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This paper presents the theoretical developments and the numerical applications of a

time-dependent damage law. This law is deduced from considerations at the micro-

scale where non-planar growth of micro-cracks, following a subcritical propagation

criterion, is assumed. The orientation of the crack growth is governed by the maximum

energy release rate at the crack tips and the introduction of an equivalent straight crack.

The passage from micro-scale to macro-scale is done through an asymptotic

homogenization approach. The model is built in two steps. First, the effective

coefficients are calculated at the micro-scale in finite periodical cells, with respect to

the micro-cracks length and their orientation. Then, a subcritical damage law is

developed in order to establish the evolution of damage. This damage law is obtained as

a differential equation depending on the microscopic stress intensity factors, which are

a priori calculated for different crack lengths and orientations. The developed model

enables to reproduce not only the classical short-term stress–strain response of

materials (in tension and compression) but also the long-term behavior encountering

relaxation and creep effects. Numerical simulations show the ability of the developed

model to reproduce this time-dependent damage response of materials.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In many engineering applications, the damage evolution of materials must be accurately considered. The modeling of
the nucleation and the growth of micro-cracks in solids due to various mechanical loadings is of particular interest in order
to assess the stress–strain behavior of damaged materials. As long as micro-cracks propagate, the overall stiffness of
materials may drastically decrease and provoke failure when coalescence of adjacent micro-cracks occurs.

At micro-scale, materials contain various sources of heterogeneities such as cracks, pores, inclusions or grain boundaries. In
particular, the presence of such flaws strongly affects the macroscopic mechanical behavior of materials by serving as stress
concentrators and leading to the formation of micro-cracks. In many materials, the micro-crack distribution may be locally
approximated by a periodic one. This periodic structure is characterized by an internal length, that is the distance between two
adjacent micro-cracks. Since the consideration of a large number of cracks in the material is difficult, in the construction of a
constitutive model a more efficient method is to determine a mechanically equivalent homogeneous material at the macro-
scale, having relatively similar properties than the heterogeneous medium. Within this framework, the macroscopic description
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Fig. 1. (a) Fissured medium with locally periodic micro-structure. (b) Unit cell with rescaled crack of length d. 2a: length of the micro-crack, e: distance

between two adjacent micro-cracks (internal length), y: orientation of the micro-crack with respect to the y1-axis.
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can be obtained by phenomenological approach, directly at the macroscopic scale through continuum damage models (e.g.
Dragon and Mroz, 1979; Chaboche, 1992; Voyiadjis and Park, 1999; Carol et al., 2001) or by homogenization procedures
(Andrieux et al., 1986; Lene, 1986; Nemat-Nasser and Horii, 1993; Dascalu et al., 2008; Zhu et al., 2008; Dartois et al., 2009). An
approach by homogenization is used in the present work (Fig. 1a), the behavior of the macroscopic structure being deduced
from the properties of the material at the micro-scale. The stiffness of the solid is governed by homogenized coefficients that
depend on the elastic properties of the solid matrix, the lengths and the orientations of micro-cracks (Wang et al., 2000; Wang,
2005; Kachanov, 2007). The orientation of micro-cracks induces the anisotropy in the global response of the material.

The evolution of damage in many materials, such as glasses, rocks, ceramics or ceramic composites, is time-dependent.
An important source of time-dependency is the subcritical propagation of micro-cracks. The classical criteria of crack
propagation, such as the Griffith (1921) criterion, ignore the time effect on the fracture behavior. On the contrary, a
subcritical criterion, that is a criterion considering crack propagation for energy lower than the critical limit of fracture,
takes into account time effects (Anderson and Grew, 1977; Atkinson and Meredith, 1987). At the micro-scale, the tensile
failure due to the subcritical propagation of cracks may be the dominant effect of creep observed at the macro-scale, even
under macroscopically compressive stress fields. The rate of crack propagation may be expressed with respect to stress
intensity factor at the crack tips, under tensile mode, with a power law (Charles, 1958) or an exponential law (Wiederhorn
and Bolz, 1970). The first one will be used in this study.

In the present work, the stress–strain evolution is governed by a subcritical damage law that accounts for the non-
planar growth of micro-cracks. We consider that kinking of micro-cracks occurs in the direction that maximizes the energy
release rate. The damage evolution of the material is related to the formation of open tension micro-cracks which can be
produced by both globally tensile or compressive stress fields. At each time step, the propagation of the open tension
micro-crack produces an out-of-plane extension of the crack. Then, the obtained kinked crack is replaced, at each time step,
by an equivalent crack. This model is an efficient alternative to the well-established models of ‘‘wing’’ crack propagations
(Nemat-Nasser and Horii, 1982; Horii and Nemat-Nasser, 1985; Lauterbach and Gross, 1998; Paliwal and Ramesh, 2008;
Schulson, 2001; Huang and Subhash, 2003). A different view has been taken by Bhattacharya et al. (1998) who proposed an
energy-based model of compressive splitting in heterogeneous brittle solids. A stochastic damage model, based on macro-
crack–micro-crack interaction, was proposed by Lua et al. (1992a, 1992b) in order to quantify the inherent statistical
distribution of the fracture toughness of multi-phase brittle materials. Assuming also non-planar growth of cracks, Liu et al.
(1996) solved fatigue crack reliability problems by considering the curvilinear crack propagation as a stochastic process
governed in length and in orientation by statistical laws.

Also, the non-planar crack propagation is affected by the interaction between micro-cracks. Several approximate
numerical methods have been developed to deal with interacting micro-cracks such as the complex potentials
(Muskhelishvili, 1953), the boundary integral equation approach (Hu and Chandra, 1993; Dong and Lee, 2005) or the
method of pseudo-tractions (Horii and Nemat-Nasser, 1985; Karihaloo and Wang, 1997). However, it is generally
unrealistic to account for the mutual effects of each crack between each others by superposing the interaction of the stress
fields. In that context, the asymptotic homogenization (Sanchez-Palencia, 1980; Leguillon and Sanchez-Palencia, 1982)
provides an efficient mathematical framework to overcome such a limitation. The homogenized coefficients are calculated
on a unit cell with a single crack and periodic boundary conditions. So, the interaction between adjacent micro-cracks is
implicitly considered by the assumption of local periodicity of the micro-structure.

Using a micromechanics-based approach, the model characterizes the nucleation and the propagation of damage.
A general two-scale approach for damage, including subcritical evolution as a particular case, was described in Dascalu
(2009), generalizing previous works (Dascalu and Bilbie, 2007; Dascalu et al., 2008) on brittle damage. Here we develop the
subcritical damage model and we extend the assumption of planar propagation toward the consideration of crack rotation.
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The paper is organized as follows. First, the mathematical formulation of the model, including the macroscopic
equilibrium equations, the asymptotic homogenization procedure and the subcritical propagation of cracks, is presented.
The next section addresses the calculation of the stress intensity factors that are needed to quantify the subcritical growth
of cracks at the tips. Then, the procedure to replace the kinked crack by an equivalent straight crack is explained. Finally,
the model is validated by means of numerical examples, emphasizing the time-dependent response of materials.

2. Mathematical formulation

Consider a two-dimensional isotropic elastic medium containing a locally periodic distribution of micro-cracks. Each crack is
straight with a length 2a and an orientation of angle y with respect to the x1 direction (abscissa of the referential system
considered at the macro-scale). The length 2a and the orientation y are assumed to vary smoothly almost everywhere in the
elastic body. The damage variable d, varying between 0 (for virgin material) and 1=½maxðjcosðyÞj; jsinðyÞjÞ� (for cell completely
crossed by the micro-crack), is the ratio between the crack length 2a and the distance between two micro-cracks e:

d¼
2a

e ð1Þ

The length e also represents the size of the periodicity cell (Fig. 1).

2.1. Equilibrium equations

In the solid part Bs ¼ B\C, where B is the whole body and C the union of all the micro-cracks in B, the momentum
equilibrium is

@seij
@xj
¼ 0 in Bs ð2Þ

and the linear elasticity constitutive relation is

seij ¼ aijklexklðu
eÞ ð3Þ

where aijkl is the elasticity tensor. seij is the stress field and ue the displacement field from which the strain tensor is
deduced in the small deformation hypothesis

exijðu
eÞ ¼

1

2

@uei
@xj
þ
@uej
@xi

 !
ð4Þ

On the crack faces, traction free opening or frictionless contact conditions are assumed. These two alternatives are
respectively expressed by the two sets of formulae

reN¼ 0, ½ue � N�40 ð5Þ

½reN� ¼ 0, N � reNo0, T � reN¼ 0, ½ue � N� ¼ 0 ð6Þ

where N is the unit normal vector, T is a unit tangent vector to the crack and ½�� the jump across the crack. For each micro-
crack, we assume that one of the two states (5) and (6) holds in all the crack points. The fact that each micro-crack is
completely open or closed is a reasonable assumption for small crack lengths. The way in which the switch from one state
to the other is controlled will be described later, in terms of the homogenized solution (Eq. (17)).

2.2. Asymptotic homogenization

The locally periodic micro-structure is constructed from a unit cell Y which includes the set of points in the orthogonal
axis system (y1, y2) centered in the middle of the crack, such that y1 2 ½�0:5,0:5� and y2 2 ½�0:5,0:5�. The crack is rotated
with an angle y with respect to y1-axis. A second axis system ðyu1,yu2Þ, rotated with an angle y with respect to (y1, y2), is
attached to the crack. Then this unit cell is rescaled by the parameter e so that the period of the material is eY (Fig. 1b). We
assume that the micro-structural length e is small enough with respect to the characteristic dimension of the solid body, so
that to distinguish between microscopic and macroscopic variations. Within this two-scale framework, the two distinct
scales are represented by the variable x, which is referred to as macroscopic variable and the variable y¼ x=e, referred to as
microscopic variable (Sanchez-Palencia, 1980; Leguillon and Sanchez-Palencia, 1982).

The unit cell Y contains the crack CY and Ys ¼ Y\CY is the solid part. Following the method of asymptotic
homogenization (e.g. Benssousan et al., 1978; Sanchez-Palencia, 1980), we look for expansions of ue and re in the form

ueðx,tÞ ¼ uð0Þðx,y,tÞþeuð1Þðx,y,tÞþe2uð2Þðx,y,tÞþ � � � ð7Þ

reðx,tÞ ¼
1

e rð�1Þðx,y,tÞþrð0Þðx,y,tÞþerð1Þðx,y,tÞþ � � � ð8Þ

where uðiÞðx,y,tÞ,rðiÞðx,y,tÞ,x 2 Bs,y 2 Y are smooth functions and Y-periodic in y.
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Based on the previous works (e.g. Leguillon and Sanchez-Palencia, 1982; Dascalu et al., 2008), we can show that the
substitution of Eqs. (7) and (8) in the set of expressions (2)–(6), gives the following relationships for different order of e. At
zero order of e

@

@yj
ðaijkleyklðu

ð0ÞÞÞ ¼ 0 in Ys ð9Þ

ðaijkleyklðu
ð0ÞÞÞNj ¼ 0 on CY 7

ð10Þ

where eykl is the microscopic strain, calculated with respect to y variables.
Based on the assumption of separation of scales, the variables x and y are considered as independent. The coefficients

aijkl being assumed constant in the unit cell, Eq. (9) shows that the displacement u(0)=u(0)(x,t) does not depend on y, being
the true macroscopic displacement.

The problem for the first order of e is obtained as

@

@yj
ðaijkleyklðu

ð1ÞÞÞ ¼ 0 in Ys ð11Þ

aijkleyklðu
ð1ÞÞNj ¼�aijklexklðu

ð0ÞÞNj on CY 7
ð12Þ

with periodicity conditions on the cell boundary. The first-order corrector u(1) plays the role of microscopic displacement
and will contribute to the effective coefficients, as shown below.

For the overall response, we deduce

@

@xj
Sð0Þij ¼ 0 ð13Þ

where

Sð0Þij ¼ Cijklexklðu
ð0ÞÞ ð14Þ

C 7
ijklðd,yÞ ¼

1

jY j

Z
Ys

ðaijklþaijmneymnðx
kl
7 ÞÞdy ð15Þ

are the macroscopic stress and the homogenized coefficients, respectively. Eq. (13) is the homogenized equation of
equilibrium. In each regime (opening or closure), we can prove that the microscopic correction u(1) is

uð1Þ7 ¼ npq
7 expqðu

ð0ÞÞ ð16Þ

where npq
7 are elementary solutions of (11)–(12) for particular expqðuð0ÞÞ (Leguillon and Sanchez-Palencia, 1982; Dascalu

et al., 2008). The distinction 7 corresponds to opening (+) or contact (�) conditions of the crack lips. The difference
between these microscopic states of contact and opening are obtained from the orientation of the force vector, deduced
from the force-type source term of Eq. (12), with respect to crack line. In the space of macroscopic deformations, these two
states induce a separation of the space R of deformations ex11, ex12, ex22 into two subregions R7 defined by

R7
¼ fexj Niaijklexklðu

ð0ÞÞNj_0g ð17Þ

The homogenized coefficients Cijkl depend on the state of damage of the material (i.e. d and y) and on the mechanical
properties of the solid matrix. For an isotropic matrix, characterized by the Young modulus E and the Poisson ratio n (for
simulations we consider E=2 GPa and n¼ 0:3), the coefficients can be initially computed for a large number of d% 2 ½0,1�
(d% ¼ d=maxðjcosðyÞj; jsinðyÞjÞ being the normalized damage variable) and y 2 ½03,1803

� and for both states of tension or
compression, obtaining in this way, after interpolation, polynomial expressions of Cijklðd,yÞ. This is done using the solution
of the unit cell problem (11)–(12) (Dascalu et al., 2008). Then, the homogenized coefficients are calculated from the
obtained strain field eymnðn

kl
Þ through the integral (15).

The presence of micro-cracks induces anisotropy in the effective behavior. It can be shown that the usual symmetries
hold for the homogenized coefficients: Cijkl = Cjikl = Cijlk = Cjilk. So that, the following different coefficients have to be
determined in each regime: C1111, C2222, C1122, C1212, C1112, C2212. For different values of d and y, each of the 12 coefficients
(six in tensile mode and six in compressive mode) is obtained by linear interpolation between the polynomial curves
presented in Figs. 2 and 3.

2.3. Subcritical growth of micro-cracks

The evolution of the micro-crack length during propagation is described through a subcritical criterion adapted from
the Charles’ (1958) law as used by many authors (Miura et al., 2003; Main, 2000; Kemeny, 2005, among others)

dl

dt
¼ v0

K%

I

K0

� �n

ð18Þ
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Fig. 2. Evolution of the homogenized coefficients with respect to the normalized damage variable d and the crack orientation y: opening conditions of the

crack lips (R+ domain).
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where v0 is a referential velocity of crack propagation and n is the subcritical growth coefficient. K%

I is the stress intensity
factor for the tensile mode of rupture (Mode I). This criterion is used to describe the propagation of the kinked crack (Fig. 4)
and the corresponding stress intensity factor is indicated by the star upper index. K0 is a particular stress intensity factor
for which the velocity of the crack propagation is equal to v0. K0, v0 and n are material parameters. K%

I depends on the stress
state, the internal length e and the geometry of the micro-cracks. The determination of this stress intensity factor is
explained in the next section.

The crack is assumed to propagate in the direction that maximizes the energy release rate. This criterion produces a
kinking angle between the existing crack and the incrementally propagated crack (Fig. 4). This kinking angle can be
expressed with the following function (Schütte and Bruhns, 2002):

fmax ¼ sgnðKIIÞ½0:70966l3
�0:097725sin2

ð3:9174lÞ�13:1588tanhð0:15199lÞ� ð19Þ

where sgn is the signum function and l is a mode mixity factor that combines the stress intensity factors of mode I, KI, and
mode II, KII, of the straight crack:

l¼
jKIIj

KIþjKIIj
ð20Þ

So, at the level of the crack tips, the propagation of the kinked crack is governed in length and orientation by Eqs. (18)
and (19), respectively. The question of how to determine the stress intensity factors KI and KII of the straight micro-crack
and K%

I of the kinked crack is addressed in the next section.
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3. Stress intensity factors

3.1. Straight cracks

Specific techniques are generally required for the determination of the stress intensity factors KI and KII. Analytical
expressions may be obtained for standard cases, such as a finite crack or a one-dimensional array of finite cracks in an
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infinite body. Also, some practical problems have been calculated in the past and tabulated in stress intensity factors
handbooks (Murakami and Aoki, 1987; Tada et al., 2000). For a single mode of crack loading (exclusively mode I or
exclusively mode II), the non-null stress intensity factor can be deduced from the energy release rate at the crack tips Ge
(in a plane strain configuration):

Ge ¼ 1�n2

E
½K2

I þK2
II � ð21Þ

under the condition that KI or KII is null.
Based on micro-mechanical energy balance on a periodicity cell with evolving micro-cracks and assuming a straight

micro-crack trajectory and a traction-free opening (Eq. (5)) or frictionless contact of the crack lips (Eq. (6)), Dascalu et al.
(2008) deduced the following energy balance equation entirely expressed in terms of the homogenized solution u(0), that
enables to determine the energy release rate Ge for the locally periodic structure:

dd

dt

1

2

@Cijklðd,yÞ
@d

exklðu
ð0ÞÞexijðu

ð0ÞÞþ
Ge
e

� �
¼ 0 ð22Þ

The first term in the parenthesis is the negative of the damage energy release rate. For evolving damage, the previous
relation shows that the micro-structural length e makes the link between the surface energy dissipated during micro-crack
propagation and damage energy dissipated per unit volume.

This relation has been employed in Dascalu et al. (2010) to obtain a two-scale time-dependent damage model for
straight propagation of micro-cracks. However, if mixed modes of crack loading are considered, individual stress intensity
factor modes cannot be determined from the energy-release rate and a different technique must be used. Such techniques
generally include local computations at the crack tips or use of path-independent integrals that can be computed in terms
of far-field quantities. The first method uses information from a small distance away from the crack tip where the stress
field is singular and special finite elements are needed for the computation of KI and KII. On the contrary, using far-field
quantities is very convenient since it can be carried out within a standard finite element code. In the following, we adopt a
procedure based on path-independent integrals J, L, M and [H]:

Jjðu
ð1ÞÞ ¼

Z
sy

bijðu
ð1ÞÞni dsy ð23Þ

Lðuð1ÞÞ ¼

Z
sy

e3kjðykbijðu
ð1ÞÞþuð1Þk aijkleyklðu

ð1ÞÞÞni dsy ð24Þ

Mðuð1ÞÞ ¼
Z

sy

yjbijðu
ð1ÞÞni dsy ð25Þ

½Hðuð1ÞÞ� ¼
Z þd=2

�d=2
ðWðuð1ÞÞðyu1,0þ Þ�Wðuð1ÞÞðyu1,0�ÞÞyu1 dyu1 ð26Þ

where e3kj is the permutation tensor, bij(u(1)) is the Eshelby stress tensor:

bijðu
ð1ÞÞ ¼

1

2
amnkleyklðu

ð1ÞÞeymnðu
ð1ÞÞdij�aikmneymnðu

ð1ÞÞ
@uð1Þk

@yj
ð27Þ

while yi, ui
(1) and ni are the i-component of the position vector, the displacement vector and the unit normal vector

computed in the periodic unit cell, respectively. Here yui is the abscissa of the coordinate system linked to the crack in the
unit cell (Fig. 1). The procedure proposed by Kienzler and Herrmann (2000), described in Appendix, has been followed. It
leads to the expression of stress intensity factors with respect to the L-, M- and [H]-integrals:

KIðu
eÞ ¼

ffiffiffi
e
p

KIðu
ð1ÞÞ ¼

ffiffiffi
e
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

dð1�n2Þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðuð1ÞÞ�ðLðuð1ÞÞ�½Hðuð1ÞÞ�Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðuð1ÞÞ�ðLðuð1ÞÞþ½Hðuð1ÞÞ�Þ

q� �
ð28Þ

KIIðu
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These intensity factors are expressed only with u(1) as a consequence of the fact that, in the asymptotic development, it is
only the microscopic displacement u(1) that is sensitive to the presence of the micro-cracks.

The coefficients KI and KII can be computed for a large number of lengths d and orientations y of cracks and for the three
modes of deformations (x11

7 , x22
7 and x12

7 ) in both states of opening (+) or contact (�) of the crack lips. In this way, we
obtain by interpolation the polynomial expressions of KIðd,yÞ and KIIðd,yÞ. In the computations, we used the same material
parameters as before. The results of the evolution of stress intensity factors as a function of normalized damage variable d%

for different orientations y are presented in Figs. 5 and 6. In the second case, for cracks in contact, KI=0 for any loading
mode of the unit cell. The computations have been performed with the finite element code COMSOL AB (2006).
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In the formulae (28)–(29), the microscopic displacement u(1) can be expressed with the macroscopic deformation
exðuð0ÞÞ, by using the relation (16). For any macroscopic field [ex11 ex22 ex12], the resulting stress intensity factors are
determined by the superposition of the stress intensity factors of the elementary deformation modes (x11

7 , x22
7 , x12

7 ), as a
consequence of (16):

KI,IIðu
ð1ÞÞ ¼ 7ðex11KI,IIðx

11
7 Þþex22KI,IIðx

22
7 Þþ2ex12KI,IIðx

12
7 ÞÞ in R7

ð30Þ

The distinction between stress intensity factors for opening and closure of micro-cracks is given by the orientation of the
force-type vector in the right member of Eq. (12) with respect to crack line (see relation (17)). The stress intensity factors
are then obtained by the relations (53) and (54) in the appendix ðKI,IIðueÞ ¼

ffiffiffi
e
p

KI,IIðuð1ÞÞÞ.
The procedure described previously allows us to compute the stress intensity factors for straight micro-cracks, as

functions of the macroscopic deformations. In what follows, we will express the intensity factors for kinks with those for
straight cracks and we will replace the kinked cracks by equivalent straight cracks.

3.2. Kinked cracks

In order to apply the subcritical criterion for the growth of micro-crack (Eq. (18)), we consider the direction of crack
propagation that maximize the energy release rate. This assumption implies that the crack does not propagate in its own
plane but produces a kinking angle as expressed by Eq. (19). Therefore, the mode I stress intensity factor included in the
subcritical criterion is not the stress intensity factor of the straight crack KI but K%

I corresponding to the kinked crack. For
short time intervals, the length of the crack propagation dl can be assumed small regarding to the crack length ðdl5aÞ.
Under such a condition, the relationship proposed by Leblond (1999) can be used to express K%

a with respect to Kb

K%

a ¼ Fa,bðfmaxÞKb ð31Þ
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where a and b take the values I and II and FabðfmaxÞ is a 2�2 matrix depending on the kinking angle fmax. The main
advantage of this expression is that it is universal, with respect to the geometry and the loading. The geometric and
mechanical parameters are directly included in Kb. The analytical expression of the functions FI,I, FI,II, FII,I and FII,II are given
with respect to the kinking angle through polynomials of order 20 by Leblond (1999).

Many authors (e.g. Nemat-Nasser and Horii, 1982) have shown that the determination of the kinking angle through the
maximum energy release rate gives essentially the same results than the condition of local symmetry which requires that
the mode II stress intensity factor vanishes at the tip of the kinked extension. Therefore, we can neglect the mode II
intensity factor ðK%

II ¼ 0Þ.
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4. Equivalent crack

The determination of the direction (fmax, Eq. (19)) and the length (dl, Eq. (18)) of the out-of-plane crack extension is not
enough to compute the whole trajectory of the crack tips. Indeed, after the first increments of computation, the initial straight
crack may kink. At this stage, the above theory using the Ka of the smooth crack is no more valid because the obtained crack is
now a kinked crack and the subsequent crack extension would start from that kinked crack. There are several possible ways to
replace the kinked crack by an equivalent straight crack. For instance, Schütte and Bruhns (2002) proposed to find, at each time
step, a straight crack that is thermodynamically equivalent to the kinked crack. Baud and Reuschlé (1997) introduce an
equivalent straight crack by joining the tips of the real branched crack. In this paper, we adopt this last solution for the
construction of the equivalent crack, which is obtained by joining the tips of the real branched crack (Fig. 7).

The equivalent crack is determined after each step of calculation by means of geometrical relationships, as follows for
the crack orientation:

tanðdyÞ ¼
sinðfmaxÞ

an

dl
þcosðfmaxÞ

ð32Þ

and for the updated crack length:

anþ1 ¼
sinðfmaxÞ

sinðdyÞ
dl ð33Þ

where an and an + 1 are the length of the straight crack at steps n and n+1 (Fig. 7).
Assuming small time increments, equating dyCtanðdyÞCsinðdyÞ that result from Eqs. (32) and (33) and using the

up-scaling relation (1), the two last expressions can be transformed, at the limit, into differential equations:

dd

dt
¼

2

e
cosðfmaxÞ

dl

dt
ð34Þ

dy
dt
¼

2

ed sinðfmaxÞ
dl

dt
ð35Þ

These last two equations show that the geometry of the equivalent micro-crack, in terms of length and orientation,
depends on the propagation rate dl/dt and the orientation fmax of the kinked crack. These quantities are computed with
respect to the stress intensity factor KI and KII of the equivalent straight micro-cracks, as shown previously. They depend on
the macroscopic damage variables d and y and on the macroscopic deformation ex. This establishes the homogenized
damage model, based on mixed micro-crack propagation, in an implicit form. We remark the presence of the micro-
structural length parameter e in the damage equations (34) and (35).

5. Numerical examples

5.1. Computation algorithm

In order to study the local macroscopic response, we analyze the problem by the governing equations (18) and (19) at
crack tip level, the differential equations (34) and (35) linking the micro-crack level to the macroscopic one and the
homogenized law (14) at macroscopic level. The input of this system of equations will be the macroscopic stress or strain,
depending on the physical problem to be studied.

Due to the dependency of the macroscopic elastic modulus Cijkl on the damage variable d and on the crack orientation y,
and due to the non-linear evolution of the stress intensity factors with the state of strain, the problem is highly non-linear.
For each time step, the problem is solved by an iterative procedure as follows:
1.
 Initialization (n=1):
d0

t = dt�1 and yt
0 ¼ yt�1 (if t=0, d0=d0 and y0 ¼ y0

Þ.
2an

θn+1

dl

dl

2an+1 θn

dθ

Fig. 7. The kinked crack (solid line) with its equivalent replacement crack (dashed line). In this figure, the crack rotation dy is negative.
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2.
Tab
Ma

E

2

Determination of the homogenized coefficient:
Cijkl ¼ Cijklðd

t
n�1,yt

n�1Þ.

3.
 Prediction of the macroscopic strain:

exij,n�1 ¼ C�1
ijkl ðd

t
n�1,yt

n�1ÞS
ð0Þ
ij .
4.
 Determination of the stress intensity factors:
KI,II ¼ KI,IIðCijklðd

t
n�1,yt

n�1ÞÞ;
K%

I,II ¼ K%

I,IIðKI,IIÞ.

5.
 Computation of the propagation rate:

dl=dt¼ dl=dtðK%

I,IIÞ.

6.
 Update of the damage variables:

dd=dt¼ dd=dtðdl,eÞ; dt
n ¼ dt�1þDtdd=dt;

dy=dt¼ dy=dtðd,dl,eÞ; yt
n ¼ yt�1

þDtdy=dt.

7.
 Update of the homogenized coefficient:

Cijkl ¼ Cijklðd
t
n,yt

nÞ.

8.
 Calculation of the updated strain:

exij,n ¼ C�1
ijkl ðd

t
nÞS
ð0Þ
ij .
9.
 Convergence of the solution is tested:
CONV ¼ Jen�en�1J

2=JenJ
2.

(i) If CONV rTol: Return to point 1 with a new time step (t=t+1).
(ii) If CONV 4Tol: Return to point 2 with n=n+1,
le 1
terial

(Pa)

�10
where n is the iteration step, t is the time step number, Dt is the size of the time step, d0 and y0 are the initial damage and
initial orientation of the micro-cracks and Tol is the tolerance taken as 10�5.

We note that, because the homogenized coefficients (15) and the stress intensity factors (28)–(29) are written in terms
of macroscopic strain, this procedure becomes trivial in the strain control case.

5.2. Numerical simulations

The time-dependent behavior of materials can be underlined by means of various laboratory tests. In particular, quasi-
static loading tests, creep tests or relaxation tests may point out the same time-dependent properties under different stress
and strain conditions. The response of materials observed during quasi-static compression tests is generally affected by the
axial strain rate _ex. Higher is the strain rate (i.e. faster is the loading) and higher is the strength. When _ex is sufficiently low,
the micro-cracking has enough time to develop inducing a decrease of the material strength. Under the condition of creep
tests (i.e. keeping a constant stress level), the failure is no more governed by the maximal stress that the material may
sustain but rather by the time needed for the micro-cracks to propagate under subcritical conditions. Also, upon a
relaxation test, obtained by keeping a constant strain level, the micro-crack may propagate until failure of the material,
even if the loading is not evolving in time. The higher the strain level, the faster the failure.

The set of material parameters that have been used in the simulations are reported in Table 1. All the simulations
presented in the following have been made considering biaxial loading. According to the considered tests, the loading is
stress- and/or strain-controlled in the vertical and horizontal directions. Plane-strain condition is considered in the third
direction.

5.2.1. Loading at constant strain rate

Figs. 8–10 illustrate the response of a material defined by the parameters reported in Table 1 submitted to uniaxial
tension loading. A constant vertical strain rate is imposed and the horizontal direction is free of stress. Fig. 8 shows that the
developed model is able to reproduce the effect of strain rate on the obtained failure stress. Under low strain rate, the effect
of time becomes predominant and the failure appears for a lower strain level than in the case of faster loading.

At the onset of loading, under weak strain level, the stress intensity factors in mode I at the crack tips ðK%

I Þ are low. As a
consequence, the subcritical strain rate, which is computed with respect to K%

I (Eq. (18)), is low and the damage variable d

and the orientation of the crack y remain almost constant (Fig. 9). As a consequence, the rigidity of the material is not
modified during the first part of the loading and the behavior is more or less linear. Then, when the strain level becomes
sufficiently high, the combined effect of high K%

I and time makes that the damage increases in the material. However, the
micro-cracks are not growing in their own plane but a kinked angle is forming in order to propagate in the direction that
parameters used in the simulations.

n (–) K0 (MPa m1/2) v0 (m/s) n (–) e (–) d0 (–) y0 (deg)

9 0.3 0.6 1�10�3 20 1�10�4 0.28 45
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maximizes the energy release rate (Eq. (19)). As the damage increases, the equivalent crack is rotating and the rigidity
decreases until coalescence of micro-cracks producing failure of the material. At the end of the loading, the equivalent
cracks tend to be perpendicular to the direction of the principal tensile strain. Because of the anisotropic response of the
material induced by the oriented crack, the periodic cells are subject to a shearing that induce a rotation of the principal
strain with respect to the principal stress. This explains that the final equivalent crack is not perpendicular to the applied
tensile stress (Fig. 9).

Fig. 10 shows the effect of two main parameters, the subcritical exponent and the micro-structural length, on the
response of the material under a tension test at constant strain rate. When the stress intensity factor K%

I is lower than the
referential stress intensity factor K0, the fraction of Eq. (18) is less than unity. In that case, an increase of the subcritical
exponent decreases the rate of crack propagation and postpones the failure of the material, as observed in Fig. 10a. For a
same loading level, KI and KII increase with the internal length e (Eqs. (28)–(29)), inducing a faster failure of the structure
(Fig. 10b). In other words, the finer is the micro-structure, the more resistant is the material.
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Fig. 11 shows the evolution of vertical stress with respect to the applied vertical strain along a biaxial test at constant
strain rate. The vertical and horizontal strains are both in tension. A constant ratio between both strains is kept all along
the test. ex11 induces a rotation of the equivalent crack toward the vertical direction while ex22 would tend to orient it
toward the horizontal one. ex22 being higher than ex11, the crack rotates toward horizontal. An increasing horizontal tensile
strain with respect to the vertical tensile strain induces an acceleration of the failure and a decrease of the amount of crack
rotation. When ex11=0 the amount of crack rotation is maximum (cell number 4) while equality between ex11 and ex22

induces that the micro-crack propagates without rotation. The initial crack being oriented at 451 with respect to both
strains, ex11=ex22 produces a symmetric strain state with respect to the crack. KII is equal to zero that makes that no
rotation is possible.

Fig. 12 shows the evolution of vertical stress with respect to the applied vertical strain along a compressive biaxial test
at constant strain rate. The vertical and horizontal strains are both in compression. A constant ratio between both strains is
kept all along the test. Contrary to tension tests, the compression tests produces a propagation of the crack tending
asymptotically to a given crack length and crack orientation, without reaching coalescence of micro-cracks. The micro-
cracks grow and rotate until reaching a situation for which KI=KII=0. Under such a configuration, no more propagation is
possible. The length and the orientation of the crack that produce such an equilibrium case depends on the initial situation
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and the loading conditions (i.e. the ratio between both strains, in our case). Closer to one is the ratio between ex11 and ex22

lower is the amount of crack rotation. In the limit case, when ex11=ex22, the initial crack being oriented at 451 with respect
to both loading directions, KI=KII=0 under the initial configuration and the micro-cracks do not propagate. Contrary to the
tension test, the damage increase does not induce degradation of the material rigidity. Under contact conditions of
the crack lips, the drop of homogenized coefficient C1111 and C2222 are compensated by an enhancement of C1122 by the
same amount (Fig. 3). Consequently, the ratio between S22 and ex22 is not affected by the damage increase (i.e. the slope of
the curve remain constant), even if the damage variable increases all along the compression test. So, looking only the stress
evolution, it could seem that axial compression does not damage material. However, the micro-cracks has propagated and
a subsequent change in the loading direction (a tensile loading, for instance) would induce a faster failure than in the case
without the preliminary compression phase.
5.2.2. Relaxation tests

Applying a constant axial strain, the relaxation test aims at investigating the time-dependent response of material.
Under a constant loading, the subcritical micro-crack growth produces a progressive decrease of the rigidity as long as the
damage state increases. As a consequence, the stresses are gradually relaxing upon failure. Under a biaxial combined
tensile/compressive constant strain field (ex22=�0.035 (compression) and ex11=0.035 (tension)), Fig. 13 shows the
evolution of horizontal and vertical stresses with time. In parallel, the evolution with time of the ratio between horizontal
and vertical stress is shown. The non-planar growth of micro-cracks produces a rotation of the equivalent cracks to be
oriented perpendicularly to the principal tensile strain, that is parallel to the principal compressive strain. As long as the
crack propagate, the direction of the equivalent crack tends toward vertical. As a consequence, the crack lips being under
opening condition, the horizontal rigidity becomes much lower than vertical one. So, the ratio between horizontal and
vertical stresses evolves in accordance with the relative lost of horizontal rigidity with respect to vertical one. That is a
characteristic of the evolving anisotropic damage law.
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5.2.3. Creep tests

Fig. 14 depicts the creep strain predicted by the model under a biaxial combined tensile/compressive constant stress
field (S22 ¼�50 MPa (compression) and S11 ¼ 50 MPa (tension)). After an instantaneous strain response corresponding to
the short-term behavior of the material, the time effect makes damage variable increase and micro-cracks rotate. During
the first part of the test, the damage evolution is slow. However, the rate of damage is amplifying with time. Indeed, under
constant stress field, as long as the damage increases, the strain field increases which enhances the stress intensity factor at
the crack tips. Consequently, the higher the damage, the higher the strain and the higher the rate of propagation of micro-
cracks. The same comments as for the relaxation case can be done about the anisotropic response of the material.

6. Conclusions

A subcritical two-scale damage model based on kinking of micro-cracks has been deduced. A locally periodic micro-
structure has been assumed and homogenization based on asymptotic developments has been used to deduce the
macroscopic elasto-damage model. A subcritical propagation criterion has been employed to describe the evolution of
kinked micro-cracks. The direction of propagation has been given by the maximum energy release criterion.

In order to consider arbitrary orientations of micro-cracks in an efficient two-scale approach, the kinked crack obtained
at each step of calculation has been replaced by an equivalent straight crack defined by its length and its orientation. Two
regimes, corresponding to open or closed micro-cracks, are considered, leading to different effective damage behaviors in
tension or compression.

As long as the micro-cracks grow due to the combined effect of time and high stresses at the crack tips, the internal
damage increases and the global rigidity of the material decreases. That has been quantified by means of a series of finite
element simulations on a unit cell. Databases of effective elastic coefficients and stress intensity factors in modes I and II,
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obtained for elementary modes of deformation of the unit cell are a priori computed for different orientations and lengths
of micro-cracks, in opening and closure regimes. A procedure based on path-independent integrals has been used for the
computation of the stress intensity factors. These stress intensity factors are directly used to quantify the rate and the
orientation of the out-of-plane subcritical crack growth.

The time-dependent macroscopic damage model has been deduced and the effective stress–strain and damage
responses, depending on time, have been numerically evaluated in a macroscopic point. Numerical simulations of loading
at constant strain rate, relaxation or creep tests, under tension or compression, have shown the ability of the developed
model to reproduce known time-dependent damage responses.
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Appendix

The procedure to determine the stress intensity factors for a straight micro-crack trajectory uses the J-, L- and
M-integrals (Kienzler and Herrmann, 2000), computed in the unit periodic cell:

Jjðu
ð1ÞÞ ¼

Z
sy

bijðu
ð1ÞÞni dsy ð36Þ

Lðuð1ÞÞ ¼

Z
sy

e3kjðykbijðu
ð1ÞÞþuð1Þk aijkleyklðu

ð1ÞÞÞni dsy ð37Þ

Mðuð1ÞÞ ¼

Z
sy

yjbijðu
ð1ÞÞni dsy ð38Þ

where e3kj is the permutation tensor

eijk ¼

1 if ijk¼ 123,231,312

�1 if ijk¼ 132,321,213

0 otherwise

8><
>: ð39Þ

and bij is the Eshelby stress tensor

bijðu
ð1ÞÞ ¼

1

2
amnkleyklðu

ð1ÞÞeymnðu
ð1ÞÞdij�aikmneymnðu

ð1ÞÞ
@uð1Þk

@yj
ð40Þ

yi, u(1)
i and ni are the i-component of the position vector, the displacement vector and the unit normal vector computed in

the unit cell, respectively.
For crack faces free of applied tension or with frictionless contact, the following result is obtained:

J1ðu
ð1ÞÞ ¼ Jr

1ðu
ð1ÞÞþ Jl

1ðu
ð1ÞÞ ð41Þ

J2ðu
ð1ÞÞ ¼ Jr

2ðu
ð1ÞÞþ Jl

2ðu
ð1ÞÞþ½Wðuð1ÞÞ� ð42Þ

Lðuð1ÞÞ ¼
d

2
ðJr

2ðu
ð1ÞÞ�Jl

2ðu
ð1ÞÞÞþ½Hðuð1ÞÞ� ð43Þ

Mðuð1ÞÞ ¼
d

2
ðJr

1ðu
ð1ÞÞ�Jl

1ðu
ð1ÞÞÞ ð44Þ

where Jr
i ðu
ð1ÞÞ and Jl

iðu
ð1ÞÞ are Rice’s J-integrals around the right and left crack tips computed in the unit cell, respectively,

and [W(u(1))] and [H(u(1))] are the jump across the crack of the integral on the crack faces of Wðuð1ÞÞ ¼ 1
2 amnkleyklðu

ð1ÞÞemn

and Hðuð1ÞÞ ¼ yu1Wðuð1ÞÞ, respectively:

½Wðuð1ÞÞ� ¼
Z þd=2

�d=2
ðWðuð1ÞÞðyu1,0þ Þ�Wðuð1ÞÞðyu1,0�ÞÞdyu1 ð45Þ

½Hðuð1ÞÞ� ¼

Z þd=2

�d=2
ðWðuð1ÞÞðyu1,0þ Þ�Wðuð1ÞÞðyu1,0�ÞÞyu1 dyu1 ð46Þ

where yu1 is the abscissa of the coordinate system linked to the crack in the unit cell.
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The considered cracks being symmetric, we have Jr
i ðu
ð1ÞÞ ¼ �Jl

iðu
ð1ÞÞ and [W(u(1))]=0. Through Eqs. (41) and (42), it makes

that J1ðuð1ÞÞ ¼ �J2ðuð1ÞÞ ¼ 0. From Eqs. (43) and (44), we obtain

Jr
1ðu
ð1ÞÞ ¼ �Jl

1ðu
ð1ÞÞ ¼

Mðuð1ÞÞ

d
ð47Þ

Jr
2ðu
ð1ÞÞ ¼ �Jl

2ðu
ð1ÞÞ ¼

Lðuð1ÞÞ�½Hðuð1ÞÞ�

d
ð48Þ

Those two Rice’s J-integrals may be expressed with respect to the stress intensity factors in modes I and II, by the
well-known expressions:

Jr
1ðu
ð1ÞÞ ¼

1�n2

E
½KIðu

ð1ÞÞ
2
þKIIðu

ð1ÞÞ
2
� ð49Þ

Jr
2ðu
ð1ÞÞ ¼ �2

1�n2

E
KIðu

ð1ÞÞKIIðu
ð1ÞÞ ð50Þ

Combination of Eqs. (47)–(50) yields to the expression of stress intensity factors with respect to the L-, M- and
[H]-integrals:

KIðu
ð1ÞÞ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

dð1�n2Þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðuð1ÞÞ�ðLðuð1ÞÞ�½Hðuð1ÞÞ�Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðuð1ÞÞ�ðLðuð1ÞÞþ½Hðuð1ÞÞ�Þ

q� �
ð51Þ

KIIðu
ð1ÞÞ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

dð1�n2Þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðuð1ÞÞ�ðLðuð1ÞÞ�½Hðuð1ÞÞ�Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðuð1ÞÞ�ðLðuð1ÞÞþ½Hðuð1ÞÞ�Þ

q� �
ð52Þ

The upscaling procedure (d¼ 2a=e, y¼ x=e and yu¼ xu=e, dsy ¼ dS=e and ueCuð0ÞðxÞþeuð1Þðx,yÞ, u(0) being independent of
the microscopic variable y) enables us to express KI and KII in the macroscopic problem:

KIðu
eÞ ¼

ffiffiffi
e
p

KIðu
ð1ÞÞ ð53Þ

KIIðu
eÞ ¼

ffiffiffi
e
p

KIIðu
ð1ÞÞ ð54Þ
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