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Abstract
This work presents tuning rules for piezoelectric shunts aiming to mitigate multiple structural resonances. Starting
from a specification procedure of the shunt characteristics, the electrical parameters are derived for shunt topologies
proposed in the literature, namely Hollkamp’s shunt, the current flowing shunt, the series parallel impedance structure
and the current blocking shunt. Effective vibration mitigation of multiple structural modes is demonstrated numerically
and experimentally on a piezoelectric beam. Performance in terms of vibration reduction obtained with the different
shunts is shown to be comparable if similar shunt characteristics are considered.
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Introduction

Piezoelectric shunt damping is a damping enhancement tech-
nique exploiting the transduction capability of piezoelectric
materials to mitigate the vibrations of a host structure. A
piezoelectric material is able to convert a part of its mechan-
ical energy into electrical energy which can be dissipated by
properly-tuned shunts, resulting in effective damping in the
controlled structure. Resistive shunts or resonant shunts with
series (Hagood and von Flotow 1991) or parallel (Wu 1996)
RL elements are classically used to mitigate a single resonant
mode.

Vibration damping of multiple modes may be achieved
with multiple transducers by individually shunting each
transducer with classical RL shunts (Toftekær and Høgsberg
2020). These transducers may alternatively be intercon-
nected by an electrical network, see, e.g., Darleux et al.
(2020). Multimodal control is also achievable with a single
piezoelectric transducer. A first approach consists in using
a mere resistive shunt, which is broadband in nature. The
vibration attenuation exhibited by this approach is however
often limited, and approaches were proposed to enhance
its performance with a negative capacitance (Berardengo
et al. 2016) or with a non-resonant inductor (Berardengo
et al. 2021). A second approach consists in using shunts
that resonate with the piezoelectric transducer at multiple
frequencies (Moheimani and Fleming 2006). This latter
approach is adopted in this work.

Several circuit topologies were proposed to achieve
multimodal resonant damping with a single transducer.
Edberg et al. (1991) added a second branch to a classical
series RL shunt to mitigate two resonances, and this circuit
was later generalized to an arbitrary number of modes
by Hollkamp (1994). A number of other topologies were
proposed since then, such as the current blocking shunt
(Wu 1998; Agneni et al. 2006), the current flowing shunt
(Behrens et al. 2003), the series-parallel impedance structure
(Fleming et al. 2003) and a Cauer-type network (Goldstein

2011). Each of these circuits proved rather difficult to tune,
and numerical optimization was often needed for circuits
with known (Fleming et al. 2002; Cigada et al. 2012;
Gardonio et al. 2019) or unknown (Berardengo et al. 2017;
Dal Bo et al. 2022) topology. The latter approach either
requires a further step to synthesize the circuit afterwards or
requires the analysis of multiple architectures, but has the
potential advantage of allowing for more optimal solutions
than the former since it is less restrictive. A sequential tuning
procedure based on effective characteristics associated with
electrical resonances was recently proposed by Raze et al.
(2020) for the current blocking shunt, but this procedure
is limited to a particular shunt topology, does not provide
a quantitative insight into the arbitrary choices made
beforehand, and relies on an ad hoc identification procedure
which may fail for structures with, e.g., closely-spaced
modes. Finally, we note that there exists few objective
comparisons between these different topologies (see, e.g.,
Berardengo et al. (2017)), making it difficult to distinguish
between the strengths and weaknesses of each type of circuit.

Raze et al. (2021) recently proposed a model-less
sequential specification procedure for a generic shunt. This
shunt was emulated by a digital vibration absorber, making
it unnecessary to determine its topology. To progress toward
the fully passive implementation of such circuits, this
work proposes to exploit this specification methodology
to tune various shunts whose topology has previously
been introduced in the literature. The proposed approach
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allows the designer to make an informed decision on the
control authority on each targeted mode, and to achieve
effective multimodal vibration damping with either topology.
Additionally, performance in terms of vibration mitigation is
assessed for the different topologies, and it is shown that they
are all equivalent provided that the required authority on each
controlled mode is identical.

This article is organized as follows. The principles
of the specification procedure for shunt circuits are first
briefly recalled. The tuning of the electrical parameters
is then addressed for different circuit topologies, namely
Hollkamp’s shunt, the current flowing shunt, the series
parallel impedance structure and the current blocking
shunt. Numerical verification and experimental validation
of the proposed approach are eventually carried out on a
piezoelectric beam.

Specification procedure for the shunt
The specification procedure proposed by Raze et al. (2021)
forms the starting point of this paper, and is summarized in
this section. A piezoelectric transducer may be modeled as a
current source in parallel with a capacitor of capacitance Cε

p .
This capacitance corresponds to the capacitance at constant
strain (or blocked capacitance) of the transducer. It can be
shown that Norton’s equivalent admittance of the parallel
connection of the piezoelectric capacitance with a generic
lossless shunt of admittance Ys,

YN (s) = sCε
p + Ys(s), (1)

takes the specific form

s

YN (s)
=

1

Cε
p

(
r0 +

Ns∑

i=1

ris
2

s2 + z2i

)
, (2)

where s is Laplace’s variable, zi is a zero of Norton’s
admittance and ri its associated residue. This admittance
plays the role of a feedback controller acting to damp
the vibrations of the host structure. Alternatively, when
the piezoelectric transducer is electrically modeled as a
voltage source in series with a capacitor of capacitance Cε

p ,
Thévenin’s impedance of a series connection with the shunt
of impedance Zs = Y −1s ,

ZT (s) =
1

sCε
p

+ Zs(s), (3)

has the specific form

1

sZT (s)
= Cε

p


r0 +

Ns∑

i=1

ri
s2

z2i
+ 1


 , (4)

and can also be interpreted as a feedback controller acting on
the host structure. Furthermore, it can be shown that Norton’s
admittance and Thévenin’s impedance have the same zeros
and residues (except for r0). Equations (2) and (4) both
contain a sum of terms representing electrical resonances
of the circuit at frequencies zi. The associated residues ri
may be seen as resonant amplitudes. It was demonstrated
that they determine the effective modal electromechanical

coupling factor (MEMCF) K̂c,r of the circuit with mode r
to the MEMCF Kc,r of the transducer as

K̂2
c,r(k) ≈ rkK2

c,r(k). (5)

From Equation (5), it is desirable from a control
performance viewpoint to have residues as high as possible
in order to maximize the effective MEMCF, because the
greater the MEMCF, the greater the vibration attenuation
on the targeted mode (Thomas et al. 2012). However, these
residues are constrained by passivity requirements on the
shunt, which mathematically translates into

ri ≥ 0,

Ns∑

i=0

ri ≤ 1, (6)

highlighting the performance limits of passive shunts
targeting multiple structural modes. Indeed, Equation (6)
implies that ri ≤ 1, and thus by Equation (5) the MEMCF
of the circuit cannot be greater than that of the transducer. If
multiple modes are controlled, the sum implies that control
performance has to be traded-off between them.

Raze et al. (2021) proposed a specification procedure
taking as input the piezoelectric capacitance at constant
strain as well as the short- and open-circuit resonance
frequencies of the structure, and a set of targeted modes
with associated residues representing the desired control
authority. The output of the method is a set of electrical
resonance frequencies zi and associated modal damping
ratios ζi, defining either Norton’s dissipative admittance

YN,d(s) = sCε
p

(
r0 +

Ns∑

i=1

ris
2

s2 + 2ζizis+ z2i

)−1
, (7)

or Thévenin’s dissipative impedance

ZT,d(s) =
1

sCε
p


r0 +

Ns∑

i=1

ri
s2

z2i
+ 2ζi

s

zi
+ 1




−1

. (8)

The tuning parameters zi and ζi are determined using
formulae from a single-degree-of-freedom baseline case
which can be either the series RL shunt or parallel RL shunt.

Equations (2) and (4) represent exactly the behavior
of the lossless counterparts of passive shunts of known
topology which have been proposed in the literature, namely
Hollkamp’s shunt, the current flowing (CF) shunt, the
series-parallel impedance structure (SPIS) and the current
blocking (CB) shunt. This article leverages the specification
methodology proposed by Raze et al. (2021) to tune these
circuits. The tuning procedure starts by considering the
lossless circuits (containing only capacitors and inductors)
and tuning them using Equation (2) or (4). Equation (7)
or (8) can then be used to tune the resistances of these shunts
to optimally mitigate the targeted structural resonances.
The specificities of the tuning procedure depend on the
considered topology and are detailed in the sequel.

Hollkamp’s and current flowing shunt
circuits tuning
Two multimodal shunts proposed by Hollkamp (1994) and
Behrens et al. (2003) are featured in Figure 1. The lossless
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circuits (Ri = 0) connected in parallel to a capacitor are
shown in Figure 2 and are used to build Norton’s equivalent
admittance YN . It can be recognized that the resulting
circuits are equivalent to Foster’s first canonical form (Chen
2018).

Tuning either type of circuit requires to compute the zero-
pole-gain (ZPK) representation of YN . From Equation (2),

YN (s) = sCε
p

(
r0 +

Ns∑

i=1

ris
2

s2 + z2i

)−1

= Ks

∏Ns

i=1(s2 + z2i )
∏Ns

i=1(s2 + p2i )
. (9)

The zeros zi of Norton’s equivalent admittance are known
from the specification procedure, and its poles pi can be
found as the solution of the polynomial equation

r0

Ns∏

i=1

(s2 + z2i ) +

Ns∑

i=1

ris
2

Ns∏

k=1,k 6=i

(s2 + z2k) = 0. (10)

Realistically, this polynomial is of moderate order. More-
over, its coefficients are known. Thus, the poles can readily
be found with a computer. We note that when r0 = 0, p1 = 0
is a solution and thus YN has a simple pole at s = 0, whereas
it has a simple zero at s = 0 if r0 6= 0. The gain K can be
determined later.

Hollkamp’s shunt circuit
The admittance of the lossless circuit featured in Figure 2a
reads

YN (s) = sCε
p +

1

sL0
+

Ns−1∑

n=1

1

Ln
s

s2 +
1

LnCn

=
K

s

∏Ns

i=1(s2 + z2i )
∏Ns−1

i=1 (s2 + p2i )
(11)

In this equation, the admittance computed as the parallel
connection of a capacitor, an inductor and Ns − 1 branches
of series LC circuits is represented in its partial fraction
expansion. The fact that there is a simple pole at s = 0
indicates that this circuit can only be used if r0 = 0. Equating
the admittance to its ZPK representation and taking the limit
for s→∞ in Equation (11), the gain K is found to be

K = Cε
p , (12)

which completely specifies the ZPK representation. The
electrical parameters may then be derived from it. The
admittance possesses several poles which can directly be
related to the electrical parameters by

pn =
1√
LnCn

, (13)

and the inductances can be evaluated with the the cover-
up method (Franklin et al. 2015). This gives the single
inductance L0 as

L0 = lim
s→0

sYN (s) =
1

Cε
p

∏Ns−1
i=1 p2i∏Ns

i=1 z
2
i

(14)

whereas the inductances in the LC branches are identified as

Lk =
1

2
lim

s→±jpk

(s∓ jpk)YN (s)

= − p
2
k

Cε
p

∏Ns−1
i=1,i6=k(p2i − p2k)
∏Ns

i=1(z2i − p2k)
, (15)

where j is the unit imaginary number. Finally, the
capacitances are determined from Equation (13) as

Ck =
1

Lkp2k
. (16)

Current flowing shunt circuit
The admittance of the undamped CF shunt shown in
Figure 2b reads

YN (s) = sCε
p +

Ns∑

n=1

1

Ln
s

s2 +
1

LnCn

= Ks

∏Ns

i=1(s2 + z2i )
∏Ns

i=1(s2 + p2i )
.

(17)
This time, the simple zero at s = 0 imposes r0 6= 0. In a
similar way to Hollkamp’s shunt, the gain K is found to be

K = Cε
p , (18)

whereas the inductances are given by

Lk =
1

Cε
p

∏Ns

i=1,i6=k(p2i − p2k)
∏Ns

i=1(z2i − p2k)
, (19)

and the capacitances by

Ck =
1

Lkp2k
. (20)

It can be noted that when r0 → 0, one of the double roots of
Equation (10), say, p1, tends to zero. Then, Equation (20)
shows that C1 →∞, i.e., the capacitance becomes nearly
equivalent to a short-circuit. By replacing C1 in Figure 1b
by a short-circuit, the same circuit topology as that of
Hollkamp’s shunt is obtained. Therefore, the CF shunt tends
to Hollkamp’s shunt as r0 → 0.

Resistances tuning
In the case of Hollkamp’s and the CF shunts, the best
baseline case to use in the specification procedure (Raze et al.
2021) is the series RL shunt. A heuristic justification is that
the resistors are placed in series with the inductors in these
circuits (and in particular when Ns = 1, Hollkamp’s shunt
reduces to a series RL shunt). Tuning based on the parallel
RL circuit can also be used but was observed to give less
optimal results.

The purpose of the following procedure is to impose
approximately the desired modal damping on the zeros of
Thévenin’s impedance. From Equation (3), its inverse is

1

ZT,d(s)
=

1
1

sCε
p

+
1

Ys(s)

= Ys(s)−
1

sCε
p

Y 2
s (s)

1 +
Ys(s)

sCε
p

,

(21)
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L0

R0

L1

R1

C1

LNs−1

RNs−1

CNs−1

· · ·

· · ·

(a)

L1

R1

C1

LNs

RNs

CNs

· · ·

· · ·

(b)

Figure 1. Hollkamp’s shunt (a) and current flowing shunt (b).

Cε
p L0

L1

C1

LNs−1

CNs−1

· · ·

· · ·

(a)

Cε
p

L1

C1

LNs

CNs

· · ·

· · ·

(b)

Figure 2. Norton’s admittance model of a piezoelectric transducer connected to Hollkamp’s losless shunt (a) and a lossless current
flowing shunt (b).

where Hollkamp’s dissipative shunt admittance is given by

Ys(s) =
1

sL0 +R0
+

Ns−1∑

n=1

s

Lns2 +Rns+
1

Cn

(22)

and can also be expressed by

Ys(s) = s11×Ns

(
EH + sRH + s2LH

)−1
1Ns×1, (23)

where

EH = diag
[
0 C−11 · · · C−1Ns−1

]
, (24)

RH = diag
[
R0 R1 · · · RNs−1

]
(25)

and
LH = diag

[
L0 L1 · · · LNs−1

]
(26)

are elastance, resistance and inductance matrices, respec-
tively, 1m×n is a m× n is a matrix whose entries are all
equal to one, and diag denotes a diagonal matrix. Using this
matrix-based model and by comparing Equation (21) with
the Sherman-Morrison formula (Equation (95)), the inverse
of Thévenin’s impedance given in Equation (21) can be
obtained if the inverted matrix is rank-one updated, i.e.,

1

ZT,d(s)
= s11×Ns

(
EH +

1

Cε
p

1Ns×111×Ns

+ sRH + s2LH

)−1
1Ns×1. (27)

In the lossless case, the zeros of Thévenin’s impedance
are the generalized eigenvalues of the generalized eigenvalue

problem
(

EH +
1

Cε
p

1Ns×111×Ns

)
Φe = LHΦeΩ

2
e, (28)

where
Ωe = diag

[
z1 · · · zNs

]
, (29)

and Φe can be seen as an electrical mode shape matrix.
In order to impose the desired damping on the zeros of
Thévenin’s impedance, the mode shape matrix should ideally
diagonalize the resistance matrix. However, this is not the
case in general because the electrical resonances do not
localize to a single branch (which would result in a diagonal
matrix Φe) but are distributed over the whole circuit, and the
following relation is only approximate

ΦT
e RHΦe ≈ 2ZeΩe, (30)

where
Ze = diag

[
ζ1 · · · ζNs

]
. (31)

By enforcing this relation on the diagonal of this
resulting matrix (regardless of its off-diagonal elements), the
following set of resistances can be obtained:




R0

...
RNs−1


 =



φ2e,0,1 · · · φ2e,(Ns−1),1

...
. . .

...
φ2e,0,Ns

· · · φ2e,(Ns−1),Ns




−1 


2ζ1z1
...

2ζNs
zNs


 .

(32)
The same procedure can be followed for the CF shunt

by simple adaptation of the involved matrices, since its
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dissipative admittance is given by

Ys(s) =

Ns∑

n=1

s

Lns2 +Rns+
1

Cn

, (33)

or, equivalently,

Ys(s) = s11×Ns

(
ECF + sRCF + s2LCF

)−1
1Ns×1.

(34)

in which

ECF = diag
[
C−11 · · · C−1Ns

]
, (35)

RCF = diag
[
R1 · · · RNs

]
(36)

and
LCF = diag

[
L1 · · · LNs

]
. (37)

Summary
The proposed tuning procedure for Hollkamp’s and the CF
shunts goes as follows. Starting from a set of targeted modes
and associated residues ri,

1. Compute each frequency zi and damping ratio ζi with
the series RL baseline from the approach proposed by
Raze et al. (2021).

2. Compute the poles of Norton’s admittance (Equa-
tion (10)).

3. Compute the capacitances and inductances (Hol-
lkamp’s shunt: Equations (14)-(16); CF shunt: Equa-
tions (19)-(20)).

4. Compute the elastance and inductance matrices
(Hollkamp’s shunt: Equations (24)-(26); CF shunt:
Equations (35)-(37)) and the electrical mode shapes
(Equation (28)).

5. Compute the resistances (Equation (32)).

Series-parallel impedance and second
Foster form tuning
The SPIS shunt proposed by Fleming et al. (2003) is shown
in Figure 3b. Figure 3a features a shunt which is to the
SPIS what Hollkamp’s circuit is to the CF circuit. This
circuit is based on the second Foster canonical form (SFCF)
and can be seen as the dual of Hollkamp’s circuit. The
lossless circuits (Ri =∞) connected in series to a capacitor
are shown in Figure 4 and are used to build Thévenin’s
equivalent impedance ZT . It can be recognized that the
resulting circuits are equivalent to Foster’s second canonical
form (Chen 2018).

Tuning either type of circuit requires to compute the ZPK
representation of ZT . From Equation (4),

ZT (s) =
1

sCε
p


r0 +

Ns∑

i=1

ri
s2

z2i
+ 1




−1

=
K

s

∏Ns

i=1

(
s2

z2i
+ 1

)

∏Ns

i=1

(
s2

p2i
+ 1

) . (38)

L0 R0

L1 R1 C1

LNs−1 RNs−1 CNs−1

...

(a)

L1 R1 C1

LNs
RNs

CNs

...

(b)

Figure 3. Shunt circuit based on the second Foster canonical
form (a) and a series-parallel impedance structure (b).

Cε
p

L0

L1 C1

LNs−1 CNs−1

...

(a)

Cε
p

L1 C1

LNs
CNs

...

(b)

Figure 4. Thévenin’s impedance model of a piezoelectric
transducer connected to a lossless shunt based on the second
Foster canonical form (a) and a lossless series-parallel
impedance structure (b).

The poles of Thévenin’s equivalent impedance can be found
as the solution of the polynomial equation

r0

Ns∏

i=1

(
s2

z2i
+ 1

)
+

Ns∑

i=1

ri

Ns∏

k=1,k 6=i

(
s2

z2k
+ 1

)
= 0, (39)

which can be solved with a computer. We note that when
r0 6= 0, there are Ns pairs of complex conjugate poles,
whereas when r0 = 0 there are Ns − 1. The gain K can be
determined later.

Second Foster canonical form

The impedance of the undamped SFCF circuit is computed as
the series connection of a capacitor, an inductor and Ns − 1
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branches of parallel LC circuits as

ZT (s) = sL0 +
1

sCε
p

+

Ns−1∑

n=1

Lns

LnCns2 + 1

=
K

s

∏Ns

i=1

(
s2

z2i
+ 1

)

∏Ns−1
i=1

(
s2

p2i
+ 1

) (40)

Since there are Ns − 1 pairs of complex conjugate poles,
this circuit requires r0 = 0. Evaluating the residue associated
with the simple pole at s = 0, K is found as

K =
1

Cε
p

, (41)

and the limit for s→∞ then gives

L0 =
1

Cε
p

∏Ns−1
i=1 p2i∏Ns

i=1 z
2
i

. (42)

The cover-up method enables the identification of the
inductances of the LC circuits as

Lk = − 1

Cε
pp

2
k

∏Ns

i=1

(
1− p2k

z2i

)

∏Ns−1
i=1,i6=k

(
1− p2k

p2i

) (43)

while the capacitances are found from the poles of the
impedance as

Ck =
1

Lkp2k
. (44)

Series-parallel impedance structure
The undamped impedance of the SPIS reads

ZT (s) =
1

sCε
p

+

Ns∑

n=1

Lns

LnCns2 + 1
=
K

s

∏Ns

i=1

(
s2

z2i
+ 1

)

∏Ns

i=1

(
s2

p2i
+ 1

) ,

(45)
where, using the same techniques as previously,

K =
1

Cε
p

, (46)

Lk = − 1

Cε
pp

2
k

∏Ns

i=1

(
1− p2k

z2i

)

∏Ns

i=1,i6=k

(
1− p2k

p2i

) , (47)

and
Ck =

1

Lkp2k
. (48)

It can be noted that when r0 → 0, one of the double
roots of Equation (39), say, pNs , tends to infinity. Hence,
Equation (48) shows that CNs → 0, i.e., the capacitance
tends to an open-circuit, which in Figure 3b would
correspond to a topology similar to that of the SFCF shunt.
Thus, as r0 tends to zero, the SPIS shunt tends to the SFCF
shunt.

Resistances tuning
A procedure completely analogous that exposed for
Hollkamp’s and CF shunts can be followed. In this case,
the parallel RL baseline case should be chosen, because the
resistors are in parallel with the inductors in the SFCF and
SPIS shunts (and when Ns = 1, the SFCF circuit reduces to
a parallel RL shunt).

Using Equation (1), the inverse of Norton’s admittance is
given by

1

YN,d(s)
=

1

sCε
p +

1

Zs(s)

= Zs(s)− sCε
p

Z2
s (s)

1 + sCε
pZs(s)

,

(49)
where the dissipative impedance of the SFCF circuit is given
by

Zs(s) =
1

1

sL0
+

1

R0

+

Ns−1∑

n=1

s

Cns2 +
1

Rn
s+

1

Ln

, (50)

or equivalently by

Zs(s) = s11×Ns

(
BSFCF + sGSFCF

+ s2CSFCF

)−1
1Ns×1, (51)

where

CSFCF = diag
[
0 C1 · · · CNs−1

]
, (52)

GSFCF = diag
[
R−10 R−11 · · · R−1Ns−1

]
(53)

and

BSPIS = diag
[
L−10 L−11 · · · L−1Ns−1

]
(54)

are capacitance, conductance and reluctance matrices,
respectively. Once again, by comparison of Equation (49) to
the Sherman-Morrison formula (Equation (95)), the inverse
of Norton’s admittance can be obtained after a rank-one
update of the inverted matrix

1

YN,d(s)
= s11×Ns

(
BSFCF + sGSFCF

+ s2CSFCF + s21Ns×111×NsC
ε
p

)−1
1Ns×1. (55)

In the lossless case, the zeros of Norton’s admittance are
the generalized eigenvalues of the generalized eigenvalue
problem

BSFCFΦe =
(
CSFCF + 1Ns×111×Ns

Cε
p

)
ΦeΩ

2
e. (56)

By enforcing the diagonal of the transformed matrix
containing the resistances (regardless of its off-diagonal
elements), the following set of resistances can be obtained:



1

R0
...
1

RNs−1




=



φ2e,0,1 · · · φ2e,(Ns−1),1

...
. . .

...
φ2e,0,Ns

· · · φ2e,(Ns−1),Ns




−1 


2ζ1z1
...

2ζNszNs


 .

(57)
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A similar procedure can be followed for the SPIS circuit,
because its dissipative impedance

Zs(s) =

Ns∑

n=1

s

Cns2 +
1

Rn
s+

1

Ln

, (58)

is equivalently given by

Zs(s) = s11×Ns

(
BSPIS + sGSPIS

+ s2CSPIS

)−1
1Ns×1., (59)

in which

CSPIS = diag
[
C1 · · · CNs

]
, (60)

GSPIS = diag
[
R−11 · · · R−1Ns

]
(61)

and
BSPIS = diag

[
L−11 · · · L−1Ns

]
. (62)

Summary
The proposed tuning procedure for the SFCF and SPIS
shunts goes as follows. Starting from a set of targeted modes
and associated residues ri,

1. Compute each frequency zi and damping ratio ζi with
the parallel RL baseline from the approach proposed
by Raze et al. (2021).

2. Compute the poles of Thévenin’s impedance (Equa-
tion (39)).

3. Compute the capacitances and inductances (SFCF
shunt: Equations (42)-(44); SPIS shunt: Equa-
tions (47)-(48)).

4. Compute the capacitance and reluctance matrices
(SFCF shunt: Equations (52)-(54); SPIS shunt:
Equations (60)-(62)) and the electrical mode shapes
(Equation (56)).

5. Compute the resistances (Equation (57)).

Current blocking shunt circuit tuning
The CB shunt was originally proposed by Wu (1998), and
later simplified by Agneni et al. (2006). A different tuning
methodology was proposed by Raze et al. (2020), and will be
compared to that proposed herein in the numerical examples.
Once again, the dynamics of the lossless circuit are first
analyzed to assess the electromechanical coupling, and the
tuning of dissipative circuits is considered afterwards.

Lossless circuit tuning
Figure 6 features Norton’s admittance model using a lossless
CB shunt, which is identical for CB circuits with series
and parallel shunts. The resulting circuit is composed of a
parallel capacitor, followed by a repetition of Ns − 1 stages
with identical topology (a shunt with an inductor and a
branch with a parallel LC circuit) and finally terminated by
an inductor. The parallel LC circuits are so-called current-
blocking filters, because they act as band-stop filters. Indeed,

their impedance is given by

Z̃i =
1

1

L̃is
+ sC̃i

(63)

and becomes infinite at s = j
√

1/(L̃iC̃i). Hence, by
properly setting the blocking frequency of these filters, it
is possible to decouple some parts of the circuits at specific
frequencies.

The tuning approach traditionally chosen for the CB
shunt thus consists in considering sequentially each stage in
ascending order (Wu 1998; Agneni et al. 2006; Raze et al.
2020). By tuning the filter of the considered stage to the
frequency of the targeted resonance, the influence of the
following stages of unknown characteristics can be neglected
close to that frequency, and the shunt can be tuned taking into
account the rest of the circuit (the piezoelectric capacitance
and previous stages of known characteristics). The procedure
can be repeated until all stages have been tuned.

Figure 7 shows a representation of the tuning considera-
tions for stage k. The shunt impedances and current blocking
filters are represented up to stage k, whereas the remainder of
the CB circuit is represented altogether with the impedance
Zk+1. The voltage across the shunt inductance k is noted Vk
and the current entering stage k is noted Ik.

The relations between Vp, Ip, Vk and Ik can be obtained
using the two-port network theory (Alexander and Sadiku
2000). These relations are expressed with a transfer matrix
H

(k)
CB by

[
Vp
Ip

]
= H

(k)
CB(s)

[
Vk
Ik

]

=

[
h
(k)
11 (s) h

(k)
12 (s)

h
(k)
21 (s) h

(k)
22 (s)

] [
Vk
Ik

]
. (64)

The expression of the transfer matrix results from the cascade
connection of the parallel capacitor, and stages 1 to k − 1 and
is given by (Raze et al. 2020)*

H
(k)
CB(s) =

[
1 0
sCε

p 1

] k−1∏

i=1




1

1

C̃i

s

s2 +
1

L̃iC̃i

1

Lis
1 +

1

C̃i

s

s2 +
1

L̃iC̃i

1

Lis




.

(65)
The relation between Ik and Vk can be deduced from
Figure 7 as

Ik
Vk

= Yk(s) =
1

Lks
+

1
1

C̃k

s

s2 +
1

L̃kC̃k

+ Zk+1(s)

. (66)

∗What is termed transfer matrix in this article is the inverse of what is termed
transfer matrix in Raze et al. (2020).
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L1 R1

C̃1

L̃1

L2 R2

C̃2

L̃2

C̃Ns−1

L̃Ns−1

LNs
RNs

· · ·

· · ·

(a)

L1

R1

C̃1

L̃1

L2

R2

C̃2

L̃2

C̃Ns−1

L̃Ns−1

LNs

RNs

· · ·

· · ·

(b)

Figure 5. Simplified current blocking shunt with parallel RL shunts (a) and series RL shunts (b).

Cε
p L1

C̃1

L̃1

L2

C̃Ns−1

L̃Ns−1

LNs

· · ·

· · ·

Figure 6. Norton’s admittance model of a piezoelectric
transducer connected to a lossless current blocking shunt.

Cε
p L1

C̃1

L̃1

Lk

C̃k

L̃k

Zk+1

Vk

Ik

Vp

Ip

· · ·

· · ·

︸ ︷︷ ︸
Known

︸ ︷︷ ︸
Unknown

Figure 7. Norton’s admittance model of a piezoelectric
transducer connected to a lossless current blocking shunt:
tuning considerations at stage k.

The relation between Ip and Vp, i.e. Norton’s equivalent
admittance, is then deduced from Equations (64) and (66)
as

YN (s) =
Ip
Vp

=
h
(k)
22 (s)Yk(s) + h

(k)
21 (s)

h
(k)
12 (s)Yk(s) + h

(k)
11 (s)

. (67)

A zero of Norton’s admittance occurs if

YN (jzk) = 0. (68)

The problem can be made independent of Zk+1 if the current
blocking filter has an infinite impedance at zk. This is the
case if

L̃k =
1

z2kC̃k

. (69)

Equation (66) then becomes at s = jzk

Yk(jzk) =
1

jzkLk
. (70)

Solving Equation (68) with Equations (67) and (70) yields

Lk = − 1

jzk

h
(k)
22 (jzk)

h
(k)
21 (jzk)

. (71)

This tuning approach guarantees that Norton’s admittance
will have a zero at the desired frequency regardless of
Zk+1. We note that Lk is solely determined by zk, and
the piezoelectric capacitance as well as the characteristics
from the previous stages condensed in the transfer matrix.
A free parameter yet remains for the lossless case, as the two
parameters of the current blocking filter are only constrained
by one relation given in Equation (69). It shall be shown next
that the filter capacitance is actually set by the value of the
residue rk.

Coupling assessment
Norton’s equivalent admittance is such that

s

YN (s)
=

1

Cε
p

Ns∑

i=1

s2ri
s2 + z2i

. (72)

Thus, the residue rk may be evaluated with Equations (66)
and (67) thanks to the cover-up method as

rk = lim
s→jzk

Cε
p(s2 + z2k)

1

sYN (s)

= lim
s→jzk

Cε
p(s2 + z2k)

h
(k)
12 (s)Yk(s) + h

(k)
11 (s)

sh
(k)
22 (s)Yk(s) + sh

(k)
21 (s)

= lim
s→jzk

Cε
p

h
(k)
12 (s)

Lks
+ h

(k)
11 (s)

h
(k)
22 (s)

Lk
+ sh

(k)
21 (s)

s2 + z2k
+ h

(k)
22 (s)C̃k

. (73)

Hence, the impedance of the next stages Zk+1(s) has
no influence on the residue (provided that Equation (69)
holds). This is a more formal justification of the equivalent
physically-motivated assumption made in Raze et al. (2020).
However, the residue remains rather uneasy to compute in
that way, because no further simplification can be made in
general when considering the full CB circuit.

Equation (73) shows that the residue computed consider-
ing the whole CB circuit would be identical to that computed
when considering Zk+1 = 0, i.e., by replacing the next
stages by a short circuit, as pictured in Figure 8. The fact
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Cε
p L1

C̃1

L̃1

L2

C̃2

L̃2

Lk C̃k L̃k

Vk

Ik

Vp

Ip

· · ·

· · ·

Figure 8. Norton’s admittance model of a piezoelectric transducer connected to a lossless current blocking shunt: simplified tuning
considerations at stage k.

that Zk+1(s) can be considered as a short circuit and that
Norton’s equivalent admittance has as zeros z1, · · · , zk leads
to the following expression (Equation (67))

1

Cε
p

k∑

i=1

ris
2

s2 + z2i

= s

h
(k)
12 (s)

(
1

Lks
+ C̃k

s2 + z2k
s

)
+ h

(k)
11 (s)

h
(k)
22 (s)

(
1

Lks
+ C̃k

s2 + z2k
s

)
+ h

(k)
21 (s)

. (74)

Taking the limit as s→∞, the sum of residues can be
evaluated

k∑

i=1

ri = lim
s→∞

sCε
p

h
(k)
12 (s)

(
1

Lks
+ C̃k

s2 + z2k
s

)
+ h

(k)
11 (s)

h
(k)
22 (s)

(
1

Lks
+ C̃k

s2 + z2k
s

)
+ h

(k)
21 (s)

.

(75)
To evaluate this limit, the asymptotic behavior of the two-
port network must be determined. Taking the limit as s→
∞, the following asymptotic behaviors can be derived from
Equation (65)

lim
s→∞

[
h
(k)
11 (s) h

(k)
12 (s)

h
(k)
21 (s) h

(k)
22 (s)

]

= lim
s→∞

[
1

∑k−1
i=1 1/(sC̃i)

sCε
p 1 +

∑k−1
i=1 C

ε
p/C̃i

]
. (76)

The network associated with such a transfer matrix is
depicted in Figure 9. Intuitively, the components governing
this asymptotic behavior are the capacitances, because the
inductances tend to have a much higher impedance at high
frequency (s→∞). In fact, Figure 9 can be obtained from
Figure 8 after replacing the inductances by open circuits.

Cε
p

C̃1 C̃2
C̃k

· · ·

· · ·

Figure 9. Asymptotic behavior of the current blocking shunt
simplified at stage k for s→∞.

Inserting Equation (76) into Equation (75), the sum of
residues can then be evaluated as

k∑

i=1

ri

= lim
s→∞

sCε
p

k−1∑

i=1

1

sC̃i

(
1

Lks
+ C̃k

s2 + z2k
s

)
+ 1

(
1 +

k−1∑

i=1

Cε
p

C̃i

)(
1

Lks
+ C̃k

s2 + z2k
s

)
+ sCε

p

=

1 +

k−1∑

i=1

C̃k

C̃i

1 +
C̃k

Cε
p

+

k−1∑

i=1

C̃k

C̃i

(77)

A remarkable feature of this equation is that the residues
depend only on the filter and piezoelectric capacitances. By
extracting C̃k, it is expressed as

C̃k =

1−
k∑

i=1

ri

k∑

i=1

ri

(
1

Cε
p

+

k−1∑

i=1

1

C̃i

)
−

k−1∑

i=1

1

C̃i

, (78)

or as a sole function of the residues and the piezoelectric
capacitance

C̃k =
Cε

p

k∑

i=1

ri

1−
k∑

i=1

ri

+

k−1∑

l=1

(−1)k−l

l∑

i=1

ri

1−
l∑

i=1

ri

. (79)

Dissipative circuit tuning with parallel RL shunts

The case of a dissipative CB shunt is now considered. In
case parallel RL shunts are used as in Figure 5a, the parallel
RL baseline should be used. The transfer matrix resulting in
a cascade connection of a parallel capacitance Cε

p and the
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k − 1 first stages of the current blocking circuit reads

H
(k)
CB =

[
1 0
sCε

p 1

]

k−1∏

i=1




1

1

C̃i

s

s2 +
1

L̃iC̃i

1

Lis
+

1

Ri
1 +

1

C̃i

s

s2 +
1

L̃iC̃i

(
1

Lis
+

1

Ri

)




. (80)

Using Equations (7) and (67), Norton’s dissipative admit-
tance can be equated to its nominal value at s = jzk

YN,d(jzk) = −
Ns∑

i=1

riz
2
k

z2i + 2jζizizk − z2k

=
h
(k)
22 (jzk)Yk(jzk) + h

(k)
21 (jzk)

h
(k)
12 (jzk)Yk(jzk) + h

(k)
11 (jzk)

. (81)

Extracting Yk(jzk) from this relation yields

Yk(jzk) =
h
(k)
11 (jzk)YN,d(jzk)− h(k)21 (jzk)

h
(k)
22 (jzk)− h(k)12 (jzk)YN,d(jzk)

, (82)

which sets the ideal value of Yk(jzk). If the filter capacitance
and inductance are properly tuned (Equations (79) and (69),
respectively), the admittance Yk evaluated at the frequency
zk is then only determined by the kth shunt

Yk(jzk)

=
1

jLkzk
+

1

Rk
+

1

L̃kC̃k

− z2k
1

jC̃kzk
+

(
1

L̃kC̃k

− z2k
)
Zk+1(jzk)

=
1

jLkzk
+

1

Rk
, (83)

so that the inductance and resistance can be set as

Lk = − 1

zk={Yk(jzk)} (84)

and

Rk =
1

<{Yk(jzk)} , (85)

respectively.

Dissipative circuit tuning with series RL shunts

When series RL shunts are used as in Figure 5b, the series
RL baseline should be used. The transfer matrix resulting
in a cascade connection of a series capacitance Cε

p and the

k − 1 first stages of the current blocking circuit reads

H
(k)
CB =


1

1

sCε
p

0 1




k−1∏

i=1




1

1

C̃i

s

s2 +
1

L̃iC̃i

1

Lis+Ri
1 +

1

C̃i

s

s2 +
1

L̃iC̃i

1

Lis+Ri




. (86)

Taking the inverse of Equation (66), Thévenin’s impedance
can be equated to its nominal value

ZT,d(jzk) =

Ns∑

i=1

ri

1 + 2jζi
zk
zi
− z2k
z2i

=
h
(k)
12 (jzk)Yk(jzk) + h

(k)
11 (jzk)

h
(k)
22 (jzk)Yk(jzk) + h

(k)
21 (jzk)

, (87)

and thus, Yk at s = jzk should be given by

Yk(jzk) =
h
(k)
11 (jzk)− h(k)21 (jzk)ZT,d(jzk)

h
(k)
22 (jzk)ZT,d(jzk)− h(k)12 (jzk)

, (88)

which sets the ideal value of Yk(jzk). If the filter capacitance
and inductance are properly tuned (Equations (79) and (69),
respectively), the admittance Yk evaluated at the frequency
zk is once again only determined by the kth shunt

Yk(jzk)

=
1

jLkzk +Rk
+

1

L̃kC̃k

− z2k
1

jC̃kzk
+

(
1

L̃kC̃k

− z2k
)
Zk+1(jzk)

=
1

jLkzk +Rk
, (89)

so that the inductance and resistance can be set as

Lk =
1

zk
=
{

1

Yk(jzk)

}
(90)

and

Rk = <
{

1

Yk(jzk)

}
, (91)

respectively.

Summary
The proposed tuning procedure for the CB shunt goes as
follows. Starting from a set of targeted modes and associated
residues ri,

1. Compute each frequency zi and damping ratio ζi with
the series or parallel RL baseline from the approach
proposed by Raze et al. (2021) for the CB shunt with
series or parallel shunts, respectively.
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2. Compute the filters capacitances and inductances
(Equations (79) and (69)).

3. For each stage, compute sequentially the transfer
matrix (series shunts: Equation (86); parallel shunts:
Equation (80)), the ideal value of Yk (series shunts:
Equations (87)-(88) ; parallel shunts: Equations (81)-
(82)) and the shunt resistance and inductance
(series shunts: Equations (90)-(91); parallel shunts:
Equations (84)-(85)).

Numerical verification of the tuning
procedure
The clamped-free piezoelectric beam depicted in Figure 10 is
considered as an example to illustrate the tuning procedure.
The free end of the beam is attached to a thin lamina.
The geometrical and material characteristics of the beam
are reported in Table 1. The beam is excited transversally
20 cm away from the clamped end, and its displacement
is computed at the same location. The thin lamina can
be responsible for a hardening nonlinear behavior of the
system (Lossouarn et al. 2018). However, the forcing levels
considered in this study are low enough to make this effect
negligible, and the beam is assumed to behave linearly.

The beam is covered over its whole length by ten
piezoelectric cells. Each cell consists of four PSI-5A4E
piezoelectric patches, placed symmetrically in stacks of two
on either side of the beam. The wiring of the patches is
depicted in Figure 10a, and their geometrical and material
characteristics are reported in Table 2.

The finite element method proposed by Thomas et al.
(2009) was used with Euler-Bernoulli beam elements to
obtain a numerical model of the beam. The beam and
lamina were discretized with one element per millimeter.
Accounting for the clamped boundary conditions and the
attachment between the beam and lamina, this resulted in a
model with 4437 degrees of freedom. To keep the analysis
tractable, a Craig-Bampton-based model order reduction
technique proposed by Raze (2021) was used, retaining
one interface mechanical degree of freedom and twenty
component normal modes, as well as the electrical degrees of
freedom of all patches. Modal damping of 0.2% was added
to the model to replicate the experimental results.

The first two modes are targeted in this section to simply
illustrate the trade-offs involved by the choice of the residues,
and their impact on performance. To obtain maximal yet
balanced coupling on these modes, the first two piezoelectric
cells are connected in parallel, and the other cells are left
in open circuit. To give an idea of the orders of magnitude,
Table 3 lists the resistances and inductances of series and
parallel RL shunts targeting mode one or two.

Hollkamp’s shunt circuit
To check the tuning approach for Hollkamp’s shunt, various
values for the residues were considered for r1 and r2 = 1−
r1 (Equation (6)). Figure 11 features the resulting frequency
response functions (FRFs) and Table 4 gathers the associated
electrical parameters. A large value for r1 (r2) leads to a
better reduction of mode one (two). A problematic case is
nonetheless observed for r1 = 0.1; it can also be observed in
Table 4 that R0 is negative for this case.

The apparent issue with r1 = 0.1 and r2 = 0.9 is due to
the physical behavior of the circuit in this configuration. This
behavior is illustrated in Figure 12, where the resistance in
either branch is varied while the other one is maintained at
zero. On the one hand, from Figure 12a, it can be seen that
R0 has a moderate effect on mode 2, but can be tuned to
optimally damp mode one. On the other hand Figure 12b
indicates thatR1 has a significant effect on mode 2. However,
its effect is even more pronounced on mode 1, and when
mode 2 is optimally damped mode 1 is overdamped. This
stems from the ability of series RL shunts to damp lower-
frequency modes (Berardengo et al. 2021). From this setting,
the tuning method seeks to retrieve a correct damping on
mode 1 (and barely affect that on mode 2) by setting R0

to a negative value. Hence, there does not seem to exist a
set of positive resistances that optimally damp modes 1 and
2 simultaneously in this configuration. This rules out this
circuit for practical implementation in this case. Indeed, a
passive resistor with negative resistance does not exist. Even
when using analog or digital circuits to emulate the shunt,
the implementation is strongly inadvisable, as the equivalent
controller would be unstable. In general, it was observed by
the authors that Hollkamp’s shunt is suited for emphasis on
lower-frequency modes, but may perform poorly if emphasis
is put on higher-frequency modes, and a rule of thumb should
be to use this circuit with residues satisfying rk+1 ≤ rk
(k = 1, · · · , Ns − 1), but the problem also depends on the
coupling with each mode. In any case, a verification of the
electrical parameters is advisable.

Second Foster form
Figure 13 depicts the FRFs of the beam controlled with an
SFCF shunt, and Table 5 gathers the associated electrical
parameters. Besides problematic cases, the performance in
terms of vibration reduction is similar to that of Hollkamp’s
shunt if the same set of residues is considered.

An issue with r1 = 0.9 is observable in Figure 13. As can
be seen in Table 5, this is due to a negative resistance. This
issue is similar to the one occurring with Hollkamp’s shunt,
and it can be shown that it comes from the physical behavior
of the circuit in this configuration as well. The difference
of this case with Hollkamp’s shunt is that is appears when
emphasis is put on the lower-frequency mode, which stems
from the ability of parallel RL shunts to damp higher-
frequency modes (Berardengo et al. 2021). It was observed
by the authors that, conversely to Hollkamp’s shunt, the
SFCF circuit is suited for emphasis on higher-frequency
modes, but may perform poorly if emphasis is put on lower-
frequency modes, and a rule of thumb should be to use this
circuit with residues satisfying rk+1 ≥ rk (k = 1, · · · , Ns −
1), but a verification of the electrical parameters is also
advisable.

Current flowing and series-parallel impedance
structure
The performance of the CF and SPIS shunts is investigated
in Figure 14 for various values of r0 and by setting r1 =
r2 = (1− r0)/2 (Equation (6)). For reference, Hollkamp’s
and an SFCF shunts are also used with r1 = r2 = 0.5. As
expected from the theoretical analysis, the CF and SPIS
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Figure 10. Schematic representation of the clamped-free piezoelectric beam with a thin lamina: overall view (a) and close-up on
the patches close to the clamped end (b).

Table 1. Parameters of the clamped-free piezoelectric beam with a thin lamina.
l b t ll bl tl ρ E

700 mm 14 mm 14 mm 40 mm 14 mm 0.5 mm 7850 kg/m3 210 GPa

Table 2. Parameters of the piezoelectric patches of the clamped-free piezoelectric beam with a thin lamina (ε0=8.854 pF/m).
lp bp tp x0 ∆xp ρp Ep d31 εε33

67 mm 14 mm 2 mm 1 mm 3 mm 7800 kg/m3 66 GPa -190×10−12m/V 1531ε0

Table 3. Parameters of series (a) and parallel (b) single-mode
RL shunts.

Mode R L
1 7.51 kΩ 229.08 H
2 1.15 kΩ 9.92 H

(a)

Mode R L
1 301.03 kΩ 234.91 H
2 85.14 kΩ 10.06 H

(b)
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Figure 11. FRF of the beam with open-circuited patches ( )
and controlled with Hollkamp’s shunt: r1 = 0.9, r2 = 0.1 ( ),
r1 = 0.5, r2 = 0.5 ( ) and r1 = 0.1, r2 = 0.9 ( ).

circuits performance tends to approach that of Hollkamp’s
and the SFCF shunts, respectively, when r0 → 0. When
r0 → 1, the passivity constraint imposes that r1 → 0 and
r2 → 0, i.e., the control authority over the first and second
modes gradually vanishes.

The electrical parameters as functions of r0 (keeping r1 =
r2 = (1− r0)/2) are plotted in Figure 15. Two asymptotic
states for the CF can be identified. As r0 → 0, the
capacitance in the first branch tends to infinity, i.e., to a short-
circuit, and the CF circuit becomes equivalent to Hollkamp’s
circuit. When r0 → 1, the capacitances tend to zero while
the resistances and inductances tend to infinity, i.e., the CF
globally tends to an open-circuit. Similarly, two asymptotic
states for the SPIS can be identified: the SFCF circuit when
r0 → 0, and a short-circuit when r0 → 1. This latter state has
the practical advantage that the inductances are quite small
when r0 . 1, and it was what motivated its introduction
in Fleming et al. (2003). However, this comes at the expense
of higher capacitances and reduced performance on the
controlled modes.

Figure 15d also features the resonance frequencies of the
branches of the lossless circuits, i.e.,

√
1/(CnLn). These

resonance frequencies are compared to the tuning rules
proposed in the works first proposing the CF (Behrens et al.
2003) and SPIS (Fleming et al. 2003) shunts, considering that
the capacitances are equal to those given by the proposed
tuning approach, and that the inductances are computed
with the methods therein. For the CF circuit, the tuning
rules agree well for large r0, but a substantial error is
made using the rules in Behrens et al. (2003) for small
r0. According to Figure 15a, small r0 correspond to high
capacitances, which is desirable from a vibration reduction
point of view in this case, as discussed in Cigada et al.
(2012). It was also identified therein that the issue comes
from a strong interaction between the branches, whereas
in Behrens et al. (2003) they are tuned independently. A
similar observation can be made for the SPIS circuit, but
the discrepancy is larger for large r0 in this case. This
is simply due to the fact that the circuit is tuned to the
open-circuit resonance frequencies in Fleming et al. (2003),
whereas it is tuned to the short-circuit ones herein. To
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Table 4. Parameters of Hollkamp’s shunt.
R0 L0 C1 R1 L1

r1 = 0.9, r2 = 0.1 6.45 kΩ 207.82 H 10.28 nF 3.96 kΩ 109.51 H
r1 = 0.5, r2 = 0.5 2.49 kΩ 121.34 H 86.06 nF 1.90 kΩ 22.65 H
r1 = 0.1, r2 = 0.9 -1.63 kΩ 32.51 H 443.48 nF 2.82 kΩ 16.58 H
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Figure 12. FRF of the beam with open-circuited patches ( ) and controlled with Hollkamp’s shunt (r1 = 0.1, r2 = 0.9): R1 = 0
and R0 = 100 Ω ( ), R0 = 1 kΩ ( ), R0 = 2 kΩ ( ) and R0 = 10 kΩ ( ) (a); R0 = 0 and R1 = 100 Ω ( ), R1 = 1 kΩ ( ),
R1 = 2 kΩ ( ) and R1 = 10 kΩ ( ) (b).

Table 5. Parameters of the SFCF shunt.
R0 L0 C1 R1 L1

r1 = 0.9, r2 = 0.1 -181.10 kΩ 72.24 H 23.65 nF 119.25 kΩ 140.32 H
r1 = 0.5, r2 = 0.5 309.82 kΩ 19.22 H 121.06 nF 180.33 kΩ 103.64 H
r1 = 0.1, r2 = 0.9 99.89 kΩ 11.11 H 1.01 µF 86.59 kΩ 21.57 H
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Figure 13. FRF of the beam with open-circuited patches ( )
and controlled with an SFCF shunt: r1 = 0.9, r2 = 0.1 ( ),
r1 = 0.5, r2 = 0.5 ( ) and r1 = 0.1, r2 = 0.9 ( ).

conclude the comparison, it should also be pointed out that
no quantitative selection method for the capacitances in
the circuit was proposed in Behrens et al. (2003); Fleming
et al. (2003), while in this paper they are deduced from the
residues. Furthermore, the resistances tuning was carried out
using numerical optimization therein (Fleming et al. 2002),
whereas the proposed approach uses directly formulas from
the single-mode case (Raze et al. 2021).

Current blocking shunt circuit

The last cases are the CB circuits with series and parallel
RL shunts. For these circuits, a comparison with the tuning
approach proposed in Raze et al. (2020) is performed.

Figure 16 shows the FRFs of the beam controlled with
CB shunts of both types (with series and parallel RL shunts)
tuned with either approach. The parameters of the CB shunts
with series and parallel RL shunts obtained with the proposed
approach are given in Tables 6 and 7, respectively. The
filter capacitances were determined with the approach in this
article, and were used as an input for the method in Raze et al.
(2020). There exist slight differences (which are larger for
parallel RL shunts on the second mode), but the performance
and trends in terms of vibration mitigation are essentially the
same. Furthermore, by comparing Figures 11, 13 and 16, it
can be observed that (besides problematic cases) vibration
reduction is nearly identical for all circuits and is determined
solely by the residues.

The approach proposed in this work has several
advantages over the one proposed in Raze et al. (2020). It
is more generic, as it can be extended to other shunts. It
is easier to implement and provides more insight, namely
it requires as input the residues whose connection with
the MEMCF has been established, whereas the approach
in Raze et al. (2020) requires the filter capacitance values,
whose impact on coupling is less straightforward to assess
(Equation (79)). Finally, it decouples the identification
procedure from the tuning procedure, which permits to use
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Figure 14. (a): FRF of the beam with open-circuited patches ( ) and controlled with Hollkamp’s shunt ( ) and a CF shunt with
r0 = 0.1 ( ), r0 = 0.5 ( ) and r0 = 0.9 ( ). (b): FRF of the beam with short-circuited patches ( ) and controlled with an
SFCF shunt ( ) and an SPIS shunt with r0 = 0.1 ( ), r0 = 0.5 ( ) and r0 = 0.9 ( ).
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Figure 15. Capacitances (a), resistances (b), inductances (c) and resonance frequencies of branches of the lossless circuits (d) of
the CF circuit branches ( : branch 1, : branch 2) and SPIS circuit branches ( : branch 1, : branch 2). In (d), the tuning
rules from Behrens et al. (2003) ( ) and from Fleming et al. (2003) ( ) are also plotted.

more robust identification approaches than that proposed
in Raze et al. (2020).

Experimental validation of the tuning
procedure
The clamped-free piezoelectric beam shown in Figure 10
was used as a host to experimentally validate the
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Figure 16. FRF of the beam with open-circuited patches ( ), controlled with a CB circuit with series RL shunts (a) and a CB
circuit with parallel RL shunts (b), with r1 = 0.1, r2 = 0.9 ( : this work, : Raze et al. (2020)), r1 = 0.5, r2 = 0.5 ( : this
work, : Raze et al. (2020)) and r1 = 0.9, r2 = 0.1 ( : this work, : Raze et al. (2020)).

Table 6. Parameters of the CB circuit with series RL shunts.

R1 L1 R2 L2 C̃1 L̃1

r1 = 0.9, r2 = 0.1 7.93 kΩ 229.17 H 3.92 kΩ 104.30 H 11.35 nF 2.07 kH
r1 = 0.5, r2 = 0.5 10.62 kΩ 226.98 H 1.75 kΩ 20.81 H 102.12 nF 232.82 H
r1 = 0.1, r2 = 0.9 20.14 kΩ 190.89 H 1.28 kΩ 11.62 H 919.11 nF 26.21 H

Table 7. Parameters of the CB circuit with parallel RL shunts.

R1 L1 R2 L2 C̃1 L̃1

r1 = 0.9, r2 = 0.1 285.44 kΩ 235.09 H 3 MΩ 104.58 H 11.35 nF 2.12 kH
r1 = 0.5, r2 = 0.5 212.68 kΩ 235.79 H 338.25 kΩ 21 H 102.12 nF 235.79 H
r1 = 0.1, r2 = 0.9 95.08 kΩ 236.50 H 668.44 kΩ 11.68 H 919.11 nF 26.28 H

Shaker

Shunt Power supply

Beam Impedance head

Figure 17. Picture of the experimental setup.

theoretical developments. Figure 17 features a picture of
the experimental setup. The beam was excited 20 cm away
from the clamped end by an electrodynamic shaker, and an
impedance head was used to measure the acceleration of the
structure and the force acting on it. The first three bending
modes of the beam were targeted for vibration reduction to
illustrate the approach with a higher number of modes and to
complement the results in Raze et al. (2021). To maximize
and balance the electromechanical coupling on these modes,
piezoelectric cells 3, 4 and 5 (starting from the clamped end)
were connected in parallel, and the other cells were left in
open circuit.

System identification

In order to identify the parameters necessary for tuning
the shunts, the charge-to-voltage transfer function, i.e., the
dynamic elastance of the patches, was measured using an
impedance analyzer. A simple nonlinear least-squares fit of
the resulting FRF with the law (Raze et al. 2021)

Vp
qp

=
1

Cε
p

3∏

n=1

(
s2 + 2ξnωoc,ns+ ω2

sc,n

)

3∏

n=1

(
s2 + 2ξnωoc,ns+ ω2

oc,n

)
(92)
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Figure 18. Bode plot of the dynamic elastance: experimental
measurements ( ) and fitted model ( ).

(with ξn the modal damping ratios) was performed. Since
the short- and open-circuit resonance frequencies (ωsc,n and
ωoc,n) of the first three modes correspond to zeros and poles
of the dynamic elastance, they were initially determined
by the trough and peak frequencies of the measured FRF,
respectively. The piezoelectric capacitance at constant strain
was estimated by the value of the FRF at high frequency.
The impedance analyzer had a small parallel conductance g
which was incorporated in the model by

sZm(s) =

Vp
qp

1 + g
Vp
sqp

, (93)

where sZm models the measured elastance (Zm being the
measured impedance). The parameters ωsc,n, ωoc,n, ξn,
Cε

p and g were then optimized to fit the model given by
Equations (92) and (93) to the experimental measurements
using the MATLAB function lsqnonlin. Figure 18
features a Bode plot of the experimental elastance and its
fit, and the extracted parameters are reported in Table 8.
In addition, modal damping of approximately 0.2% was
identified on all three modes.

Shunts realization
The shunts were realized using passive capacitors and
resistors, but the inductances values were too large to
allow for finding off-the-shelf components. To emulate
these inductors, Antoniou’s virtual inductors (schematically
depicted in Figure 19) were used (Moheimani and Fleming
2006). The implemented inductance is related to the
electrical parameters of this circuit by

L =
CaRa1Ra3Ra4

Ra2
. (94)

Ra1 Ra3
Ca

Ra4
Ra2

−

+

−

+

(a)

Ra1 Ra3
Ca

Ra4

Ra2

−

+

−

+

Ra1 Ra2
Ca

Ra3−

+

−

+

(b)

Figure 19. Antoniou’s virtual inductor: grounded (a) and
floating (b) versions.

In all inductors, the value of Ra4 was adjusted in function
of the other parameters to provide the desired inductance.
The other parameters used in this study were Ra1 = Ra2 =
Ra3 = 10 kΩ and Ca =1 µF, and the operational amplifiers
were OPA 445 from Texas Instruments (TI 2008).

Figures 20a and 20b feature a picture of CF and
SPIS shunts, respectively. These circuits can readily be
transformed into Hollkamp’s and SFCF shunts by short-
circuiting and open-circuiting one of the capacitors,
respectively. We note that with the SPIS/SFCF shunts, two
of the virtual inductors are floating (which requires four
operational amplifiers per inductor). It was not sought to
validate experimentally the developments on the CB shunts
since they are close to those obtained by Raze et al. (2020)
and those results were already validated therein.

Beam with shunted patches
Figures 21a and 21b present the FRF of the beam when
the patches are shunted with Hollkamp’s and SFCF shunts,
respectively. For the SFCF shunt, the case r1 = r3 = 0.25
and r2 = 0.5 required a negative resistance, which was not
implemented to avoid any risk of instability; the concerned
resistor was merely replaced by an open circuit. It should
nonetheless be pointed out that all electrical modes are
damped by the other resistors. The different curves represent
cases where control emphasis is placed on a specific mode. A
reduction of 10 to 20 dB can be observed with respect to the
open-circuit case, depending on which mode is considered
and emphasized, proving the effectiveness of the proposed
approach. A qualitative agreement is also obtained in terms
of the interpretation of the residues: when emphasis is
placed on a mode, the reduction is greater compared to the
case where another mode is emphasized. The circuits are
most often slightly overdamped, which is manifested by the
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Table 8. Identified parameters of the experimental setup, with ωsc,n = 2πfsc,n and ωoc,n = 2πfoc,n.
fsc,1 foc,1 fsc,2 foc,2 fsc,3 foc,3 Cε

p

32.13 Hz 32.22 Hz 146.59 Hz 147.15 Hz 395.45 Hz 396.94 Hz 143.89 nF

(a)

(b)

Figure 20. Picture of Hollkamp’s/CF shunt (a) and the SFCF/SPIS shunt (b) (�: capacitor, �: resistor, �: virtual inductor, ◦:
connection to the piezoelectric patches).
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Figure 21. Experimental FRFs of the beam with open-circuited patches ( ) and shunted with Hollkamp’s (a) and SFCF (b)
shunts: (r1, r2, r3) = (0.5, 0.25, 0.25) ( ), (r1, r2, r3) = (0.25, 0.5, 0.25) ( ) and (r1, r2, r3) = (0.25, 0.25, 0.5) ( ).

flat appearance of the double peaks. This effect is more
pronounced with the SFCF shunt. Nevertheless, identical
sets of residues yield nearly identical vibration reduction
performance with both circuits.

Figures 22a and 22b display the FRF of the beam when the
patches are shunted with CF and SPIS shunts, respectively.
In this case, the residue r0 which is not associated with any
mode is varied. In general, the larger this residue, the smaller
the vibration reduction on the modes, in accordance with
the numerical analysis. Once again, it can be observed that

the circuits are slightly overdamped, and this effect is more
pronounced on the SPIS shunt.

The reason for the excessive electrical damping may be
attributed to parasitic damping coming from uncontrolled
Ohmic losses and capacitor losses. The latter is more
prominent for circuits with parallel RL shunts because
they require higher capacitance values, and the capacitors
needed for such high values are typically coming with
relatively high dissipation factors. The imbalance in the
peaks may be attributed to the measurement uncertainty
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Figure 22. Experimental FRFs of the beam with open-circuited patches ( ) and shunted with CF (a) and SPIS (b) shunts:
(r0, r1, r2, r3) = (0.1, 0.3, 0.3, 0.3) ( ), (r0, r1, r2, r3) = (0.5, 0.16, 0.16, 0.16) ( ) and (r0, r1, r2, r3) = (0.7, 0.1, 0.1, 0.1) ( ).

on the electrical parameters, especially the capacitances. It
should be noted that these two effects can be countered
by changing the resistances in the circuits (including Ra4

to adjust the inductances). Such a fine tuning was not
pursued in this work, as significant vibration reduction was
already observable, signaling that the electrical resonance
frequencies and damping ratios were close to being optimal,
and thereby validating the proposed tuning approach. Finally,
it should also be reported that all tested circuits exhibited
nonlinear behavior, increasing their damping while subjected
to higher voltages. This trend is not reported here, but is
coherent with the presence of capacitor losses.

Conclusion

This work exploited a recently-proposed specification
procedure for multimodal piezoelectric damping to design
shunts of known topologies. By relating the ideal Norton’s
admittance and Thévenin’s impedance to those of the
considered circuits, it was possible to tune their electrical
parameters. Performance in terms of effective coupling
(hence in terms of vibration reduction) can be chosen through
the values of the residues, but must be traded-off between
the modes. The tuning procedure was numerically verified
and experimentally validated using a piezoelectric beam. It
was demonstrated to provide effective multimodal vibration
damping for piezoelectric structures

From the theoretical, numerical and experimental devel-
opments made in this work, the following conclusions can
be drawn on multimodal shunts:

1. Hollkamp’s and the SFCF shunts are the simplest
topologies offering optimal multimodal vibration
damping, but are not suited for control emphasis
on higher-frequency and lower-frequency modes,
respectively.

2. The CF and SPIS shunts exhibit at best the same
performance as Hollkamp’s and the SFCF shunts,
respectively, when r0 → 0. For high values of r0, they
tend to an open circuit and short circuit, respectively,
and performance thus degrades.

3. The CB shunt also exhibits optimal performance for
a passive circuit, and benefits from the advantage of
a relative independence between its different stages.
This comes at the expense of a more complex topology
with more electrical elements.

4. Besides the CF and SPIS with high r0, all passive
multimodal shunts considered in this work exhibit
similar performance in terms of vibration reduction.

This work showed that Hollkamp’s, the SFCF and the
CB shunts are topologies that theoretically allow for optimal
vibration mitigation with multi-resonant shunts. Yet, further
investigation of various topologies may still prove useful to
find circuits with, e.g., realizable electrical parameters, or to
consider non-necessarily resonant control in the same lines
as Dal Bo et al. (2022).

An interesting extension of this work could be the
fully passive realization of the considered circuits using
tailor-made inductors. The problem of designing multiple
circuits shunting multiple transducers for improved control
performance could also be tackled.
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Appendix

Sherman-Morrison formula
The Sherman-Morrison formula allows for the computation
of the inverse of a rank-one updated matrix from the inverse
of the non-updated matrix A (Sherman and Morrison 1950),
provided it is regular. It is given by
(
A + uvT

)−1
= A−1 − 1

1 + vTA−1u
A−1uvTA−1,

(95)
where u and v are vectors of length equal to that of A.
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