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Abstract: Branched-chain amino acids (BCAA) are essential amino acids playing crucial roles in
protein synthesis and brain neurotransmission. Branched-chain ketoacid dehydrogenase (BCKDH),
the flux-generating step of BCAA catabolism, is tightly regulated by reversible phosphorylation of
its E1α-subunit. BCKDK is the kinase responsible for the phosphorylation-mediated inactivation of
BCKDH. In three siblings with severe developmental delays, microcephaly, autism spectrum disorder
and epileptic encephalopathy, we identified a new homozygous in-frame deletion (c.999_1001delCAC;
p.Thr334del) of BCKDK. Plasma and cerebrospinal fluid concentrations of BCAA were markedly
reduced. Hyperactivity of BCKDH and over-consumption of BCAA were demonstrated by functional
tests in cells transfected with the mutant BCKDK. Treatment with pharmacological doses of BCAA
allowed the restoring of BCAA concentrations and greatly improved seizure control. Behavioral
and developmental skills of the patients improved to a lesser extent. Importantly, a retrospective
review of the newborn screening results allowed the identification of a strong decrease in BCAA
concentrations on dried blood spots, suggesting that BCKDK is a new treatable metabolic disorder
probably amenable to newborn screening programs.

Keywords: BCKDK deficiency; branched-chain amino acids; autism; epilepsy; newborn screening

1. Introduction

In humans, branched-chain amino acid (BCAA; leucine, isoleucine and valine) home-
ostasis is essentially under the control of the mitochondrial branched-chain α-ketoacid dehy-
drogenase (BCKDH) complex, which catalyzes the oxidative decarboxylation of branched
short-chain α-ketoacids [1]. Beside their role of substrate for protein synthesis, BCAA
are involved in multiple metabolic pathways and play essential functions in growth and
development [2–4].
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The main inherited disorder related to BCAA homeostasis is maple syrup urine disease
(MSUD). Involving either BCKDHA, BCKDHB, DBT or DLD genes, MSUD is character-
ized by an accumulation of BCAA and branched-chain ketoacids, which can induce fatal
acidosis and severe neurological impairment [5]. Besides classical MSUD, deficiencies in
BCAT2 [6], PPM1K [7] and BCKDK [8] genes have also recently been identified as disruptors
of BCAA homeostasis.

The branched-chain α-ketoacid dehydrogenase kinase (BCKDK) enzyme is an im-
portant regulator of the catabolic pathways of BCAA. Catalyzing the phosphorylation-
mediated inactivation of the E1α-subunit of BCKDH complex, a loss of function of BCKDK
enzyme therefore causes an increase in BCAA catabolism. Consequently, patients with
BCKDK deficiency present reduced concentrations of BCAA in body fluids. Clinically, the
disorder is characterized by developmental delays, intellectual disability, epilepsy and
autism spectrum disorder with neurobehavioral abnormalities [8,9].

Here, we report the identification of a novel variant in the BCKDK gene identified in
three siblings of an inbred family. We describe the experiments we carried out to confirm
the pathogenicity of this new variant and present the clinical follow-up of affected patients
under treatment.

2. Results
2.1. Novel Mutation

Whole exome sequencing unveiled the in-frame c.999_1001delCAC (p.Thr334del)
homozygous deletion in the BCKDK gene in patient 1. Sanger sequencing was subsequently
performed to confirm the variant. To the best of our knowledge, this indel has not been
previously described. Genotyping the deleterious gene in patients 2 and 3 highlighted the
same homozygous anomaly. Both parents and the youngest siblings were all heterozygous
carriers of the indel (Figure 1).

Figure 1. Segregation analysis within the family. Yellow frame indicates the location of the indel.

2.2. Protein Conformation and Loss of Function

Located within the kinase-activity domain of the BCKDK protein [8,10], the threonine
residue in position 334 is highly conserved throughout evolution (Figure 2), suggesting a
crucial role in enzymatic activity.

According to the LDDT computation, the indel c.999_1001delCAC induces an impor-
tant remodeling of the kinase-activity domain. The folding difference of this substructure is
a consequence of the low relative consistency (i.e., large pairwise interatomic distances) of
each residue located between histidine in position 332 and glycine in position 367 (Figure 3).
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Figure 2. BCKDK orthology. Threonine in position 334 of BCKDK protein is marked by a red frame.

Figure 3. Upper: Structural superposition of wild-type (white structure) and mutant (green structure)
BCKDK. Red frame highlights the kinase-activity domain, presenting divergent folding between
WT and mutant (green/red structure) protein. White arrow points to the deleted threonine of the
WT protein. Lower: relative consistency between WT (upper line) and mutant (lower line) proteins,
where green residues have the highest consistency scores, while red one have the lowest scores.

Severely reduced levels of BCAA were measured in plasma and CSF of affected
patients. A retrospective review of newborn screening results in patient 1 revealed very low
leucine/isoleucine (Xle) concentration, at 84 µmol/L. Valine was also significantly reduced,
at 47 µmol/L. In patient 2 and 3, NBS Xle concentrations were respectively measured at
89 µmol/L and 210 µmol/L, while valine levels were at 44 and 81 µmol/L, respectively.
BCAA results of affected patients and their relatives are summarized in Table 1.

The loss of BCKDK function caused by the homozygous c.999_1001delCAC indel
was finally demonstrated on cultured cells. Lentivirus transduction of HEK-293 cells was
performed to over-express an exogenous form of WT or mutated BCKDK (NP_005872.2).
Over-expressed exogenous BCKDK sequences included silent mutations, so the endoge-
nous BCKDK protein could be silenced using additional lentivirus containing shRNA. Five
different shRNA targeting the endogenous BCKDK mRNA, were tested and three were
selected for their relative efficacy to downregulate the endogenous BCKDK expression
(Supplementary Figure S1A). However, we observed that the level of the endogenous
BCKDK expression was negligible compared to the level of the exogenous BCKDK expres-
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sion. Consequently, when HEK-293 cells were transduced at the same time with shRNA to
remove the endogenous BCKDK expression and with exogenous BCKDK WT, no difference
in total BCKDK expression was observed (Supplementary Figure S1B). The next exper-
iments were then performed without using shRNA for endogenous BCKDK depletion.
Western blot visualizing the phosphorylation of the BCKDH E1α-subunit, the natural
substrate of BCKDH, shows that the p.Thr334del variant observed in patients significantly
reduces the BCKDK capacity to phosphorylate its substrate (Figure 4).

Figure 4. Western blot to detect exogenous BCKDK (Ab anti-Flag); E1α subunit of BCKDH; phospho-
rylated form of E1α subunit of BCKDH, and HSP90 as charge control. From left to right: HEK-293
were left untreated, transduced with a transduction control (EmGFP), transduced with wild-type
exogenous BCKDK, and transduced with mutated form of BCKDK (p.Thr334del).

2.3. Patients’ Follow-Up and Treatment

The three siblings presented with psychomotor delays in the first year of life. Patients
2 and 3 were reported to have subacute regression during their second year of life, with loss
of previously acquired skills. Cranial circumference growth curves showed progressive
microcephaly. They did not acquire speech. All presented generalized seizures during
early childhood. Patients were treated with a combination of valproate and levetiracetam.
Seizures were poorly controlled, especially for patient 2 who was admitted to hospital
10 times in the previous year for prolonged epileptic crises.

The three patients were treated with a protein-rich diet (2.5–3 g/kg/day) and phar-
macological doses of L-leucine, L-isoleucine and L-valine. For practical reasons and due
to absence of available data about the pharmacodynamics of BCAA, the three patients
received the same dose of BCAA, meaning various weight-related doses. Starting with
approximate doses of 85, 110 and 125 mg/kg/day of each amino acid, these were divided
four times each for administering in patients 1, 2 and 3, respectively; blood BCAA remained
far below the normal range. BCAA supplementation was increased to approximately 135,
165 and 195 mg/kg/day, divided six times, which allowed the obtaining of physiological
plasma concentrations (Figure 5). Although pharmacokinetics was not accurately studied,
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we observed a relationship between plasma BCAA concentrations and timing of sampling
after oral intake, suggesting a rapid disposal of BCAA after administration.

Figure 5. Box-plot distribution of plasma BCAA concentrations (µmol/L) before initiation of treat-
ment, after supplementation of starting doses of BCAA (85, 110 and 125 mg/kg/day for patient 1, 2
and 3, respectively) and after supplementation of high doses of BCAA (135, 165 and 195 mg/kg/day
for patient 1, 2 and 3, respectively). * p-value < 0.05.
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Table 1. Concentrations (in µmol/L) and ratios of BCAA (with age-related reference values) measured in plasma, CSF and NBS dried blood cards of affected patients
and their relatives. Plasma and CSF concentrations of patients are reported at time of diagnosis.

Patients Plasma BCAA CSF BCAA NBS BCAA

ID Gender Leu *
(74–203)

Ile *
(42–124)

Val *
(145–337)

Leu/Phe *
(1.2–3.0)

Ile/Phe *
(0.7–1.7)

Val/Phe *
(2.0–5.4)

Leu *
(7–44)

Ile *
(4–24)

Val *
(10–41)

Leu/Phe *
(0.9–2.2)

Ile/Phe *
(0.4–1.7)

Val/Phe *
(1.1–2.8)

Xle *
(<486)

Val *
(<269)

Xle/Phe *
(<6.0)

Val/Phe *
(<3.1)

Patient 1 Female 29 13 62 0.4 0.2 0.9 3.3 1.4 6.4 0.20 0.08 0.38 84 47 1.4 0.8

Patient 2 Female 15 7 44 0.3 0.1 0.9 1.8 1.0 4.4 0.11 0.06 0.28 89 44 1.8 0.9

Patient 3 Male 51 21 73 0.6 0.3 0.9 3.8 1.4 6 0.23 0.08 0.36 210 81 3.2 1.2

Unaffected Siblings Plasma BCAA CSF BCAA NBS BCAA

ID Gender Leu *
(74–203)

Ile *
(42–124)

Val *
(145–337)

Leu/Phe *
(1.2–3.0)

Ile/Phe *
(0.7–1.7)

Val/Phe *
(2.0–5.4)

Leu *
(7–44)

Ile *
(4–24)

Val *
(10–41)

Leu/Phe *
(0.9–2.2)

Ile/Phe *
(0.4–1.7)

Val/Phe *
(1.1–2.8)

Xle *
(<486)

Val *
(<269)

Xle/Phe *
(<6.0)

Val/Phe *
(<3.1)

Sister 1 Female 126 62 177 1.3 0.7 1.9 / / / / / / 321 145 5.7 2.6

Brother 1 Male 125 58 136 2.0 0.9 2.2 / / / / / / 246 112 4.4 2.0

Sister 2 Female 112 46 130 2.3 1.0 2.7 / / / / / / 253 81 4.8 1.5

Parents Plasma BCAA

ID Gender Leu *
(74–228)

Ile *
(37–132)

Val *
(105–352)

Leu/Phe *
(0.9–2.6)

Ile/Phe *
(0.7–1.5)

Val/Phe *
(1.7–4.8)

Father Male 156 66 222 2.4 1.0 3.4

Mother Female 134 64 175 1.6 0.8 2.1

* Leu, Ile, Val and Xle stand for leucine, isoleucine, valine and leucine/isoleucine respectively. Leu/Phe, Ile/Phe and Val/Phe are the corresponding ratios calculated on respective
phenylalanine concentrations.
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After starting treatment, the parents subjectively noted a clear improvement in the
behavior of their children, especially for patient 1 and 3. They did not present any epileptic
crises after the start of supplementation. Patient 2, who presented recurrent seizures, was
admitted in hospital only once during the 18 months of treatment (compared to 10 admis-
sions in the year preceding BCAA supplementation). The neurodevelopmental skills of
patients, assessed by the Vineland Adaptative Behavioral Scale, showed improvement,
especially in communication and socialization skills (Figure 6).

Figure 6. Vineland score before and after 18 months of treatment with high-protein diet and BCAA
supplements.
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3. Discussion

This study reports on three patients from an inbred family with BCKDK deficiency.
The affected siblings were all carrying the same in-frame c.999_1001delCAC (p.Thr334del)
homozygous deletion in the BCKDK gene. In order to demonstrate the pathogenicity of
this newly described variant, we performed functional studies on cultured transfected cells.
We showed that the mutated BCKDK protein was unable to phosphorylate the E1α-subunit
of BCKDH complex, leading to an increased consummation of BCAA in the culture media.

BCKDK deficiency is a dietary-treatable disorder of BCAA mitochondrial metabolism [11].
Here, we provide supporting evidence that BCKDK-deficient patients can be managed
by a high-protein diet supplemented with BCAA-complements. This therapy improved
neurological features of our patients. Nevertheless, steady-state concentrations of BCAA
in plasma were challenging to maintain in all three patients, and at least six daily intakes
were necessary to correct BCAA levels. Delay between BCAA administration and blood
sampling may directly affect the plasmatic concentrations of BCAA. Thus, in order to
harmonize BCAA measurements in the course of patients’ follow-up, the pharmacokinetics
of BCAA after oral supplementation should be evaluated. Unfortunately, during the present
study, we were not able to perform sequential drawing after oral intake to determine the
half-life of BCAA in plasma.

Regarding patients’ neurodevelopmental improvement, our results need to be con-
sidered with some caution. We acknowledge that the effect of BCAA treatment should be
interpreted with regard to the natural history of the disease. BCKDK deficiency is however
a very rare inherited metabolic disease; this disorder was described for the first time in
2012 [8] and only a few patients have been reported so far. The natural history of the disease
is thus not yet well described, and it is difficult to know whether the patients’ improvement
we observed over the 18-month follow-up is a consequence of the treatment or whether it is
the “normal” thrive of untreated BCKDK patients. Additionally, the entire phenotypic spec-
trum of BCKDK deficiency is not currently known and a milder phenotype should exist. We
cannot thus predict whether a high-protein diet supplemented with BCAA-complements
could benefit all patients with BCKDK deficiency. Further genotype–phenotype correlation
studies are therefore needed to demonstrate whether any patients may be managed with
such a diet.

Newborn screening mainly focuses on highlighting elevated concentrations of BCAA
in order to catch neonates with MSUD. Consequently, low values of BCAA are gener-
ally disregarded during the results’ reviewing process. However, the significantly low
concentrations of BCAA identified on NBS samples in our patients suggest, that BCKDK
deficiency could be identified at birth by using threshold values also emphasizing low
BCAA concentrations. Assuming that it would be desirable to prevent rather than trying to
reverse symptoms, BCKDK deficiency could therefore be amenable to newborn screening,
and prevalence of BCKDK deficiency is suspected to be very low. Moreover, patients
with epilepsy are two- to three- times more likely to die prematurely, before the eventual
genetic cause has been established [12]. In this context, NBS programs could potentially
demonstrate that the disease is underdiagnosed and that intermediate forms eventually
exist. Finally, further studies are required to demonstrate whether neonatal screening and
early treatment can prevent severe and irreversible neurological damages.

4. Materials and Methods
4.1. Subjects and Samples

We describe three siblings from a consanguineous family presenting severe encephalopathy,
autistic behavior and poorly controlled seizures, in whom exome sequencing was performed to
unravel the genetic cause.

Patients were treated during 18 months with a protein-rich diet and BCAA-complements.
In the course of follow-up, BCAA supplementation was step-wisely increased to reach physio-
logical plasmatic levels. BCAA concentrations under treatment were compared to initial BCAA
levels using the Mann–Whitney test (computed by MedCalc v19.0.5 software).
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Diagnostic procedures, follow-up and treatments were carried out with parental
consent. Ethical review board approved the management of patients, according to the
Declaration of Helsinki (reference 2020/62).

4.2. Sequencing

Whole-blood DNA extraction was performed using the NucleoMag® Blood 200µL kit
(Macherey-Nagel, Düren, Germany) automated on a STARlet platform (Hamilton, Reno,
NV, USA) following manufacturer’s instructions. Briefly, 200µL of whole blood were
lysed in a buffer containing proteinase K and paramagnetic beads were used to remove
contaminants and salt while elution was performed using a low-salt buffer. The quality of
isolated genomic DNA was quantified and verified by a Qubit® DNA Assay Kit in a Qubit®

2.0 Flurometer (Invitrogen, Carlsbad, CA, USA) and agarose gel electrophoresis. Whole
exome sequencing (WES) was conducted on 2000 ng of genomic DNA from the proband
and parents. Fragment libraries were created from the sheared samples. Target enrichment
was performed according to the manufacturer’s protocols (Agilent SureSelect Human All
Exon V6; Agilent Technologies, Santa Clara, CA, USA), and sequencing was performed on
a Novaseq 6000 instrument (paired-end; 300 cycles, with an average depth of coverage of
60×; Illumina, San Diego, CA, USA).

Variants were called and annotated using a homemade bioinformatic pipeline (Huma-
nomics v2.0). Briefly, only regions of the reads with high quality were aligned to the UCSC
hg19 reference sequence using BWA-MEM v1.7.17. Variant calling (HaplotypeCaller) and
joint genotyping (GenotypeGVCFs) were processed using GATK v3.8. Optical and PCR
duplicates were marked and removed with Picard v2.20.

Sanger sequencing was performed to confirm the indel and to validate the segre-
gation of the anomaly within the family. The BCKDK gene of the patients and parents
was sequenced by Sanger sequencing of the peripheral blood leukocyte DNA. The for-
ward and reverse sequences of the primers for exon 11 of BCKDK are respectively: 5′-
GGAAGGAACAGGAAGGCAGACT-3′ and 5′-GGGCAACCCGAAGCCAAAG-3′. Sam-
ples underwent standard PCR conditions and were sequenced using a BigDye Terminator
kit (Applied Biosystems, Foster City, CA, USA) and run on an ABI 3730xl automated
sequencer (Applied Biosystems). SeqScape v.2.6 software (Applied Biosystems) was used
to align sequence data against the relevant reference.

4.3. Biochemical Analysis

Plasma and cerebrospinal fluid (CSF) analysis of amino acids was performed using a
TRAQ kit for amino acid analysis of physiological fluids (Sciex, Framingham, MA, USA),
as previously described [13]. Newborn screening (NBS) of amino acids and acylcarnitines
was carried out by flow-injection mass spectrometry [14,15]. Amino acids in plasma, CSF
and dried blood spots (DBS) were quantified on a TQ5500 mass spectrometer (Sciex).

4.4. Lentiviral Constructs

HEK-293 cells depleted for human endogenous BCKDK expression were generated using
lentiviral shRNA particles. Pre-designed lentiviral plasmids were obtained from Sigma, Over-
ijse, Belgium: sh_A_CDS = TRCN0000199200, sh_B_CDS = TRCN0000010196, sh_C_CDS =
TRCN0000010183, sh_D_CDS = TRCN0000196380 and sh_E_3UTR = TRCN0000199101. The
control shRNA was anti-eGFP shRNA plasmid (shRNA anti-eGFP (puro), Sigma No.
SHC005). A positive lentiviral plasmid was also purchased to confirm efficient transduction
of lentiviral particles: pLKO.1-puro-CMV-TagRFP (puro); Sigma No. SHC012. All plasmids
included a puromycin resistance gene for selection of transduced cells. Lentiviral vectors
were also used for human wild-type (WT) or mutated BCKDK over-expression. Three dif-
ferent plasmids were designed and purchased through Vector Builder: pLV_EF1a_BCKDK-
wt-Flag (mCherry-Hygro) and pLV_EF1a_BCKDK-d334-Flag (mCherry-Hygro). The first
plasmid allows the expression of human BCKDK (NM_005881.4) with silent mutations
(to avoid shRNA recognition) and 3xFLAG tag under the control of EF1a promoter and
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eGFP-Blasticidin resistance genes under the control of CMV promoter. The second plas-
mid allows the expression of human BCKDK with the same silent mutations, mutation
p.Thr334del and 3xFLAG tag under the control of EF1a promoter. These two plasmids also
allow mCherry and hygromycin resistance genes (mCherry-T2A-Hygromycin) under the
control of CMV promoter. We also designed a lentiviral plasmid control in which BCKDK
was replaced by EmGFP (pLV_EF1a_EmGFP (Blasti). Lentiviral vectors were produced by
GIGA viral vectors platform. Briefly, Lenti-X™ 293T Cell Lines (Clontech, Mountain View,
CA, USA; No. 632180) were co-transfected with shRNA or over-expression plasmids for
BCKDK, psPAX2 and pVSV-G (Addgene, Cambridge, MA, USA) [16]. Viral supernatants
were collected 48–96 h post transfection. HEK-293 cells were transduced for 48 h at a
multiplicity of infection (MOI) of 40 when using lentiviral vectors containing the shRNA
and their related control, and at MOI of 20 when using the lentiviral vectors containing the
BCKDK WT or BCKDK p.Thr334del and their related control.

4.5. Cell Culture

HEK-293 cells were grown in DMEM (Westburg, Lesden, The Netherlands) and
10% (v/v) fetal bovine serum. Three days after lentivirus addition, transduced cells were
selected by adding either blasticidin, hygromycin or puromycin depending on the lentivirus
used. The cells were prepared at 80% confluence the day before protein extraction and
Western blot experiments.

4.6. Western Blot

Total protein extraction was performed using a RIPA Lysis and Extraction Buffer
(Thermo Scientific, Waltham, MA, USA) supplemented with cOmplete™ Protease Inhibitor
Cocktail and PhosSTOP™ (Roche, Basel, Switzerland) phosphatase inhibitor tablets. Total
protein extracts (15 µg) were electrophoresed on a 10% SDS-PAGE gel. After transfer and
blocking on an Immobilon-P membrane (Millipore, Burlington, MA, USA), the membranes
were incubated with the primary antibody, washed, and then incubated with the second
peroxidase-conjugated antibody. The reaction was revealed with the Clarity Max ECL
kit (Biorad, Hercules, CA, USA). Antibodies used were rabbit anti-Flag (Sigma, Overi-
jse, Belgium; No. F7425) to detect exogenous BCKDK; rabbit anti-Hsp90 (Proteintech,
Manchester, UK; No. 13171-1-AP); rabbit anti-BCKDK (Sigma, No. AV52131) to detect
both endogenous and exogenous BCKDK; rabbit anti-BCKDH-E1α (E4T3D) (Cell signaling,
Danvers, MA, USA; No. 90198); rabbit anti-phospho-BCKDH-E1α (Ser293) (E2V6B) (Cell
signaling, No. 40368); and anti-rabbit-IgG HRP-linked (Cell Signaling; No. 7074).

4.7. Computed Tertiary Structure

Structural homology between WT and mutant proteins was predicted using Swiss-
Model tools (https://swissmodel.expasy.org, accessed on 5 October 2021) [17,18]. Folding
deviation between both enzymes was assessed using the Local Distance Difference Test
(LDDT), which is a superposition score computing differences in pairwise interatomic
distances [19].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23042253/s1.

Author Contributions: All authors have contributed to either the conception, design or execution
of the study. F.B. wrote the manuscript and contributed to study design. C.J. contributed to study
design, method development, and Western blot analysis. E.D.V. contributed to production of lentiviral
constructs. J.T. contributed to Western blot analysis and cell culture. C.C. and G.L. carried out mass
spectrometry analysis. J.-H.C. performed WES and Sanger analysis. C.D. ensured patients’ treatment
and clinical follow-up. J.H. ensured patients’ clinical diagnosis. A.L. contributed to study design
and to clinical diagnosis. V.B. provided genetic advice on method development and reviewed the
manuscript. F.-G.D. contributed to study design, ensured patients’ treatment and clinical follow-up.
All authors have read and agreed to the published version of the manuscript.

https://swissmodel.expasy.org
https://www.mdpi.com/article/10.3390/ijms23042253/s1
https://www.mdpi.com/article/10.3390/ijms23042253/s1


Int. J. Mol. Sci. 2022, 23, 2253 11 of 12

Funding: This work was supported by grants from the Walloon Region (WALGEMED grant 1710180)
and the CHU Liege (FIRS).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of CHU Liège (reference 2020/62, approved in
March 2020).

Informed Consent Statement: All patients or guardians provided informed consent to participate in
the study.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest that could be perceived as prejudicing
the impartiality of the results presented in this study.

Abbreviations

BCKDK Branched-Chain α-Ketoacid Dehydrogenase Kinase
BCKDH Branched-Chain α-Ketoacid Dehydrogenase
BCAA Branched-Chain Amino Acids
CSF Cerebrospinal Fluid
DBS Dried Blood Spots
NBS Newborn Screening
WES Whole Exome Sequencing

References
1. Harris, R.A.; Joshi, M.; Jeoung, N.H. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem.

Biophys. Res. Commun. 2004, 313, 391–396.
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