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Abstract: Coffee, one of the most popular beverages in the world, attracts consumers by its rich aroma
and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular
coffee due to health concerns. There are some main decaffeination methods commonly used by
commercial coffee producers for decades. However, a certain amount of the aroma precursors can be
removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand
the difference between regular and decaffeinated coffee from the volatile composition point of view,
headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass
spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of
eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles,
decaffeinated coffee was significantly separated from regular coffee by principal component analysis
(PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial
least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly
different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular
coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction
of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated
coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to
select the most important features that could enable a distinct classification between the two coffee
types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived
compounds were a strong marker for the regular coffee group whereas furan-derived compounds
were a strong marker for the decaffeinated coffee samples.

Keywords: coffee; decaffeination; aroma profile; solid-phase microexaction; two-dimensional gas
chromatography; time-of-flight mass spectrometry; PCA; t-test; PLS-DA; random forest

1. Introduction

Coffee is one of the most popular beverages in the world [1]. It accounted for 65% of
the hot drinks market worldwide in 2019 [2]. Caffeine is a key compound in both green and
roasted coffee beans as it contributes 1.1 wt% for Arabica and 2.2 wt% for Robusta coffee
beans [1]. Caffeine can block adenosine, thereby on the one hand increasing alertness and
arousal, but on the other hand reducing sleep quality [3]. Caffeine also has some adverse
effects on gastrointestinal disturbance, palpitation and increasing blood pressure [4]. Some
consumers who are sensitive to the stimulating effect of caffeine prefer avoiding caffeine
and choose decaffeinated coffee instead. The consumption of decaffeinated coffee was
around 5% and 20% in Germany and the US, respectively, between 2009 and 2014 [1]. The
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global decaffeinated coffee market size was USD 1.65 billion in 2019 and is expected to
grow in the near future [5].

The maximum caffeine content in decaffeinated coffee products is different around
the world. Most European countries, the US, and Canada restrict a maximum of 0.1 wt%
caffeine in green and roasted coffee [1]. Since 1908, the first successful decaffeination
process was patented, and the classical sequence of pre-wetting the green coffee beans with
water, extracting caffeine, and drying the beans has been applied on an industrial scale.
There are three caffeine extraction approaches, using organic solvents, water, and liquid
or supercritical carbon dioxide (LiCO2 or scCO2). Commonly used organic solvents are
methylene chloride (DCM) and ethyl acetate (EA) [1]. Decaffeination by supercritical CO2
has become a trend because of its advantages, such as it being harmless, non-flammable,
and having outstanding selectivity.

Removing the caffeine from coffee bean cells can cause unwanted side effects such
as mass loss and solvent residues. The most direct effect to decaffeinated coffee drinkers
is the relatively plain and thin taste [6]. This is due to the fact that the roasting process,
which produces aroma compounds, is conducted after the decaffeination process [1]. Some
aroma precursors may be co-extracted with caffeine during decaffeination. Therefore,
the aroma cannot be vastly formed during roasting. A previous study reported a lower
content of alkylpyrazines in decaffeinated coffee compared to regular coffee, which may be
a result of the decaffeination process [7]. The earthy aroma significantly contributed by the
presence of pyrazines was reduced as well [1,8]. Few papers have been published regarding
the influence of the decaffeination process on coffee flavor. However, the flavor change
of decaffeinated tea has been well-investigated in both green and black tea. It has been
observed that the more caffeine was removed, the more volatile compounds were reduced.
Some aroma-active compounds even disappeared after the decaffeination process [4,9,10].

Conventional chemometric methods such as principal component analysis (PCA),
hierarchical cluster analysis (HCA) and partial least squares-discriminant analysis (PLS-DA)
have been extensively used in food analytical chemistry [11] in general, and in particular in
the study of the aroma profile of coffee [12–14]. However, in recent years, multiple works
have pointed out the perks of using machine-learning (ML) algorithms such as support
vector machine (SVM), classification and regression tree (CART) and random forest (RF) to
assess food quality and authenticity. They have also reported their advantages compared
to conventional statistical tools [15]. These ML algorithms have yielded promising results
when used in detecting food fraud, i.e., substituting original ingredients with cheaper
ingredients [16], investigating food origin [17], and detecting food additives [18]. Although,
CART and RF have provided valuable results in the area of food chemistry, they remain
more frequently used in “omics”-related fields. SVM is the most commonly used ML
algorithm in food analysis [15].

This study aimed to understand the influence of the decaffeination process on the
volatile compound composition using both targeted and non-targeted analysis. Using
state-of-the art headspace solid-phase microextraction two-dimensional gas chromatogra-
phy time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) enabled us to obtain
comprehensive information on volatile compound profiles by analyzing the headspace
of ground coffee. The difference of aroma-related volatile composition between decaf-
feinated and regular coffee was revealed by targeted analysis and chemometric tools. A
non-targeted analysis using the random forest machine-learning algorithm was used to
investigate the candidate chemical features that best divide the two coffee types (regular
and decaffeinated).

2. Results and Discussion
2.1. Targeted Analysis of Aroma-Related Volatile Compounds
2.1.1. Aroma-Related Volatiles

Coffee is a complex matrix. During the roasting process, the precursors in the green
beans are transformed into compounds that determine the aroma and taste of coffee.
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Major chemical reactions are the Maillard reaction, Strecker degradation, caramelization,
degradation of chlorogenic acids and lipid oxidation [19]. Although there are hundreds
of volatile compounds identified in roasted coffee, only dozens of them significantly
contribute to the aroma profile [19]. Summarizing the Arabica coffee marker list from
previous research [20], the volatile compound list in roasted coffee and the main odor-
active compound list from two review articles [8,21], then searching in the coffee samples
measured in this study, a total of 52 aroma-related volatile compounds were finally selected
for target analysis (Table 2). This aroma-related volatile list included 4 acids, 3 alcohols,
6 aldehydes, 6 ketones, 9 furans, 1 lactone, 3 phenols, 13 pyrazines, 2 pyridines, 3 pyrroles,
and 2 sulfur-containing compounds. Three pairs of coffee (R-R vs. D-R, R-F vs. D-F,
R-VO vs. D-VO, Table 3) were used to investigate the difference in aroma-related volatiles
between regular and decaffeinated coffee. These three pairs were selected because in each
pair, the origin of the coffee beans, the species of the coffee beans (Coffea arabica L. (Arabica)
or Coffea canephora Pierre (Robusta)), and the roasting process were identical. The only
difference was the presence or the absence of the decaffeination process.

Table 1. The targeted aroma-related volatile compound list.

Chemical Family Compound Aroma Description CAS

Acids

Acetic acid Pungent, sour, acidic, vinegar 64-19-7

Propanoic acid Pungent, acidic, cheesy, vinegar, sour milk,
butter-like 79-09-4

Butanoic acid Sour, rancid, butter-like, sweaty, rubbish 107-92-6
Butanoic acid, 3-methyl- Acidic, sweaty, rancid, cheese, herbaceous 503-74-2

Alcohols
2,3-Butanediol (isomer) Fruity, creamy, buttery 513-85-9
2,3-Butanediol (isomer) Fruity, creamy, buttery 513-85-9

2-Furanmethanol Caramellic, burnt, smoky, sweet, coffee 98-00-0

Aldehydes

Acetaldehyde Fruity, pungent, ethereal, coffee, wine, acrid 75-07-0
Butanal, 2-methyl- Malty, fermented, buttery-oily 96-17-3

Butanal, 3-methyl- Almond, fruity, buttery-oily, malty, pungent,
acrid, apple-like, sweaty 590-86-3

Benzaldehyde Fruity, almond, bitter 100-52-7
Benzeneacetaldehyde Sweet-fruity 122-78-1
Propanal, 2-methyl- Grassy, fermented, buttery-oily 78-84-2

Furans

Furan, 2-methyl- Pungent, fruity 534-22-5
2-Furfurylthiol 1 Smoke roast, caramel, burned matter, fresh coffee 98-02-2

Furfural Sweet, bread-like, caramel,
cinnamon-almond-like, bitter 98-01-1

Furan, 2-[(methylthio)methyl]- 1 Smoke roast 1438-91-1
Furfuryl formate Floral 13493-97-5

Ethanone, 1-(2-furanyl)- Sweet, balsam, almond, cocoa 1192-62-7
2-Furanmethanol, acetate Ethereal-floral, herbal-spicy, green 623-17-6

2-Furancarboxaldehyde, 5-methyl- Spice, caramel, maple 620-02-0
Furaneol Sweet, caramel 3658-77-3

Ketones

Acetone Ethereal, lemon 67-64-1
2,3-Butanedione Buttery-oily, fruity, caramel 431-03-8
2,3-Pentanedione Buttery-oily, caramel-like 600-14-6

Acetoin Sweet, buttery, creamy, woody, yogurt 513-86-0
2-Propanone, 1-hydroxy- Sweet-caramel-like, mushroom, earthy, nutty 116-09-6
1-Hydroxy-2-butanone Sweet, coffee, toasted 5077-67-8

Lactones Butyrolactone Caramel, fatty, creamy, oily, sweet 96-48-0

Phenols
Phenol, 2-methoxy- Phenolic, spicy, burnt, smoky 8021-39-4

Phenol, 4-ethyl-2-methoxy- Phenolic, spicy, sweet 2785-89-9
2-Methoxy-4-vinylphenol Phenolic, clove, spicy 7786-61-0
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Table 2. The targeted aroma-related volatile compound list.

Chemical Family Compound Aroma Description CAS

Pyridines
Pyridine, 3-ethyl- Rotten fish, smoky, leather, tobacco, caramel,

burnt, coffee-like, toasted 536-78-7

Ethanone, 1-(2-pyridinyl)- Popcorn, bready, tobacco, cracker-like,
roasted barley 1122-62-9

Pyrazines

Pyrazine, methyl- Nutty, cocoa, green, roasted, chocolate,
meaty, toasted 109-08-0

Pyrazine, 2,5-dimethyl- Nutty, roasted, grassy, chocolate, earthy 123-32-0
Pyrazine, 2,6-dimethyl- Chocolate, cocoa, toasted nuts, roasted meat 108-50-9

Pyrazine, ethyl- Earthy, musty, peanut butter, nutty, woody,
buttery, roasted, green, sweet 13925-00-3

Pyrazine, 2,3-dimethyl- Nutty, roasted, chocolate, cocoa, green, toasted 5910-89-4

Pyrazine, 2-ethyl-6-methyl- Earthy, musty, mold, flowery, fruity,
hazelnut-like, toasted 13925-03-6

Pyrazine, 2-ethyl-5-methyl- Onion, garlic, sulfurous 13360-64-0
Pyrazine, ethenyl- Nutty, green, burnt 4177-16-6

Pyrazine, 3-ethyl-2,5-dimethyl- Earthy, moldy, roasted 13360-65-1
Pyrazine, 2-ethenyl-6-methyl- Coffee 13925-09-2

Pyrazine, 2,3-diethyl-5-methyl- Nutty roast 18138-04-0
Pyrazine, 2-ethenyl-5-methyl- Coffee, beany, nutty, grassy, roasted 13925-08-1

1-(6-Methyl-2-pyrazinyl)-ethanone Popcorn, roasted, nutty, musty, bread, crust,
chocolate, hazelnut, coffee 22047-26-3

Pyrroles

1H-Pyrrole, 1-methyl- Smoky, woody, herbal, sweet, animal, coffee 96-54-8

Ethanone, 1-(1H-pyrrol-2-yl)- Nutty, bread, walnut, licorice, cracker,
popcorn-like 1072-83-9

1H-Pyrrole-2-carboxaldehyde Musty, beefy, coffee 1003-29-8

Sulfur-containing
compounds

Methanethiol Freshness, sulfurous, fresh coffee 74-93-1

3-Mercapto-3-methylbutanol Smoke roast, soup-like, cooked meat, spicy, meat,
chicken brothy 34300-94-2

1 It is also a sulfur-containing compound.

Table 3. Coffee sample list.

Group Sample Bean Species Bean Origin Decaffeination Process 1

Regular R-R Arabica Latin America/India/Eastern
Africa -

Decaf D-R Arabica Latin America/India/Eastern
Africa LiCO2/water 2

Regular R-F Arabica Latin America -
Decaf D-F Arabica Latin America LiCO2/water

Regular R-VO Arabica Brazil/Colombia -
Decaf D-VO Arabica Brazil/Colombia LiCO2/water

Regular R-VI Arabica Ethiopia/Mexico -
Decaf D-VI Arabica Colombia/Ethiopia LiCO2/water

Regular R-S Arabica -
Decaf D-S Arabica Unknown

Regular R-DE Arabica, Robusta -
Decaf D-DE Arabica, Robusta DCM/water 3

Regular R-I Arabica -
Decaf D-I Arabica LiCO2

Regular R-L Arabica -
Decaf D-L Arabica, Robusta scCO2

1 The decaffeination process mentioned by the vendors; 2 LiCO2/water indicate the vendor applied either LiCO2
or water-based decaffeination process; 3 DCM/water indicate the vendor applied either DCM or water-based
decaffeination process.
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2.1.2. Chemical Families of Aroma-Related Volatiles

As shown in Figure 1, some chemical families such as alcohols, pyrazines, lactones,
pyrroles, phenols, pyridines, and sulfur-containing compounds showed higher peak areas
in the regular coffee than in the decaffeinated coffee. The reduced formation of pyrazines
is previously observed in DCM decaffeinated coffee [1]. The relatively lower content of
alkylpyrazines in decaffeinated ground coffee was also reported [7]. Pyrazines are the
principle pyrolysis products of sucrose during the roasting process [14]. Furthermore, a
significant amount of sucrose is removed unintentionally together with caffeine during the
decaffeination process [22,23]. In fact, 60% and 20% losses in sucrose content were observed
in the green beans of Coffea arabica L. (Arabica) and Coffea canephora Pierre (Robusta),
respectively, after decaffeination by DCM [22,23]. Therefore, this explains why pyrazines
were less concentrated in the decaffeinated coffees than in the regular coffees. During the
roasting process, the pyrolysis of sucrose can also produce pyrroles [22]. Therefore, the
number of pyrroles was relatively lower in the decaffeinated group. Besides the sucrose,
chlorogenic acids are also partially removed during decaffeination (16% loss for Arabica
and 11% loss for Robusta) [23]. Chlorogenic acids are the precursors of phenolic derivatives
and lactones [21,22]. The content of phenolic compounds in the roasted ground coffee is
related to the content of chlorogenic acids in the green beans [8]. Thus, this explains the
lower content of phenols and lactones in the decaffeinated group. The decaffeination pro-
cess extracts little amounts of proteins, lipids, and trigonelline as well. The roasting process
degrades trigonelline into pyridines and pyrroles. During the Maillard reaction, the degra-
dation of trigonelline, protein, and sucrose produces pyridines, pyrroles, and pyrazines [21].
Lipids are the precursors of alcohols. The decrease in lipids in decaffeinated green beans
results, therefore, in the lower content of alcohols in roasted decaffeinated beans.
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Figure 1. The comparison of targeted aroma-related volatiles between regular and decaffeinated
coffee ((a). R-R vs. D-R, (b). R-F vs. D-F, (c). R-VO vs. D-VO) according to the chemical family relative
peak areas. In the abbreviations of the coffee samples names, the initial letters R and D indicate
the coffee type: regular and decaffeinated. The second letters R, F, and VO indicate the label of the
coffee capsule. The asterisk signs (*) displayed above certain chemical families indicate a significant
statistical difference (p < 0.05, t-test) between the regular and the decaffeinated coffee.

In contrast, furans, acids, ketones and aldehydes showed higher peak areas in the
decaffeinated coffees than the regular coffees (Figure 1). The coffee bean color turns to
light brownish after the decaffeination process [1]. In a roasted coffee production site, the
completion of the roasting process is partially decided by the color of the beans. Therefore,
to achieve the same final color, the decaffeinated beans may need shorter time than the
regular green beans, which means the decaffeinated beans may be less roasted. Generally,
less roasted coffee presents more acidity [19]. This may explain the higher acid content in
the decaffeinated coffees. The amount of some compounds such as diketones decrease with
excessive roasting because they are formed in the early stages of roasting [19]. Therefore,
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less roasting time of decaffeinated coffee cause higher ketone content. Aldehydes that
impact flavor quality are produced from two pathways. The Strecker aldehydes, such as
2-methylbutanal and 3-methylbutanal, are the products of the Strecker degradation [24].
The precursors involved in Strecker degradation are amino acids and diketones derived
from the Maillard reaction. The other pathway is from lipid oxidation of unsaturated fatty
acids [19]. In the Strecker degradation process, more Strecker aldehydes can be produced
from more diketones. This may partially illustrate the higher aldehydes and ketones
content observed in decaffeinated coffees. Furans are Maillard reaction products [25]. The
formation of furans involves thermal lipid oxidation, thiamine and nucleotide degradation,
and thermal degradation of D-glucose and sugar polymers [8]. The reasons for higher
furan content in decaffeinated coffee are unclear to the knowledge of the authors.

2.1.3. Differentiation of Regular and Decaffeinated Coffee by Aroma-Related Volatiles

Using the data set of 52 aroma-related volatiles from three pairs of coffee (R-R vs. D-R,
R-F vs. D-F, R-VO vs. D-VO), principal component analysis (PCA) screening was conducted
to visualize a potential clustering trend between the regular and the decaffeinated coffee
groups. As can be seen from the PCA scores plot, a significant clustering trend was observed
between the two groups (Figure 2), which indicated that the aroma-related volatile contents
were able to differentiate the two types of coffee. Applying the feature selection tools, a
threshold of p < 0.1 was set for the univariate analysis, t-test, and a threshold of variable
importance in projection (VIP) score > 0.8 was set for the multivariate analysis, partial
least squares-discriminant analysis (PLS-DA). Both approaches presented the same top
25 significant features among the 52 aroma-related volatiles (Figure 2b–d). The heatmap
of the top 25 features separated the volatiles into two clusters (Figure 3). The volatiles in
the upper group highlighted in blue correspond to pyrazines. Their content was higher
in the regular coffees and lower in the decaffeinated coffees. The lower group featured in
red outlined several chemical families, such as aldehydes, ketones, furans, pyridines, acids,
pyrroles, and sulfur-containing compounds. This group showed relatively higher content
in the decaffeinated coffees compared to the regular coffees.

2.1.4. Predicted Aroma Difference between Regular and Decaffeinated Coffee

As discussed previously, the reduced content of pyrazines was caused by the signifi-
cantly reduced content of sucrose during the decaffeination process. Overall, 8 pyrazines out
of 13 in the targeted aroma-related volatile list (Table 2) were found significantly different
between R-R and D-R, between R-F and D-F, and between R-VO and D-VO, by one-way
analysis of variance (ANOVA) with a threshold of p < 0.05 (Figure 4). They were identified by
the NIST library spectral similarity of 700/1000 and linear retention indices (LRIs) ± 20. The
8 pyrazines are pyrazine, 3-ethyl-2,5-dimethyl-; pyrazine, 2,5-dimethyl-; pyrazine, methyl-;
pyrazine, 2-ethenyl-5-methyl-; pyrazine, ethenyl-; pyrazine, 2,3-dimethyl-; pyrazine, 2-
ethyl-6-methyl-; and pyrazine, 2-ethyl-5-methyl-. These pyrazines contribute to the nutty,
roasted, chocolate, earthy, and musty aroma of the coffee [26–29] (Table 2). Therefore, in
this aspect, the decaffeinated coffees D-R, D-F, and D-VO would exhibit a relatively thinner
aroma. (Figure 5).

The amount of 2-furancarboxyaldehyde, 5-methyl- was higher in the decaffeinated
coffee than in the regular coffee in all three pairs (Figure 5). This difference added more
spice, caramel, and maple aroma in the decaffeinated coffee. Acetone and acetaldehyde
were observed to be more concentrated in D-R and D-F than R-R and R-F. The fruity,
ethereal, and wine aroma should be presented more intensively in the decaffeinated coffee.

2.2. Non-Targeted Analysis of Two Coffee Groups
2.2.1. Classification Model and Feature Selection

To account for the instrumental variability, all sample triplicates were considered for the
implementation of the classification model, leading therefore to a total of n = 48 observations
and 630 features. The model was generated using the TreeBagger function in Matlab that
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implements the RF classification algorithm [30]. RF was chosen because it performs well
for high-dimensional datasets, where the number of features outweighs the number of
observations [31,32]. Its ability to overcome the dimensionality issue is attributed to the fact
that only a subset of the features are considered to build each decision tree.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 17 
 

 

duced from more diketones. This may partially illustrate the higher aldehydes and ke-
tones content observed in decaffeinated coffees. Furans are Maillard reaction products 
[25]. The formation of furans involves thermal lipid oxidation, thiamine and nucleotide 
degradation, and thermal degradation of D-glucose and sugar polymers [8]. The reasons 
for higher furan content in decaffeinated coffee are unclear to the knowledge of the au-
thors. 

2.1.3. Differentiation of Regular and Decaffeinated Coffee by Aroma-Related Volatiles 
Using the data set of 52 aroma-related volatiles from three pairs of coffee (R-R vs. D-

R, R-F vs. D-F, R-VO vs. D-VO), principal component analysis (PCA) screening was con-
ducted to visualize a potential clustering trend between the regular and the decaffeinated 
coffee groups. As can be seen from the PCA scores plot, a significant clustering trend was 
observed between the two groups (Figure 2), which indicated that the aroma-related vol-
atile contents were able to differentiate the two types of coffee. Applying the feature se-
lection tools, a threshold of p < 0.1 was set for the univariate analysis, t-test, and a thresh-
old of variable importance in projection (VIP) score > 0.8 was set for the multivariate anal-
ysis, partial least squares-discriminant analysis (PLS-DA). Both approaches presented the 
same top 25 significant features among the 52 aroma-related volatiles (Figure 2b–d). The 
heatmap of the top 25 features separated the volatiles into two clusters (Figure 3). The 
volatiles in the upper group highlighted in blue correspond to pyrazines. Their content 
was higher in the regular coffees and lower in the decaffeinated coffees. The lower group 
featured in red outlined several chemical families, such as aldehydes, ketones, furans, 
pyridines, acids, pyrroles, and sulfur-containing compounds. This group showed rela-
tively higher content in the decaffeinated coffees compared to the regular coffees.  

 
Figure 2. (a) PCA scores plot of the regular and the decaffeinated coffees using 52 aroma-related 
volatiles data set. (b) The selected features which significantly differed between the two coffee 
groups by performing the t-test and (c) PLS-DA. The numbers in the feature column of the t-test 

Figure 2. (a) PCA scores plot of the regular and the decaffeinated coffees using 52 aroma-related
volatiles data set. (b) The selected features which significantly differed between the two coffee groups
by performing the t-test and (c) PLS-DA. The numbers in the feature column of the t-test table and
the y-axis of the PLS-DA VIP scores graph indicate the numbering of the aroma-related volatiles. (d)
The volatile compounds corresponding to the significant features.

The misclassification probability of the trained classifier is computed using the out-of-
bag error (oobError). Owing to the calculation of the oobError, it can be considered that the
TreeBagger algorithm has a built-in support for cross-validation, hence its implementation
does not require splitting the data into training and validation sets. The classifier oobError
was equal to 0, suggesting that all samples were accurately classified. Even though the
TreeBagger algorithm has comparable functionalities to cross-validation, to endorse the
accuracy of the obtained classifier, the dataset was randomly partitioned into a 60% training
set (n = 29) and a 40% validation set (n = 19). In this scheme, the oobError of the training
set was equal to 0.0690 and the classification model exhibited very high accuracy, as shown
in the corresponding confusion matrix (Figure 6a).

In order to select the features that best divide the data, predictor importance is esti-
mated based on the impact that the permutation of out-of-bag predictor observations has
on the Mean Squared Error (MSE). In other words, the values for each individual feature
are permuted across all the observations in the selected dataset. After the permutation, the
MSE is computed. The larger this value, the more important the feature. The OOBPermut-
edVarDeltaError Matlab function was used to assess feature importance. It calculates the
MSE averaged over all trees in the classification ensemble and divides it by the standard
deviation (SD) taken over the trees, for each variable.
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Figure 3. The heatmap of the top 25 significant aroma-related volatiles selected by feature selection
tools. The x-axis indicates the samples names. The first letter of each sample name indicates the coffee
type: regular (R) or decaffeinated (D) and the second letter corresponds to the label of the coffee
capsule. The y-axis indicates the specific aroma-related volatiles (refer to Figure 2). The chemical
structures of the volatiles are discussed in the text.

A cutoff of 0.35 was set to select the 20 most discriminatory features (Figure 6b). These
features belonged to different chemical families and included five pyrazines, five furans,
two alcohols, two thiazoles, one oxolane, one methylxanthine, one triazole, one phenol and
one pyrrole. The features names and numbers are listed in the Supplementary Materials
Section (Table S1). Some of these chemical families were already investigated in the targeted
analysis section (Section 2.1). Nonetheless, a major presence of pyrazine- and furan-derived
compounds was observed among these features. Additionally, the efficiency of the selected
features in accurately dividing the complete data set into two distinct groups (regular and
decaf) was confirmed using PCA score plots (Figure 6c,d). It is worth noting that, based
on Figure 6d, the presence of three subgroups in the decaffeinated coffee samples was
suspected. Their presence was confirmed by performing a PCA only on the decaffeinated
coffee samples, as shown in Figure S1 in the Supplementary Materials Section. The main
difference between these groups consisted of the used decaffeination method. In fact, all
the samples in group I belong to the same vendor, and caffeine was removed using the
same method (LiCO2/water). Samples in group III are instrumental triplicates of the same
sample, and scCO2 was used for the decaffeination process. Samples in group II were
subjected to decaffeination methods that are different from group I and III.

As highlighted by the targeted analysis, the regular coffee samples presented higher
peak areas in alcohols, pyrazines and phenols. Their higher presence was previously
discussed in Section 2.1. Similar to pyrazines, thiazoles significantly contribute to the
aroma profile of coffee. Their presence is attributed to the Strecker degradation [33].
Additionally, they are strongly related to the roasting intensity of coffee [34]. The presence
of an oxolane-derived compound was also noticed among the selected top features with
higher peak areas in the regular coffee samples. In fact, oxolanes originate from the thermal
degradation of melanoidins due to the roasting process and are therefore linked to the
roasting intensity of the coffee beans [35]. As previously discussed, decaffeinated coffee
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is more likely to be less roasted than regular coffee, thus this could explain the higher
presence of thiazoles and oxolanes in regular coffee samples. Caffeine was also present
among the top 20 features. Its peak areas were evidently higher in regular coffee samples.
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Figure 4. The comparison of the normalized contents of 8 pyrazines which presented a significant
difference between R-R vs. D-R, R-F vs. D-F, and R-VO vs. D-VO. The first letter of each sample name
indicates the coffee type: regular (R) or decaffeinated (D) and the second letter corresponds to the
label of the coffee capsule.

On the other hand, decaffeinated coffee samples displayed a more prominent presence
of furan and pyrrole derivatives, corroborating therefore the conclusions drawn by the
targeted analysis. Furans are one of the most distinguishable volatile aroma components in
coffee. Their presence is related to the thermal degradation of endogenous components
during the roasting process [36]. Based on the selected discriminatory features, furan
derivatives seem to be a strong marker of the decaffeinated group.
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Figure 5. The radar graphs of coffees R-R vs. D-R, R-F vs. D-F, R-VO vs. D-VO based on the peak inten-
sities of top 25 aroma-related volatiles. The aroma descriptions are obtained from references [8,20,21].
The first letter of each sample name indicates the coffee type: regular (R) or decaffeinated (D) and the
second letter corresponds to the label of the coffee capsule.

For the selected decaffeinated coffees, the manufacturers report their products with
the flavor profiles of sweet aroma of almonds, chocolate and dried fruits for the D-L sample,
cacao notes for the D-F sample, notes of caramel, chocolate and toasted bread for the D-I
sample, and fruity notes for the D-R, D-VO and D-VI samples. Some of these flavors were
not reported in their regular coffee counterparts. As for the other samples, i.e., D-DE and
D-S, allergens such as peanuts and sesame were reported in the allergen section of the
products. Little information regarding the impact of the coffee type on furan presence is
available in the literature. However, it has been proven that furans are characteristic flavor
markers for roasted almonds [37], roasted sesame seeds [38], chocolate [39] and are also
responsible for the fruity aroma [40]. Therefore, this might be a conceivable explanation
for their presence in the selected decaffeinated coffee samples. Additionally, furans are
associated with a broad range of aroma profiles, ranging from caramel-like, to sweet and
fruity, to nutty and meaty. Their prominent presence can also be interpreted as a way to
compensate for the thin taste of decaffeinated coffees caused by the removal of caffeine
and other aroma precursors during the decaffeination process. Nevertheless, the authors
believe that a larger number of decaffeinated coffee samples covering a wider range of
manufactures and a wider flavor and aroma spectra should be investigated in order to draw
more reliable conclusions. The reason higher presence of a triazole derivative compound in
the decaffeinated coffee samples is unclear to the authors. Some sorts of triazoles are used as
fungicides in coffee farms in few regions of the world [41]. From all the studied regular and
decaffeinated coffee samples, only D-L (Arabica and Robusta) and R-L (Arabica) samples
presented higher levels of the triazole derivative. This difference might be related to the
differences in farm management of specific coffee regions.

In order to explore whether a linear relationship exists between the top 20 features,
Pearson correlation coefficients were calculated. The correlation matrix is provided in
the Supplementary Materials Section (Figure S2). Based on the calculated coefficients,
negative correlations ranging between r = −0.67 and r = −0.80 between pyrazine- and
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furan-derived compounds were depicted. These values suggest a strong correlation be-
tween these two chemical families. In other words, higher presence of furans entails a
lower presence of pyrazines and vice versa. These results further corroborate the targeted
analysis conclusions.
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Figure 6. (a) The confusion matrix of the validation set (n = 19) obtained using the random forest
classification algorithm. (b) The chemical classes of the top 20 discriminatory features. In red:
the compounds that have the highest peak areas in decaffeinated coffee samples. In green: the
compounds that have the highest peak areas in regular coffee samples. (c) PCA score plot using
630 features. (d) PCA score plot using only the top 20 discriminatory features.

2.2.2. Prediction Model

The RF algorithm was also used to build a prediction model that aimed at predicting
the coffee type (regular or decaf) of 10 selected samples. This model was built using the
original 16 samples and 630 features data set investigated in the present work. Once again,
all sample triplicates were considered for the implementation of the model (n = 48). The
complete data set was divided into a six-sample subset (n = 18) used to train the model and
a 10-sample subset (n = 30) used to validate the model.

Three pairs of coffee, namely (R-R and D-R), (R-DE and D-DE), and (R-L and D-L) were
selected to train the model. These samples were carefully selected to account for the two
types of coffee beans: Arabica and Arabica Robusta, and the three different decaffeination
processes: LiCO2/water, DCM/water and scCO2 (Table 3). The misclassification error of
the training set was equal to 0. The validation set consisted of five pairs of coffee, namely
(R-F and D-F), (R-VO and D-VO), (R-VI and D-VI), (R-S and D-S) and (R-I and D-I). Its
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misclassification error was also equal to 0. The prediction model was able to accurately
predict the type of all the coffee samples in the validation set. The ROC curve of the
validation set is presented in the Supplementary Materials Section (Figure S3).

The workflow built with this prediction model can be further applied to a wider
range of decaffeinated coffees subjected to different decaffeination methods. In fact, using
water-based or CO2-based decaffeination is considered to be healthier for coffee drinkers
compared to solvent (DCM)-based methods. In this regard and for future applications,
this model can help distinguish between the different decaffeination methods, and hence
contribute to ensuring food quality and detecting potential food fraud.

3. Materials and Methods
3.1. Chemicals and Samples

The n-alkanes mixture (C7-30, 1000 µg mL−1 in hexane, Millipore Sigma, Bellefonte,
PA, USA) was diluted to 100 µg mL−1 in hexane for the calculation of linear retention
indices (LRIs). Sixteen coffee samples packed in coffee capsules were produced by five
different vendors and purchased from retail supermarkets. The coffee samples represented
eight pairs of regular (R) and decaffeinated (D) coffee (Table 3). Three pairs (R-R vs. D-R,
R-F vs. D-F, R-VO vs. D-VO) were used to investigate the difference in aroma-related
compounds between regular and decaffeinated coffee. In each pair of the above samples,
the origin of the coffee beans, the species of the coffee beans (Coffea arabica L. (Arabica)
or Coffea canephora Pierre (Robusta)), and the roasting process were identical. The only
difference was whether they were processed with or without decaffeination process. All
eight pairs of samples were used to differentiate between regular and decaffeination groups.
All the samples were measured in triplicate.

3.2. HS-SPME-GC×GC-TOFMS Instrumentation

Right after opening the coffee capsules, the ground coffee powder was transferred into
septum-sealed headspace vials. Each vial (20 mL) contained 1.0000 ± 0.0100 g of ground
coffee. Samples were firstly incubated at 50 ◦C for 40 min with an agitator speed of 250 rpm.
Then, the headspace of each sample was extracted by a 50/30 µm DVB/CAR/PDMS SPME
fiber (Supelco, Bellefonte, PA, USA) at the same condition for 60 min before injection into
GC. The new SPME fiber was conditioned according to the supplier’s instructions prior to
use. During measurement, the fiber was pre-conditioned and post-conditioned at 250 ◦C
for 10 min.

A Pegasus 4D GC×GC-TOFMS system with flow modulator (LECO Corp., St. Joseph,
MI, USA) was employed in this study. In order to achieve an adequate separation of the
studied samples, multiple column sets were investigated. However, the final set consisted
of a reversed-phase (polar × non-polar) column set composed of first dimension (1D)
StabilWax MS (30 m, 0.25 mm i.d., 0.25 µm df, Restek Corp., Bellefonte, PA, USA) and
second dimension (2D) Rxi-5Sil MS (1.3 m, 0.1 mm i.d., 0.1 µm df, Restek Corp.) Two
columns were installed in two separated ovens. The coffee headspace sample was desorbed
from SPME fiber in the GC injector at 250 ◦C for 10 min. The main GC oven was set at
50 ◦C for 1 min, then increased to 230 ◦C with a ramp of 2 ◦C min−1, and finally increased
to 250 ◦C (held for 5 min) at a ramp of 50 ◦C min−1. The secondary oven temperature offset
was 5 ◦C. The transfer line temperature was 250 ◦C. The flow modulation period (PM) was
2 s with an injection duration of 0.08 s. The temperature of 70 eV electron ionization (EI)
source was 250 ◦C. Mass range was 30–550 mu. MS acquisition rate was 150 spectra s−1

(Table S2). The 2D chromatogram of coffee sample R-R is presented in Figure S4.

3.3. Data Processing, Chemometrics, and Machine Learning

The data were processed using ChromaTOF® (ver. 5.51, LECO Corp.). The putative
identification of targeted aroma-related compounds was conducted by spectral similarity
library search on NIST17 and LRIs confirmation. The chromatogram alignment and non-
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targeted peak table of all the coffee samples were generated on ChromaTOF Tile (ver. 1.01,
LECO Corp.).

The chemometric tools including t-test, one-way ANOVA, PCA, PLS-DA, HCA, and
heat map were operated using R version 4.0.2 (R Foundation for Statistical Comput-
ing, Vienna, Austria) and MetaboAnalyst 5.0 (Xia Lab, McGill University, Montréal, QC,
Canada). Data pre-processing of normalization to sample median, log10 transformation,
and autoscaling were conducted prior to applying chemometric tools. The distance measure
and clustering algorithm used in the heatmap were Euclidean and Ward. D, respectively.

The final data matrix for the non-targeted analysis included a total of 16 samples
(Table 3) and 630 features. Prior to statistical analyses, the compounds’ peak areas were nor-
malized using Probabilistic Quotient Normalization (PQN) [42], log10 transformation, and
autoscaling. The data were processed using ChromaTOF® Tile (ver. 1.01.00.0, LECO Corp.).

In order to assess feature importance, the RF machine-learning algorithm was used
to select the most discriminatory features that would help distinguish between regular
and decaffeinated coffee samples. It was also used to build a classification model that
enabled the prediction of the coffee type (decaf or regular) of a subset of chosen coffee
samples. Briefly, RF is a classification algorithm that consists of implementing a large
number of decorrelated classification trees, also called decision trees, operating as an
ensemble. These trees are generated by using randomly selected subsets of features and
observations. Each individual decision tree in the RF accounts for a class prediction. The
class selected by the majority of the trees will express the model’s prediction [30]. RF was
implemented in an in-house Matlab (ver. R2019b, MathWorks, Natick, MA, USA) code
using the TreeBagger function. Additionally, feature importance was assessed using the
OOBPermutedVarDeltaError function.

4. Conclusions

The state-of-the-art HS-SPME-GC×GC-TOFMS instrument has made it possible to
obtain the fingerprint chromatogram of a natural product, such as coffee in this study. It
further enabled both targeted and non-targeted analysis to distinguish the decaffeinated
coffees from regular ones. Two coffee groups were separated by 52 key aroma-related
volatiles. In particular, the pyrazines showed significantly reduced content in decaffeinated
coffee due to the removal of sucrose together with caffeine during the decaffeination pro-
cess. The reduction in pyrazines can explain the thin aroma of decaffeinated coffees due
to the lack of nutty, roasted and chocolate notes. For the non-targeted analysis, the use of
the random forest machine-learning algorithm enabled the selection of 20 discriminatory
features, among which a major presence of pyrazine and furan derivatives were noticed.
These features allowed for an accurate classification of the studied coffee samples. Ad-
ditionally, pyrazines were identified to be a marker of the regular coffee group, whereas
furans were depicted as a marker of the decaffeinated coffee group.

The highlighted differences in the presence of certain volatile compounds in the two
coffee types along with their potential impact on the coffee aroma profile can be of great
interest for the coffee industry. Understanding why and how certain volatile compounds
are less concentrated in decaffeinated coffee can help coffee vendors to improve the decaf-
feination process to shorten the gap between the aroma profile of decaffeinated coffee and
regular coffee. A pilot study on conducting the decaffeination of the green coffee beans
using the main methods, specifically water-based, solvent-based, and liquid/supercritical
carbon dioxide techniques, will be interesting in the future. The decaffeination effect on
roasted coffee aroma by different decaffeination techniques will also be worth investigating.
The approaches applied in this study to distinguish decaffeinated coffee from regular coffee
could also be applied to other types of natural products. However, it is worth mention-
ing that applying them to study more complex natural products or to establish multiple
classifications could be more challenging.



Molecules 2022, 27, 1806 15 of 16

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27061806/s1, Table S1: The top 20 discriminatory features selected using the
random forest algorithm. Table S2: The analytical condition of HS-SPME-GC×GC-TOFMS. Figure
S1: PCA score plots of the decaffeinated coffee samples. Figure S2: The correlation matrix between
the top 20 features. Figure S3: The ROC curve of the validation set (n = 30) generated by using the
Random forest algorithm. Figure S4: The 2D chromatogram of coffee R-R.
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