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Capillarity in wet granular materials induces cohesion and increases the material strength due to the attractive
forces acting on capillary bridges. In the funicular state, water bridges may be not only formed between two
grains but also binding three or more particles, which breaks the axial symmetry of the liquid bridge. This
work presents a fundamental study on capillary forces and rupture behaviours of funicular water bridges be-
tween three spherical bodies at equilibrium (or static) configurations. Funicular water clusters are numerically
solved by an energy minimization approach. Experimental comparisons are made by measuring capillary forces
and these confirm the validity of the numerical solutions. Evolutions of capillary forces and rupture distances are
investigated systematically bymoving two spheres away from the centre. The fixed water volume condition and
the constant mean curvature condition are studied respectively. Comparisons are made between the un-coa-
lesced pendular liquid rings and the coalesced funicular bridge. For a same fixed total water volume, the capillary
force is weakened by water bridge coalescence to a funicular bridge when the spheres are packed together, but
the situation may vary for different contact angles and inter-particle distances. For the constant mean curvature
condition, water bridge coalescence does not alter capillary force significantly when particles are packed closely,
but the discrepancy is larger by increasing the gap. Funicular water bridge rupture criteria are also proposed
based on the studied configurations. It is observed that in general the transmission from pendular to funicular
state extends the rupture distance when it has a relatively high water volume or low air-water pressure
difference.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Water presence in granular materials introduces capillary force be-
tween particles by water pressure and surface tension and thus signifi-
cantly increases the material cohesion which keeps the sandcastle
standing [1]. With relatively low water content, isolated water bridges
are formed between particles and this is referred as the pendular re-
gime. By increasing the water content to the funicular regime, the
water bridges may coalesce with each other and one liquid cluster
may connect more than two grains. The capillary cohesion change in
the funicular state is generally milder than the sharp increase in the
pendular state [2–4]. Additionally, the capillary cohesion is usually
maximised in the funicular regime [3,5,6] (Fig. 1). Further raise of
water content leads the material to the capillary regime as the material
is nearly saturated with only entrapped air bubbles, in this state the
water surface tension effect vanishes and the sandcastle collapses.

The pressure difference between air and liquid phases is named as
the Laplace pressure or suction (S=ua−uw). Suction changes with
g).
degree of saturation (Sr) and the relationship between suction and de-
gree of saturation represents the water retention property [7,8]. Con-
ceptually, low water content corresponds to very high suction and
suction decreases rapidly with water content within the pendular re-
gime. Suction changes gently in the funicular state and soon reduced
to 0 when thematerial is nearly saturated (see Fig. 1). The water reten-
tion property is not unique andmay have a hysteresis effect during dry-
ing and wetting cycles [7,9,10].

After the pioneer works of Haines [11] and Fisher [12], the pendular
water bridge has been well understood by using two spherical particles
with either controlled water volume [13–20] or constant suction [21,
22]. Wet granular materials has also been investigated using the Dis-
crete Element Method (DEM) [23] with the pendular water bridge ef-
fects [17,21,24–29]. It is aware from the literature that within the
pendular state, the capillary force, which represents the magnitude of
inter-particle adhesive effect, and the rupture distance, which deter-
mines the total number of interactive pairs, are the main factors for
the material strengthening. The X-ray tomography technique has re-
cently been adopted to study the funicular state liquid morphology [4,
30,31]. It is observed that liquid bridge coalescence leads to more com-
plex liquid phase morphologies such as liquid trimer, pentamer and
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Fig. 1. Conceptual figure displaying capillary cohesion and suction in function of degree of
saturation.

Fig. 2. Configuration of three spheres and the inter-particle distance.

90 J.-P. Wang et al. / Powder Technology 305 (2017) 89–98
tetrahedron [4]. The liquid trimer, as a liquid bridge formed between
three particles, is a fundamental structure of the funicular water phase
presence. In this case, the study of the capillary force and rupture dis-
tance of a funicular liquid bridge between three particles could be a fun-
damental step toward the understanding of the capillary cohesion in the
funicular state.

The two dimensional funicular water bridge effect between three
discs can be analytically solved by appropriate simplifications [32,33]. It
also has a very limited number of studies on the three dimensional funic-
ular water bridge between sphere spheres [34–36]. Due to the high com-
plexity of the geometry, analytical solutions based on Young-Laplace law
are somehow sophisticated. Therefore, a numerical approach based on
inter-facial energy minimization can be an alternative choice to study
this problem [37]. In this work, the software tool of Surface Evolver (SE)
developedbyK. Brakke [38] is adopted tominimize the inter-facial energy
iteratively. The funicular water bridge effect between three spherical par-
ticles is then studied systematically. The solutions are for equilibrium (or
static) conditions. The evolution of capillary force and rupture criteria are
investigated by lifting two spheres away from a third one steadily with a
funicular water bridge formed between them. To study the macro mate-
rial response under the capillary effect, water content [39–41] or suction
[21,42,43] are usually controlled and varied. For this particle scale study,
thewater volumeand suction (or Laplace pressure) are controlled respec-
tively. An experimental test is also carried out to measure the capillary
force of a funicular water bridge with various water volumes and to con-
firm the accuracy of the numerical solution. The effect of the contact angle
and the inter-particle distance are demonstrated and rupture criteria
based on the numerical solutions are proposed. The coalesced funicular
water bridge effect is also compared with the un-coalesced pendular
water bridges, whichmay qualitatively explain the capillary cohesion pla-
teau in the funicular state.

2. Modelling and measurement of funicular water bridge

2.1. Numerical modelling

The funicular water bridge is modelled by using the Surface Evolver
software. It is an iterative tool to minimize the total energy includes the
surface energy and other body energies subject to various constraints.
The surfaces are implemented as triangular facets. The starting liquid
shapes can be defined as simplified surfaces and constraints can be ap-
plied based on liquid volume, boundary shape, mean curvature, contact
angle, etc. By a gradient descent method, the software iteratively
evolves the surface shape toward a condition with minimum energy.
Surface mesh refinement between iteration processes can improve the
solution accuracy.

The gravity effect on water bridges can be assessed by the combina-
tion of the normalised liquid volume and the Bond number, and a grav-
ity-free domain has been discussed in [44] for the bridge between two
spherical bodies. However, for the funicular water bridge, there is no
clear criterion for the gravity effect. Extending the previous criterion
to the funicular regime, since the radius of the spheres is relatively
small (R = 0.93 mm) as well as the water volume used in the experi-
ments we reasonably assumed a low gravity effect. In the following
analyses, for simplicity, we will not consider the gravity effect and
leave it as a future study. Therefore, without gravity, the interfacial en-
ergy will be themain energy to beminimized in the numerical solution.
For a liquid bridge connectingN spheres (N=3 in this study, see Fig. 2),
the total interfacial energy can be calculated as:

Es ¼ γAla þ
XN
i¼1
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where γ is the liquid-air surface tension, Ala is the liquid-air interface
area, γi

sl is the solid-liquid interface tension on the i-th sphere, γi
sa is

the solid-air interface tension on the i-th sphere, Ai
sl is the solid-liquid

interface area on the i-th sphere, Ai
sa is the solid-air interface area on

the i-th sphere and Ai is the total solid surface area of the i-th sphere
(Ai=Ai

sl+Ai
sa). The solid-air-liquid contact angle on the i-th sphere is

noted as θi and according to the Young–Dupré equation the following
relationship exists:

γsl
i −γsa

i ¼ γ cosθi ð2Þ

By knowing the sphere geometry and property (sphere size and γi
sa),

the term ∑
N

i¼1
γsa
i Aibecomes a constant (noted as C1). By substituting Eq.

(2) into Eq. (1), the total interfacial energy is:

Es ¼ γAla þ γ
XN
i¼1

cosθiA
sl
i þ C1 ð3Þ

The total interfacial energy of an initial surface shape can thus be cal-
culated by the given surface tension γ and contact angle θi. Combining
with an additional constraint of liquid bridge volume V, the Surface
Evolver can help to minimize the total energy iteratively by a new sur-
face shape. It should benoted that the three liquid-solid-air contact lines
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are free to slip on the three spheres. Finally, the morphology of the liq-
uid phase can be obtained after certain surfacemesh refinements and it-
erationswhen the energy has little further change (less than 10−7 times
of the total energy).

For a stable liquid bridge, the matric suction, which is defined as the
pressure difference between the air andwater phases, has a relationship
with the mean curvature H and liquid-air surface tension γ by the
Young-Laplace equation:

S ¼ ua−uw ¼ ‐2Hγ ð4Þ

The pressure or thematric suction can also bemaintained constantly
instead of controlling the water volume V. In this case, the mean curva-
ture of the liquid bridgewill be constant and the liquid volume is varied
when displacements are applied. This is the granularmedium version of
the nanoscale condensation problem as introduced by Chau et al. [45].

In the present study, a funicular water bridge is formed between
three equally sized spherical particles. The bottom sphere is fixed and
the two top particles are moved upwards (Fig. 2) until the water bridge
ruptures as a case study to discuss the capillary force and rupture behav-
iours for both of the water volume controlled and suction controlled
conditions.

The capillary force on the bottom particle can be calculated based on
the virtual work principle. For a given configuration, the total energy
can be obtained according to Eq. (3). We can then assume an infinites-
imal displacement on the top particles asdz and recalculate the total en-
ergy for the new configuration. Then the energy difference between the
two configurations is equivalent to the virtualwork of the capillary force
done on the displacement and we can express the capillary force as:

F ¼ Es zþ dzð Þ−Es zð Þ
dz

ð5Þ

As the top two spheres are displaced away from the lower one, rup-
ture corresponds to the distance at which convergence to a solution is
not observed.

2.2. Experimental measurement

In this study, water volume controlled experimental tests are imple-
mented to measure the funicular water bridge force as a validation of
the numerical solutions. The testbed designed by Lambert [46] which
is presented in Fig. 3 is employed. Three equal sized brass spheres sup-
plied byBrammer®withR=0.93mmare used in the tests. In the setup,
one sphere is glued on a cantilevered beammade of stainless steel with
0.05 mm thickness. The other two spheres are glued to a metal rod
above the beamwith the vertical position adjustable by amanual linear
Camera
Beam

Rod
Laser Sensor

Fig. 3. The experiment device for capillary force measurement: the sphere radius is 0.93 mm a
noted as k) whose restoring force balances the capillary force where the deflection of the beam
stage. The three brass spheres are cleaned by ethanol before they are
glued on the beam and rod and also before each test.

In the test, a droplet of distilled water with a certain amount of vol-
ume can be generated on the bottom sphere by using amanual dispens-
ing device and then the top rod is displaced downwards to lead the top
spheres in contact with the bottom one and thus the water meniscus is
formed. Then themetal rod is moved upwards gradually by the manual
linear stage with a relatively low speed and the cohesive capillary force
can drag the bottom sphere upwards andmay cause a deflection on the
cantilevered beam. The cantilevered beam, with a measured stiffness of
k, acts as a spring and balanceswith the capillary force. The deflection of
the beam (noted as δ), and the displacement of the top spheres (noted
as a) are measured by two laser sensors and then the inter-particle dis-
placement D defined in Fig. 2 can be obtained as D=a−δ.

Fig. 4 represents the typical conditions of the spheres and the beam
during one test. Themechanical equilibrium condition of the beam(cor-
related to the beam deflection δ) and the capillary force (correlated to
the inter-particle distance D) are also sketched conceptually.

1) At point (1), both δ and D are equal to 0. This means that the elastic
force (Fel) is zero and the capillary force (Fcap) is at the maximum
without considering contact angle hysteresis. For the equilibrium
of the system, this also means that the contact reaction force Fn is
at the maximum.

2) The upper spheres are then pulled in vertical direction (δ N 0) but D
(and Fcap) doesn't change till the point (2) because FelbFcap. During
this phase the contact force Fn decreases.

3) At the point (2) Fel=Fcap, while Fn=0 and the bridge begins to
stretch. During the stretching phase (for example point (3)), the
gap increases and the beam deflection decreases.

4) At point (4), the water bridge ruptures and the beam deflection is
not necessary 0.

3. Study of water volume effect

3.1. Parametric study by numerical solutions

Thewater volume controlled condition is firstly studied on idealised
cases as a parametric study. A series of numerical solutions are obtained
by assuming identical and constant contact angles on the three spheres.
In Fig. 5(a), the three spheres are packed together with increasing liquid
bridge volume. The relationship between the capillary force and water
volume are illustrated in dimensionless terms where the force is nor-
malised by the surface tension and particle size (F

�
2πγR) and the liquid

volume is normalised by the volume of one sphere (V� ¼ V=ð4�3πR
3Þ).

It can be seen that for the packed configuration, increasing volume of
δ

Spheres

Deflection

nd one ‘bottom’ sphere is glued on a steel cantilevered beam acting as a spring (stiffness
(δ) is measured by a laser sensor.



Fig. 5. Typical numerical solutions for thewater volume controlled condition. (a) Force vs.
water volume for spheres in contact. (b) Force vs. displacement.
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the funicular liquid bridge results in a lower capillary force (Fig. 5a). The
effect of the contact angle is also investigated. By changing the contact
angle from 0° to 60° the capillary force is reduced accordingly. This
means that the capillary force is weaker on particles with a relative
lower hydrophilicity (higher contact angle). It is also observed that
the decreasing rate of the capillary force by contact angle is more signif-
icant for relative larger contact angles: for example the discrepancy be-
tween the results of θ=0°and θ=10° is negligible.

The effect of inter-particle distance (represented by the
displacementDof the top spheres) is investigated by moving the top
two spheres upwards at different water volumes and contact angles.
In Fig. 5(b), typical results of force vs. displacement are presented for
normalised water volume as 0.1, 0.2 and 0.3 with constant contact an-
gles as 0° and 50° respectively. The curves stop at inter-particle dis-
tances for which convergence smoothness of the numerical solutions
is nomore reached. This distance is assumed to be the rupture distance.
Increasing inter-particle distance generally reduces the capillary force,
excepted for high contact angles and high water volume for which the
capillary force first increases and then decreases with the inter-particle
distance. The capillary force decay slope is steeper for a lower liquid vol-
ume and the rupture distance is also smaller. It is also observed that for a
larger contact angle the capillary force is generally smaller at various
inter-particle displacements than the results with a smaller contact
angle and the contact angle effect is more significant at relative small
displacements.

3.2. Experimental results and comparison

Experiments are also carried out on funicular water bridges at three
differentwater volumes (0.3 μL, 0.6 μL and 1.2 μL) by using the testbed
introduced in Section 2.2 to validate the numerical approach. Surface
tension of the water used in the test is measured at room temperature
asγ≈0.073 N/mby a pendant drop test before the capillary forcemea-
surement test. Unlike the idealised cases in Section 3.1, the contact an-
gles are not constant in the experiment. In the capillary force
measurement test, a water droplet with a certain amount of water is
firstly generated on the bottom sphere and then the top rod is moved
downward to be in contact with the bottom one. In this process, the
solid-liquid-air contact angles on the top spheres are in advancing and
as the liquid droplet is pushed down slightly by the top spheres the con-
tact angle on the bottom sphere is also in advancing. These lead to large
contact angle values on the top and bottom spheres at the very begin-
ning of the test. Then when the top spheres are displaced upward, the
liquid bridge stretches and the contact angles move progressively to-
ward the receding contact angle. This process is not instantaneous and
the contact angles evolve between advancing and receding ones during
the stretching of the meniscus.
Fig. 4. Different conditions of beam deflecti
Typical images for the water bridge with V=0.6 μL at different dis-
placements are presented in Fig. 6(a) in which an obvious decrease in
contact angles by displacement can be observed. This phenomena is
also observed by Soulié et al. in [17] for a water bridge between two
spheres. The contact angle changes from advancing one to receding
one can lead to a pinning effect on capillary force [47]. This means the
capillary force is smaller than that of the idealised case when D=0
and the force may rise and decrease to approach to the theoretical
values when the contact angle decreases (Fig. 6(b)). In the laboratory
experiment, the contact angles are measured by image analysis. It is ob-
served that the contact angles on the top spheres are generally larger
than that on the bottom sphere. Fig. 7(a) and Fig. 7(b) present the
ons and capillary force measurements.



Fig. 6. Effects of contact angle hysteresis and pinning. (a) Conceptual sketch of the real measurement. (b) Water bridge images at different displacements.
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measured upper and lower contact angles in scatters by taking an aver-
age on the left and right side values. 3rd order polynomial fits are also
illustrated in solid or dash lines.

The measured contact angles at different displacements are then be
input into Surface Evolver to reproduce the laboratory experiment. We
use the polynomial fitting equations as the input parameters to assign
contact angles in the numerical simulations. The experimental results
(scatters) and the numerical solutions (lines) are depicted in Fig. 8 in
normalised forms for comparison. Due to the pinning effect [47], an in-
crease in capillary force with increasing separation distance is observed
and after the contact angle reduced to the receding angles the three
phase contact line on the bottom sphere stat to slip and leads to a de-
crease in capillary force until rupture. The numerical solutions (plotted
as lines) generally have a fair agreement with the experiment results
and only some shifts are observed in the positions of the maximum
forces. The discrepancies between the experimental measurements
and numerical solutions in Fig. 8 may be induced by the roughness of
the spheres, errors in contact angle measurement and the asymmetry
of the liquid phase. Nevertheless, it can be seen that the numerical ap-
proach achieved reasonable solutions on this problem and thus it can
be employed for further discussions like water bridge coalescence and
rupture distance in the following sections.

3.3. Effect of water bridge coalescence

In the pendular state, water bridges are formed between particle
pairs and capillary force has a clear analytical solution which is widely
adopted in DEM simulations [48–51]. By increasing water content, the
assumption of thependularwater bridge inDEMsimulation is no longer
valid as they may overlap with each other and in reality they will
coalesce and form a funicular water bridge. The effect of water bridge
coalescence therefore should be investigated.

Two scenarios are compared in this study (Fig. 9). In the first scenar-
io the funicular water bridge with a particular water volume is formed
between particles and the capillary effect is numerically solved for dif-
ferent displacement. Another scenario is that the same amount of
water is split into three pendular water bridges connecting the three
particles. The volumes of the pendular water bridges are assumed to
be identical (3V1=V) and the possible water bridge overlapping is ig-
nored. The capillary force on the bottom sphere is then calculated
from the force projection on the vertical direction based on the analyti-
cal solution of a pendular water bridge [17] in which the capillary force
on a pendular water bridge is expressed as:

F1 ¼ πγR exp a
D1

R
þ b

� �
þ c

� �
ð6Þ

where a ¼ −1:1ðV1

R3Þ−0:53
, b ¼ ð−0:148 lnðV1

R3Þ−0:96Þθ2−0:0082 ln

ðV1

R3Þ þ 0:48, c ¼ 0:0018 lnðV1

R3Þ þ 0:078 and D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð

ffiffiffi
3

p
Rþ DÞ2

q
−2

R in whichV1 ¼ V
3 is the liquid volume in one pendular bridge, R is the

particle radius, θ is the contact angle and D1 is the inter-particle dis-
tance between two particles. By projecting the forces, the vertical
force on the bottom sphere is:

F ¼
2

ffiffiffi
3

p
Rþ D

� �
F1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ
ffiffiffi
3

p
Rþ D

� �2
r ð7Þ

where D is the vertical displacement of the top spheres.



Fig. 7. Measured contact angle values: (a) contact angle on upper spheres, (b) contact
angle on the lower sphere.

Fig. 9. Water bridge overlap and coalescence.
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As the pendular water bridge solutions are based on idealised cases,
we still take the condition that the contact angle on each sphere is iden-
tical and constant to discuss the water bridge coalescence effect. In Fig.
10, the numerical simulation results from Fig. 5(b) and the estimation
from the pendular water bridges from Eqs. (6) and (7) are compared
at different total liquid volumes (normalised total liquid volume as
V⁎=0.1, 0.2 and 0.3) and contact angles (θ=0° and 50°) in normalised
forms.When the spherical particles are closedwith each other, the cap-
illary force on the funicular water bridge is smaller than the un-coa-
lesced water bridges. By lifting the top spheres upwards, the
discrepancies between numerical solutions on the funicular water
Fig. 8. Comparison between the numerical solutions (curves) and experiment results
(points).
bridge and estimations based on un-coalesced water bridges become
smaller, especially for a lower contact angle.

3.4. Rupture criteria

By Lian et al. [15], the rupture distance of a pendularwater bridge is a
function of liquid volume and contact angle as:

Drupture
pen ¼ 1þ 0:5θð ÞV1

1=3 ð8Þ
Fig. 10. Effect of water bridge coalescence under water volume controlled condition: the
points are the funicular water bridge results and the curves are estimations from the
uncoalesced pendular water bridges by Eq. (7). (a) Contact angle θ=0°. (b) Contact
angle θ=50°.



Fig. 11. Rupture distance of the volume controlled pendular liquid bridge.

Fig. 13. Verification for the suction controlled test (experimental results are given by Gras
et al. [22]). (a) Comparison with numerical solution as θ=20°. (b) Comparison with
numerical solution as θ=30°.
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where V1 represents the water volume on one water bridge and θ is
the contact angle. In this study, water bridge rupture is assumed to hap-
pen at the point where there are no more convergence nor smooth so-
lutions. A validation has been carried out on the pendular regime based
on the numerical solved rupture distance. A series of pendular water
bridge are numerical simulated with various volumes at two constant
contact angles (0°and 40°) and the numerical solutions are compared
with the prediction by Eq. (8) in Fig. 11. Thewater volume is normalised
asV�

1 ¼ V1=ð4
�
3πR

3Þ and the distance is normalised by the particle radi-
us. It can be seen that the numerical solutions agree well with the pre-
dictions by Lian's criteria and we can extend the rupture behaviour
study to the funicular bridges.

More numerical solutions are then implemented in funicular regime
with various liquid volumes and contact angles and the rupture dis-
tance, at where there is no more convergence nor smooth solutions,
are analysed. In Fig. 12, the rupture distance is plotted against the liquid
volume in dimensionless terms where the rupture distance is normal-
ised by particle size and the liquid volume is normalised by the volume

of one sphere (D�
rupture ¼ Drupture

R and V� ¼ V=ð4�3πR
3Þ). It is observed that

when the liquid volume is smaller than a certain value (V⁎b0.06), the
water bridge connecting three particles cannot be formed which
means the spheres can only be bonded by pendular rings. Beyond this
value, funicular water bridge can be generated and the rupture distance
ascends with the water volume. The rupture distance of a funicular
water bridge is not obviously affected by contact angle in the studied
range (θb400). The following equation can be adopted to fit the rupture
distance of a funicular water bridge in the configuration studied:

D�
rupture ¼

Drupture

R
¼ 2:6 V�−0:06ð Þ2=3 ð9Þ
Fig. 12. Rupture distance for the volume controlled funicular water bridge.
For the configuration of the un-coalesced case in Fig. 9, the maxi-
mum vertical displacement of the top spheres before rupture can be es-
timated as from the geometrical relationship:

Drupture
est ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rþ Drupture

pen

� �2
−R2

r
−

ffiffiffi
3

p
R ð10Þ

By substituting Eq. (8) into Eq. (10), the estimated rupture distances
from the pendular water bridges are obtained and thus also presented
in Fig. 12 as a normalised form (Dest

rupture/R) which are referred as the
‘uncoalesced’ condition. The possible water bridge overlap is ignored
in the estimations and the estimations are made at two contact angles
(0°and 40°). It can be seen that the water bridge coalescence shortens
the rupture distance when the water volume is relatively small but
however extends the rupture distance when the liquid volume is
higher. The water bridge coalescence also reduces the effect of contact
angle as the contact angle effect is considerable in the pendular state liq-
uid bonds but negligible in the funicular state.

4. Study of suction effect

4.1. Verification of an experiment test on two spheres

Besides controlling water volume, a suction controlled condition,
which means the mean curvature of the liquid bridge is constant, is
also investigated. Typical solutions can be obtained at various configura-
tions by using the numerical modelling with Surface Evolver. The suc-
tion controlled test is not able to be reproduced by the test in Fig. 3.
However, Gras et al. developed a device to measure the capillary force
of a pendular water bridge formed between two spheres with the



Fig. 14. Typical numerical solutions for the suction controlled condition. (a) Force vs.
suction for spheres in contact (D = 0). (b) Water volume vs. suction for spheres in
contact (D = 0). (c) Force vs. displacement.

Fig. 15. Effect of water bridge coalescence under suction controlled condition (θ=0°).

96 J.-P. Wang et al. / Powder Technology 305 (2017) 89–98
suction being controlled [22]. In the test, the radius of the two spheres is
about 5 mm. Three suction values are controlled as 40 Pa, 70 Pa and
140 Pa respectively. The liquid-solid-air contact angle is measured as
20° by image analysis by the authors of the experiments and the liquid
surface tension is claimed to be 0.051N/m. The suction controlled pendu-
lar state water bridge is reproduced by the numerical tool by using the
same parameters and the solved capillary force is comparedwith this ex-
perimental data in Fig. 13(a). It can be seen that the numerical solution
only has a slight overestimation comparing to the experimental results
and the general trend is in consistency. However, as errorsmay exist dur-
ing the contact anglemeasurement from images, we also solved the same
liquid bridges by using a different contact angle (θ=30°) in Fig. 13(b) in
whichnumerical solutions are quite closed to the experimental data. After
the two comparisons, the numerical tool can be considered to be a trust-
able approach for the suction controlled conditions.
4.2. Numerical solutions of the funicular water bridge

After this validation in pendular state with two spheres, the numer-
ical solution is extended to funicular state as a water bridge being
formed between three spheres. Firstly, the capillary force of the funicu-
lar water bridge is studied for three spheres in contact with each other
in Fig. 14(a) in which suction is expressed as a dimensionless term of
S⁎=2RS/γ and S⁎ is in logarithm scale. A raise of suction, which means
a decrease of water volume correspondingly, leads to a higher capillary
force. The contact angle effect is also significant for the suction con-
trolled condition as larger contact angle reduces the capillary force.
The relationship between the normalised water volume and the nor-
malised suction is presented in Fig. 14(b). For a same suction value, a
lower contact angle leads to a higher water volume. This means the
change of contact angle during the wetting and drying process of a
wet granular material is one of the reasons of the hysteresis effect of
water retention curve. As the water content of a granular material is
being dried is generally higher than that of the material is being wetted
at the same suction level.

Then a same particle displacement is applied while the suction is
controlled as a constant in which the top two spheres are lifted up
and the capillary force on the bottom sphere is calculated by Eq. (5).
Fig. 14(c) depicts the relationship between the displacement and the
capillary force at different contact angles and suctions. Capillary force
is reduced by lifting the spheres up and the rupture distance is shorter
for higher suction level. By increasing the contact angle, not only the
capillary force becomes weaker, the rupture distance is also shortened.
For S⁎=8,when θ=0° there is a numerical solution, but when the con-
tact angle is increased to 50° there is no more convergence of the nu-
merical solutions. Just like the water volume controlled condition, the
effect of water bridge coalescence on force and rupture distance is
worth to be discussed.

4.3. Effect of liquid bridge coalescence

Similar to the water volume controlled condition; the difference be-
tween the un-coalesced and coalesced water bridges under constant
suctions are investigated. In Fig. 15, the numerical results of the suction
controlled funicular water bridge are plotted in scatters in comparison
with the approximated results of the pendular bridges without consid-
ering the water bridge overlap (plotted in lines). The funicular water
bridge is evolved at three different normalised suction values and the
contact angle is 0°. The capillary forces of pendular water bridge are
also solved by the numerical tool at the same suction level and contact
angle and then converted to the vertical force on the bottom sphere
by Eq. (7). It can be seen that when the spheres are packed together,
the funicular water bridge induced capillary forces are closed to the
pendular water bridge approximations especially for a low suction
value. However, by lifting the top spheres away, the discrepancies
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between the funicular water bridge solutions and the pendular approxi-
mations develop rapidly and it can be seen that the rupture distance of
the funicularwater bridge ismuch larger. Thismeans under constant suc-
tion condition, the water bridge coalescence in the transmission from the
pendular state to the funicular state may significantly extend the rupture
distance. Although when spheres are packed together the water bridge
coalescence doesn't change the capillary force much, one can expect
stronger attractive force for a funicular water bridge than that of the un-
coalesced bridges when there is some gap in between the particles.

4.4. Rupture criteria

The rupture criterion for a suction controlled pendular liquid bridge
formed between two spheres is proposed by Gras et al. [22] empirically
and the normalised form is expressed as:

Drupture
pen

� ¼ Drupture
pen

R
¼ cosθð Þ1:7 0:5S� þ 3ð Þ−0:93 ð11Þ

This expression fits well with the Young-Laplace solutionswith con-
trolled suctions as claimed by the authors. By assuming the rupture dis-
tance is at the distance from where there is no more converged and
smooth solutions, the pendular water bridge rupture distance between
two particles are numerically solved by Surface Evolver at different suc-
tions and contact angles. The typical results are presented in Fig. 16 in
comparison with Gras's rupture criteria. It is observed that the funicular
regime numerical solutions are fitted well with Gras's rupture criteria.
From this basis, we can assume that the numerical solved rupture dis-
tance is also reliable in the funicular regime and extend the rupture dis-
tance study to the three spheres case.

A series of funicular water bridges between three spheres are also
solved for the configuration that the bottom sphere is fixed while the
top two are lifted up with various suctions and contact angles. The rup-
ture distances are then be analysed. Fig. 17 presents the normalised rup-
ture distance of the funicular water bridge in symbols at various contact
angles and suctions. It can be seen that the increase of contact angle and
suction reduced the rupture distance. We can also fit the rupture dis-
tance by an empirical equation. Firstly, the rupture distance for the con-

dition of S⁎=0 is fitted as D�
rupture ¼ 1:125ð cosðθ− π

18ÞÞ3:1 which is only
related to the contact angle. Then the rupture distance is in decay
with the suction and can be approximated as an exponential equation.
The full form of the rupture criteria is expressed as:

D�
rupture ¼ 1:125 cos θ−

π
18

� �� �3:1
exp kS�ð Þ ð12Þ

where the parameter k determining the slope of the exponential decay
is a function of the contact angle as k=−0.6531θ2+0.4444θ−0.3266.
The fitted rupture distance is depicted in solid lines in Fig. 17 and agrees
well with the data. By substituting Eq. (11) into Eq. (10), the rupture dis-
tance approximated by the pendular water bridges for the three spheres
configuration can be obtained. The approximated results are illustrated
in dash lines for two different contact angles. It can also be seen that in
most cases the funicular water bridge has longer rupture distances than
that of the pendular water bridges under the suction controlled condition.

5. Conclusions

In this work, a most fundamental funicular liquid bridge formed be-
tween three spheres is numerically solved by using an energy minimi-
zation technique (through Surface Evolver software). Both the volume
controlled and the suction controlled conditions are explored.

For the water volume controlled condition, numerical solutions and
experimental measurements have been carried out on the capillary
force between three spheres. The water bridge coalescence effect is
discussed based on an equivalent configuration. The following conclu-
sions are obtained.

• The experiment results agree well with the numerical solutions and
this proves the reliability of the numerical approach.

• The water bridge coalescence process has significant effect on both
capillary force and rupture distance.

• For a relatively low water volume, the water bridge coalescence does
not obviously change the capillary force but reduced the rupture dis-
tance.

• When the water volume is relatively large, the funicular water bridge
has a lower capillary force than that of the pendular water bridges
with the same total volume but the rupture distance will also be ex-
tended.

• The contact angle effect on rupture distance in the funicular state is re-
duced than that in the pendular state.

For the suction controlled condition:

• The contact angle in the funicular state is also an important factor for
the granular material water retention behaviour hysteresis.

• Under the same suction, increase the contact angle will both decrease
the capillary force and the rupture distance.

• A rupture criterion for the symmetric funicular water bridge is pro-
posed by fitting the numerical solutions.

• Liquid bridge coalescence processwhich leads the transition to the fu-
nicular regime does not change the capillary force significantly when
the spheres are packed together but considerably increases the rup-
ture distance in most cases.

The cohesion of thewet granular materials is originated from the cap-
illary force (which determines the magnitude of the inter-particle attrac-
tive effect) and the liquid bridge rupture distance (which influences the
total number of the interactive particles). From this fundamental study,
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we qualitatively observe that the capillary force change and the rupture
distance variation by liquid bridge coalescence are not always in concert
with each other. The combination effect could be the main reason of the
mild cohesion change in the funicular state. However, the liquidmorphol-
ogy in a wet granular material is more sophisticated, for example the po-
sitions of the three particles may be more random and the liquid cluster
may connectmore particles. More futurework is still desired on funicular
liquid clusters by considering influences from contact angle, relative posi-
tions of particles, number of particles, particle roughness, particle shape,
etc.
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