases without any criterion of choice yet.

Figure 10 depicts a Venn diagram of one iteration.

Neighbors of phases Bi are called Ni. The voxels selected

for growing are called Mi. The rest of the voxels are

neighbors of at least two phases and are put in a set called

I (as for interface). At the end, the selected sets Mi are

added to each phase. The new sets are called B0i. The sets

are defined as follows:

Mi ¼ Ni

-
[
i6¼j

Bj [ Nj

� �
ð2Þ

B0i ¼ Bi [Mi ð3Þ

I ¼
[

Ni

� �/ [
B0i

� �
ð4Þ

The sets Bi are then replaced by B0i and the growth con-

tinues until all voxels of the set R are either in one of the Bi

or in I.

Fig. 9 Thresholding standard deviation for PVE filtering: a the set of

B2 with a gray intensity corresponding to the standard deviation and

b separation of PVE and real B2 phase by a threshold on the standard

deviation (color figure online)

Fig. 10 Venn diagrams showing how growing is made: a the initial

set of phases; b the Ni set represents the neighbors of Bi (intersecting

each other); c the neighbors added (Mi) are only those who do not

intersect with other neighbors; d the set Mi is added to Bi and the loop

continues
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When phases are growing simultaneously, the only cri-

terion to control the growing is the interface set. This means

that the first phase that ‘reaches’ a new voxel incorporates

it, and the phases do not ‘see’ where they grow. Conse-

quently, there is a potential for overgrowing in some areas

of the image. This phenomenon may be limited by choosing

adequate partial thresholds at the beginning of the process:

The initial phases will prevent other phases from growing in

their neighborhood. However, it may happen that some

areas are not properly seeded for growing, which may result

in other phases growing in the area. Consequently, the basic

methodology has been improved as follows.

A first improvement is to avoid for each phase to grow

in extreme gray values. For each phase, a ‘tolerance

threshold’ is therefore chosen to exclude the gray values

where the phase is assumed not to exist. These exclusions

can be determined by setting the gray value from which the

Gaussian curve of each phase can be neglected.

The existence of PVE must also be considered. After

PVE filtering, some voxels (belonging to phases 1 or 3) of

phase 2 are not taken into account inside the partial

threshold. The tolerance threshold for the phases 1 and 3 has

to be large enough to consider these voxels. Consequently,

it is recommended to define the tolerance thresholds of

phases 1 and 3 as equal. Figure 11 summarizes the choice of

both the partial and tolerance thresholds in this procedure.

3.4 Interface filling

At the end of the phase growing step, some of the voxels

remain in I. The final step of the procedure is to affect the

voxels belonging to the interface to one of the phases. For

each voxel inside I, a sphere selects the surrounding voxels.

The most present phase inside the sphere will determine the

phase segmentation. If two phases are in equal amount in

the sphere, the considered voxels remain undecided. This

procedure is repeated, and usually after four repetitions, the

majority of the voxels have been filled. At the end, the

remaining voxels are defined with a simple threshold

method and the phases are attributed as a function of the

voxels’ gray level.

4 Results

As mentioned above, the methodology was developed to

trinarize tomographic images of sand–bentonite mixtures

treated with lime. However, to further illustrate the flexi-

bility of the method and to provide a quantitative valida-

tion, images of two other three-phase granular materials

have also been tested. The first is a sample of unsaturated

spherical glass beads, and the second is an unsaturated

sample of sand.

4.1 Sand–bentonite mixture

A sample of mixture of sand and bentonite was analyzed in

X-ray CT. The dry mixture was prepared by mixing 20 %

bentonite and 80 % sand in mass. Afterward, 1 % of lime

was added. The mixture was then mixed by hand until

reaching full homogeneity. Finally, 20 % of water content

is incorporated and again mixed by hand. It is then put at

20 �C for 24-h mellowing. The sand used is homometric

with sizes ranging from 0.15 to 0.35 mm in diameter and

D50 = 0.25 mm. This mixture is then put in a Plexiglas

hollow cylinder for X-ray CT. The inner size of the cylinder

is of 10 mm diameter and 10 mm height. The tomography

shows three main phases: macrovoids, lime–bentonite–

water mixture and sand particles. The volume percentage of

sand grains can be used to assess the efficiency of the

segmentation methodology. The theoretical mass of sand is

72 % of the total mass. Knowing the density of the sample

(q) = 1.972 g/cm3 and the specific density of sand itself

(qs = 2.648 g/cm3), the volume proportion of sand is equal

to 53.7 %. The resolution of the tomographic images is of

1,500 9 1,500 9 1,500 voxels, and the size of each voxel

is around 8 lm. Each voxel is characterized by a gray value

stored as a single floating-point number.

Tolerance thresholds have been chosen as follows:

Thresholds for the middle phase are determined as the

Fig. 11 Procedure for choosing tolerance thresholds from partial

thresholds: For phase 2, take the partial thresholds of phases 1 and 3;

for phases 1 and 3, take the middle of the partial thresholds of phase 2

(color figure online)
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partial thresholds of both first and third phases, and the

tolerance thresholds of the first and third phases are both

equal to the mean value of the second-phase partial

thresholds. These parameters are illustrated in Figure 11.

The main steps of the procedure are illustrated in Fig. 12.

The initial grayscale image (Fig. 12a) is initially seg-

mented with partial thresholds (Fig. 12b), the threshold

values being taken from histograms (as shown in Fig. 11).

Figure 12c is the PVE-filtered image, and the growing

evolution is shown in Fig. 12d, e. After phase growing

(Fig. 12e), the remaining interface fills 2 % of all the

voxels in the image, meaning that phases are already filling

most of the image. The final result (Fig. 12f) shows the

trinarized image of the interface filling. Counting the

number of voxels in each phase, the percentage is shown in

Table 1. Taking the fraction of voxels considered as sand,

this macroscopic value (51.1 %) is close to the volume

fraction computed based on the material preparation data

(53.7 %). Figure 13 shows the histogram of each phase

after trinarization.

4.2 Unsaturated glass beads

A sample of unsaturated spherical glass beads was cylin-

drically shaped (10 9 10 mm) with a total volume of

0.785 cm3. The grain size ranges from 0.665 to 0.735 mm

in diameter and D50 = 0.7 mm. The beads’ density is

about qs = 2.5 g/cm3. The sample was air-pluviated in a

polycarbonate cell. The dry mass of the sample was 1.28 g,

which leads to a porosity of 34.7 %. The sample was then

analyzed through X-ray CT, and the trinarization of the

extracted images is made with a degree of saturation of

16 %, which corresponds to a calculated volume of water

of 0.044 ml.

In these results, it has been noticed that the image suf-

fers from beam-hardening effect, making the image borders

brighter than the center. Since this trinarization method is

strongly based on the values of partial and tolerance

thresholds, it is not possible to make a trinarization of the

whole image. The trinarization shown for this sample is

therefore shown only for the core of the sample. The size of

the image is 400 9 400 9 400 voxels. The result is shown

in Fig. 16b next to the original image Fig. 16a. Notice that

the size of the circles representing the glass beads in the 2D

image does not represent the spherical grain size because it

shows a cut, which shows glass beads cut at different

depths.

The degree of saturation of the sample cannot be com-

pared with the global value because water formations

Fig. 12 Evolution of the algorithm on an example of sand–bentonite

mixture (color figure online)

Table 1 Final volume fraction of each phase

Phase Volume percentage

Sand 51.1 (theory: 53.7 %)

Bentonite 38.3

Macrovoids 10.5

Fig. 13 Histogram of the trinarized image with the extracted

Gaussian curves of each phase
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around the glass beads behave as clumps on different

locations. The evaluation of the degree of saturation

therefore cannot be representative because the segmenta-

tion was only performed at the core of the tomographic

image. The porosity, however, is homogeneous, and its

value (i.e., proportion of voxels labeled as void and water

phase) has been determined to be equal to 30.9 %. From a

visual point of view, the spherical shape of the beads is

very well reproduced by the trinarization procedure. The

histogram of the image and the histogram of each phase are

shown in Fig. 14. It is shown that the histogram of water

does not fill completely the whole-image histogram at its

peak. A small fraction of these pixels is considered as

either voids or glass beads due to PVE.

4.2.1 Analysis of sphericity

A methodology to analyze the sphericity of glass beads has

been considered for the validation of the proposed seg-

mentation procedure. The analysis of the sphericity indeed

gives more precise information about the local precision of

the image segmentation. The segmented image of the glass

beads was analyzed, and the beads have been separated from

each other using the Avizo software [63]. Glass beads

properly separated by the Avizo software have been
extracted and fitted with a spherical model giving the loca-

tion of the center and its radius according to the procedure

described in [17]. The deviation of the glass bead from the

sphere has been defined as the standard deviation of the

distance between all the voxels of its boundary and the

center of the sphere (as the equivalent to the correlation

coefficient for the linear regression model). An illustration

(in 2D, for the clarity of the image) is given in Fig. 15. The

statistical data show a standard deviation of 0.37vx, meaning

that for\1 % of the glass beads, boundary voxels are ±1vx

outside the perfect sphere. The histogram of the standard

Fig. 14 Histograms of each phase: voids, water and glass beads

surrounded by the whole-image histogram

Fig. 15 Calculation of the accuracy of the segmentation using the

deviation of the segmented glass beads with the perfectly fitted sphere

(color figure online)

Fig. 16 Result of the trinarization on unsaturated glass beads with

sphericity analysis: a the original image in gray level, b the

trinarization result (simultaneous region growing), c statistical region

merging and d simple threshold after bilateral filtering. SRM shows

higher deviation, but bilateral filter shows lower; however, both do

not take PVE filtering into account (color figure online)
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deviation distribution is shown in Fig. 16. The sphericity of

glass beads, defined as the ratio of the surface of the glass

bead to the surface of the sphere having the same volume as

the glass bead, was also calculated according to

W ¼ A

p1=3ð6VÞ2=3
ð5Þ

with W being the sphericity, A being the surface of the glass

bead and V being its volume. The sphericity of the perfect

sphere in this definition is equal to 1, and other geometries

have a sphericity higher than 1. In Fig. 17, the number of

segmented glass beads is represented as a function of their

sphericity. Some of the glass beads have not been properly

separated by the software Avizo, showing high sphericity

values in the histogram. Also, some beads were not per-

fectly spherical (but rather ovoidal), which could induce

natural sphericity larger than one, independently from the

segmentation methods. The mean sphericity (of correctly

separated glass beads) given by the segmentation is 1.08,

which shows that the local spherical shape of the beads is

properly detected by the segmentation procedure.

4.2.2 Comparison with other segmentation techniques

A comparison is given between the proposed trinarization

program and two other segmentation methods. The first is

the SRM [44] (Fig. 16c), and the second is a simple

threshold achieved after noise filtering from bilateral filter

(BF) [61] (Fig. 16d). Both segmentations have been per-

formed with the software Fiji [53]. The comparison shows

quite similar results between the different methods.

The SRM is performed with the parameter Q = 25 (high

enough) defining the number of regions accounted (taking

Q = 3 did not give satisfactory results). Afterward, a

manual regrouping is made to merge the 25 regions into 3

corresponding to the 3 phases. Results show no sign of

noise artifact, but the PVE is, however, still present.

The bilateral filtering is performed with a spatial radius

of 5 voxels and a range radius of 50 gray value units. Once

the image is filtered, the segmentation is made by gray-

level threshold. The threshold separating glass beads from

water and air is tuned, thanks to the a priori knowledge of

the porosity of the sample. The threshold separating water

and air is defined as the gray value that shows the minimum

value between the Gaussian curves of both phases. Results

in the image still show some noise artifact. This is due to

the Gaussian overlapping still present in the histogram.

When thresholding the water phase, PVE is also taken into

account and has not been removed.

Table 2 shows the values of the degree of saturation and

porosity for the three methods. The degree of saturation (Sr) is

equal to the ratio of the volume of water to the sum of the

volumes of water and air. The porosity is equal to the ratio of

the sum of the volume of water and air to the total volume. The

porosity (n) given by bilateral filtering is close to the real value

because the simple threshold was defined from the a priori

knowledge of the real value. The saturation is higher for the

two other methods because it does not take PVE into account.

In addition to the visual comparison, the analysis of the

deviation from sphericity was carried out in the SRM seg-

mentation and the bilateral filtering. The results are illustrated

in Fig. 16 (right column). The SRM segmentation shows a

deviation of 0.46, higher than the segmentation presented in

this paper. On the contrary, the bilateral filtering shows a

lower deviation of 0.27. This seems lower, but the threshold

separating glass beads from the water and air has been tuned

to correspond to the target porosity. It may explain that the

results are artificially better. Also, the sphericity criterion

only checks the segmentation efficiency on the glass beads,

which is in favor of this simple threshold because the limit

between Gaussian curves of solid and water is well identified.

Segmentation made by simple threshold could not segment so

properly air and water because the Gaussian curve of air and

water phases, although narrower than in the original image,

still overlaps. Finally, both SRM and BF segmentations do

not take PVE into account.

Table 2 Comparison of volume fractions with different methods

Reality

(%)

Simultaneous

region

growing (%)

Bilateral filter Statistical

region

merging

(%)

Sr – 60.7 64.5 % (min between

Gaussian curves of

air and water)

63.5

n 34.7 30.9 (34.3 %) (artificially

tuned)

36.5
Fig. 17 Histogram of the sphericity calculated for glass beads (color

figure online)
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4.3 Unsaturated sand

The sand used for this illustration is the Hostun sand. Its

chemical components contain a high amount of siliceous

material (SiO2 [ 98 %). The grain shape is ranging from

angular to subangular. The Hostun sand grain density is

qs = 2.65 g/cm3. The grain size varies from 0.1 to 1 mm in

diameter and D50 = 0.32 mm. The dry mass of the sample

was 1.24 g.

Hostun sand samples were water-pluviated, and suction

was controlled through the experiment, which started from

the saturated case, with a gradual increase in suction, until

ending up with the dry case [51]. The analyzed image

presents a Hostun sand sample under a suction of 2 kPa.

Figure 18 shows a cut of the original gray level in Fig. 18a

and the resulting trinarization in Fig. 18b. The histogram of

the phases (Fig. 19) gives satisfactory results. In this case,

the Gaussian curve of the Hostun sand phase is well sep-

arated from the other phases. Consequently, sand particles

have been selected by a simple threshold and are not

included in the region-growing process. This is made

possible through the use of identical partial and tolerance

thresholds for the sand phase. On the contrary, the gray

levels of air and water phases show an overlapping, which

occurs mainly for intermediate gray levels (between 100

and 150 on the x-axis of Fig. 19) where voids, water and

PVE zone coexist. In particular, PVE plays an important

role for those levels of gray because they must be redis-

tributed between the different phases. This explains the

apparent continuity in gray level between water and sand

particles. The presence of sand phase in gray levels lower

than tolerance threshold is due to the interface filling. After

the region-growing step, some voxels are located in the

group I. They are not labeled yet. They can still be selected

as sand phase during the interface filling step. Finally, the

curves of air and water phases show a successful seg-

mentation of their overlapping in the key region of inter-

mediate gray levels.

5 Discussion

5.1 Parameter tuning

The proposed methodology involves some parameters

potentially affecting its efficiency. The influence of these

Fig. 20 Choosing as initial partial threshold 30, 50 or 70 % of the whole

image does not give a significant change in the results (color figure online)
Fig. 18 Result of the trinarization on unsaturated sand: a the original

image in gray level and b the trinarization result (color figure online)

Fig. 19 Histograms of each phase: voids, water and Hostun sand

surrounded by the whole-image histogram
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manual parameters is now briefly discussed based on the

sand–bentonite mixture sample. In the procedure, four

manual parameters are used:

• 1 parameter for the partial threshold of each phase,

• 1 parameter for the standard deviation threshold

regarding the middle-phase PVE filtering.

The determination of the first three parameters was

already discussed at the end of Sect. 3.1, where a fraction of

50 % of each phase was chosen as partial thresholds. To

further assess the effect of this choice, Fig. 20 demonstrates

that a change (even important) in the partial threshold

selection does not give any noticeable influence on the

obtained trinarized result, excepted in the image with 70 %

of partial threshold where small inclusions of phases can,

however, be seen as a result of Gaussian curve overlapping.

If a too wide partial threshold is taken, the risk of consid-

ering other phases within this partial threshold is increased.

The results in Fig. 20 were all obtained with a standard

deviation threshold on the PVE of 25, with the images in

Fig. 21 From a–d: thresholding the standard deviation (STD) with lower and lower values. The volume fraction in the results highly depends on

the value of the threshold (color figure online)

Acta Geotechnica

123



gray level with values ranging from 0 to 255. The effect of

variation of this PVE threshold on the standard deviation is

illustrated in Fig. 21. Using a lower threshold will lower

the amount of seeded middle phase. This results in a lower

amount of phase 2, when the threshold decreases.

A too high threshold (see Fig. 21b) will not remove PVE

completely. A too low threshold (see Fig. 21d) allows other

phases to grow into the middle phase. The reason for the

PVE filtering being difficult to deal with is that the values

of the PVE standard deviations are overlapping with the

real middle-phase standard deviations. The best criterion is

thus to select low values of standard deviation to remove

most of the PVE. This will also remove a part of the middle

phase, but it will be recovered during the region-growing

step. The volume fraction of the middle-phase partial

threshold will be significantly lower than the volume

fraction of the other partial thresholds. Consequently, a

partial solution is to account for a more important volume

fraction of the middle phase during partial thresholding and

remove its excess in the PVE filtering.

5.2 Filtering before segmentation

A comparison is now performed between the segmentation

of the original image of sand and bentonite mixture and the

segmentation of the same image with a BF previously

applied. The filter has been applied by the software Fiji

with the parameters with a spatial radius of 3 and a range

radius of 50. The results (Fig. 22) show a very light

positive effect of the filter that allows removing some

artifacts in the segmentation after filtering (see green cir-

cles in Fig. 22). In particular, the limit between phases is

slightly smoother when it has been preliminary treated with

a filter. However, the filter may have a negative influence

on the segmentation in the point contacts between sand

particles. The smoothing induced by the filter increases the

interface curvature and so enlarges artificially the contact

between particles (see purple circles in Fig. 22).

6 Conclusions

In this contribution, a new segmentation methodology is

presented, allowing us to recognize three-phase material in

a 3D X-ray tomographic image. The method uses simul-

taneous region growing as an improvement in classical

region-growing principles. It consists of using the region-

growing method simultaneously for the three phases. Each

phase stops expanding in directions where other phases are

already present. Consequently, the region growing of each

phase is controlled spatially by other phases’ region

growing. This process, however, requires two pretreat-

ments before being initiated. The seeding of each of the

three phases from which the growing will occur is first

obtained from partial thresholding. Then, the removal of

PVE from the seeding of the middle phase is performed.

The developed method was shown to yield very good

results, provided that the three phases have a good density

contrast, allowing the preliminary identification of three

distinct phases in the gray-level image. It was demonstrated

that the arbitrary choice of the proportion of seeding does

not have a significant influence on the result as long as

partial thresholding is achieved to select the same propor-

tion of voxels with respect to the total number of voxels in

each phase. For example, a seeding of 50 % should con-

sider selecting 50 % of voids, 50 % of bentonite and 50 %

of sand as partial thresholds (after PVE filtering). This

method is shown to converge quickly after a few iterations

(corresponding to successive growing steps). Also, the

results match with reality from a qualitative and quantita-

tive point of view: The volume fraction of sand in the

sand–bentonite mixture calculated with the region-growing

method is close to the experimental macroscopic value.

Comparison of this new segmentation method with two

other existing and freely available segmentation methods

shows that the three techniques provide relatively similar

results from a qualitative and quantitative point of view.

Nevertheless, the main advantage of this new method is

that it can manage to provide segmentation for three-phase

images (that can be, as a perspective, extended to the

multiphase problem) and treat the issue of PVE in efficient

way fully integrated in the methodology.

Fig. 22 Comparison between segmentation of an original sand–benton-

ite mixture image and the same image filtered with a bilateral filter. Green

circles on the original image show that sharp edges are preserved and in

the filtered image that some artifacts are removed (color figure online)
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In some situations, when the low signal-to-noise ratio

alters the identification of the peak of Gaussian curve

corresponding to each phase, it can be of interest to apply a

filter as a pretreatment of the image that could allow to

improve the initial seeding of each phase. So, this filter

could be a good complement that may improve the effi-

ciency of the method. However, it should be noticed that

filtering can affect the geometry such as blunting sharp

edges and increases contact surface between particles.

As a perspective, the method can be extended to more

than three phases. Adding more phases would imply the

use of the PVE filtering on more than one middle phase, the

rest of the procedure remaining unchanged.

Also, the idea could be adapted with other methods of

image segmentation than region growing such as level-set-

based methods [37].
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