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Abstract 
The use of granular jamming is proposed for designing structures with tunable rigidity of their tools (with the ability of 
being flexible devices for shaping and deformation but rigid for shape-locking and force transmission). The granular jam-
ming consists in modifying the apparent rigidity of a structure by controlling the vacuum in a membrane filled with granular 
material. When the difference of pressure is low, the grains are free to move with respect to each other and the structure is 
flexible. When the vacuum in the membrane is increased, the grains are blocked and the structure is more rigid. Different 
mechanical characterizations of the granular jamming have been performed (triaxial compression and tension and cantilever 
beam bending tests) for different glass bead sizes ranging between 100 μm and 1 mm (used as granular material) at different 
vacuum levels (between 0 kPa and 90 kPa ). The grain size slightly influences the stiffness while the pressure difference is the 
main parameter to tune the stiffness of the structure. Based on these experiments, analytical models have been developed and 
validated. The tension characteristics can be directly deduced from the compression behavior and the bending modulus can 
be obtained by a combination of the tension and compression moduli. The proposed analytical models present the advantage 
of a simple formulation and are suitable for estimating the performance of other structures based on the granular jamming. 
The models can estimate and predict satisfactorily the results of granular jamming and can be used for designing mechanical 
structures based on this mechanism.
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1 Introduction

Currently, in the medical field, the clinicians are facing a 
problem about the stiffness of their tools. They need them 
to be as flexible as possible to travel in the human anatomy 
without damaging the tissues or causing pain to the patient, 
but once in position, they need them to be rigid to support 
additional tools or to perform their tasks (e.g. gripping, 
suturing, puncturing) [1, 2]. Therefore, the clinicians require 

tunable stiffness tools. Furthermore, decreased dimensions 
are preferred to reduce the invasiveness of the medical 
devices [3]. As reduced dimensions are leading to reduced 
flexural stiffness EI (given by the product of the elastic mod-
ulus E and the second moment of area I), a control on the 
equivalent elastic modulus could enhance the tools. Such 
dual requirements on the stiffness of structures are not only 
present in the medical field, but can be found in, among oth-
ers, robotics, aerospace engineering or vibration damping [2, 
4–6]. For example, robotic arms with controllable stiffness 
abilities present the advantages of soft robots with numer-
ous degrees of freedom and safe environment interactions 
in their flexible state, and can develop larger level of forces 
and accurate motion in their rigid state [7–9].

Many mechanisms have been described in the literature 
for controlling the stiffness (elastic properties) of structures 
[4, 10]. The solutions based on the change in mechanical 
properties of materials by controlling their temperature lead 
to very large stiffness change, but the actuation time mainly 
depends on the design and the amount of material to be 
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heated (and can be long). Solutions based on the locking of 
structural elements are promising as the stiffness change is 
very fast ( ≤ 0.1 s ) and can be effective in the entire structure 
at the same time [2]. One of these promising solutions is 
the granular jamming [11]. This mechanism has been used 
for developing universal grippers, as it can be deformed 
around the object to grasp and become rigid again for lift-
ing [12–15].

1.1  Working principle

The samples are composed of a flexible and airtight mem-
brane filled with a specific granular material as shown in 
Fig. 1. The stiffness of the sample is related to the pressure 
difference �P across the membrane given by

where P2 is the pressure corresponding to the surrounding 
environment and P1 is the pressure measured inside the sam-
ple (under the membrane).

W h e n  t h e  p r e s s u r e  d i f fe r e n c e  i s  l ow 
( �P ≈ 0 ⟹ P1 ≈ P2 , the pressure in the sample is close to 
the pressure of the surrounding environment), the grains are 
free to move with respect to each other. In this configuration, 
the system is in its flexible state, as it presents a lower resist-
ance to deformation (lower stiffness) [12]. When the pres-
sure difference is increased, the system is more rigid as the 
grains start to be locked to each other. In this new configura-
tion, the sample presents a larger resistance to deformation 
as the internal reorganization of the grains requires a larger 
force. The pressure difference is obtained by vacuuming the 
specimen. Therefore, a filter is required to avoid sucking the 
granular material in the pump.

The granular jamming principle based on air suction is 
suitable for medical applications as in case of failure of the 
vacuum source, the system will remain in its flexible state 
(as the pressure difference �P is low). It is therefore possible 
to easily remove the device in case of problem during the 

(1)�P = P2 − P1,

intervention. The time required to switch from one state to 
another will depend on the size of the sample and the flow 
rate of the vacuum pump, but for small size samples, the 
duration is negligible and an activation time of the order of 
0.1 s is easily reached.

1.2  Goal of the research

The main goal of this research is to provide a deep charac-
terization of the granular jamming and an analytical model 
for evaluating and estimating the performances of the stiff-
ness change of this mechanism. In the literature, the granu-
lar jamming is mainly characterized in bending (cantilever 
beam bending) [7, 16], but mostly in terms of forces and 
deflections [17–19]. A stress-strain approach is followed in 
this work for more general interpretation [20]. Furthermore, 
compression and tension tests are proposed to characterize 
and compare the performance of the granular jamming under 
different loading conditions and to understand and model 
the behavior in bending corresponding to a loading closer 
to numerous mechanical applications. The models proposed 
in this work are not targeting specific applications, but are 
intended to better estimate the performance of the granu-
lar jamming for general mechanical structures. Mechanical 
characterization of granular materials is usually done in 

Fig. 1  Granular jamming enables the change in stiffness by modify-
ing the pressure difference �P = P

2
− P

1
 , with P

2
 the surrounding 

pressure and P
1
 the pressure in the sample; the sample is composed of 

the membrane (1), the granular material (2) and the filter (3), with D 
the sample diameter and L the sample length

Table 1  The glass beads from Sigmund Lindner GmbH are divided in 
five classes with respect to their range of diameters

a  The roundness is defined as the ratio of the width (smallest dimen-
sion in the cross-section) over the length (largest dimension in the 
cross-section)

Class Diameters range Mean diameter Roundnessa

A 0.10–0.20 mm d̄ = 0.17mm ≥ 0.89

B 0.20–0.30 mm d̄ = 0.25mm ≥ 0.89

C 0.30–0.40 mm d̄ = 0.34mm ≥ 0.89

D 0.50–0.75 mm d̄ = 0.68mm ≥ 0.95

E 0.75–1.00 mm d̄ = 0.94mm ≥ 0.95
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compression [12, 20] while most applications of granular 
materials in robotic structures rather rely on bending [10]. 
Therefore, this paper proposes a model which links both 
loading conditions.

2  Materials

The granular materials used in this work are grinding materi-
als (glass beads) from Sigmund Lindner GmbH. These beads 
are polydisperse, polished and made of soda lime glass with 
a specific weight of 2.5 kgL−1 . The elastic modulus of these 
glass beads is Eg = 63GPa . Five different sets of glass beads 
with submillimeter diameters are studied. The influence of 
other granular material properties is proposed in [20]. Their 
geometrical characteristics are given in Table 1.

In this work, a vacuum pump VP4300 from Easy Com-
posites Ltd is used. This pump has an exhaust flow of 
430 L min−1 making the state transition from flexible to rigid 
very fast for small samples. The lowest pressure achievable 
by the pump is 3.25 Pa (99.995% of the absolute vacuum). 
An IRV20 vacuum regulator valve from SMC Pneumatics 
is used to set the desired vacuum level (between 0 kPa and 
90 kPa ). The filter is made of cotton wool ensuring the air 
to pass through but blocking the particles. The advantage 
of this filter is that it can be adjusted to any shape and size 
and even placed in very small samples. If the filters are too 
thick or particles are blocking the airflow, the vacuum cannot 
progress through the sample and the change in stiffness will 
not be properly observed.

3  Mechanical characterization

The granular jamming solution can be characterized by dif-
ferent mechanical testing methods. As a dry granular mate-
rial cannot withstand large forces or maintain a given shape 

by itself, it has to be placed in a membrane. The samples 
for the different mechanical tests are cylinders (for axisym-
metry and homogeneous distribution of the pressure differ-
ence �P ). The mechanical tests are performed in order to 
characterize the samples with several granular materials for 
different pressure differences. First, triaxial compression 
tests, routinely used in geomechanics (mainly for character-
izing soils under a defined confinement [21]), are performed 
to characterize the granular material in shearing conditions 
[22]. Usually, the confinement is set by pressurizing the sur-
rounding environment of the sample, but in this study, the 
sample is vacuumed. Then, tensile tests are performed to 
characterize the behavior of the samples in traction. Tensile 
tests are routinely performed by mechanical and material 
engineers to characterize a material. In this work, triaxial 
tensile tests are performed as the pressure difference �P 
is acting as a confinement controlling the radial stress (by 
vacuuming the samples). Finally, bending tests are per-
formed to characterize the material in a configuration and in 
loading conditions closer to the final application [22] (with 
vacuumed samples). The different triaxial testing set-ups are 

Fig. 2  Triaxial set-ups with the load cell (1), mechanical connection 
between loading frame and specimen (2), the triaxial test specimen 
(3), the cotton filter (4), sealing O-rings (5) and the vacuum regulator 
valve (6); D is the sample diameter and L the sample length, while �a 
is the axial stress and �r the radial stress

Fig. 3  Deviatoric stress evolu-
tion for new equivalent strain 
with cycling procedure for class 
E glass beads at �P = 75 kPa 
where the failure is measured at 
qu,c ≈ 162 kPa ; the new strain 
� is set to zero after the cycles 
of loading-unloading while the 
initial strain �∗ actually starts 
at the beginning of the triaxial 
compression test; the elastic 
modulus is stabilizing after 10 
cycles
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illustrated in Fig. 2. Each test, with each loading condition, 
is repeated three times for statistical analysis.

A specific cycling procedure is applied to the mechanical 
tests. The cycling method consists in starting with loading-
unloading cycles (ten times) in order to reset the initial con-
ditioning of the granular material in the samples. Such a 
procedure is illustrated in Fig. 3 and showed encouraging 
results about the repeatability of triaxial compression test-
ing of dry granular materials [20]. The elastic modulus is 
stabilizing after ten cycles, therefore for decreased duration 
of the tests, this number of cycles is used.

In order to remove the influence of the geometry and 
the dimensions of the samples, a stress-strain analysis is 
performed instead of the force-displacement characteris-
tic directly obtained from the experiments. In this work, 
the granular jamming is modeled as an isotropic material. 
Instead of considering independently the grains forming the 
structure (as it has been done in a previous work [23]), this 
solution is studied as an equivalent homogeneous material 
with similar macroscopic characteristics to apply the classi-
cal relationships developed in beam theory.

The sample is cylindrical for axisymmetric analysis, for 
a proper confinement and for easy loading conditions. The 
sample has a length L at least (and approximately) twice its 
diameter D. This ratio is used to ensure a proper observa-
tion of shearing [24]. Due to the shape of the sample, the 
principal stresses can be controlled in the axial and radial 
directions. The radial stress is directly set by the confinement 
while the axial stress is initially set by the confinement, but 
is then increased or decreased and measured during the axial 
loading or unloading. The sample is therefore placed under a 
loading frame equipped with an axial force sensor (LS1 uni-
versal testing machine from Lloyd Instrument in this work). 
The confinement of the sample has been obtained by con-
necting the sample to a vacuum pump (through a vacuum 
regulator valve) to directly set the confining pressure of the 
sample. The vacuum pump is working during the entire test 
to ensure a constant difference of pressure.

The radial stress �r is set by the confining pressure �P , 
fixed by a pressure controller and defined for each test. The 
longitudinal or axial stress �a is equal to the sum of the con-
fining pressure �P and the longitudinal stress applied during 
the loading or unloading. The deviatoric stress q is defined 
in Eq. 2 as the difference between the axial stress �a and 
the radial stress �r . It corresponds to the stress applied by 
the loading frame on the sample and is directly calculated 
from the applied load. The major principal stress �1 is the 
normal stress with the largest value (corresponding to the 
axial stress in compression and to the radial stress in ten-
sion), while the minor principal stress �3 is the normal stress 
with the lowest value (corresponding to the radial stress in 
compression and to the axial stress in tension).

with the subscripts c and t for the compression and tension 
loading respectively.

Another interesting scalar is the mean stress p defined in 
Eq. 3 as the average of the stresses acting on the sample [25, 
26]. At low deviatoric stress q ( �a ≈ �r , �1 ≈ �3 ), the mean 
stress p is equivalent to the radial stress (confining pressure) 
p ≈ �r = �P.

with the subscripts c and t for the compression and tension 
loading respectively.

The triaxial tests are used to characterize the shearing 
properties of the samples. The Mohr-Coulomb failure cri-
terion expressed by Eq. 4 is used in this work to evaluate 
the shearing strength of the materials. It gives a linear rela-
tionship between the ultimate values ( �N , �max ). In the (p-q) 
plane, the criterion can be expressed as in Eq. 5. The advan-
tage of the latter expression is that the failure criterion is 
directly obtained by a linear regression of (p,qu ) couples, 
while in the ( � − � ) plane, the best tangent to the Mohr cir-
cles has to be evaluated [27].

with �max , the ultimate shear stress, c the cohesion, �N the 
applied normal stress and � the friction angle.

with qu the ultimate deviatoric stress, k the intercept, M the 
slope and p the mean stress.

As this work focuses on dry glass beads, the cohesion is 
negligible ( c ≈ 0 and k ≈ 0 ). Therefore, the friction angle 
� is characterizing the failure of the granular material. The 
M parameter is given in Eq. 6 for compression and tension 
testing.

with the subscripts c and t for the compression and tension 
loading respectively.

3.1  Triaxial compression

The membrane used for the triaxial compression tests is made 
of latex (with an elastic modulus E = 1.11MPa ± 0.03MPa ). 
This commercially available membrane with a thickness 
of 97 μm in average is used to encapsulate the granular 

(2)
{

qc = �a − �r = �1 − �3
qt = �a − �r = �3 − �1

,

(3)p =
�a + 2�r

3
⟹

{
pc =

�1+2�3

3
=

qc+3�3

3

pt =
�3+2�1

3
=

−∣qt ∣+3�1

3

,

(4)�max = c + �N tan�,

(5)qu = k +Mp,

(6)Mc =
qu,c

pc
=

6 sin�c

3 − sin�c

Mt =
qu,t

pt
=

−6 sin�t

3 + sin�t

,
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material into a tubular shape with a diameter D ≈ 36mm . 
A two-part cylindrical mold is used to ensure the shape and 
dimensions of the sample, the granular material is poured in 
the membrane, the sample is sealed with O-rings and after 
vacuuming the sample (with a VP4300 vacuum pump) to 
the desired confining pressure (thanks to the vacuum regu-
lator), the sample is measured and placed under the load-
ing frame for starting the loading procedure. The samples 
have a length L = 78.73mm ± 1.58mm and a diameter 
D = 35.81mm ± 0.50mm . A 1 kN load cell (with a resolu-
tion of ±0.5% from 1% to 100% of the load cell value) has 
been used, as the compression forces measured during the 
validation tests were in this range.

The compression elastic modulus Ec is calculated from 
the initial slope of the stress-strain curve (in a linear region 
from 0% up to 0.4% of strain). The slope is calculated from 
the linear regression of the extracted region. The compres-
sion elastic modulus Ec is calculated on the last loading of 
the compression test. As the compression elastic modulus 
Ec is computed at low axial stress (and low strain), the mean 
stress p corresponds to the confining pressure �P . The ulti-
mate stress qu,c is calculated as an average around the highest 
stress measured. Averaging over a small displacement region 
( ±25 μm ) allows for removing some noise in the measure-
ment of the force and the peaks due to the stick-slip behavior 
of the failure.

3.2  Triaxial tension

The triaxial tensile testing is performed on cylindrical 
samples. Special caps have been designed and 3D printed 
to be hold by the grippers of the LS1 universal testing 
machine. The membranes used for the tensile tests are 
made of natural rubber (latex, with an elastic modulus 
E = 1.28MPa ± 0.01MPa and a thickness of 363 μm in aver-
age). Several diameters of samples have been tested and com-
pared (with approximate diameters D ≈ 10 − 15 − 20mm 
and approximate lengths L ≈ 25 − 30 − 40mm ). The speed 
of the tests is constant and set at 5 mmmin. A 250N load cell 

(with a resolution of ±0.5% from 1% to 100% of the load cell 
value) has been used, as the tensile forces measured during 
the validation tests were in this range.

In order to remove the influence of the membrane, tensile 
tests with a confining pressure �P = 0 kPa are performed. 
The three repetitions of these tests are averaged and removed 
from all the other tests with �P ≥ 0 kPa for removing the 
influence of the membrane and the deformation of the sam-
ple during the loading. The tension elastic modulus Et is 
calculated from the initial slope of the stress-strain curve 
(in a linear region from 0% up to 0.4% of strain), similarly 
as for the compression tests.

3.3  Cantilever beam bending

The membrane used for these tests is the same as for the tri-
axial tension tests. The outputs of the bending tests are bend-
ing forces Fb and displacements �b that are converted into 
bending stresses and strains from Eq. 7 in order to remove 
the influence of the geometry and of the dimensions of the 
samples. It is important to note that the measured bending 
force is not taking the confinement into account (as in the 
case of compression and tensile tests). The deviatoric bend-
ing stress qb corresponds to the pure bending stress due to 
the moment of force. The total axial stress �a is given by 
the sum of the deviatoric bending stress and the confining 
pressure (compression stress). In this work, only the pure 
bending stress is considered (the initial state being the con-
fined state of the sample). Therefore, all the classical beam 
theory formulae can be applied to the deviatoric stress qb . A 
10 N load cell (with a resolution of ±0.5% from 1% to 100% 
of the load cell value) has been used, as the bending forces 
measured during the validation tests were in this range.

with Mb the bending moment, ymax the maximal distance 
between the neutral axis and an external fiber, I the second 
moment of area of the structure, Eb the equivalent bending 

(7)qb = Mb

ymax

I
= Fb

4L

�R3
�b =

qb

Eb

= �b
3R

L2
,

Fig. 4  Elastic moduli in com-
pression, tension ( D ≈ 15mm ) 
and bending for different glass 
beads and multiple confine-
ments with a negligible impact 
of the class of the glass beads 
on the stiffness as the stiffness 
change is mainly due to the 
confining pressure
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elastic modulus, Fb the bending force, L the structure length 
(between the clamping and the point of application of the 
force) and �b the deflection of the structure where the force 
is measured.

A homogeneous and linear material following Hooke’s 
law is assumed for the following relationships: qb = Eb�b 
and qb = (Mbymax)∕I . The bending stress is calculated at the 
point where the moment is maximum (critical point in the 
structure). For the cantilever bending, the moment of force 
is maximum at the clamping, giving Mb = FbL.

The bending elastic modulus Eb is directly obtained from 
Eq. 8 from the experimental results at a given �P . It can also 
be calculated as the initial slope of the stress-strain curve 
between � = 0% and � = 0.8% . The ultimate stress in bend-
ing qu,b corresponds to the maximum stress reached during 
a bending test.

4  Experimental results

The influence of the confining pressure on the elastic mod-
uli in compression, tension and bending is shown in Fig. 4. 
The influence of the grain size is negligible with respect to 
the confining pressure, while for increased �P , the moduli 
are increasing. The pressure difference �P is the main fac-
tor driving the elastic properties. A linear evolution can 
be assumed for the range of pressures studied in this work 
(between �P = 0 kPa and �P = 90 kPa ), as expressed in 
Eqs. 9 to 11.

(8)Eb =
�Fb

��b

L3

3I
=

�Fb

��b

4L3

3�R4

(9)Ec[MPa] =9.68 − 0.01d̄[μm] + 0.59𝛥P[kPa],

(10)Et[MPa] =0.50 − 0.001d̄[μm] + 0.12𝛥P[kPa],

(11)Eb[MPa] =1.06 − 0.003d̄[μm] + 0.23𝛥P[kPa],

with d̄ the mean diameter of the glass beads.
Figure 5 shows the influence of the confining pressure 

on the ultimate compression deviatoric stress qu,c . Pre-
senting the ultimate deviatoric stress qu,c as a function of 
the mean stress p is suitable to represent the Mohr-Cou-
lomb failure criterion. The slope of the linear regression 
through the ultimate deviatoric stresses can be translated 
into friction angle � and the intercept can give the cohe-
sion c of the material. As expected, the cohesion is very 
low ( c = 2.21 kPa ± 1.75 kPa , negligible with respect to the 
measured stresses) as the granular materials are dry glass 
beads embedded in a latex membrane. The averaged fric-
tion angle from the Mohr-Coulomb criterion for the dif-
ferent glass beads is �c = 32.3◦ ± 2.7◦ . The calculation of 
the friction angle is performed through a linear regression 
over the experimental data. For this regression, the cohe-
sion c is forced to be null (with q = Mp as fitting model).

By drawing the ultimate deviatoric stress qu,t as a func-
tion of the mean stress p (Fig. 5), the Mohr-Coulomb fail-
ure criterion can be easily obtained by a linear regres-
sion. The size of the grains has a very low influence on 
the failure of the sample. In theory, the cohesion c of dry 
granular material should be null. The values obtained from 
the tensile tests are negligible compared to the measured 
stresses, confirming that without a confinement, the granu-
lar material cannot resist any force. The average of friction 
angles for a sample with D = 14.56mm is �t = 31.6◦ ± 4.1◦ 
which is very similar to the compression results. The cal-
culation of the friction angle is performed through a linear 
regression with a null cohesion over the experimental data.

The linear model given in Eq. 12 for the compression 
strength has been obtained experimentally and verified by 
ANOVA method. This model shows that the larger the glass 
beads, slightly lower will be the compression strength, while 
if the confining pressure is increased, the strength is greatly 
increased.

The tension strength is also following a linear relationship 
with the mean stress p or the confining pressure �P . The 

(12)qu,c[kPa] = 49.48 − 0.05d̄[μm] + 2.66𝛥P[kPa]

Fig. 5  Results of the ultimate deviatoric stresses in compression (left) 
and tension (right) for different glass beads and multiple pressure dif-
ferences; for similar confinement, the compression strength is larger 
than the tension

Fig. 6  Comparison of the tensile strength (left) and the tensile elastic 
modulus (right) for different diameters of samples (examples illus-
trated with the class C glass beads)
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linear model given in Eq. 13 has been obtained experimen-
tally and verified by ANOVA method. As for the compres-
sion, lower sizes of glass beads lead to larger strength of the 
sample while large pressure differences lead to an increase 
in tensile strength.

The diameter of the sample has very low influence on the 
mechanical properties of the granular jamming. Figure 6, 
shows on the left, the Mohr-Coulomb failure criterion in 
the (p-q) plane and on the right, the evolution of the tension 
elastic modulus Et with respect to the confining pressure �P 
for glass beads of the class C. The tension elastic modulus Et 
seems to be slightly larger at higher confining pressures and 
diameters but follows similar relationships. The calculated 
friction angle �t (mean variation of 3.7% and maximum vari-
ation of 7.4%) and cohesion parameter c (mean variation of 
0.67 kPa and maximum variation of 0.88 kPa ) are very simi-
lar for the different diameters of the samples. The diameter 
of the sample has low influence on the mechanical properties 
(elastic characteristics and strength) of the structure.

5  Modeling

Most of the current works perform separated characterizations 
either by compression of the granular material [7, 12, 20], by 
bending of a beam [7, 15, 17, 18, 28] or by a characterization 
of the membrane in tension [29, 30]. A model linking the gran-
ular material compression and a robotic arm bending behavior 
has been initiated in [31] but only the ultimate state could be 
estimated. Most of the bending models rely on finite or dis-
crete elements modeling and not analytical models [5, 22]. In 
this work, the analytical models are proposed for simplified 
modeling of the granular jamming towards various mechanical 
applications. The granular material is modeled as a homogene-
ous material following Hooke’s law. Furthermore, an elastic 
perfectly plastic representation is used. The elastic model is 
developed for the reversible deformation at small strain (for 
which the experimental results are linear and reversible).

5.1  Compression‑tension model

As seen previously, the friction angles in tension and compres-
sion can be assumed to be equal to each other ( �c = �t = � ). 
An experimental linear relationship between the axial stress �a 
and the radial stress �r has been proven in this work and in 
[32]. Therefore, it is possible to combine the compression and 
tension strengths for a given pressure difference �P (Eq. 14, 
obtained from Eqs. 3, 5 and 6) or for a given mean pressure p 
(Eq. 15, obtained from Eqs. 5 and 6). These equations only 

(13)qu,t[kPa] = 2.81 − 0.006d̄[μm] + 0.68𝛥P[kPa]

depend on the material’s characteristics (the friction angle � ). 
The strength in compression will always be larger than the 
strength in tension (in absolute value) because 1−sin(�)

1+sin(�)
≤ 1 for 

� = 0◦ to 90◦.

It is then possible to estimate the tension ultimate strength 
qu,t from the friction angle � and the compression ultimate 
strength qu,c . This correspondence is useful to simplify 
the experimental characterization of a granular material. 
Indeed, as the tension behavior can be deduced from the 
outputs of the compression characterization, tension tests 
are no longer to be performed. The comparison between the 
estimated value and the experimental measurement is illus-
trated in Fig. 7 for a given class of glass bead (class C) to 
simplify the representation. Knowing the friction properties 
of the granular material in compression �c and its strength 
qu,c is sufficient to characterize the failure in tension. As the 
experiments are giving a slight difference in the value of the 
friction angle in compression and in tension, the model is 
however not perfectly fitting the experimental results and a 
negligible absolute error is measured. Notice that a differ-
ence of 1◦ on the friction angle leads to an error smaller than 
4% on the estimation of qu,t , which is acceptable. A linear 
regression crossing the origin of the axes ( q = Mp ) is used.

Another possibility to compare the compression and ten-
sion strengths is to find the corresponding pressure differ-
ence to both situations (in compression and in tension). 

(14)qu,t|�P = − qu,c|�P
1 − sin�

1 + sin�

(15)qu,t|p = − qu,c|p
3 − sin�

3 + sin�

Fig. 7  Tension estimation ( q∗
u,t

 ) from the compression experimental 
results ( qu,c ), compared to the experimental tension results ( qu,t)
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Indeed, for a given pressure difference �P , the strength 
obtained in tension will correspond to the strength in com-
pression at a different pressure difference �Peq . In order to 
find this relationship, the equivalent ultimate strengths in 
tension and compression can be linked. It is possible to find 
the equivalent confining pressure �Peq at which the compres-
sion strength corresponds to the tensile strength at �P 
( qu,c|�Peq

=
|||qu,t

||�P
||| ). The equivalent confining pressure �Peq 

is given in Eq. 16. Notice that �Peq ≤ �P.

The link between the compression and the tension strengths 
has been highlighted. These tests are similar but the applied 
tension axial stress is actually decreasing the confinement 
applied on the sample. As the triaxial compression and ten-
sion tests show similar failure results for a given working 
condition (effective confining pressure), it can be assumed 
that the elastic behavior is also similar. Indeed, a confining 
pressure �P fully characterizes the strength and elastic prop-
erties of a specific granular material, which means that for 
a given working condition, the elastic modulus and strength 
are set.

Using the equivalent confining pressure to verify the cor-
respondence between the compression and the tension tests 
leads to Fig. 8. The theory has been developed based on the 
failure of the samples (and the estimated strength in tension 
is very close to the experimental results), but it is assumed 
that the correspondence can be extended to the elastic mod-
uli. Indeed, a working point corresponds to a specific situ-
ation in which the tension and compression strengths are 
similar. It is therefore possible to estimate the tensile elastic 
modulus Et from the compression elastic modulus Ec , using 
the relationship between the confining pressure �P and the 
equivalent confining pressure �Peq.

(16)�Peq =
1 − sin(�)

1 + sin(�)
�P

Assuming that the compression modulus is following an 
exponential law such as Ec|�P = a(�P)m [26], the tension 
modulus can be obtained by Eq. 17. Fitting the compres-
sion experimental results on this exponential model leads 
to n = 1.2 for class C glass beads. The linear model leads 
to n = 1 , and gives results slightly less close to the experi-
mental data.

with E∗

t
 the estimated tension elastic modulus.

5.2  Bending model

As the granular jamming structures are not always subjected 
to axial loads, but also to bending in various applications, 
a bending model is proposed. The granular jamming can 
be modeled from two different representations (Fig. 9) as 
introduced in [31]. The first corresponds to a single homo-
geneous symmetric material (with an equivalent bending 
modulus Eb ) and is compared to a second representation of a 
single homogeneous bilinear material (with a modulus Et in 
tension and a modulus Ec in compression). The neutral axis 
separates the part in tension and the part in compression (its 
position is obtained from the equilibrium in internal axial 
forces N developed in Eq. 18).

The solution is assumed to present an initial elastic phase 
(linear region in the stress-strain curve) and a plastic zone 
(giving permanent deformation, due to grains reorganiza-
tion). Only the elastic model is developed in this work, 
as the goal of this work is to evaluate the stiffness under 

(17)E∗

t
|�P = Ec|�Peq

=

(
1 − sin(�)

1 + sin(�)

)m

Ec|�P,

(18)N = ∫A

�dA = 0

Fig. 8  The strength can be accurately estimated and the exponential 
model with m = 1.2 gives satisfying results for the elastic modulus 
estimation, while the linear model with m = 1 is giving slightly dif-
ferent results

Fig. 9  Single material representation (left), with symmetric elastic 
properties ( Eb ) and the neutral axis (dashed line) passing through the 
centroid of the disk; single bilinear material representation (right), 
with asymmetric elastic properties ( Et in tension, Ec in compression) 
where the neutral axis (the chord defined by the � angle) delimits a 
smaller region for the compression due to its higher elastic modulus 
( Ec > Et)
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confinement, therefore at low strain levels and under elastic 
deformation.

In compression, it is assumed that the sample withstands 
only compression stress due to the external confinement and 
due to the axial loading. In tension, it is assumed that the 
sample withstands a decreased compression stress due to the 
axial loading opposed to the confining pressure. In bending, 
a simple bending condition is assumed after a compression 
stress is applied due to the confinement. During the bending, 
a part of the sample will undergo tension and the other part 
compression [33].

It is important to note that the experimental compression, 
tensile and bending tests are giving deviatoric stresses q. 
Therefore, the ultimate stress corresponds to the ultimate 
deviatoric strength qu . It is considered that the initial state 
corresponds to the confined state (after applying the con-
fining pressure �P ) for all the mechanical tests. Therefore, 
the compression, tension and bending stresses are deviatoric 
stresses.

A cylindrical sample with a radius R is considered in this 
study. In order to characterize the geometry of the asym-
metric structure, the disk is divided in two circular segments 
defined by the angle � , making a chord corresponding to the 
neutral axis (Fig. 9). The areas of the two sectors are given 
by Eqs. 19 and 20.

where subscripts t and c indicate the sections in tension and 
in compression respectively (corresponding to the smallest 
and the biggest sections in this description of the problem).

The centroids of these sections, with respect to the neu-
tral axis, are given in Eqs. 21 and 22. The position of the 
neutral axis yna with respect to the center of the disk is given 
in Eq. 23.

The second moment of area of the disk Ib , calculated at the 
centroid of the disk, is expressed in Eq. 24. The parallel 
axis theorem is used to compute the second moment of area 
at a distance yna . The second moments of area for the two 
circular segments (in compression I∗

c
 and in tension I∗

t
 ) are 

(19)At =
R2

2

(
2� − � + sin �

)
,

(20)Ac =
R2

2

(
� − sin �

)
,

(21)ỹt
∗
=
4

3

R(sin(�∕2))3

2� − � + sin �
+ R cos(�∕2)

(22)ỹc
∗
= −

4

3

R(sin(�∕2))3

� − sin �
+ R cos(�∕2)

(23)yna = − R cos(�∕2)

calculated with respect to the neutral axis and are expressed 
in Eqs. 25 and 26.

The two representations of the structure should be equiva-
lent in terms of mechanical behavior. Therefore, a relation-
ship between Eb , for the single symmetric material, and ( Ec , 
Et ) for the asymmetric structure is developed for the elastic 
moduli in the elastic region.

As pure bending is considered, no normal stress acts on 
the structure (as the initial condition is set after the confine-
ment which is constant). Therefore, the neutral axis posi-
tion can be found by the equilibrium of normal forces N 
expressed in Eq. 27 [34].

with St and Sc the first moment of area of the part respec-
tively in tension and in compression and � the radius of 
curvature.

Due to the condition on the neutral axis (being the reference 
axis in this elastic model), the part with the highest value of 
elastic modulus will have the smallest area in order to respect 
the equilibrium condition (as seen in Eq. 28). From the experi-
ments, it has been observed that the compression elastic modu-
lus Ec is higher than the tension one Et , therefore the compres-
sion part will be smaller than the tension part.

(24)Ib =
�R4

4

(25)I∗
c
=
R4

24

(
9� − 14 sin � − cos � sin � + 6� cos �

)

(26)I∗
t
=
�R4

4

(
3 + 2 cos �

)
− I∗

c

(27)N = ∫At

�tdA + ∫Ac

�cdA = −
EtSt + EcSc

�
= 0,

Fig. 10  Evolution of the elastic moduli ratio n with respect to the 
angle � in a bilinear disk, illustrated by an example for a ratio of 
n = Ec∕Et = 5 giving � = 141.67

◦
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with ỹ∗ , E, A being respectively the position of the centroid 
with respect to the neutral axis, the elastic modulus and the 
area of the section, with the subscripts t for tension and c 
for compression.

As the neutral axis is the reference axis ( y∗
na

= 0 ), the ratio 
of elastic moduli in compression and tension is linked to the 
positions of the centroids (Eq. 29). There is no analytical solu-
tion for writing the angle � as a function of the elastic moduli 
ratio n (combining Eq. 29 with Eqs. 21 and 22). Therefore, 
the equation is solved numerically and illustrated in Fig. 10. 
Depending on the ratio of elastic moduli n, the angle charac-
terizing the geometry of the bilinear structure can be easily 
defined. For instance, an elastic moduli ratio of n = 5 gives an 
angle of � = 141.67◦.

Finally, in a bilinear structure the curvature � is given by 
Eq. 30 [34]. Therefore, the equivalent bending modulus Eb 
will be given by Eq. 31. As it can be seen, the different second 
moments of area I∗

t
 , I∗

c
 and Ib are proportional to R4 . Therefore, 

the equivalent bending modulus Eb is independent of R and, 
then, of the dimensions of the structure.

with � the curvature, � being the radius of curvature and Eb 
the equivalent bending elastic modulus.

with I and E the second moment of area of a section and 
its corresponding elastic modulus, with subscripts b, t, c 

(28)EtSt + EcSc = Etỹt
∗
At + Ecỹc

∗
Ac = 0,

(29)n =
Ec

Et

= −
ỹt

∗
At

ỹc
∗
Ac

(30)� =
1

�
=

Mb

EtI
∗

t + EcI
∗

c

=
Mb

EbIb
,

(31)Eb =

EtI
∗

t
+ EcI

∗

c

Ib
,

for the section respectively in bending, in tension and in 
compression.

Figure  11 gives the results for the analytical model 
computing Eb as a function of Ec and Et as expressed in 
Eq. 31. The residuals of this model are illustrated for the 
different confining pressures �P and for the different classes 
of glass beads. As it can be seen, the model predicts in a 
very satisfying manner the equivalent elastic modulus in 
bending from the compression and tensile characteriza-
tion. Linear regressions of the evolution of the moduli 
with respect to the pressure difference �P are used in the 
model to have a continuous evaluation. The model for 
class A to C gives slightly over-estimated values while 
the model for class D and E gives slightly under-estimated 
values. The relative error on the linear regression is con-
stant and lower than 10% for all the glass beads while the 
absolute error is slightly increasing with the pressure dif-
ference �P . This relative error corresponds actually to 
the relative error on the slopes of the linear regressions 
(  |(Eb − E∗

b
)∕Eb| = |(��P − �∗�P)∕(��P)| = |(� − �∗

)∕�| 
with � the slope of the linear regression and ∗ indicating 
the estimation). When the experimental points are compared 
with the model, the lower pressure differences give lower 
satisfaction (with a relative error close to 20%). At low �P , 
the elastic modulus is low and therefore a small error on 
its estimation impacts strongly the relative error. The linear 
regression estimation is very satisfying.

5.3  Considering the membrane

In the previous models, only the granular material has been 
studied. As the granular material has to be encapsulated in 
a membrane in order to set the pressure difference, the effect 
of the membrane has to be taken into account for possible 
applications.

Assuming an elastic deformation, with small strains, the 
flexural rigidity of the solution EItot is given by the sum of 
the flexural rigidity of the granular material EIgran and the 
one of the membrane EImem (Eq. 32).

The membrane can be seen as a hollow cylinder with a thick-
ness t and an inner diameter Din . The corresponding outer 
diameter is Dout = Din + 2t . Therefore, the granular material 
corresponds to a solid cylinder with a diameter D = Din.

The experimental tension elastic modulus with a 
confinement �P = 0 kPa gives E0 ≈ 279 kPa for a sam-
ple of diameter D = 14.56mm (averaged for the differ-
ent sizes of glass beads). Calculating the flexural stiff-
ness of the sample (granular material and membrane) 
leads to E0I0 = 615Nmm2 , while the flexural stiffness 
of the membrane alone ( Emem = 1.28MPa for the latex 

(32)EItot = EIgran + EImem

Fig. 11  The estimation of the bending elastic modulus can be 
obtained from a combination of the compression and tension modulus 
( Ec and Et ) and is compared to the experimental results (the model 
gives a proper correspondence between the estimate E∗

b
 and the exper-

imental data Eb)
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membrane) with Din = 14.56mm and Dout = 15.29mm 
gives EmemImem = 610Nmm2 . Therefore, the granular jam-
ming with no confinement has a negligible impact of the 
apparent stiffness of the solution. In the condition of no con-
finement, the elasticity of the structure is actually governed 
by the membrane. The bending experiments confirm this 
model (the elasticity of the structure is due to the membrane 
when the confinement is �P = 0 kPa).

The performance of the granular jamming solution can be 
evaluated based on the absolute flexural rigidities that can 
be achieved and the stiffness change � = EIrig∕EIflex . As the 
flexural rigidities depend on the dimensions of the structure, 
a comparison based on the corresponding equivalent elastic 
modulus E is proposed. Assuming a circular cross-section, 
with a membrane (hollow circular section of dimensions Din 
and Dout = Din + 2t ) surrounding the granular material, the 
rigid state ( 𝛥P > 0 kPa ) is given by the contribution of the 
membrane (subscript ’ mem ’) and of the granular material 
(subscript ’ gran ’) while the flexible state ( �P = 0 kPa ) is 
given by the contribution of the membrane only. The stiff-
ness gain is therefore given in Eq. 33.

In general, the thickness of the membrane is much smaller 
than the inner diameter ( t ≪ Din ), giving therefore Eq. 34.

Knowing the elastic moduli of the different membranes and 
their dimensions, as well as the granular jamming properties 

(33)

� =

EIrig

EIflex
=

EmemImem + EgranIgran

EmemImem

= 1 +
Egran

Emem

D4
in

D4
out

− D4
in

= 1 +
Egran

Emem

1
(

Dout

Din

)4

− 1

(34)� ≈ 1 +
Egran

Emem

Din

8t

of the glass beads, it is possible to calculate the resulting 
elastic moduli in the rigid and flexible states of the granular 
jamming-based structures developed in this work (illustrated 
in Fig. 12). These structures are compared to solutions pro-
posed in the literature. The performance of the proposed 
structures is promising. The granular jamming based on 
parylene and HDPE membranes ( Eparylene = 2856MPa [35], 
EHDPE = 608MPa ± 21MPa ) are projections calculated 
from Eq. 33 (based on the results of class A beads with 
Eb|90kPa = 20.26MPa , because of the limited diameter of 
the membranes). The granular jamming based on latex mem-
branes is given for class C glass beads giving the best results 
in terms of elastic modulus in the rigid state ( �P = 90 kPa 
and Eb|90kPa = 21.86MPa).

As it can be seen in Fig. 12, the range of elastic moduli 
reached in this work is similar to the one given in the litera-
ture but miniaturized solutions are proposed and compared 
to the current state of the art. The effect of the membrane 
is strongly impacting the flexible state of the solutions for 
decreasing diameters. The small-dimension membranes are 
made of thinner but stiffer materials than the latex used for 
larger samples. Therefore, a limitation towards miniaturiza-
tion could be the stiffness of the membrane causing a lim-
ited flexible state at low pressure differences. The stiffness 
change due to the granular material is hidden by the fixed 
and large stiffness of the membrane and the global stiffness 
gain � is low.

For similar membranes (e.g. latex membranes with a 
given thickness), when the diameter decreases, the rigid state 
is slightly decreasing and the flexible state increases further. 
This is due to the fact that the membrane impacts more and 
more the global stiffness as its thickness has a larger impact 
on the second moment of area I compared to the granular 
material elastic modulus E. It is important to note that for 
larger diameters ( D ≥ 15mm ), the rigid state of the latex, 
HDPE and parylene membranes samples are similar but the 
flexible state is much softer for the latex membrane samples, 
offering therefore a larger stiffness gain � . The applications 

Fig. 12  Performance of the 
granular jamming solutions 
in terms of equivalent elastic 
modulus in bending Eb with 
respect to the outer diameter 
D

out
 of the cylindrical structure. 

The upper marker corresponds 
to the rigid state and the lower 
marker (if existing) corresponds 
to the flexible state. The results 
of this work are presented for 
the parylene ( D

out
= 2.0mm ), 

HDPE ( D
out

= 2.7mm ) and 
latex ( D

out
= 5.03 → 19.51mm ) 

membranes
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that can be targeted with miniaturized granular jamming 
structures are therefore also limited due to the small stiff-
ness gain.

5.4  Sensitivity analysis

A sensitivity analysis of the analytical model is illustrated in 
Fig. 13. The tension elastic modulus Et is influencing more 
the bending modulus Eb than the compression modulus Ec . 
This means that a small error on the tension modulus Et 
will have a larger impact on the estimation of the bending 
modulus Eb than an error on the compression modulus Ec . 
For low values of tension elastic modulus Et , the bending 
elastic modulus Eb is almost not impacted by a change in 
compression modulus Ec.

6  Conclusion

The granular jamming mechanism has been characterized 
under different loading conditions as a solution for tun-
able stiffness structures. The stiffness change has been 
evaluated thanks to the measurement of the elastic moduli 
obtained for different glass beads at various pressure dif-
ferences. The stiffness and strength are the largest in com-
pression and the smallest in tension. The size of the parti-
cles has a low impact on the stiffness while the stiffness is 
increasing almost linearly with the pressure difference. A 
linear relationship between the pressure difference and the 
strength of the sample has been observed and confirmed 
from the theory. A null cohesion has been confirmed as 
it is negligible in dry granular materials. The stiffness in 
compression can be estimated as evolving linearly with 
respect to the confinement, in the range of studied pres-
sure differences. Nevertheless, an exponential model can 
also be used.

The analytical model of the granular jamming presented 
in this work is a useful tool for predicting the bending behav-
ior of structures based on granular jamming. This develop-
ment is an important result that can help saving time for 
designing mechanical structures based on the granular jam-
ming principle. Knowing the granular material characteris-
tics (friction angle � ) and knowing the compression elastic 
modulus Ec , the tension elastic modulus Et can be deduced 
from the compression elastic modulus Ec with no need of 
additional mechanical tests. The proposed model gives the 
relationship between Et and Ec with respect to the mean pres-
sure p or the pressure difference �P . The triaxial compres-
sion of granular material is very well known and routinely 
performed in geomechanics, which means that data may be 
directly available in the literature or easily obtained.

Finally, the bending elastic modulus Eb can be obtained 
from the two previous moduli Ec and Et and the geometric 
consideration of the problem. Knowing the ratio of com-
pression and tension elastic moduli n, the geometry of the 
equivalent asymmetric material beam can be determined. 
From this geometric consideration, the equivalent bend-
ing modulus Eb can be estimated. The model is giving very 
promising results and fits properly the experimental results.

These models can be used to estimate the stiffness perfor-
mance of a structure based on granular jamming under dif-
ferent loading conditions. If the compression characteristics 
are known, the friction angle of the granular material can be 
calculated. The tension characteristics can be deduced from 
the previous experimental values and finally, the bending 
behavior can be estimated from these results. The models 
developed in this work target general mechanical applica-
tions for which the structure will mainly encounter bending. 
Designing granular jamming solutions requires, therefore, 
less experimental work thanks to the models proposed in 
this work.
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