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a b s t r a c t

In the frame of the multi-scale computational analysis of complex materials, the generation of Represen-
tative Volume Elements (RVE) is often a crucial step. Various microstructure generation tools may be
used, depending on the material to be considered, such as Discrete Element Methods (DEM), Random
Sequential Addition (RSA) based methods for particulate media requiring important computation times;
or Voronoï tessellation methods for polycrystalline materials. Besides being material specific, some of
these methods may become unaffordable when considering complex microstructures, large inclusions
numbers or high volume fractions. The present contribution presents a unified level set based method-
ology for complex, periodic (or not) and random RVE generations. The presented methodology allows
RVE generation for particulate granular media, polycrystalline aggregates with large size distribution
and arbitrary shapes, as well as for complex three-phase or poly-phase microstructures. A level set con-
trolled Random Sequential Addition algorithm is used for particle distribution generation, allowing
increasing the RSA algorithm efficiency, generating large and dense populations of arbitrary shaped inclu-
sions with precise control on neighboring distances. Starting from this, several methods are presented to
add specific realistic features to the generated RVEs. Modifications and densifications allow the distribu-
tion pattern to fit observed real samples or to present a specific spatial organization. The addition of one
(or more) phase(s) obtained from the growth of the initial inclusions allows reproducing some typical
microstructural patterns such as grain bridging in clayey soils, interfacial transition zones in concrete
or hydrated gel in cement paste. The versatility of the proposed RVE generation method is illustrated
by means of various examples, reproducing realistic microstructural arrangements of clayey soils, irreg-
ular masonry and polycrystalline aggregates with bimodal size distributions.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context

Computational homogenization techniques have been used
extensively over the last two decades to link the overall properties
of materials to their internal structure. While homogenization
methods started from closed-form or semi-analytical procedures
[59], or asymptotic homogenization methods [65,39]; a large num-
ber of contributions deals with the computational homogenization
of materials [88,33,34,22,55,74,83]. Computational homogeniza-
tion is usually employed with various objectives when the problem
becomes too complex to derive closed-form solutions. The objec-
tive can either consist of identifying the microstructural process
responsible for a macroscopic effect, or of obtaining average mac-
roscopic properties based on the material properties of constitu-
ents. Some references are related to periodic materials such as

masonry [40–42] or make the assumption of a simplified version
of the microstructure with respect to reality for a large number
of materials such as polymers [88], soils [7], rocks [20] or metals
[44,19], in which case the complexity originates from the evolving
non linear behavior of constituents. The complexity of the overall
response of a heterogeneous material may also stem from the com-
plexity of its fabric. Other works have examined complex micro-
structures such as concrete [31,63], particulate frictional media
without cohesion [91,47,5], bimodal polycrystalline structures
[43], irregular masonry [49,94,37], or wood [60]. For such complex
and apparently random microstructures, contributions also in-
tended to quantify the overall uncertainty on the macroscopic
behavior related to the observed variability at the fine scale
through computational homogenization techniques [27,49].

If the complex behavior of some materials at the macroscopic
scale originates from a complex organization of phases with a sim-
pler behavior at the microscopic scale, using geometrically over sim-
plified Representative Volume Elements (RVEs) for homogenization
may lead to wrong conclusions with respect to the dominant micro-
structural mechanisms. In most of these examples, a crucial step

0045-7825/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2012.02.018

⇑ Corresponding author.
E-mail address: thmassar@batir.ulb.ac.be (T.J. Massart).

Comput. Methods Appl. Mech. Engrg. 223–224 (2012) 103–122

Contents lists available at SciVerse ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma



Author's personal copy

therefore consists in generating RVEs matching the available exper-
imental data, such as for instance the volume fractions of the phases,
the experimentally obtained size distribution of inclusions and/or
voids, or the amount of binding phase between particles if any.

1.2. RVE acquisition methods

Several RVE generation methodologies for random materials
were proposed previously. They are usually specific to the type
of materials, i.e. Random Sequential Addition (RSA) or Discrete
Element Method (DEM) for particulate media, and Voronoï tessel-
lation methods for polycrystals. A complete state of the art for
particulate media RVE generation can be found in [25].

RSA can be used to generate an arbitrary arrangement of inclu-
sions in a given RVE size [72,82,12]. It is the simplest methods for
generation of RVEs containing a low density of inclusions approx-
imated by circles or spheres. However, the performance of RSA de-
pends almost exponentially on the targeted density, and any
improvement such as accommodating arbitrary shaped inclusions
or controlling neighboring distances dramatically affects the effi-
ciency of the addition process. Note however that RSA is often
the only way to give an input for dynamic methods and is widely
used in this purpose.

Dynamic methods for particles packing have been introduced in
[29,30,92,21,73] based on simplified version of DEM [13–15],
thereby allowing particle rearrangements and reaching higher
densities. This also allows providing movement and contact laws
to govern the particles interactions during the simulated mixing/
compaction process. This approach was applied with success to
model concrete [77,78,75,76,26], soil or other particulate media
[13]. It involves a rather important computational effort, but car-
ries the advantage to incorporate physically based modeling for
‘‘manufactured’’ microstructures. In some instances however as is
the case for soils, it is not required to reproduce a mixing process
to obtain the initial fabric of the material, and the number of small
particles to consider may render a DEM based compaction unaf-
fordable. Furthermore, the distinction between voids and a third
(binding) phase in the RVE is also more difficult to accommodate
with DEM based approaches.

Some intermediate methods have also be proposed as in [11,95].
In [4], circular inclusions are randomly placed and subsequently
moved to optimize the spatial organization. In [10], purely geomet-
rical methods are used to pack a given set of arbitrary shaped
inclusions.

Conversely, polycrystalline RVEs are usually obtained based on
Voronoï tessellation methods [66,67,86,64], which is very effective in
generating grains assemblies based on a random distribution of
points. However, managing more complex features such as precise
bimodal distributions of grain sizes can be difficult and may lead to
complex iterative procedures. Moreover, these methods can only
produce convex grain shapes while real microstructures may re-
quire non convex shapes.

Except for granular materials with circular/spherical grain
shapes for which existing methods are effective, there is a need
for fast and easy RVE generation if one desires to investigate macro-
scopic effects of microstructural variability for a given material.
Few methods actually exist for the generation of RVEs of more
complex materials in which a third phase is present such as clayey
sand (binding clay material between sandy rigid particles and
voids). Highly bi-modal polycrystalline pattern are also difficult
to obtain in a fast and efficient way.

1.3. Paper outline

The present contribution deals with a unified level set based
methodology, able to generate different types of microstructures

(particulate media or polycrystalline aggregates) with no convexity
restriction on particle shapes and allowing the incorporation of a
third specific phase in a consistent way with specific fabric pat-
terns. The presented RVE generation method consists of three
tools.

� A random inclusion distribution generator, in which the use of a
simple level set control allows the efficient exploitation of the
simplest RSA algorithm. It constitutes the starting basis for
the overall methodology. The level set control allows a fast
sequential addition algorithm to treat large and dense distribu-
tions of several populations of arbitrary shaped inclusions,
accommodating prescribed particle size distributions with a
strong repeatability and adaptivity.
� A new morphing tool allows modifying/densifying/complexify-

ing the starting distribution, based on isocontour curves of level
set functions constructed with signed distance functions of the
initially generated inclusions, and used to define new curves for
morphed inclusions. This allows achieving several specific pat-
tern such as very dense rock arrangements, polycrystalline
aggregates and other features with a very limited computing
cost.
� Using level set functions, the incorporation of a third phase is

finally obtained, based on the initially generated inclusions.
This allows reproducing specific fabric patterns such as bridg-
ing, coating, layering or the presence of micro-cracks and voids.

It is emphasized that microstructural features generated by the
proposed methodology are not derived from the physical modeling
of their formation processes. Observations and measurements on
real samples as well as the expertise related to the concerned
material are therefore required to generate proper RVEs. The par-
ticular case of micro-cracks described here therefore relates to
the incorporation of initial observable micro-cracks in the
microstructure.

The paper is structured as follows. Section 2 shortly introduces
level set functions and emphasizes the main formalism used for
the presented methodology. Section 3 describes the random inclu-
sion distribution generator. Based on the most simple RSA algo-
rithm that will be introduced first, the level set controlled RSA is
explained and its ability to efficiently produce RVEs with pre-
scribed particle distributions is demonstrated. In particular, the
linearity of the generation computational cost with respect to the
number of added inclusions is illustrated, as well as the efficiency
for dealing with complex arbitrary shaped inclusions and with pre-
cise control on neighboring distances. Section 4 describes both
tools allowing specific operations on an inclusion distribution
based on isocontour curves of specific level set functions to define
specific features in the generated RVE. These tools appear to be
versatile and adaptable without any heavy computational opera-
tion. Section 5 applies the proposed concepts to three different
illustrative applications. First, RVEs matching realistic particle size
distributions of a clayey soil are presented. The second example
consists of polycrystalline aggregates with bimodal grain size dis-
tribution, while an irregular masonry mesostructure is considered
as a third example. Section 6 discusses the results and potential
further improvements of the framework, before conclusions are
drawn in Section 7.

All the presented concepts are valid in 2 or 3 dimensions. They
are presented and implemented here in a 2D setting for the sake of
illustration, and without loss of generalization to three-dimen-
sional cases.

In the sequel of the paper, the term ‘‘particle’’ will refer here to
physical particles such as sand grains or rock fragments in concrete.
The term ‘‘inclusion’’ will be used with a geometrical meaning,
referring to any closed curve defining an inclusion in a continuous
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‘‘matrix’’, irrespective of their physical nature (e.g. for porous con-
crete we will speak about ‘‘void inclusions in a matrix of cement
paste’’, dry sand may be described as ‘‘a particle inclusion assembly
in a void matrix’’).

2. Level set functions

2.1. Level set for a single inclusion

Level set functions were originally introduced in computational
methods to model propagating fronts described by the Hamilton–
Jacobi equation [57,56,71,70,2,17]. Level set tools have since then
been used in other contexts as a general tool to handle complex
or evolving geometries. They are widely used in medical imaging
[8,79], in image analysis [38,93], in tomography to generate ‘‘ex-
act’’ 3D geometrical data set from scanned object [28,35], in topo-
logical optimization to follow the evolution of a trial geometry [90]
and in XFEM approaches using the concept of partition of unity to
handle complex microstructures including many material inter-
faces without meshing difficulties [80,51,18,23,24,85,35].

The concept of level set originates from the idea of defining
implicitly a curve (resp. surface) U by the iso-contour (resp. iso-
surface) of a 2D (resp. 3D) function with U � LS(x, . . .) = k. The level
set function LS(x, . . .) can be of different nature and may depend on
various parameters. A particular choice for this function is the
signed distance to U because in addition to define implicitly a
curve, it also gives local information about distances from the
curve and direction or curvature of the curve. A natural governing
parameter of this function may be time, in order to describe
implicitly the motion of a curve through a time dependent level
set function. In this paper, we will use level set functions some
of them not being signed distance functions. The additional param-
eters governing LS(x, . . .), if any, will be based not on time but on
microstructural features descriptors. The starting step for the eval-
uation of the different level set functions that will be used is the
signed distance from single inclusions or features present in the
RVE. Those starting level set functions are then pure static distance
fields but the term level set function of U (or simply level set of U)
will be used in the sequel of this paper to denote this particular
function. Other level set functions will receive specific names or
will be denoted directly by their symbol.

Given an interface U dividing the RVE domain X in two sub-do-
mains X+ and X�, the level set of U is a function LSU(x) of space
coordinates x with the value of the signed distance from x to U.
The sign of the function depends whether x lies in X+ or X�. If U
is closed (i.e. if the interface describes an inclusion), X� will be
by convention the included sub-domain. The level set functions
of inclusions in the RVE could therefore be used also to character-
ize point-to-inclusion distances, any negative value reflecting a po-
sition occupied by an inclusion.

The equation giving the value of LSU(x) depends on the shape of
the inclusion boundary U. For example the level set for a circular
interface of center xc and radius r is given by

LSUðxÞ ¼ jjx� xcjj � r: ð1Þ

A fast scheme to compute level set functions for convex or concave
2D polygonal inclusions is given in Appendix A.1. Fig. 1 illustrates
the level set function of such an inclusion.

2.2. Global level set for microstructures

In the context of microstructural RVE generation, a large num-
ber of inclusions need to be incorporated and global distance func-
tions can be used to define a global descriptor of the microstructure
geometry. Considering a set of inclusions Ui in the RVE domain

with i 2 I subset of N indexing inclusions, the first nearest neighbor
distance function, denoted here LS1 can be defined as follows, see
Fig. 2

LS1ðxÞ ¼min
i
½LSUiðxÞ�: ð2Þ

The second nearest neighbor distance function, denoted here LS2 can
also be evaluated. During the evaluation of (2), it is possible (and
computationally free) to construct J(x), the set of inclusion indexes
I except the one which satisfy (2) for a given x and hence compute
LS2(x) according to the following relations with j 2 J(x), see Fig. 3

JðxÞ ¼ I n argmin
i
½LSUiðxÞ�; ð3Þ

LS2ðxÞ ¼min
j
½LSUjðxÞ�: ð4Þ

Fig. 1. Level set of a polygonal inclusion. Distances are measured in relative unit
(RVE size = 1), a convention used in the sequel of the paper.

Fig. 2. Plot of function LS1(x) for a given microstructure (white lines denote
boundaries of inclusions).

Fig. 3. Plot of function LS2(x) for a given microstructure (white lines denote
boundaries of inclusions).
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LS1(x) and LS2(x) are piecewise equal to i functions LSUi(x) and
therefore inherit (everywhere but at the inclusion domains of influ-
ence boundaries) from the same properties as signed distance func-
tions, i.e.:
� The norm of the gradient of these functions is almost every-

where equal to 1.
� The direction of the gradient of LS1(x) (resp. LS2(x)) is almost

everywhere normal to the nearest (resp. second nearest) curve.

LS1(x) can be used strictly as a level set function to define
implicitly every inclusion boundary inside the RVE with a single
function. LS2(x) is not associated with any interface in particular
and will not be used strictly as a level set in the method. However,
this function can be used to measure inclusion-to-inclusion dis-
tances with a direct interpretation of definitions (3) and (4): For
every x on the RVE domain satisfying LSUi(x) = 0 for a given i,
LS2(x) is equal the minimum distance from x on Ui to any other
inclusion. This point of view has already been used for contact
detection problems in [73] for a DEM-type algorithm, and will
again be used here to generate microstructural features depending
on inclusion-to-inclusion distances.

2.3. Sequential level set evaluation for microstructures

In a computational context, functions LSUi(x), LS1(x) and LS2(x)
will be evaluated for a discrete set of xn points inside the RVE. Any
operation applied on this set of discrete evaluation points y = f(xn)
may therefore be vectorized. Note that this set should be adapted
to the inclusion population considered. Depending on the discret-
isation size h used for the evaluation of LS1(x), two or more inclu-
sions closer than h will not be properly resolved and will merge on
a short distance (relative to h). Most RVEs shown in this paper have
been generated with a 100 � 100 regular grid for xn. Some larger
RVEs required finer grids of 200 � 200 points and are identified
by the words ‘‘double precision’’ in the related figure captions. Fi-
ner grid can be used to produce very detailed RVEs. However, the
reader should be aware that too detailed RVEs may lead to heavy
computation times in subsequent uses of RVEs in physical simula-
tions. For RVE generation based on sequential addition, it is also
convenient to build these functions sequentially, for each new
inclusion U added in the RVE at a time t based on the previous va-
lue of LS1(xn)t�1, LS2(xn)t�1 and LSU(xn)t of the new inclusion.

The rules to sequentially evaluate first and second neighbor dis-
tance functions (denoted in the sequel ‘‘sequential level set
refreshing rules’’) can easily be derived from the definitions as

LS1ðxnÞt ¼ min½LS1ðxnÞt�1
; LSUðxnÞt�; ð5Þ

LS2ðxnÞt ¼ max½LS1ðxnÞt�1
;min½LS2ðxnÞt�1

; LSUðxnÞt��: ð6Þ

Furthermore, the cost of this operation can be dramatically reduced
by performing each sequential level set refreshing in two step. Dur-
ing the first step, operations (5) and (6) are performed with the level
set of the Smallest Enclosing Circle (SEC) to the newly added inclu-
sion U with (1) which is computationally cheap, saving new com-
puted values temporarily. Every xi for which the temporary LSt

1 or
LSt

2 values are different from LSt�1
1 and LSt�1

2 are marked as belong-
ing to the maximum influence sub-domain of U, see Fig. 4b. This
sub-domain depends on the average size of the inclusion and on
the density of inclusions already mapped in LSt�1

1 and LSt�1
2 . In a sec-

ond step, real values of LSU(xi)t are evaluated, which may be com-
putationally relatively heavier for complex shapes, but is
performed only on the selected sub-domain to achieve the refresh-
ing, see Fig. 4c.

This operation will be denoted ‘‘adaptive level set refreshing’’.
Its influence on the resulting performance of the addition process
will be discussed further in Section 3.3.

2.4. Periodicity consideration

When generating RVEs for physical multi-scale modeling, it is
often required to enforce periodic boundary conditions at the
RVE boundaries. Therefore, the LS1 and LS2 functions introduced
before also have to be periodic. Since these functions are distance
functions, inclusions entirely out of the RVE (periodic neighbor of
inclusions located entirely in the RVE near a boundary) can how-
ever add a contribution inside the RVE near boundaries. This occurs
when such a periodic neighbor is nearer from a boundary than the
nearest inclusion in the RVE. Actually, in the general 2D case, 3 of
the 8 periodic neighbors of an inclusion are susceptible to have a
part of their influence domain in the RVE, see Fig. 5a. Due to this,
to enforce periodicity, each inclusion, intersecting the boundary
or not, has to be accompanied with 3 periodic neighbor inclusions
and 3 additional LSUn(xi) have to be evaluated on the RVE domain
to perform a proper refreshing. Even though this may appear heavy
for complex inclusion shapes, adaptive refreshing will be shown to
restrict the computational cost to the same as that for non-periodic
generations. The 3 periodic neighbors of a given inclusion can be
defined by 3 translations tp, and the associated 3 periodic LSUp(xn)
can be evaluated from LSU(xn) according to

LSUpðxnÞ ¼ LSUðxn � tpÞ ð7Þ

When using the above-mentioned adaptive refreshing, the domain
of influence in the RVE of the 3 relevant periodic neighbors (red area
on Fig. 5b) can be predicted with the SEC of these 3 inclusions.
Using the above translation rules, the level set of the original inclu-
sion in domains outside the RVE (blue domains in Fig. 5b) are used
to perform the refreshing. The computational cost is then the same
as without periodicity, only the level set of the SEC of the inclusion

Fig. 4. Adaptive level set refreshing. (a) Plot of LS1(x) that has to be updated. The shaded inclusion Unew is the new inclusion to incorporate. (b) Level set function of the SEC of
Unew is evaluated on the entire RVE and minimized with LS1(x) to find the maximal influence zone (MIZ) of Unew. The shaded area will not be influenced by Unew as points
belonging to it are closer to other inclusions than to the SEC of Unew. (c) Level set of Unew is evaluated only on the MIZ. Points x lying in the bright area are closer to the SEC of
Unew than to other inclusions but are closer to an inclusion Ui than to Unew. This area is small which leads to good computational efficiency. (d) Level set of Unew is minimized
by LS1(x) and LS1(x) is finally updated with those values.
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has to be evaluated four times, which is not computationally costly.
Fig. 5 illustrates the case of the first inclusion. For every subsequent
refreshing, the influence domain of periodic neighbors (red domains
in Fig. 5b) is limited by the previously added inclusions and these
domains may vanish for a large number of inclusions.

2.5. Inclusion shape modification with offsets

If we assume from now that any curve will be implicitly de-
scribed with its associated level set function, this function can then
be directly used to modify the associated inclusion shape. A simple
example of inclusion growth is illustrated here that will be used in
further developments. Other possibilities offered by this manipula-
tion are extensively described in [32,56,71].

The ‘‘growth’’ or ‘‘shrinking’’ of inclusions can be used for vari-
ous reasons. First, this may be seen as a convenient way to adjust
the volume fraction reached for a given inclusion distribution. Sec-
ond, this may be a way to mimic a process of microstructural for-
mation. Finally, it allows transforming polygons into rounded
equivalents inclusions if needed depending on the observed fea-
tures on real sample (e.g. by experimental observation).

An offset of displacement d from an interface U is the curve
materializing the locus of points located at a distance d from the
original interface, see Fig. 6a. In a level set context, if U is defined
by the iso-zero curve of LSU(x), any offset of displacement d for this
inclusion can be performed by extracting a new curve from the iso-
zero curve of LSU(x) � d. Since the explicit definition of the curve is
not used (except for plots) but rather the level set associated with

it, this can directly be performed by modifying the level set defini-
tion for an inclusion by adding an offset term

LSUoffsetðxÞ ¼ LSUðxÞ � d: ð8Þ

This feature can also be used to produce multi-layered inclusions
such as particles in concrete surrounded by an Interfacial Transition
Zone (ITZ), clay platelets surrounded by adsorbed water or more
complex features present in organic microstructures. Rounded and/
or layered inclusion interfaces can then be manipulated as efficiently
as the original polygonal inclusions, with the related offset values as
the additional data to use. A global offset may indeed be performed
directly on LS1 if there is a need of inclusion growing and coales-
cence. Any inclusion overlap caused by an offset larger than the ini-
tial inter inclusion distance will cause separate boundaries to
collapse in a single curve, a feature which can be required for partic-
ular microstructures (e.g. hydrated cement gel at very fine scale).

3. Random inclusion distribution generator

3.1. Classical Random Sequential Addition (RSA)

The classical RSA algorithm is briefly described now as a basis
for RVE generation with its main advantages and weaknesses.
The principle of the RSA methodology consists in filling the RVE
container with inclusions of a given size distribution. These inclu-
sions are sequentially placed at random positions, while enforcing
that no overlapping exists with the previously added inclusions.
Any overlap leads to a rejection and to a new position generation
[72,82,12]. Inclusion-to-inclusion distances rejecting criteria can
also be added (see feature (b) below). The verification that the cri-
terion is satisfied or not is called here the ‘‘tests’’.

The following general rules of sequential addition for inclusion
distribution generation are common to most RSA approaches and
are more specifically discussed in [25]. (a) Large inclusions must
be generated first to avoid a dilute distribution of small inclusions
leaving no free area large enough to put larger inclusions even if
the global volume fraction seems to allow it. (b) To achieve high
density, it is advisable to add new inclusions as close as possible
from previously added ones to optimize the spatial organization
required for dense packing. This can be achieved by imposing rules
on distances from each new inclusion to the previously added ones
(e.g. to the nearest and/or second nearest neighbor inclusion). Such
rules can also be used to control the global pattern of the micro-
structure as they comply with observations on real specimens
and may have a major influence on physical phenomena [84]. (c)
Periodicity (in addition to be well appreciated for multi-scale mod-
eling) increases the density that can be reached, due to the sup-
pression of the ‘‘boundary effect’’ which can decrease locally the
density.

For the sake of comparisons, the simplest RSA, denoted here as
the classical RSA, will be used even though some improvements
were already suggested by some authors (e.g. [4]). Any improve-
ments previously proposed are still relevant and may fruitfully
be combined with the level set methodology proposed hereafter
as well.

In the classical RSA algorithm, the costly operation is the inclu-
sion-to-inclusion distances evaluation step to perform overlap and
neighboring tests. Since these operations have to be performed for
each trial position for a inclusion, the computational cost of the
classical RSA is not directly proportional to the target density or
number of inclusions, but strongly depends on the success proba-
bility of the tests. Since this probability dramatically decreases
during the RVE filling, the computational cost increases exponen-
tially with the targeted density as illustrated in Fig. 7 and in
[82,25].

Fig. 5. Periodicity handle. (a) LS1(x) of an inclusion and its eight periodic neighbors.
White lines are the boundaries of influence domains of inclusions. (b) Using
adaptive refreshing, periodicity is treated by extending the influence domain out of
the RVE (blue domains) and by bringing them back in the RVE to its periodic
location (red domains) with translations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Inclusion offset. (a) Offset definition (b) Level set of the resulting inclusion.
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With non-overlap control only, the computation time is increas-
ing with the density due to the free area decrease. The maximum
reachable density is quite low. Enforcing a maximal distance be-
tween inclusions to optimize the spatial organization theoretically
increases the density but the time required to fill the RVE becomes
unacceptable, see Fig. 7.

3.2. Level set controlled RSA (LS-RSA)

In order to overcome the main drawback of the RSA (i.e. the in-
crease of the rejection rate of the inclusion potential position to
prevent overlapping when the volume fraction increases and/or if
a need of neighboring control lead to very restrictive tests), we
present here a level set control, denoted LS finder. It allows pre-
venting any rejection by restricting the random position for a
new inclusion to be chosen in sub-domains of the RVE where it
is known a priori that this inclusion will respect all the criteria of
the tests. For a given inclusion, the LS finder will select in a large
set of discrete structured or unstructured positions in the RVE dis-
cretizing the description of the LS functions those which satisfy the
non-overlapping criterion and/or specification in terms of maxi-
mum neighboring distances. This can easily be achieved with log-
ical operations on the LS1(x) and LS2(x) functions defined
previously.

For example, an inclusion of SEC of radius r will not overlap any
inclusion in the RVE already mapped in LS1(x) if the center of its
SEC xc satisfies the condition

LS1ðxcÞ > r ð9Þ

The use of condition (9) is illustrated in Fig. 8b. To achieve higher
densities, a control on maximum distances from the first and/or
second nearest neighbors (denoted nnl1 and nnl2 in the sequel)
can help producing closer packages. The conditions for such a dis-
tance control can be written in terms of LS1 and LS2 as

LS1ðxcÞ < nnl1þ r; ð10Þ

LS2ðxcÞ < nnl2þ r: ð11Þ

The use of relation (9)–(11) is illustrated in Figs. 8 and 9.
With such simple conditions, the LS-RSA algorithm can be refor-

mulated as follows:
Construct a (un)regular grid of xn 2 RVE and initialize LS1(xn)

and LS2(xn) to +1 at these points. Loop the following steps until
the RVE is full or until the desired density is reached:

� Generate or pick a trial inclusion from a parametric random def-
inition or a predefined set (polygonal, . . .), with respect to a pre-
scribed size distribution function.
� Perform operation (9) to simply avoid overlapping, completed

with (10) and/or (11) if specifications on neighboring distances
are desired, and retain the satisfying positions xc. Choose ran-
domly in this set a position for the new inclusion. If the retained
set is empty, the RVE is full (no inclusion can be added respect-
ing the criteria), then skip the next step and end the loop.
� Refresh LS1(xn) using sequential refreshing rules (see Sec-

tion 2.3), evaluating LSU(xn) of the new inclusion while respect-
ing the adaptive scheme presented above.

It is emphasized that this procedure allows incorporating an
experimentally measured size distribution function as will be dem-
onstrated in Section 5 related to applications.

Note that if it is desired to prevent inclusions to intersect the
RVE boundaries, LS1(xn) must be initialized with the (positive) dis-
tances from xn to the nearest boundary instead of +1. Then, the
finder will automatically exclude positions leading to inclusion
intersections with boundaries, as illustrated in Fig. 10. Note that
any shape can be used as a container instead of a square box, ini-
tializing LS1(xn) to the inverted (positive inside) level set of this
shape rather than to the distance to the box boundary.

Fig. 7. Generation time against density for classical RSA. (a) Non-overlap control only and (b) enforcing a maximal neighboring distance.

Fig. 8. Level set finder using LS1. The red points denote positions where the imposed conditions are satisfied. The next inclusion to add (the gray one in its SEC) can be
randomly placed on any of these points to fulfill the imposed criteria. (left) LS1(x) plot. (center) Valid positions according to (9), and (right) valid positions according to (9) and
(10) with nnl1 = 0.01. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Performance evaluation of LS-RSA

Step 1: Linearity of the computation cost against the number of
inclusions.

Each execution of the loop of a classical RSA computation basi-
cally takes the same time, irrespective of its success which depends
on the current RVE density. Conversely, the LS-RSA algorithm
which adds an inclusion at every loop thanks to the finder will take
the same time to add any new inclusion irrespective of the current
RVE density. In order to assess the performance excluding the
influence of the adaptive refreshing, of the complex shape handle
and of the nearest neighbors distance conditions, we first perform
an addition of mono-sized circles with only the criterion for non-
overlapping (9). Under such conditions, the time by loop is almost
equal for classical RSA and LS-RSA and a simple comparison can be

used to extract the exponential and linear trends of classical RSA
and LS-RSA respectively. In other cases (i.e. arbitrary shaped inclu-
sions), the time by loop may differ strongly due to important dif-
ferences in the algorithms of both methods, and comparisons
make less sense even if the trends are identical. Periodicity does
not have an effect on the linear trend of LS-RSA cost, but takes sub-
stantially more time by inclusions. For circular inclusions this can-
not be avoided but for complex shapes, the use of adaptive
refreshing scheme will dramatically decrease the influence of peri-
odicity (see Sections 2.3 and 2.4). Fig. 11 compares the computa-
tion cost for LS-RSA and classical RSA. Note that in this simplified
case, the number of inclusions is linearly related to the density be-
cause all inclusions have the same size. All generations presented
below are performed on a regular laptop, with RVE generation
tools implemented in MatLab.

Step 2: Influence of nearest neighbor distances conditions.
Comparison with classical RSA in Fig. 12 shows that a substan-

tial gain can be provided by the use of the LS finder complemented
by nearest neighbor conditions (10) and (11) in terms of obtained
density at no extra computational cost. This is in strong contrast
with the Classical RSA methodology in which distance conditions
increase dramatically the cost. Since the LS finder only uses cheap
vector operations, the nature of the tested conditions has almost
no influence on the global computation cost by inclusion while
they allow improving the reached density of the packing.

Step 3: Influence of inclusions shape and benefit from the adap-
tive level set refreshing.

In case of arbitrary shaped inclusions (polygons or rounded
polygons obtained by offset) the level set refreshing becomes the
critical and costly operation. Its contribution in the global compu-
tation cost is linearly linked with the number of vertices defining
the inclusions. The use of the adaptive refreshing scheme intro-
duced in Section 2 brings its major advantage in this case. Fig. 13
compares the computational cost of LS-RSA with and without

Fig. 9. Level set finder using LS1 and LS2. (left) LS2(x) plot. (center) Valid positions according to (9)–(11), with nnl1 = nnl2 = 0.06 (right) with nnl1 = nnl2 = 0.01.

Fig. 10. Preventing inclusions from crossing RVE boundaries (a) LS1(x) with
boundary contribution and (b) valid positions according to (9).

Fig. 11. Cost comparison between RSA and LS-RSA for non periodic (black curves) and periodic (red curves) RVEs. (The density reached is the number on each RVE figure). RSA
curves are limited for readability but RSA produces the same RVE as (a) in 100 s and as (b) in 200 s. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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adaptive refreshing. Note that here the graph depicts the computa-
tion time as a function of the number of inclusions, which is not di-
rectly related to the density due to their arbitrary shape.

Step 4: Influence of inclusion shapes.
The main shape factor influencing density is not the number of

vertices by inclusions but rather the ratio between the volume of
inclusions and the volume of their SECs. This is due to the use of
the SEC of inclusions to pilot the LS finder as illustrated in Fig. 8.
Circular inclusions will therefore be packed at or near the theoret-
ical maximal density [36,87], while quasi-regular polygons will
leave more free space and elongated inclusions will lead to poor
packing densities. Fig. 14 illustrates and quantifies this aspect.

Actually, any shape needing a particular rotation to be opti-
mally placed among the existing ones will not perform optimally.
This is the main limitation of the LS finder presented here. Solutions
can however be implemented to avoid this inconvenience and will
be discussed in Section 6. Classical RSA is less influenced by this ef-
fect as it uses the exact shape of inclusions to perform overlapping
tests. Nevertheless, for elongated inclusion shapes, achieving dense
packings requires the control of the inclusion orientations during
the entire generation process. The classical RSA does not have pos-
sibility for this type of control and will also lead to poor packing for
elongated inclusions due to the random orientation of inclusions.

Step 5: Effect of size distribution of inclusions.
It is obvious that an inclusion population with a significantly

distributed size distribution will allow reaching higher densities
more easily. Fig. 15 illustrates this for a population with grains size
varying with a factor of about 50 as it can be encountered in soils.

These (periodic) RVEs are typically generated in about 15 s for
(b) and 35 s for (a) on a regular laptop under MatLab. Using a clas-
sical RSA implementation without LS finder, this type of generation
can quickly become unaffordable, because the addition time by
inclusion is exponentially increasing with density as explained
and because the number of inclusions needed to increase density
of a constant density increment is also increasing, due to the de-
creases of inclusion size.

For mono-sized inclusions the computation time is linear with
the number of added inclusions and with the density. For multi-
sized populations, the linearity of the cost against the number of
inclusion is kept but not against the density because the latter in-
creases more slowly with small inclusions than with large ones. To
illustrate this we consider a uniform distribution for the inclusion
size. This means that each size interval will represent about the
same volume fraction in the RVE. Largest inclusions will therefore
represent a small number compared to the number of small inclu-
sions (see Table 1).

With adaptive level set refreshing, the time by inclusion (in
addition to be 60 times faster than without) decreases with the
size of inclusions since the influence zone for LS refreshing be-
comes smaller and the level set refreshing time dramatically de-
creases. Large inclusions are generated first. The computation
cost then quickly decreases with the number of generated inclu-
sions. In terms of time by increment of density (dd), this mecha-
nism thus counterbalances the increase of the number of
inclusions by dd and restores the linearity of the computation cost
against the density until a given inclusion size. After this critical
size, the level set evaluation time becomes negligible in the loop
and the optimal time by inclusion (about 100 inclusions/s) is
reached and kept constant, which results in an increase of the time
for a given dd, see Fig. 16.

4. Level set based tools for complex microstructure generation

4.1. Inclusion morphing for densification and shape modification

The density that can be reached with a RSA algorithm, even en-
hanced with a level set control is limited to finite values depending
on the inclusion shapes and the size distribution as discussed be-
fore. The spatial organization cannot depend on the inclusion
shapes, this is a limitation to produce very close packings in which

Fig. 12. Influence of nearest neighbor criteria (10) and (11). Full line correspond to the LS-RSA case. The dashed lines are equivalent generation with a classical RSA. (a) RVE
generated with non-overlap criterion only (b) RVE obtained with conditions (9)–(11) with nnl1 = nnl2 = 0.005. The corresponding red curve for classical RSA shows that
nearest neighbor control is not achievable without the LS finder. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 13. Influence of adaptive level set refreshing rules on LS-RSA for (a) circular
inclusions for which the adaptive refreshing does not apply, (b) 5-sided inclusions
(c) 10-sided inclusions (d) 20-sided inclusions. Black curves are obtained without
adaptive refreshing. Red curves use adaptive refreshing. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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the position and orientation of inclusions match the surrounding
inclusions shape as it could be observed in real packing of sand
or rock assemblies.

The level set formalism allows modifying the inclusion shapes
by morphing and densifying the RVEs with respect to the spatial
organization. At the limit, it leads to RVEs of density equal to 1
with completely side-by-side inclusions and may therefore be used
to generate polycrystal-like microstructures.

This may be achieved using the following concept. If the iso-
zero curve of LSU1(x) and LSU2(x) defines the interfaces of two
inclusions U1 and U2, then the iso-zero level of |LSU1(x) � LSU2(x)|

defines the locus of equal distances between these two inclusions,
see Fig. 17. This curve divides the domain in two sub-domains, one
for each inclusion gathering all the points closer to this inclusion
than to the other one. The absolute value is important to attribute
the same sign to both sub-domains. Any isocontour of this function
will therefore define one curve for each inclusion.

For the case of two inclusions, this operation is equivalent to
LS2(x) � LS1(x) because for any x satisfying LSU1(x) > LSU2(x),
LS2 = LSU1(x) (inversely if LSU1(x) < LSU2(x)), and hence the abso-
lute value is dropped while writing the statement in terms of LS1

and LS2.
For multiple inclusions, the iso-zero curve of LS2(x) � LS1(x) de-

fines a diagram in the RVE in which each cell encloses an inclusion
and defines the locus of points closer to this inclusion than to the
other ones, see Fig. 18, exactly as the Voronoï diagram acts for
point distributions.

Many intermediate situations can be found between the undis-
torted (initial) inclusions and Voronoï-like cells produced by
(LS2(x) � LS1(x)). Such configurations can be obtained by replacing
original curves Ui of inclusions boundaries by extracting new
curves Unew from the iso-zero curve of the function OI(x) defined as

OIðxÞ ¼ LS1ðxÞ � LS2ðxÞcþ t: ð12Þ

With c = 1, this function increases the size of inclusions until a joint
of constant thickness t is obtained between inclusions. The coeffi-
cient c allows (quite qualitatively) to give more or less importance
to the shape of the transformed inclusions. In relation (12) LS1 and
LS2 have been inverted to attribute the negative sign to the inclu-
sion domain, as before. Results for different values of c in Table 2
are depicted in Fig. 19.

The prescribed distance t cannot be less than the precision h of
the discretisation grid for LS1 and LS2, as for smaller values, inclu-
sions collapse as already discussed in Section 2.3. However, the off-
set technique presented in previous Section 2.5 can be used a
posteriori on inclusions with an offset distance d relative to the t
parameter used in (12) to reduce or eliminate (if t = 2d and c = 1)
the inclusion inter-distance as depicted in Fig. 20(b), generating
particles in contact, as can be met for instance in concrete.

Fig. 14. Influence of inclusion shapes on maximum density achievable by LS-RSA. (Top) generations with non-overlap criterion only, (bottom) generation with conditions
(9)–(11) with nnl1 = nnl2 = 0.005. (a) Slightly elongated inclusions, (b) 7-sided random polygons and (c) elongated inclusions.

Fig. 15. Multi-sized population RVE generation with (a) 1089 arbitrary shaped
inclusions and (b) 566 circular inclusions. Those RVEs were produced with a double
precision grid for level set functions evaluations.

Table 1
Size distribution of inclusions resulting from generation of Fig. 16.

Size (radius)
interval

0.205/
0.155

0.155/
0.105

0.105/
0.055

0.055/
0.005

Volume fraction 0.210 0.197 0.203 0.199
Inclusion number 3 6 18 217
Shape Quasi-regular 5-sided random polygons
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Furthermore, it may be convenient in specific cases to perform
this morphing and inclusions growth only on a selected part A of
the starting inclusion population in the RVE, leaving the other ones
B unchanged. This requires evaluating LS1 and LS2 independently

for both population. This opens a large range of possibilities. A sim-
ple illustration of complete expansion of the inclusions A with no
modification of inclusions B is given now. A function achieving this
can be constructed starting from LSA2(x)-LSA1(x). Values of this
function have to be modified in domains inside the B inclusions
and for any point x lying closer to a B inclusion than to a iso-dis-
tance curve of population A. This latter distance is measured by
(LSA2(x) � LSA1(x))/2. The final function OII(x) to use can therefore
be constructed as follows and is illustrated in Fig. 21.

OIIðxÞ ¼ �jmin½ðLSA2ðxÞ � LSA1ðxÞÞ=2; LSB1ðxÞ�j: ð13Þ

4.2. Bridging and coating phase generation

A large part of the microstructures observed in real materials
are more than just an assembly of particles within a single matrix.
Usually RVEs need additional features to properly mimic the
intrinsic fabric of such materials. Fig. 22 illustrates two typical
examples for which a third phase has to be taken into account
for microstructural modeling. The first consists of bridges present
in clayey soils due to clay minerals agglomeration between larger
grains of hard minerals, while the second is the interfacial transi-
tion zone between particles and the cement paste of concrete
due to specific hydration conditions near the hard surfaces of par-
ticles. Similarly, in partially water saturated granular materials
(e.g. soils), capillary meniscus are a particular form of bridging
phase that links particles together [17].

Generating such additional phases in RVEs cannot be performed
easily by a classical inclusion addition/packing approach. Further-
more, these features are ‘‘semi-random’’ because they have to be
‘‘grown’’ respecting specific microstructural ‘‘rules’’, starting from
an existing random inclusions distribution.

The presented level set tools can be combined to generate RVEs
containing a third phase bridging or coating inclusions. Until now,
the RVE domain X was split in two sub-domains, Xi for the existing
inclusions and Xm for the remaining continuous medium. The pur-
pose now is to separate Xm in two sub-domains: Xf for a third
phase grown from the inclusions and denoted here as the ‘‘fabric’’
sub-domain, and Xr for the remaining medium, see Fig. 23. Here
again, the iso-zero curve of a function O(LS1(x),LS2(x), . . .) will be
used for the extraction of the boundary curves between Xf and
Xr, depending on the starting inclusion distribution, and with re-
spect to some governing parameters.

Note that terms ‘‘inclusions’’ and ‘‘matrix’’ will keep the same
meaning as before, having a more geometrical connotation. The
word ‘‘inclusions’’ will still be used for any feature defined by a
closed curve and ‘‘matrix’’ will still be used to denote the remaining

Fig. 16. Generation of multi-sized inclusions, comparison between the time against the number of inclusions (continuous) and the time against the density (dashed) with and
without adaptive refreshing.

Fig. 18. LS2(x) � LS1(x) and the iso-distance curve (white lines) delimiting Voronoï-
like cells.

Fig. 17. |LSU1(x) � LSU2(x)| and the iso-distance locus.

Table 2
Parameters for RVE in Fig. 19.

RVE (a) (b) (c) (d) (e) (f)

t / 0.005 0.005 0.005 0.005 0.035
c / 0.2 0.5 0.8 1 1.5

112 B. Sonon et al. / Comput. Methods Appl. Mech. Engrg. 223–224 (2012) 103–122



Author's personal copy

domain, i.e. the RVE domain except all inclusion sub-domains. For
example, in Fig. 23 Xr and Xi will be considered as inclusions in
the matrix Xf.

Using the level set formalism, various combination allow
producing coating and bridging between particles of a given

distribution. The simplest case of uniform coating of particles can
be achieved by extracting the curves defined by the function

OIIIðxÞ ¼ LS1ðxÞ �w ¼ 0; ð14Þ

where w is the thickness of the coating. This thickness can be made
dependent on inter-particles distances using the following function

OIV ðxÞ ¼ LS1ðxÞ � LS2ðxÞj �w; ð15Þ

in which the exponent j can be used to obtain different results such
as bridges (positive values) or cracks (negative values). Examples of
the effect of j given in Table 3 on RVE generation are illustrated in
Fig. 24.

The study of a particular material microstructure requires
generating RVEs while controlling explicitly some measurable
features. Such features depend on parameters which differ from
the introduced j and w and the function OIV(x) may have to be
written in an alternative way to make the use of the required
parameters possible. The following Section 4.3 presents an exam-
ple of such a development for the quantitative control of bridges
volume fraction or length. Similar manipulations could be used
for other specific microstructural features (i.e. initial micro-
cracking, non-uniform coating, patterned porosity, . . .) but fall
out of the scope of the present contribution.

Fig. 19. Result of partial morphing of inclusions with function (12). All RVEs are obtained with the same set of initial inclusions (a).

Fig. 20. Vanishing the minimum inclusion inter-distance with an offset. (a) Original
RVE obtained from a particle distribution morphed using function (12), t = 0.006
and c = 0.5. (b) Resulting RVE with an offset of 0.0055.

Fig. 21. Selective morphing of inclusions with elongated inclusions kept fixed (population B), while the size of others is increased. (left) Plot of the function defined by (13),
(center) original microstructure and (right) resulting microstructure.
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4.3. Quantitative control of coating and bridges

The function defined in (15) with a positive exponent j may di-
rectly be used to produce bridging but does not offer a strong
quantitative control on microstructural features (e.g. fabric volume
fraction, length of bridges, ratio bridges/fabric, etc. are not explic-
itly controlled). For this purpose, one can use the function
LS1(x) + LS2(x) which contains more directly the distance between
two close inclusions. Explicitly, for every x in X, LS1(x) + LS2(x) is
the length of the shortest path to link the two nearest inclusions
via x, as illustrated in Fig. 25a. This function therefore appears to
be appropriate to construct bridges with a proper control on their
length.

To generate bridges from this, one could use the function

OV ðxÞ ¼ LS1ðxÞ þ LS2ðxÞ � b; ð16Þ

where b would be the prescribed length of the bridges. However,
unlike the previously introduced functions, Eq. (16) does not pro-
duce iso-zero level curves entirely included in Xm. As a result, it
must be combined with LS1(x) in a minimization to ensure that
the Xr domain does not overlap with the Xi domain, as illustrated
in Fig. 25b.

Using an additional parameter in the function allows control-
ling both the coating thickness and the bridges length with the
same statement as follows:

OVIðxÞ ¼min½LS1ðxÞ þ LS2ðxÞ � b; LS1ðxÞ �w�; ð17Þ

where w is the coating thickness and b the bridges length. Such
parameters can be used directly in the function or can be deduced
from prescribed volume fractions obtained through experiments.
The volume fraction of the fabric will be denoted here k1 and the
bridging material is assumed to represent a volume fraction k2 of
the fabric material.

The volume of the different sub-domains of XRVE should there-
fore satisfy the following relations. The volume of inclusions is
fixed by

Vi ¼
Z

X
ðLS1ðxÞ < 0ÞdX: ð18Þ

The coating volume depends on w only and is given by

VcðwÞ ¼
Z

X
ðLS1ðxÞ �w < 0ÞdX� Vi; ð19Þ

where Vi is evaluated by (18), while the bridges volume depends on
both w and b according to

Vbðw; bÞ ¼
Z

X
ðOVIðx;w; bÞ < 0ÞdX� VcðwÞ � Vi: ð20Þ

With the imposition of k1 and k2 and assuming as before a unit size
RVE, the following constraints need to be imposed on the genera-
tion process

VcðwÞ þ Vbðw; bÞ ¼ k1; ð21Þ

VcðwÞ ¼ k1 � ð1� k2Þ: ð22Þ

These two equations are non-linear (due to the non-linearity of the
integrand in Vc and Vb expressions against b and w), and are easily
solved for w and b, separately if (22) is solved first, with a simple
iterative procedure. Computationally, LS1 and LS2 are evaluated
for a regular discrete set of N points xn with n 2 {1:N} and relations
(18)–(20) become simple and fast vector operations. For instance,
(19) becomes

Vc ¼ N�1P
n
½ðLS1ðxnÞ �wÞ < 0� � Vi: ð23Þ

Fig. 22. Examples of microstructural fabric requiring the incorporation of a third phase. (a) [9] Clay bridge in a soil made of quartz (sand) and clay minerals. (b) [68] Interfacial
transition zone around a large particle in concrete (artificially colored for visualization).

Fig. 23. Definition of the fabric domain Xf (red) and the remaining domain Xr

(white) which subdivide the original Xm domain. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Parameters for RVE in Fig. 24.

RVE (a) (b) (c) (d) (e) (f)

w 0.01 0.02 0.0001 0.0003 2 35
j 0 0 1 1 �1.5 �2
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These relations are used in two loops for (22) first and then (21) in
order to evaluates k�1 and k�2 for trial values w⁄ and b⁄ until the con-
vergence to k1 and k2 is observed. Based on examples treated below
and in the application section, even the most complex RVEs do not
require more than 5–10 steps to converge. The addition of this pro-
cedure is thus of no major influence on the computation time. The
main costly operation is again to evaluate LSU for the newly ex-
tracted curves. However, this evaluation can be avoided here if
the RVE generation is complete with the added features and if no
level set is needed for post generation purposes (e.g. if only discrete
definitions of curves are needed for a finite element mesh construc-
tion). Fig. 26 shows different RVEs generated with different values
of k1 and k2 reported in Table 4.

5. Applications

5.1. Clay/sand mixed soils

As a first application of the proposed framework for real materials,
a silty soil (Marche-les-Dames soil, denoted as MLD) is considered,

based on its experimentally determined size distribution function
given in Fig. 27 [16]. Such a soil is made of inert particles (sand
and silt), clay bridges as well as voids.

The following RVE generation methodology is used, considering
that the matrix material actually consists of the bridging and sur-
rounding clay, and that the inclusions are the voids and the inert
sand particles. It is assumed that distances are scaled to be expressed
in units relative to the RVE size (i.e. in developments, phase volumes
are equal to volume fractions and the RVE volume is equal to 1).

The particles are first generated with LS-RSA, enforcing inclu-
sions inter-distances to be proportional to the particles size there-
by obtaining an homogeneous distribution, leaving enough free
space for voids addition. Based on the measured size distribution,
minimal and maximal particles sizes of 2 and 80 lm are consid-
ered. All the solid material lower than 2 lm in size is considered
as clay. Since the experimental size distribution function only re-
lates to the solid phase (without voids), a volume fraction of the
voids Vvoid has to be assumed and used to derive the real volume
fraction of particles by multiplying those given in Fig. 27 by
(1 � Vvoid).

Fig. 24. Fabric formation using the operating function (15) for different values of parameters w and j.

Fig. 25. (a) LS1(x) + LS2(x) and geometrical interpretation, (b) min[LS1(x) + LS2(x) � b, LS1(x)], (b = 0.3). The colored area is the remaining media domain Xr. White lines
enclose the Xi domain, the fabric domain is then only the bridge.
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The resulting matrix is then divided in a fraction of void and clay
bridges with the procedure described in Section 4.3. The void ratio
Vvoid and the clay fraction Vclay are used to derive the k1 parameter
with k1 = (1 � Vvoid) � Vclay. Parameter k2 will be chosen to 0.8 based
on qualitative observations since no quantitative experimental
measurement are available for this parameter. The voids volume
fraction will here be chosen as 10% and 15% for 2D RVE generations.
Note that practically a higher void volume fraction would be met in

real 3D experimental specimens. The volume fraction of solid phase
below 2 lm Vc is measured to be 16% from the size distribution.

Based on this data, the microstructural RVEs depicted in Fig. 28
have been generated. Note that these are only a few of the RVEs
which could be generated since the generation time is rather short,
on the order of 10 s on a regular laptop. Approximately 30% of this
time is required to generate level set for void inclusions needed for
a subsequent X-FEM computation on the RVE. For explicit FEM dis-
cretisation, as explained in Section 4.3, the generation time can be
reduced to around 6–7 s.

As can be seen from Fig. 27, all the generated RVE present a par-
ticle size distribution in very good agreement with the input exper-
imental distributions.

It should be mentioned that in real specimen of such a soil, the
measured fraction of void is composed of macro-voids between
large particles, as those generated here and also micro-voids at
the clay minerals scale that should be added in the clay fraction
to have a complete representation of the material. In the generated
RVE presented here, only the macro-voids have been taken into ac-
count for simplicity, this is another reason why the real void vol-
ume fraction is higher in real specimens. If the micro/macro-void
ratio is known (e.g. by mercury absorption measurements), it could
straightforwardly be used in the presented generation process,
considering the clay/micro-void mix as a continuous medium. In
a multi-scale physical modeling context, this is a consistent ap-
proach since it is cumbersome to determine experimentally the
needed properties (mechanical or other) of isolated clay without
any void (and it probably would not make any sense).

5.2. Bimodal polycrystalline microstructures

A large number of recent works in the literature is devoted to
the study of the mechanical properties of single phase or multi-
phase polycrystalline aggregates, see [64,6,1,81,54,61,43,62] for a
non-exhaustive list of contributions. Various mechanical models
are used for such studies such as crystal plasticity formulations
or size dependent (gradient) plasticity. A significant portion of
these papers makes use of computational studies to investigate
the macroscopic effects of microstructural properties. A commonly

Fig. 26. Bridge and coating for various volume fractions and a bridge/fabric ratios reported in Table 4.

Fig. 27. Particles size distribution for the MLD soil. The 0.16 fraction not shown in
the graph are the clay minerals, assumed to be a continuous medium. (a) Black
curve, measured on a real specimen used for inputs [16]. (b) Blue curves,
distributions of 45 generated RVEs of size 0.48 mm � 0.48 mm. Examples of such
RVEs are depicted in Fig. 28. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 4
Parameters for RVE in Fig. 26.

RVE (a) (b) (c) (d) (e) (f)

k1
0.15 0.05 0.15 0.05 0.15 0.05

k2
1 1 0.75 0.75 0.5 0.5
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faced issue by such contributions is the generation of RVEs which
have to be used in computational homogenization. Various strate-
gies have been used to generate such polycrystalline microstruc-
tures, among which the Voronoï tessellation based methods was
one of the most effective.

Size effects in polycrystals have been a topic of intensive
computational investigations over the last decade based on size-
dependent models to describe the yield stress increase as well as
the decrease of ductility with grain size refinement in the submi-
cronic range [3,43]. Experimental efforts now focus on processing
routes which allow increasing yield stresses while restoring ductil-
ity. One of the routes to reach this objective is to produce metals
with bimodal grain size distribution, i.e. containing large grains
embedded in a continuous phase of submicronic grains [89]. Such
an improvement can be reproduced qualitatively using size depen-
dent plasticity models as shown in [43] on a single RVE computa-
tion. However, the generation of polycrystalline aggregates with
controlled bimodal grain size distribution is a complex task, and
such computations should theoretically be reproduced for several
randomly generated RVEs.

For the sake of illustration, the morphing strategy presented in
Section 4 will now be applied to such a RVE generation. Focusing
on the experimental example given in [89], a RVE for bimodal poly-
crystalline microstructure will be generated here. The grain size
distribution is essentially bimodal, with a population of large
grains with a size around 1700 nm in a continuous phase of fine
grains with a size around 190 nm. The large grains represent
around 25% of the volume fraction. The methodology presented
in Section 4.1 is used to produce the polycrystalline pattern. In or-
der to precisely control the size and volume fraction of grains, a
specific procedure is followed.

The larger grains are generated first by LS-RSA giving them di-
rectly their final shape, size and volume fraction. This generation
is governed without distance criterion in order to have a com-
pletely random distribution and enforcing periodicity. Then the
distribution of small grains is obtained again with LS-RSA inclusion
addition but giving them a size which depends on average inter-
inclusion distances. This distance is finally decreased by selective
morphing as explained in Section 4.1 on the latter population in or-
der to keep volume fraction, size and shape of large grains un-
changed. This operation fills all the remaining space with small
grains. If the initial inter-inclusion distances (explicitly controlled
by the LS finder) were properly deduced to the targeted size for

small grains at the sequential addition step of the second popula-
tion, an exact experimental size distribution could be respected.
The shape of grain boundaries depends strongly on the inclusion
shape before the selective morphing step and can thus also be con-
trolled as circular inclusions generate almost straight boundaries,
while irregular polygons lead to distorted boundaries.

Fig. 29 depicts RVEs generated for two different variabilities on
size distribution of the small grains population. This variability can
actually be trivially controlled at the LS-RSA stage since the LS fin-
der can easily perform a uniform inter-inclusion distance distribu-
tion, the selective morphing then adds the same constant to each
inclusion size.

5.3. Natural rocks masonry

As a third example, RVEs for irregular masonry are now gener-
ated. The mechanical behavior of masonry has been investigated
through computational homogenization techniques in several pub-
lications, both at the material level [48,44] and at the structural scale
[45]. Most of the available contributions however relate to the case
of periodic masonry in which constituents are stacked in a regular
fashion. Recently a number of contributions tackled the problem
of homogenization for irregular stone masonry, for which the size
of the RVE becomes a crucial issue [49,50]. Other works were related
to methodologies allowing the identification of statistically equiva-
lent periodic unit cells for such disordered materials [94,69,37].

The generation of random disordered microstructural RVEs for
such a material is therefore of prime importance. The presented le-
vel set based tools can efficiently be used for a fast generation of
such RVEs for natural rock masonry. First, elongated and oriented
inclusions are generated with LS-RSA in order to define a basis
for the random alignment of blocks. Then, the function defined
by relation (12) is used in order to obtain a quasi constant thick-
ness joint between blocks. RVEs generated with this procedure
are represented in Fig. 30.

The generation of such RVEs is almost computationally free
(generation time lower than 5 s), and can be used to generate a
large range of patterns by modifying the starting distribution or
the used function. In addition, a specialized LS finder can be formu-
lated to offer more possibilities for specific block organizations.
Moreover, if observations suggest it, a fraction of existing open
cracks in mortar joints can easily be added using the function illus-
trated in Fig. 24f.

Fig. 28. Example of soil RVEs generated with a void fraction of (left) 10% and (right) 15%. Dark blue: inert grains, red: clay matrix, white: voids. Those RVEs were produced
with a double precision grid for level set functions evaluations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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6. Discussion

A number of points can be discussed concerning the proposed
RVE generation framework.

First, it is emphasized that all the presented tools may easily be
extended for 3D RVE generation. The level set concepts are indeed
already well developed and used for 3D modeling issues as per-
formed in [51,85]. The computational cost will of course inevitably
increase for the case of 3D microstructures. However, the benefit
with respect to a pure RSA based generation could be even more
important [25]. Furthermore, other level set based operations pre-
sented in Section 4 may be used to implicitly handle complex and
intricate situations in 3D RVEs which can become cumbersome
when considering explicit surfaces definitions for operations such
as bridging and/or coating formation.

Second, the level set enhanced RVE generation may be viewed as
an ideal pre-processing tool for level set XFEM discretisation tech-
niques and FFT-based homogenization algorithms. XFEM method-
ologies are now available for taking into account implicitly
material boundaries independently from the mesh as proposed in
[80,51,18,23,24,85]. The level set functions required in those meth-
ods are indeed a by-product of the present generation tool. FFT-
based homogenization methods are also available to evaluate over-
all properties of heterogeneous materials using images of their
microstructures as the main input of the model [52,53,46]. Such
images are used to attribute material properties to voxels and equa-
tions of the homogenization problem are solved in a Fourier space
obtained by FFT of a specific stress field (which is a function of
the image used as material map). The RVE generation methodology
proposed in the paper can indeed be directly adapted to produce
maps of material properties instead of discretization of interfaces
(needed for FEM meshes) or level set functions of interfaces

(needed for XFEM). As another potential benefit, efforts have been
made to develop tools for meshing implicit geometries defined by
level set functions as presented in [58]. This technique may be a
natural way to generate fast and very accurate meshes from the le-
vel set functions implicitly defining the generated RVE features.

It should be mentioned that a current limitation of the frame-
work is, at the LS-RSA stage, related to the definition of an equiva-
lent inclusion size based on the SEC of the inclusion shape when
selecting potential positions to place it in the RVE. This choice im-
plies that a population consisting of mainly elongated inclusions
would lead to poor packing densities as the largest dimension of
such an inclusion would be used to identify its potential position
in the RVE. This drawbacks actually holds for any shape needing
a particular rotation to be optimally placed beside the existing
inclusions. The same drawback is present if highly non convex
inclusion imbrications need to be considered. Three potential rem-
edies could be investigated to adapt the proposed tools to this type
of inclusions:

� Classical methods. Any classical method of the DEM family can
be used to end the generation process.
� Purely level set methods. An ‘‘orientation sensitive LS finder’’

could be formulated using potentially three principles. The first
may use the quantity @LS1(x)/@x to know the direction in which
the nearest inclusion from x is to be found. This information
could then be used to give a particular orientation to the new
inclusion with the best match with existing inclusions position.
The second possibility uses straight segments of iso-w curves of
LS1(x) to directly choose elongated free space of width w. Finally
a third possibility applying only for globally oriented or dis-
torted RVEs. Any transformation of coordinates can be used
between the level set space and the RVE space, and the inclusion

Fig. 29. Example of bimodal polycrystalline RVE generated, fraction of large grains: (a) 24.8% and (b) 26.1%. Those RVEs were produced with a double precision grid for level
set functions evaluations.
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shape can be determined independently in either space. This
could result in achieving dense packing of elongated and glob-
ally orientated particles.
� Intermediate methods. Value of LS2(x) at any x on LS1(x) = 0 may

be used to construct a force field acting on inclusions in the RVE
depending on local inclusion inter-distances. This information
could subsequently be used to steer a computationally cheap
DEM manipulation in order to increase the density or modify
the RVE.

Finally, it is emphasized that the present method is made of
independent tools, and can be used in correlation with other meth-
ods. More particularly, the LS-RSA inclusion distribution generator,
although being more efficient than a classical RSA, may be com-
pleted by a suited DEM simulation in order to generate RVEs with
given microstructural features resulting from a dynamic process or
even to simply increase the density of the packing. However, it is
believed that the presented framework has a clear added value in
the following four types of situations.

� When coupled with a XFEM mechanical implementation, it may
be combined as a ‘‘all in one’’ framework for broad multi-scale
studies, allowing the generation of large numbers of RVEs with
all parametric variations desired, directly usable in a mechani-
cal or coupled computation. Since XFEM based techniques using
level set descriptions allow uncoupling the discretisation from
the material boundaries, such a combined framework would
allow reducing dramatically the analyst time required for such
investigations.

� The LS-RSA tool can also be used in stand-alone, as a pre-pro-
cessing tool for DEM-based methods, since it offers packing pos-
sibilities that are out of reach for classical RSA approaches.
� For more specific arrangements, such as very close packing of

rocks or polycrystalline microstructures, the proposed method-
ology brings an alternative RVE generation tool that broadens
the scope of RVEs that can be generated, in particular with a
strong control on the size distribution of inclusions.
� Finally, the proposed method allows the incorporation of a third

specific (bridging) phases in the RVE for specific fabric
reproduction.

7. Conclusion and future prospects

A new RVE generation tool was presented based on the concept
of level set. The proposed methodology rests on an extension of
classical Random Sequential Addition approaches combined with
a level set function control on the random addition process. Based
on level set functions used as distance indicators, the random addi-
tion process of RSA can be dramatically optimized. In particular,
the exponentially increasing computational cost of the addition
process is turned into a cost that linearly depends on the number
of inclusions to add in the RVE generation. Nearest neighbor and
second nearest neighbor conditions on the addition process can
be performed at no extra additional cost.

For complex microstructures generation, the level set control
allows in addition considering modifications in the inclusion
shapes (morphing) in an efficient way, which permits a further in-
crease of the density of the obtained packings. The level set formal-

Fig. 30. Generation of old masonry RVEs (top-left) Initial elongated and oriented inclusion distribution. LS1(x) � LS2(x). c shown in background is used to extract curves for
natural rocks geometry. (top right) Extracted geometry with (12), c = 1.2 and t = 0.005. (Bottom) Random generation of other periodic RVEs.
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ism was also shown to allow the incorporation of a third bridging
phase between the added inclusions, enabling the generation of 3
phases systems, a result difficult to achieve with concurrent
methods.

The performance of the proposed framework was assessed,
showing that complex RVEs can be obtained very efficiently with
high packing densities, especially with broad size distributions.
Its application was illustrated on various examples of different
physical natures, e.g. computational generation of microstructures
for soils incorporating particles and a bridging clay phase, for poly-
crystals with bimodal grain size distributions, and for masonry. In
spite of this variety of applications, it is emphasized that the re-
lated RVEs are all generated within the proposed unified level set
controlled framework.

Some points can be pointed as future desirable work. First, the
incorporation of elongated or strongly non convex inclusions could
be considered, as mentioned in the discussion section. Next, the
presented principles may be straightforwardly extended to gener-
ate 3D RVEs which may be needed in applications for the purpose
of experimental comparisons. The exploitation of the generated
RVEs in mechanical computations coupled to XFEM discretisation
techniques or FFT-based homogenization methods is a next devel-
opment step as well, in situations in which the classical FEM ap-
proach is subjected to major difficulties at the meshing stage.
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Appendix A. Level set for 2D polygonal interfaces

The distance from a point to a polygon (convex or not) is the
minimum of distances from this point to each vertices and edges
of the polygon. We denote P a set of j point in the RVE for which
a value of the polygon Level Set has to be evaluated and A the
set of vertices vi of the polygon, i listing vertices in clockwise order.
Sets B and C are constructed from A such as the first vertex in A be-
come the last in B, and the last in A become the first in C. Hence, for
a given i, Ai is the vertex i, Bi is the next one in clockwise order and
Ci is the previous one in clockwise order. See Fig. 31a for an exam-
ple in which Ai, Bi and Ci are illustrated for i = 2 and 5. Under such
condition, the following relations can be written:

The distance between each Pj and each Ai is given by

DVij ¼ kxPj � xAik: ðA:1Þ

Each edge AiBi direction is defined by (see Fig. 31a)

Ei ¼ ðxBi � xAiÞ=kxBi � xAik: ðA:2Þ

The distance between each Pj and each AiBi edge is given by (see
Fig. 31b)

DEij ¼ kEi � ðxPj � xBiÞk: ðA:3Þ

But is restricted to the area defined by (see Fig. 31b)

0 < PSij ¼ kEi � ðxPj � xBiÞk > kxBi � xAik: ðA:4Þ

Finally, the concavity of each vertices Ai is given by (see Fig. 31c)

Si ¼ sign½ðxBi � xAiÞ � ðxAi � xCiÞ� ðA:5Þ

The algorithm to evaluate LS(Pj) is the following:
� Compute DVij and DEij.
� For each {i, j} which does not satisfy relation (A.4), replace DEij

by +1.
� For each j choose the minimum of (DVij [ DEij).
� Set the sign for each retained value, values coming from DVij are

negatives if corresponding Si are negatives and values coming
from DEij are negative if the z component of the corresponding
vector product in the relation (A.3) are negative.
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