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Abstract 10 

“What are the brain structural correlates of interindividual differences in behaviour?” More than a 11 

decade ago, advances in structural MRI opened promising perspectives to address this question. The 12 

initial wave of research then progressively led to substantial conceptual and methodological shifts. A 13 

replication crisis has unveiled the limitations of traditional approaches, searching for associations 14 

between local measurements of neuroanatomy and behavioural variables in small samples of healthy 15 

individuals. Given these methodological issues and broadening scepticisms regarding the idea of one-16 

to-one mappings between psychological constructs and brain regions, new perspectives emerged. These 17 

embrace the multivariate nature of structural brain-behaviour relationships and promote 18 

generalizability, but also representation of the relationships between brain structure and behavioural 19 

data by latent dimensions of interindividual variability. Here, we review the past and present of the 20 

study of structural brain-behaviour associations in healthy population and address current challenges 21 

and open questions for future investigations.  22 

  23 
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The quest of the brain structural bases of differences between people in behavioural aspects such as 24 

personality traits or intelligence has always impassioned scientists. In the last two decades, advances in 25 

structural imaging opened the door to a broad range of reports of associations between specific aspects 26 

of human behaviour and local brain morphological features in healthy populations. This literature, in 27 

turn, served as an empirical background on which further investigations and conceptual theories about 28 

interindividual variability are still building, such as the interpretation of local brain morphological 29 

differences between men and women1 or the genetic bases of interindividual variability in psychological 30 

measures2. However, this empirical pillar of cognitive neuroscience has recently been shaken by a 31 

replication crisis.   32 

Accordingly, after a brief historical perspective on previous century practices and motivations, we here 33 

first review the main developments and influential studies based on neuroimaging measures of brain 34 

structure and describe the subsequent replication crisis that has progressively emerged in the study of 35 

structural brain-behaviour associations (SBB). As main potential contributing or limiting factors, small 36 

sample size and sampling variability, but also the multicollinearity of brain voxels/vertices, as well as 37 

of behavioural variables are considered. These considerations converge with a conceptual shift from 38 

one-to-one mapping between brain region and behavioural features towards a multivariate view. In that 39 

view, we then address two perspectives. First, we consider the mapping of multiple brain variables to a 40 

specific behavioural variable using predictive approaches. Second, we describe multivariate approaches 41 

aiming to identify brain-behaviour latent dimensions by accounting for the multivariate nature of both 42 

sets of data, brain variables and behavioural variables. In the last section, we also consider the possible 43 

pitfalls and limitations in these new trends, as well as the challenges for an ideal out-of-sample 44 

replication. Finally, as a closing section, we discuss the interpretation pitfalls in line with current 45 

methodological challenges.   46 

 47 

Mapping local brain structure to behaviour 48 

One striking feature of humankind is our marked inter-individual variability in behavioural aspects such 49 

as personality and cognition. This observation has long driven the quest for elucidating their biological 50 

bases. Over the past two decades, neuroimaging has offered the possibility to perform brain 51 

morphometry in-vivo across samples of individuals and hence the examination of structural brain 52 

features in relation to variability in individual traits3. In particular, current neuroimaging techniques 53 

readily provide estimates of local grey matter volume and cortical thickness across the brain (see Box 54 

1). As reviewed by Kanai and Rees in 20113, reports of structural brain-behaviour (SBB) associations 55 

quickly ranged from common cognitive functions, such as working memory4, to social and affective 56 

traits measured with standard questionnaires, such as personality traits2,5 or impulsivity6 but also 57 

extended to a variety of aspects evaluated with specific instruments pertaining to dedicated theories or 58 
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research aims. As illustrated in Fig. 1, complex behavioural aspects such as political orientation7 and 59 

the number of Facebook friends were hence related to local grey matter volume (i.e. grey matter volume 60 

in specific parts of the brain). A vast SBB literature has hence emerged since the development of MRI 61 

techniques for quantifying brain structure.  62 

Box 1: neuroimaging estimates of brain structure 63 

Grey matter Volume/Concentration (GMV) is generally assessed using voxel-based morphometry 64 
(VBM). This technique aims to quantitatively compare the T1-weighted scans across individuals by 65 
examining the local composition of brain tissue after macroscopic differences have been discounted8. 66 
This is done first by segmenting each anatomical scan into different tissue types and normalizing to a 67 
template. The consequences of wrapping an individual scan to a template can then be accounted for by 68 
adjusting grey matter images with the spatial deformations parameters. By doing so, local volume of 69 
grey matter can be estimated in indivduals9. 70 

Cortical thickness is in contrast usually estimated using surface-based techniques as the cerebral 71 
cortical grey matter has a sheet-like structure. After a minimal preprocessing of the images in the 72 
volumetric space and assigning a neuroanatomical label (e.g., white matter, cortex) to each voxel, 73 
white/grey matter and grey matter/pial surfaces are delineated through an iterative process. A vertex 74 
being the place where the points of neighbouring triangles on the surface meet, the cortical thickness at 75 
a given vertex is then defined as the distance between the final white and pial surfaces at that vertex10. 76 
Structural properties of the vertices, such as cortical thickness, but also surface area and curvature could 77 
then be studied across a group of individuals at each vertex11.  78 

Beyond these macro-structural or morphological estimates of grey matter structure, myelination can 79 
also be quantified using T1/T2 ratio12 and, in turn, be related to psychometric data, such as personality 80 
scores13. Additionally, quantification of white matter properties at the individual level has been 81 
facilitated by the development of diffusion MRI. After specific artefacts correction steps, techniques of 82 
diffusion tensor imaging can be used to derive local measures (i.e. at each voxel) of white matter 83 
properties from diffusion data. The most popular metrics are fractional anisotropy (FA), which reflects 84 
the degree of diffusion anisotropy, and mean diffusivity (MD), which is used as an indicator of the 85 
overall magnitude of diffusion14. While popular measures of grey matter, such as GMV and cortical 86 
thickness probe brain macrostructural features, popular diffusion-based metrics such as FA and MD, 87 
tap more into white mater microstructural properties. As we here focus on the study of interindividuality 88 
variability in brain morphometry features, we focused on the former measures. However, it should be 89 
noted that the relationship between interindividuality variability in white matter microstructural features 90 
and behaviour has enjoyed a board interest in the scientific literature15.  Finally, as the acquisition of 91 
MRI images beyond T1-weighted scans are getting more common in large sample cohorts, additional 92 
features of the brain microstructure can also be derived. Examples of these features, include, but are not 93 
limited to, proxies of myelin concentration in the grey matter using quantitative multi-parameter maps 94 
(MPM)16 and proxies of cellular cortical architecture using quantitative modelling of diffusion weighted 95 
MRI17. Similarly to most popular structural metrics, interindividual variability in these structural 96 
estimates have been related to age18 and interindividual variability in psychometric data20, respectively. 97 
Overall, the range of structural estimates that can be derived from MRI data will enable a rich, 98 
multivariate, description of interindividual variability in local brain structure that can in turn be related 99 
to interindividual variability in behaviour.  100 
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101 
Figure 1. Examples of mapping between local brain morphology and behavioural traits/performance. 102 

Left panel: Mapping of political orientation and social network size19 to local grey matter volume7. R 103 

value indicates correlation coefficient value and p value indicates the associated p-value. A linear 104 

positive relationship between the square root-transformed number of Facebook friend and grey matter 105 

volume in the right entorhinal cortex could be found (top panel). Along the same line, a positive linear 106 

relationship could be found between the degree of political orientation towards conservative and grey 107 

matter volume in the right amygdala, while a negative one could be found between the former and grey 108 

matter volume in the anterior cingulate cortex. Right panel: Mapping of theory of mind performance 109 

(STOP)20 and musical performance21 to local cortical thickness. A negative linear relationship could 110 

be found between performance at a spontaneous theory of mind protocol (STOMP) and cortical 111 

thickness in the right inferior frontal cortex (rIFG), the right temporo-parietal junction (rTPJ), the 112 

medial prefrontal cortex (mPFC) (top panel). A linear positive relationship could be found between the 113 

performance in processing relative pitch and cortical thickness in the left intraparietal sulcus and in 114 

the right auditory cortex.  115 

 116 

The replication crisis 117 

A broad replication crisis has recently emerged in  neuroscience and psychology22-24 with some authors 118 

even suggesting that the majority of published neuroscientific literature may not be replicable25. In that 119 

context, the replicability of traditional SBB studies has likewise been questioned. A purely confirmatory 120 

replication study of structural brain-behaviour correlations26 has been conducted by re-addressing the 121 

findings of several SBB studies (Fig. 2). Strikingly, for almost all the examined associations, support 122 

for the original results could not be found in the replication investigations. In fact, for most (previously 123 
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significant) relationships, confirmatory Bayesian hypothesis tests indicated evidence in favour of the 124 

null hypothesis26. These worrying findings were then followed by vivid discussions between the authors 125 

and others on the limitations in replication studies26-29.  126 

Along the same line, we highlighted that, a significant correlation between a standard measure of 127 

cognitive control and GMV in a well-powered sample could not be replicated in a second, 128 

demographically similar, sample even when using the same analysis pipeline (Fig. 2)30. It could be 129 

argued, though, that the focus on specific region-of-interest in these replication attempts potentially 130 

limited the replicability of observed relationships. To address this question, an extensive evaluation of 131 

the replicability of SBB associations with an exploratory and confirmatory approach across a range of 132 

psychometric variables and by computing different replicability indices drawing from a single large 133 

cohort of healthy adults31 was then conducted. The ensuing results not only indicated that finding 134 

significant associations is relatively unlikely, but also demonstrated that associations found in a well-135 

powered subset of subjects could hardly be replicated in a second, matched subset from the same cohort 136 

(Fig. 2). These results point towards a publication bias for associations between brain structure and 137 

behavioural measures in which null findings are likely to be very frequent, but unreported, whereas 138 

significant findings receive more attention but have very poor replicability.  139 

It bears mentioning, that these worrisome findings primarily pertained to voxel-based morphometry 140 

(VBM), as this approach has been criticized as a relatively crude estimation of local neuroanatomy  (see 141 

Box 1), which may contribute to the low replicability of probably rather delicate associations. This 142 

raises the question, whether other approaches may lead to more replicable SBB associations. Directly 143 

addressing this question, recent studies demonstrated that previous reports of association between 144 

personality traits on one hand, and cortical thickness, surface area or white matter integrity on the other, 145 

could likewise not be replicated in a large cohort32. These findings were corroborated by poor 146 

replicability of associations between cortical thickness estimates and a range of behavioural 147 

measurements within a high-quality large dataset of healthy young adults33. Thus, it appears that the 148 

replication crisis in SBB associations does not concern a specific MRI measure of brain structure, but 149 

is a general crisis that encompasses grey and white matter volumetric measurements, as well as surface-150 

based measurements.    151 

Altogether these findings resonate with a general context of replication concerns for neuroimaging 152 

studies (e.g.34). In that context, inter-scanner variability in cortical thickness estimation remains as an 153 

important factor to control for35,36. Furthermore, the validity and reliability of analysis software were 154 

also discussed37,38. Worrisome differences for specific versions of a given software have hence been 155 

reported a decade ago37. The low replicability of associations between cognitive factors and cortical 156 

thickness when evaluated across different cortical thickness pipelines was also demonstrated39 (Fig. 2). 157 

However, for the recent versions of commonly used estimation pipelines, a relatively reliable thickness 158 

estimation of cortical thickness and its interindividual variabilities has been demonstrated in spite of 159 
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focal estimation failures38. Hence, although the users community of neuroanatomical computational 160 

tools can be reassured to some extent, many issues pertaining to inter-scanner, cross-versions and local 161 

effect of processing pipelines variability should still deserve attention in SBB studies.  162 

Besides these concerns on the quantification of individual brain structure with MRI techniques, the 163 

psychometric properties of behavioural measures should also be carefully considered. The measurement 164 

of core concepts in differential psychology, such as intelligence and personality traits, have generally 165 

enjoyed continuous development and evaluation (e.g.40) aiming to improve their validity and reliability. 166 

In contrast, more research-field-specific constructs may show poorer validity, reliability and/or 167 

inadequate distribution for statistical analyses. The lack of variations in political orientation variables 168 

was, for example, one factor potentially contributing to SBB replication attempts failure (Fig. 2 top left 169 

panel)26. Thus, when working on complex psychological concepts and brain estimates derived from 170 

MRI techniques, the limited validity, reliability and distributions of variables from both, brain and 171 

behaviour sides, should be kept in mind as limiting factors partly contributing to replication issues in 172 

SBB studies.  173 

   174 

Figure 2. Poor replicability of structural brain-behavioural (SBB) associations. Top left panel: 175 
replication attempts of previous SBB, GM: grey matter, r; correlation coefficient in the replication 176 
sample26. While significant linear relationship between grey matter volume in the right amygdala and 177 
the square root-transformed number of friend and also the political orientation was previously 178 
evidence, replication investigations failed to evidence this relationship with a coefficient correlation 179 
value r close to 0. Bottom left panel: illustration of the replication attempt of a found association 180 
between grey matter volume in the dorsal premotor cortex and performance at the Trail Making Test 181 
in an independent cohort30. While a significant negative correlation was found in a first sample (cohort 182 
1), a replication attempt in another cohort (cohort 2) did not show a significant relationship. Right top 183 
panel: within-cohort replication attempts of an association between perceptual IQ and grey matter 184 
volume (figure adapted31). The outer ring of the donut plot reflects Bayes factor indices while the inner 185 
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ring reflects p-value- and sign-based replication indices. While a significant association was initially 186 
found, replication attempts across 100 resampling show a high rate of replication failures when 187 
considering p-value and direction of the association (82% of replication failure shown in the inner ring) 188 
and correspondingly a high rate of moderate to strong evidence for no association (66% shown in the 189 
outer ring). Bottom right panel. Local cortical thickness associations with a working memory 190 
component score across three different cortical thickness pipelines (CIVET, BrainSuite and CPM)39. 191 
The significant associations based on r and t values vary in their spatial location across the different 192 
used pipelines suggesting that different investigations of associations using different analysis’ choices 193 
provide different patterns of association.    194 

 195 

In sum, the replicability of SBB associations has been questioned across a range of behavioural 196 

measurements and various popular estimates of brain structure. Importantly, this pertains to replications 197 

of findings from previously published papers41, but also for within-study replications of findings in an 198 

independent sample and even when subsampling within a given cohort. These results should not lead 199 

however to the conclusion that association between brain structure and behavioural phenotype are per 200 

se unattainable. Rather, they suggest that the magnitude of such associations may be relatively limited 201 

and not reliably captured by current standard approaches. 202 

 203 

Small effect sizes, power and false positives 204 

Recent replication studies, but also explorative studies in very large datasets such as the UK BioBank, 205 

have suggested that the effect size of associations between brain structure and behavioural aspects as 206 

measured by standard psychometric tools in normal populations are likely very small31,32, seemingly 207 

overall around 0.10 in terms of correlation coefficient41,42. The probability of finding an effect that is 208 

genuinely true, e.g., an association between estimates of local brain structural and behavioural 209 

measurements, that is, the power of an experiment, is directly related to both, the effect size and the 210 

sample size. Consequently, the probability of finding a true effect is relatively limited in small samples. 211 

More precisely, samples consisting of ~200-300 participants appear to have low power to identify 212 

reliable SBB-associations among healthy participants. Recent investigations actually point out that 213 

substantially bigger cohorts of ~1000 participants are required for reliably identifying SBB associations 214 

for standard cognitive tests (such as intelligence tests) and psychological scales (such as personality and 215 

psychopathology scales)31,41. Hence, overall, small samples show extremely low power to find a real 216 

association.  217 

Yet, the vast majority of SBB studies forming the current literature is typically based on relatively small 218 

samples (n<200). It can therefore reasonably be stated that the probability of having reported spurious 219 

or inconclusive results in these studies is extremely high. While the exact factors driving spurious 220 

associations can remain as a topic of investigation, it can be assumed that report of statistically 221 

significant associations could be influenced by data dredging and related practices43. At the conceptual 222 

level, these issues imply that SBB findings and neuroscientific theories building on those must be taken 223 



8 
 

with caution. In turn, at the methodological level, together, small effect sizes for specific brain-224 

behaviour associations and the false positive risk of data fishing expeditions imply that large cohorts 225 

and alternative approaches are needed to bring insight into the relationship between brain structure and 226 

behavioural aspects in healthy populations44,45.  227 

 228 

Multivariate brain structure-behaviour mapping  229 

Multivariate analyses as an alternative approach 230 

From an epistemological standpoint, the first scientific evidence of mapping between brain structure 231 

and behavioural functions in humans emerged from lesions studies46. By showing causal relationship 232 

between a relatively localized lesion and relatively specific behavioiral deficits, the first lesion studies 233 

hence supported the concept of a relatively specific mapping between brain regions and the respective 234 

behavioural function, such as between the hippocampus and episodic memory47. However, in the last 235 

decades, this one-to-one mapping initial conceptualization has been revisited in favour of a many-to-236 

many view, in particular following the boom of functional and structural neuroimaging studies in 237 

healthy populations. Accordingly, the underlying mechanisms that give rise to the complex behavioural 238 

aspects probed by psychometric tools are nowadays thought as not modularly localized to individual 239 

brain regions, but to rather rely on distributed neural networks48,49. In other words, while the structural 240 

integrity of some regions appears to be needed for normal functioning in one behavioural domain based 241 

on seminal lesion studies in clinical populations, variations of performance in the range of normal 242 

functioning seem to rely on structural variations across a range of brain regions.  243 

Yet, the search for structural correlates of behavioural measurements in healthy populations has been 244 

typically performed by capitalizing on statistical univariate approaches in which a statistical test of 245 

association with a behavioural variable is performed locally in the brain, either with a general linear 246 

model for each voxels or brain regions or with a correlation approaches with a-priori defined region(s)-247 

of-interest. Considering the small effect size and the often assumed spatially distributed nature of these 248 

associations in the brain, univariate approaches appear particularly limited to capture complex brain-249 

behaviour relationships. Furthermore, these approaches do not take into account the mutual 250 

dependencies between different brain voxels/vertices or regions which are readily seen in structural 251 

covariance pattern50. For these reasons, in exploratory studies whose aim is to identify brain structural 252 

features correlating with a given (set of) psychological variable(s), multivariate techniques offer an 253 

alternative approach taking into consideration the multivariate nature of brain data51,52.    254 

To consider the joint covariance of many brain regions (or voxels/vertices) with a given behavioural 255 

variable, a multiple regression approach can be used. In that view, we will describe how brain structural 256 

features can be conjointly mapped to a specific behavioural measure by using prediction techniques 257 
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taking the form of a regularized multiple regression. However, when studying brain and behaviour, it 258 

is worth considering that mutual dependencies between multiple sources of measurements exist not only 259 

between brain variables (voxels, vertices or regions), but also among behavioural measurements. From 260 

an epidemiological standpoint, collinearity between behavioural measurements can be expected in a 261 

population covariance framework, as it could be assumed that unique factors, such as age, education, 262 

or culture, influence many aspects of the behavioural phenotype conjointly (see last section). 263 

Furthermore, from a psychological standpoint, collinearity between different cognitive measures can 264 

be assumed to happen because these different measurements tap onto the underlying process/hidden 265 

constructs or processes (e.g.53-55). This latter consideration generally justifies the use of factorial 266 

analyses in psychological sciences to extract latent factors (also called synthetic variables)56.  The 267 

derived synthetic behavioural variable(s) can then be mapped individually to brain structure using either 268 

univariate (such as the traditional voxel-wise GLM) or multivariate approaches. The former approach 269 

will not be addressed here as, from a conceptual standpoint, it could be assumed that synthetic variable 270 

in healthy population psychometric data reflects a broad behavioural dimension (such as “fluid 271 

intelligence”) which could hence be expected to be multidetermined with regards to cognitive processes 272 

and thus would not map to specific brain regions57,58. The mapping of such synthetic variable to brain 273 

structural features considered conjointly can be performed using a predictive framework as described 274 

in the following section.  275 

 276 

Predicting a behavioural variable from a brain structural multivariate pattern  277 

A prediction framework enables mapping multiple brain structural features, considered jointly, to a 278 

single behavioural variables. Concretely, a set of brain variables are used as predictors for a target 279 

behavioural variable. As aforementioned, this variable of interest could be a measured variable, such as 280 

specific score at a questionnaire, but also a synthetic variable, such as a composite score defined based 281 

on specific theories (e.g. typically an intelligence composite score) or a loading score computed based 282 

on the data factorization. For instance, when starting from an applied clinical question or a 283 

psychological sciences standpoint, the demonstration of a relationship between a large set of brain 284 

structural features and the investigated variable could contribute to the neurobiological validation of the 285 

latter. Put it simply, if participants’ score for this variable can be predicted from brain structural data, a 286 

relationship between the brain structural features and the behavioural variable can be assumed. The 287 

predictive power is generally evaluated within a machine learning framework with a cross-validation 288 

setting (Box 2). By doing so, the generalizability of the fitted brain-behavioural relationship out of the 289 

training sample is evaluated using the prediction accuracy in a validation or unseen dataset (Box 2).   290 

Brain-based prediction of behavioural phenotype has enjoyed a vivid interest in the neuroimaging 291 

community across the recent years. Presumably for conceptual reasons (behavioural function arise from 292 
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functional interaction between brain regions), the majority of psychometric prediction studies has 293 

focused on brain resting-state functional connectivity as key features (or a combination of structural 294 

and functional connectivity features). Accordingly, the main developments and discussions in brain-295 

based predictions that SBB can now enjoy have originally arisen from functional (and/or diffusion) 296 

studies. Nevertheless, in the last decade, a good dozen of studies have evaluated the prediction of a 297 

behavioural variable based on estimated brain structures using a cross-validation approach. These 298 

pioneer implementations of a machine learning approach for SBB associations were generally 299 

conducted in a hypothesis-driven framework to demonstrate associations between specific brain 300 

regions’ structure (such as the amygdala59 or the striatum60,61) and a specific cognitive60-62, mood59 or 301 

personality aspect63,64. In a related framework, the sample sizes used in the first predictive SBB studies 302 

were generally relatively limited (below 20065, 10059,64,66or even 5060,62 participants) leading to inflated 303 

effect sizes, similar to observations made in univariate studies31. More generally, following a global 304 

trend in the application of predictive approaches of phenotype from neuroimaging features, the 305 

prediction power as reflected by prediction accuracy metrics was overestimated due to the limited 306 

cohort size, improper cross-validation scheme affected by data leakage or double dipping67. Hence, the 307 

first studies in limited cohorts (<200 participants) generally reported very optimistic prediction accuracy 308 

(in terms of correlation between the predicted and observed behavioural scores) ranging from 0.40 to 309 

0.7459-62,64-66. However, when sample sizes got bigger (> 200 participants), lower prediction accuracies 310 

were observed, within a range from 0.11 to 0.2857,68,69, in validation datasets (Fig. 3).  311 

From a basic neuroscientific standpoint, the modest prediction of behaviour from brain structure in 312 

healthy population may suggest a limited contribution of interindividual variability in brain structure to 313 

interindividual variability in behaviour. However, it should be noted that, overall, the prediction 314 

performance of behaviour based on brain structure is similar to performance achieved when instead 315 

brain functional features are used (usually functional connectivity estimates)70. Along the same line, 316 

despite combination of structural features with functional features in multimodal frameworks generally 317 

leads to increased predictive power than focusing on single modality in large cohorts71-73, the predictive 318 

power remains relatively limited74,75. This state of the art hence highlights that predictive models of 319 

behaviour based on neuroimaging markers in healthy populations still hold their own challenges, 320 

regardless of the neurobiological aspect probed (brain structure or functional connectivity). 321 

Acknowledging these global challenges, the contribution of brain structure to the prediction of 322 

behavioural phenotype remains an important research topic. Preliminary investigations74 suggest that 323 

using the same dataset of healthy adults, predictive models based on brain structural features may 324 

perform as well, or even better, than those based on functional features for the prediction of some 325 

behavioural scores (Fig 3.). It could also been seen from these investigations that, when prediction is 326 

based on multimodal data, structural features (such as surface area, cortical thickness and grey matter 327 

volume) tend to have higher weights than functional features in the prediction of many cognitive 328 
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measures74. Despite further studies are needed, brain structural features thus already appear to represent 329 

an important source of information in the study of brain-behaviour relationship. In the next section, we 330 

further discuss approaches that address this question while considering a range of behavioural variables 331 

jointly.   332 

 333 

Mapping sets of phenotypical variables to brain structural data 334 

A complementary view to the mapping of multivariate brain features to one behavioural variable can 335 

be offered by a “doubly-multivariate approaches” in which a set of brain variables are jointly mapped 336 

to a set of behavioural variables76. More concretely, covariance patterns between two sets or blocks of 337 

data, here behavioural and brain data, can be summarized along latent or hidden dimensions76 that are 338 

linear (or non-linear) combinations of brain (such as grey matter volume in several brain regions) and 339 

behavioural variables. This doubly-multivariate approach hence enables the representation of broad 340 

patterns of interindividual variability in brain structure and behaviour in a latent space formed by 341 

emerging distinct dimensions. In addition to enabling possibly new structure-behaviour factors to 342 

emerge as a result of considering both multivariate sets of features simultaneously, from a conceptual 343 

standpoint, such approaches avoid the pitfall of focusing on a single a-priori behavioural aspect as a 344 

tree that hides the forest. Furthermore, from a data science or statistical standpoint, such approaches 345 

take into account, both at the brain and behavioural level, that different variables can represent 346 

redundant sources of variability.  347 

Partial least squares correlation (PLSC) and the closely related canonical correlation analysis (CCA) 348 

are the most popular techniques in that view77,78. Concretely, these techniques maximize the association 349 

between linear combinations of brain and behavioural variables by searching for weight vectors or 350 

directions, such that the projection of the dataset(s) (e.g., the brain and behaviour) onto the obtained 351 

weight vector(s) has maximal correlation (CCA), or covariance (PLSC). The resulting profiles of 352 

weights or individual correlations for each dataset can then also be examined providing insight into the 353 

features that form the association. Hence, these approaches decompose the complex nature of brain-354 

behaviour associations into parsimonious overlapping patterns, dissociating different aspects of brain-355 

behaviour relationships. For example, the relationships between IQ scores and interindividual 356 

variability in “morphometric similarity networks” have been explored in a large sample of adolescents 357 

with this approach79. Focusing on interindividual variability in standard intelligence measures hence 358 

revealed two latent dimensions capturing interindividual variability in distinct brain systems roughly 359 

corresponding to language and cognitive control networks versus visual and memory networks.     360 

 361 
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However, generally, such doubly-multivariate approaches have been more intensively used to map brain 362 

functional connectivity to behavioural phenotype80,81, in particular in clinical populations82-86. When 363 

focusing on a large healthy cohort (the Human Connectom Project, HCP87), such an approach revealed 364 

a main mode or dimension of covariance linking brain connectivity to demographics and behaviour80. 365 

Follow-up data-driven studies in the same cohort giving more attention to structural brain estimates 366 

strikingly spotted light on the substantial contribution of brain structural interindividual variability in 367 

the initially reported population mode88,89. In particular, relating brain cortical thickness to a range of 368 

behavioural/life style measures with a similar CCA approach in the same cohort (HCP) replicate the 369 

main significant mode or dimension, initially reported with resting-state functional connectivity, 370 

portraying a positive vs negative pole of behavioural phenotype with measures such as fluid 371 

intelligence, vocabulary, life satisfaction vs. behavioural aggression, tobacco use, cognitive failure (Fig. 372 

3). Interestingly, the associated cortical thickness pattern showed a clear differentiation across the 373 

cortical hierarchy with positive correlations mostly at lower order sensory/motor areas and negative 374 

correlations mostly at higher-order brain regions (including the frontal, anterior temporal, and parietal 375 

cortices that encompass the most parts of the default mode network)88. The emergence of this pattern 376 

offered by the doubly-multivariate approach suggests that interindividual variability in the pattern of 377 

cortical thickness difference between the lower- and higher-order brain regions could be closely linked 378 

to interindividual variability in phenotype. 379 

A similar pattern has been observed in paediatric populations when CCA was applied to a large cohort 380 

of adolescents90,91. Generally, across studies, higher cortical thickness in frontal regions appear to be 381 

associated with more negative life events, lower cognitive functions and more negative social 382 

behaviour/increased psychopathology in healthy young populations88,90,91. Altogether, the results of 383 

recent studies in large cohort using data-driven approaches hence suggest that broad patterns of 384 

interindividual variability in brain structure can reliably relate to interindividual variability in behaviour 385 

and this, to a similar, or even greater extent than interindividual variability in functional connectivity89. 386 

These findings further resonate with multimodal prediction modelling according to which brain 387 

structural features importantly contribute to prediction of behavioural variables74. However, the 388 

emerging data-driven pattern can appear relatively minimalist, when expressed along a summary 389 

positive vs. negative dimension spanning across different brain features, offering a very limited insight 390 

into brain-behavioural phenotype relationships. Alternatively, when multiple and finer dimensions are 391 

discovered, establishing their correspondence across different cohorts and their interpretation from a 392 

basic neuroscience standpoint may pose some conceptual challenges. Overall, the broader the spectrum 393 

of variables included in the doubly-multivariate model, the highest the interpretation challenge. The 394 

interpretation and neurobiological validity of such multivariate models is even obviously further 395 

complicated when highly derivative features are used as inputs. For example, graph theory-based 396 

features of brain structural mearsuments and transformed features thereof may be used as input for a 397 
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PLS analysis, or principal components (from Principal Component Analysis) are sometimes extracted 398 

from functional connectivity networks derived with Independent Component Analysis and used as input 399 

for a CCA analysis. Generally, it should be kept in mind that highly derivative frameworks with 400 

oversophisticated analyses may obfuscate our understanding from a neuroscientific conceptual 401 

standpoint and easily degenerate into poorly informative neuro-informatics methods. Thus, the 402 

exploratory nature of fully data-driven approach should still be complemented by carefully designed 403 

SBB associations studies with clear neurobiological theorization and a predictive utility evaluation. In 404 

the next section, we discuss further open general challenges for SBB association in healthy populations, 405 

with regards to their replication, their relationships with non-brain and behaviour variables, as well as 406 

their extrapolation to brain pathology, and finally their discussion beyond the informed expert scientific 407 

community.   408 
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 409 

Figure 3. Machine learning/multivariate approaches to study structural brain-behaviour (SBB) 410 
associations. Top left panel: prediction of oral reading recognition performance in a validation dataset 411 
of the Human Connectom Project, r; coefficient correlation between predicted reading score and actual 412 
reading score. The top row illustrates voxel-wise grey matter volume feature extraction. In each subject, 413 
the grey matter value estimates at each voxel are used as features or predictors to predict oral reading 414 
recognition score. The middle panel shows that the predicted reading score in an unseen sample are 415 
significantly correlated with the actual reading score for those subjects. The lower row illustrates some 416 
assumed contributing regions derived from the prediction model69. Top right panel: illustration of the 417 
canonical mode linking interindividual variability in cortical thickness to interindividual variability in 418 
behavioural variables in the Human Connectome Project88. The behavioural measures most strongly 419 
correlated with the identified thickness-behaviour CCA mode are shown in the top panel. The positively 420 
correlated subject measures (red) generally reflect positive traits, whereas the negatively correlated 421 
measures (blue) pertains to more negative behavioural aspects. The Fisher’s z-transformed 422 
correlations between local cortical thickness and the identified CCA mode are shown in the lower panel. 423 
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Positive correlations (red-yellow colours) were mainly observed in the lower-level sensory/motor 424 
regions, while negative correlations (blue-cyan colours) mostly appeared in the higher-order cognitive 425 
brain regions. Bottom panel: comparison of the performance of predictive models of psychometric 426 
variables using different brain structural and functional features74. Model performance is assessed by 427 
the coefficient of determination (the higher the coefficient of determination, the higher the prediction 428 
accuracy). For some psychometric variables (here a composite score of cognitive function and a score 429 
of spatial orientation), a predictive model based on cortical thickness show similar or higher 430 
performance than one based on functional connectivity. “Stacked predictions” refer to models 431 
combining all types of features.     432 

 433 

Box 2: machine learning approaches in SBB 434 

From a statistical standpoint, SBB studies as most types of neuroimaging studies fall into typical N<p 435 
problem (i.e. the number of data points is smaller than the number of variables) and multicollinearity 436 
issues calling for multivariate analyses and features selection/reduction approaches92,93. Large sample 437 
sizes enable proper assessment of generalizability and stability of the multivariate solutions within a 438 
cross-validated setting. This ensures that the reported patterns are not driven by sample-dependent 439 
spurious covariations (despite this does not ensure that the pattern could be replicated in a completely 440 
independent dataset). In particular, CCA/PLS approaches are particularly prone to overfitting and 441 
although the effect size may seem high when the analyses is initially run on a dataset, the associations 442 
are generally much lower in an independent dataset94. In other words, overfitting may give an 443 
impression that the found associations between brain and behavioural variables is much stronger than 444 
it would be in an independent hold-out dataset94. 445 

Therefore, in a cross-validation setting, the original sample is divided into a train and test (holdout) 446 
subsample (or set). In CCA/PLSC approaches, the multivariate patterns are derived based on the train 447 
sample and the individuals’ data of the holdout set are projected to the weight vectors from this train 448 
sample. This process of randomly splitting the data into train and test sets is usually repeated for a 449 
limited number of times, e.g. 1080,95. Generalizability of the model is then evaluated by summarizing 450 
(e.g. averaging) out-of-sample accuracies on the holdout sets. Stability can in turn be evaluated by the 451 
similarity of the weights’ profiles in the train sets across the cross-validation80,95. Beyond the standard 452 
versions of CCA and PLSC, variants thereof are developed for neuroimaging-behaviour dataset, aiming 453 
at reducing overfitting in high dimensional feature space, and extending the scope of analysis to address 454 
nonlinearities in the data (regularized extensions such as sparse CCA/PLSC96 and kernel CCA97). In 455 
that context, the identification of the optimal parameters (hyperparameter tuning) for these extended 456 
methods also requires a cross-validated setting95, which puts additional requirements for large sample 457 
sizes98.  458 

Similar concepts and constraints apply to predictive models in which multiple brain features are used 459 
to predict a behavioural variable. The generalizability of the fitted model is assessed by using a cross-460 
validation scheme in which the behavioural scores predicted by the model are compared with the 461 
observed scores. The model is hence fitted in the training sample and tested in the holdout set by 462 
randomly splitting the dataset between train and test a certain number of times. As for specific variants 463 
of CCA/PLSC, some prediction algorithms require hyperparameter tuning, which is done through 464 
nested cross-validation, which again requires large sample sizes. When the prediction performance of 465 
the model has been demonstrated, researchers are often tempted to look at the weights assigned to 466 
individual brain features as an indication of the magnitude of the importance of the association between 467 
the feature and the behavioural variable. However, because of the multicollinearity of the features, such 468 
an approach can be dangerously misleading in a multivariate framework99. Accordingly, general caution 469 
should remain in the neuroscientific interpretation of brain-behaviour associations patterns by focusing 470 
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on highest contributing features in a multivariate framework, be it a predictive or correlational 471 
framework. 472 

As discussed above, these approaches have been generally used to investigate relationship between 473 
functional connectivity and behavioural phenotype in clinical samples. For CCA/PLS approaches, this 474 
context implies that, despite sample sizes that were generally larger than in univariate studies (> 100 475 
participants), the number of subjects relative to the number of investigated features remains relatively 476 
small, potentially leading to inflated effect size100. It has indeed recently been shown that for these 477 
approaches, effect sizes decrease as the sample size increases (a similar statistical phenomenon as 478 
reported for univariate analysis and predictive approaches). In other words, the effect sizes reported 479 
may often be inflated or at least overoptimistic. Furthermore, as most studies have included a range of 480 
phenotypical variables beyond psychometric data (such as life style and demographic variables), the 481 
specific magnitude of brain-behaviour associations in such multivariate approaches remains uncertain, 482 
although it has been assumed to be small to moderate (≤.30100). Given that most previous studies 483 
contributing to this discussion point have focused on functional connectivity or multimodal brain data, 484 
the question of the strength of associations between brain structure and behaviour in healthy populations 485 
remains open for future studies.     486 

 487 

Open questions, challenges and interpretation pitfalls 488 

From association in healthy to clinical utility   489 

Historically, as described above, the study of SBB associations has been strongly influenced in its 490 

inception by early observations of associations between localized lesions and specific behavioural 491 

deficits46. However, later, it appears that the region-to-behaviour relationship, suggested by these 492 

studies in clinical populations, do not in its simplest form, i.e. one-to-one mapping, extend into 493 

interindividual SBB patterns in the healthy populations. Nowadays with neuroimaging techniques 494 

having spurred SBB studies in normal population, the relevance of the reverse conceptual extension can 495 

similarly be questioned. To which extent the SBB patterns discovered in healthy populations relate and 496 

can be used to better understand brain-symptom relationships in clinical population? is indeed a non-497 

trivial question. While acknowledging that the application of machine learning techniques in 498 

neuroimaging may remain at a premature stage, when a pure data-driven approach is taken, the patterns 499 

of brain-behaviour associations revealed by these techniques do not readily echo the brain mapping 500 

literature58. For instance, general intelligence score in a cohort of healthy adults has been found to be 501 

best predicted by cerebellar grey matter volume57 in an adult cohort (the enhanced NKI cohort101) and 502 

to cortical thickness measurements in the sensori-motor cortex in the HCP cohort74. While such findings 503 

would need “out-of-cohort” (see below) replication in the future, they currently highlight that the 504 

scientific path from prediction-based neuroscientific discovery in heathy population to implications for 505 

clinical populations is still long and convoluted.  506 

Along the same line, one important question pertains to the relationship between the latent dimensions 507 

of interindividual variability emerging in healthy populations and the SBB patterns that can be found 508 
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in clinical populations. As previously mentioned, CCA/PLSC approaches have been often used to 509 

identify dimensions linking neurobiological patterns to a range of symptoms or cognitive deficits82-86,102-510 
105. In that context, (sub)clinical and healthy populations were often mixed, e.g.86,106, based on the 511 

assumption that symptom expression can be summarized on dimensions of psychopathology, which are 512 

extensions of dimensions of brain-behaviour variability in the healthy population. However, this 513 

assumption may not always hold true, which would result in artificial dimensions when pooling clinical 514 

and healthy samples together, an issue that does not only concern multivariate correlational analyses, 515 

but that could be less easily tackled in a pure multivariate data-driven framework. Attention should 516 

hence be given to the broad interpretation and implications of these latent dimensions in the future. 517 

More concretely, scientific investigations should carefully evaluate whether latent dimensions of 518 

interindividual variability reflect biological susceptibility from which brain-symptoms/brain-519 

behavioural deficits dimensions in clinical populations represent extreme expression, or whether these 520 

normal dimensions reflect very general demographic aspects (such as general education) with limited 521 

extrapolation to brain pathology mechanisms. In the next section, we further discuss the challenges of 522 

generalizability, modelling confounds and the related interpretation issues.  523 

 524 

Absolute out-of-sample replications as an open challenge 525 

The replication crisis in SBB has not only pointed to the limitation of small samples in SBB and hinted 526 

at a substantial publication bias, but also highlighted the critical need for out-of-sample replication of 527 

SBB findings. This calls for replication attempt in an independent dataset, that is, an “out-of-cohort” 528 

replication. However, for practical reasons, in machine learning studies the focus is usually set on 529 

generalization within the dataset (see Box 2). This practice unfortunately does not fully prevent the 530 

statistical model to capture idiosyncrasies of the dataset from which it has been derived. This pitfall is 531 

particularly likely for psychometric data because they rely on assessment tools that have been typically 532 

developed for a specific population in a specific context, whose validity across different subpopulations 533 

may be variable107. Furthermore, psychometric data may be susceptible to examiner effect. Importantly, 534 

neuroimaging estimates of brain structures are also susceptible to scanner and sequences effects36,108, 535 

hence both psychometric and neuroimaging data are particularly prone to batch effect.  536 

In this context it is particularly worrisome that the vast majority of studies capitalizing on large healthy 537 

cohort of young adults, tend to focus on the few openly available datasets101,109. As can be seen from 538 

the above review, studies in healthy population, aiming for large sample size and extended behavioural 539 

phenotyping, tend to specifically rely on the HCP dataset87 clearly biasing in the current literature. Due 540 

to limited data (and computational) resources, these studies seldomly include replication in an 541 

independent sample. Evaluating the extent to which standard and higher construct measurement 542 

consistently map onto similar structural brain patterns across different cohorts will hence depend on the 543 
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availability of additional healthy population cohorts in the future. In that regards, openly available 544 

datasets, representative of the world-wide populations, are needed. Diversity in the dataset is not only 545 

needed at the geographical level, but also in other demographic and sociocultural aspects. Such 546 

endeavours would not only enable conceptual replications, but also promote new discoveries on the 547 

factors influencing brain-behaviour relationships.   548 

 549 

Covariance, Confounds, mediating variables and wise scientific interpretation 550 

When aiming to understand how brain structure and behavioural phenotype are related, the explicit 551 

definition of confounds and mediating variables play a major role. The definition as either confounds 552 

or mediating variables should rely on a-priori assumptions that should be carefully formulated or 553 

evaluated. For instance, on the one hand, head morphometry (i.e. size but also shape) can be associated 554 

with specific pattern of structural estimations in some part of the brain (resulting from normalization to 555 

a standard template). On the other hand, it may also be indirectly associated to some specific patterns 556 

of behaviour (for example women have typically smaller head and are early encouraged to develop 557 

care-taking behaviour). Consequently, head and therefore brain size can be considered as a confounder 558 

with the potential to create spurious brain-behaviour associations (such as association between grey 559 

matter volume and care-taking behaviour). 560 

Illustrating that concern, in a healthy adults’ cohort, when multimodal brain components including 561 

several structural measures were correlated with a range of phenotypical variables, several components 562 

detected simple associations between brain size (encoded in grey matter density and cortical area)and  563 

gender, strength and endurance89. This raises the very concerning question of the extent to which the 564 

SBB associations can be spuriously influenced by general head morphometry. In that view, head 565 

morphometry should be controlled for as a confounding variable. In contrast, when a variable is 566 

assumed to underlie a brain-behaviour association based on specific neurobiological assumption, this 567 

variable should deserve specific attention and mediation approaches to disentangle its relevant role 568 

should be considered. A typical example of such case is the influence of age. If older age is assumed to 569 

go along with lower grey matter volume in some parts of the brain, which in turn results in reduced 570 

cognitive abilities, age should not be considered as a confounder. Nevertheless, clear and documented 571 

assumptions on confounders and mediators are rarely formulated and discussed in recent multivariate 572 

studies. A range of variables are often controlled for (from in-scanner movements to education) or 573 

included in the multivariate model without any a-priori and/or post-hoc conceptual considerations of 574 

the role of these variables (e.g.74,80). Yet, different adjustment or controlling can substantially modify 575 

the pattern of results, and sometimes, in an unexpected way. For example, different strategies for brain 576 

size adjustment may potentially result in negative associations of brain structure with behaviour and the 577 

researchers should be aware that the interpretation is conditioned by the adjustments (see e.g.110,111).  578 
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Relatedly, it is generally acknowledged that brain-behaviour covariance does not mean causation, even 579 

in a predictive design. Accordingly, evidence of a relationship is rarely explicitly presented as a causal 580 

relationship. Nevertheless, the communication of the message outside the scientific community, in 581 

particular by general media, who contribute to a simplified communication of the statistical results and 582 

mass dissemination, is rarely carefully considered. Scientific researchers, themselves, may foster causal 583 

interpretation through the terminology they used. While the exact neurobiological mechanisms 584 

accounting for findings of SBB associations are not clear, the terminology used to some extent 585 

implicitly conveyed the ideas of the behavioural aspects shown by individuals as “hard-wired” or 586 

“deeply biologically rooted”. This can be seen by the terminology used by Kanai & Rees3 in “the 587 

structural basis of inter-individual differences in human behaviour and cognition”. But this can also be 588 

seen in the frequent use of the term “substrate” or “bases” (e.g.112,113), which is semantically related to 589 

“foundation”, in this literature. Further illustrating a-priori assumption on directionality of phenomenon 590 

can be found on recent machine learning studies: “A parsimonious interpretation would be that the 591 

structural difference leads to functional changes. However, we should not exclude the possibility that 592 

spontaneous brain activity underlying the resting state functional connectivity may help to shape brain 593 

structure and morphology, such as the cortical thickness”88. Hence brain structural patterns are often 594 

implicitly assumed to determine functional patterns and behavioural phenotype and following that view, 595 

these “bases” are often primarily assumed to emerge from nature.   596 

Somewhat contrasting with this implicit view, compelling evidence of a relationship between human 597 

skills and traits and brain morphometry were actually initially brought by several studies probing brain 598 

plasticity114. Subtler changes were hence shown following new learning/training demonstrating 599 

dynamic relationships between regular behaviour and brain structural patterns. Along the same line, 600 

current theories suggest that functional interaction between brain regions early in development may 601 

drive observed patterns of co-morphology between brain region, rather than the other way around115,116. 602 

Furthermore, there is now a substantial literature on the relationship between external factors and brain 603 

structure development117-119. Reinforcing these evidence, in a very large paediatric cohort, the variance 604 

in the sociodemographic factors was found to be shared with the cognitive and brain structural features 605 

and accordingly, the relationship between brain structure and cognition was strongly related to the 606 

sociodemographic factors120. Along the same line, several recent studies suggest that the relationship 607 

between brain structure and behavioural phenotype is driven or mediated by family income in 608 

developmental cohorts121,122. Hence, altogether, all these lines of evidence point to brain plasticity as a 609 

major aspect that should always be a-priori considered when interpreting, discussing relationships and 610 

communicating the findings outside the scientific expert community.  611 

 612 

 613 
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 A vast SBB association literature has been produced across the last two decades offering additional 614 

empirical background for differential psychology and cognitive neuroscience theories. However, this 615 

empirical pillar has recently been shaken by a replication crisis. The poor replicability of SBB 616 

associations has been hence demonstrated across a range of behavioural measurements and various 617 

popular estimates of brain structure. This crisis should lead the field to reconsider our scientific 618 

approaches of SBB associations based on interindividual variability patterns in the healthy population. 619 

In particular, large cohorts are crucially needed (~1000 participants). In parallel, machine learning 620 

techniques, by taking into consideration the multivariate nature of structural brain and behavioural 621 

measurements and promoting robust association patterns, promise to offer a complementary view to the 622 

more traditional univariate approaches. These new trends have already highlighted that interindividual 623 

variability in brain structure relates to an extent, which is at least similar to the one of brain functional 624 

connectivity to interindividual variability in behavioural phenotype. However, the conceptual validity 625 

of the findings remains to be carefully evaluated with “out-of-cohort” and conceptual replication. This 626 

challenge dramatically calls for the availability of additional cohorts. In that regards, geographic 627 

diversity and socioeconomical diversity endeavours in new cohorts further hold the keys of the 628 

usefulness of the derived model and further insight into moderator factors in SBB associations. 629 

Ultimately such endeavours could contribute to better identify the role of environmental factors in SBB 630 

and develop actions for education and diseases prevention strategies.   631 
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