
276  |  Nature  |  Vol 589  |  14 January 2021

Article

A pooled testing strategy for identifying 
SARS-CoV-2 at low prevalence
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Claude Mambo Muvunyi2, Jean Baptiste Mazarati2, Sabin Nsanzimana2, Neil Turok3,5,6 ✉ & 
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Suppressing infections of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) will probably require the rapid identification and isolation of 
individuals infected with the virus on an ongoing basis. Reverse-transcription 
polymerase chain reaction (RT–PCR) tests are accurate but costly, which makes the 
regular testing of every individual expensive. These costs are a challenge for all 
countries around the world, but particularly for low-to-middle-income countries. 
Cost reductions can be achieved by pooling (or combining) subsamples and testing 
them in groups1–7. A balance must be struck between increasing the group size and 
retaining test sensitivity, as sample dilution increases the likelihood of false-negative 
test results for individuals with a low viral load in the sampled region at the time of 
the test8. Similarly, minimizing the number of tests to reduce costs must be balanced 
against minimizing the time that testing takes, to reduce the spread of the infection. 
Here we propose an algorithm for pooling subsamples based on the geometry of a 
hypercube that, at low prevalence, accurately identifies individuals infected with 
SARS-CoV-2 in a small number of tests and few rounds of testing. We discuss the 
optimal group size and explain why, given the highly infectious nature of the disease, 
largely parallel searches are preferred. We report proof-of-concept experiments in 
which a positive subsample was detected even when diluted 100-fold with negative 
subsamples (compared with 30–48-fold dilutions described in previous studies9–11). 
We quantify the loss of sensitivity due to dilution and discuss how it may be mitigated 
by the frequent re-testing of groups, for example. With the use of these methods, the 
cost of mass testing could be reduced by a large factor. At low prevalence, the costs 
decrease in rough proportion to the prevalence. Field trials of our approach are 
under way in Rwanda and South Africa. The use of group testing on a massive scale to 
monitor infection rates closely and continually in a population, along with the rapid 
and effective isolation of people with SARS-CoV-2 infections, provides a promising 
pathway towards the long-term control of coronavirus disease 2019 (COVID-19).

COVID-19 represents a major threat to global health. Rapidly identifying 
and isolating individuals with SARS-CoV-2 infections is one of the most 
important available strategies for containing the virus. However, each 
diagnostic test12 for the SARS-CoV-2 virus costs US$50–100. Therefore, 
testing individuals regularly—which may be required to eliminate the 
virus—is expensive. The costs are unaffordable for most low-income 
countries, which have limited available resources for large-scale 
SARS-CoV-2 testing. It is therefore important to investigate whether 

there are more-efficient ways to identify those individuals infected 
with the virus.

The first step in testing—swab collection—is labour-intensive but 
does not require expensive chemicals or equipment. It may therefore be 
feasible to collect swabs regularly from everyone. The next step involves 
RT–PCR machines13. These require expensive chemical reagents, which 
are currently in short supply, as well as skilled personnel. To reduce 
the cost, we need to minimize the total number of tests. The speed of 
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testing is also a key concern because SARS-CoV-2 is so infectious. Each 
RT–PCR test takes several hours in the laboratory, time during which 
the virus can spread14.

To identify individuals infected with SARS-CoV-2, the naive approach 
is to test everyone separately—that is, to perform one test per person. 
However, at low prevalence it is far more efficient to pool (or combine) 
samples and test these sample pools together. This idea of group testing 
was proposed by Dorfman in 19431. At low viral prevalence p, Dorfman’s 
algorithm reduces the number of tests per person to ≈ 2√p (Supplemen-
tary Information I). The algorithm that we present is more efficient, as 
it requires only ≈ epln(1/p) tests per person at low p, where e = 2.718… 
is Euler’s number (Supplementary Information II). As an example, a 
survey of private residential households in England and Wales, released 
on 4 September 2020 by the Office of National Statistics15–17, estimated 
a prevalence of p = 0.05% (95% confidence interval, 0.04–0.07%). For 
p = 0.05%, Dorfman’s algorithm offers a 22-fold cost reduction whereas 
ours offers a 100-fold cost reduction. The main obstacle to achieving 
these large cost savings is the number of samples that can be pooled 
without compromising detection. Here we present proof-of-concept 
experiments that show that one positive sample in a pool of a hundred 
samples can still be reliably detected. We also discuss how the pool size 
could be further increased to obtain the full benefits of group testing at 
low prevalence. If larger pool sizes and the associated cost reductions 
can be achieved, group testing may provide an affordable pathway to 
the long-term control of SARS-CoV-2.

In this paper, our focus is on population screening and not on proto-
cols for use with at-risk groups or in clinical settings. The prevalence is 
typically much higher among individuals in at-risk groups or among 
individuals who present themselves for testing. For example, in the 
week ending 2 September 2020, 0.6% of the tests performed in hospi-
tals in England were positive18, which suggests a prevalence that is an 
order of magnitude greater than that in the wider population, quoted 
above. In addition, in clinical settings the overriding concern should be 
to test the individual patient as quickly and accurately as possible. In 
most situations, that means performing an individual test. We are not 
suggesting the use of group testing as a strategy for testing patients 
in clinics, especially those with symptoms.

With this caveat, there are many potential applications of our 
method—for example, to screen sports teams whose players and staff 
must be tested regularly. A prominent rugby team in South Africa is 
now trialling our method. Early results indicate cost savings of more 
than an order of magnitude, with the successful detection of positive 
samples in groups of 81. Other applications include screening of staff 
and residents in care homes or pre-flight screening of passengers for 
commercial flights. The Government of Rwanda has adopted group 
testing as a national strategy and all air passengers are required to 
undergo a group test locally. This has helped to revive tourism in the 
country. Regular screening of university halls of residence, laborato-
ries or departments could similarly enable safer in-person interac-
tions. There is also potential for combining group testing with cheaper 
multiplex RT–PCR tests19 . The combination could reduce the costs of 
population-wide screening by more than two orders of magnitude 
compared with current methods.

Group-testing algorithms generally require more than one round of 
testing. In Dorfman’s algorithm, a first round of group tests is followed 
by a second round in which each member of every positive group is 
tested individually. Our algorithm involves a similar first round of group 
tests, although with a larger group size. Positive groups proceed to a 
second round of ‘slice tests’, which usually suffices to identify all indi-
viduals who are infected, without any need for individual tests. Occa-
sionally one and, very rarely, more than one additional round of slice 
tests are required. We compare our approach with other approaches 
in detail in the Supplementary Information. There are adaptive algo-
rithms that require fewer tests but more rounds of testing, during which 
time viral prevalence can grow. Such searches are disfavoured at low 

prevalence (see ‘Largely parallel searches are preferred’). There are also 
non-adaptive algorithms that require only one round of testing4–7,11. 
Although these algorithms appear attractive, they have disadvantages 
compared with our algorithm—for example, a higher failure rate (Sup-
plementary Information sections III, IX). In our approach, the first round 
of tests—which are performed on groups—provides a valuable ‘sanity 
check’ on the viral prevalence in the population, before the second 
round of more-numerous slice tests is performed. More generally, 
group tests can provide a highly efficient means of tracking the viral 
prevalence in various populations in real time (Supplementary Infor-
mation VIII).

Group testing is most obviously effective when none of the group 
members is infected: just one test suffices to clear everyone. Our algo-
rithm takes full advantage of this powerful result. In the first round 
of tests, subsamples from all group members are pooled and tested 
together. For our algorithm, the optimal group size is N ≈ 0.35/p. The 
expected number of group members who are infected is 0.35 and a 
group will test negative more than 70% of the time. Groups that test 
positive are passed on to the first round of slice tests, which we describe 
next.

When one member of a group is infected
Consider the case in which only one member of the group is infected. 
The idea behind our algorithm is geometrical: the group of individuals 
to be tested is represented by a set of N points on a cubic lattice in D 
dimensions, organized in the form of a hypercube with L points on a 
side (Fig. 1), so that

L N= . (1)D

Fig. 1 | Subsample pooling in the hypercube algorithm, shown here for  
D = L = 3 and N = 27 = 33. Each vertex represents an individual. The hypercube is 
sliced into L slices, in each of the D principal directions. Samples from N/L 
individuals are pooled into a sample for each slice. For this example, the three 
sets of slices are shown in blue, red and green. If, among the N individuals  
being screened, only one is infected, tests on each set of slices identify their 
coordinate in that direction. Thus, in this example, only nine tests uniquely 
identify them. As the viral prevalence p decreases, the optimal group size N,  
the dimension D and the efficiency gain increase.
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Instead of directly testing the samples taken from every individual, 
we first divide each of them into D equal subsamples. These DN sub-
samples are recombined as follows. Slice the hypercube into L planar 
slices, perpendicular to one of the principal directions on the lattice. 
Form such a set of slices in each of the D principal directions and pool 
the LD − 1 = N/L subsamples that correspond to each slice. Altogether, 
DL slices are tested in parallel, in each round of slice tests. If there is 
one individual who is infected, then one slice out of the L slices in each 
of the D directions will yield a positive result. That slice indicates the 
coordinate of the individual in the corresponding principal direction.

Therefore, the total number of tests required to find the individual 
who is infected is

DL DN= , (2)D1/

where we used equation (1). Treating D as a continuous variable, the 
right side of equation (2) diverges at both small and large D, possess-
ing a minimum at

D N= ln( ), (3)

corresponding to L = e and a total of eln(N) tests. In reality, D and L must 
be integers, but using L = 3 achieves almost the same efficiency (in the 
total number of tests, e is replaced with 3/ln(3) ≈ 2.73, which is less 
than 0.5% larger, whereas using L = 2 or 4 gives 2/ln(2) = 4/ln(4) ≈ 2.89, 
which is more than 5% larger). With no further constraint, finding one 
person who is infected in a population of a million—using L = 3—requires 
only 39 tests, performed in one round of testing. To understand this 
calculation, note that 313 > 106; therefore, a hypercube of side L = 3 with 
dimension D = 13 contains more than a million points. A round of slice 
tests on this hypercube consists of DL = 13 × 3 = 39 slice tests.

Proof of concept
In real-time PCR tests, the target RNA molecules are reverse-transcribed 
into DNA, which is replicated exponentially until it can be detected 
using fluorescence. In a perfectly efficient test, the number of DNA 
molecules doubles in every PCR cycle. The test is extremely sensitive: 
fewer than 10 molecules of viral RNA are sufficient for a positive test 
result13. A nasopharyngeal swab taken in the first 5 days of symptoms 
yields, on average, around 2 × 105 viral RNA molecules per millilitre20. 
Asymptomatic individuals who are infectious appear to have similar 
viral loads21. In the usual testing protocol, just 5 μl of the solution, con-
taining on average around 1,000 RNA molecules, is included in the mix 
that is then analysed by PCR. Samples taken at earlier or later stages 
of infection, or in younger patients whose antibodies have suppressed 
the virus, have fewer virus particles present. In practice, this reduced 
number of virus particles is thought to be the most important cause 
of testing error, taking the form of false-negative test results17,22,23. In 
pooled testing, positive subsamples are diluted with negative sub-
samples. Dilution by 100-fold, for example, means that on average 
only around 10 RNA molecules are likely to be present in the RT–PCR 
test. In principle, this should still be sufficient to yield a positive result.

As a proof of concept, using oropharyngeal swab specimens col-
lected during COVID-19 surveillance in Rwanda, we investigated 
whether known positive specimens still tested positive after they were 
diluted 20-, 50- or 100-fold through pooling with negative specimens 
(Methods). We used a RT–PCR test that targets the N and orf1ab genes 
of SARS-CoV-2, a combination that is used routinely for diagnostic 
screening for SARS-CoV-2 infections in Rwanda. The standard pro-
tocol is to consider a test positive if PCR amplification produces an 
above-background fluorescence signal for both target genes at a PCR 
cycle number—that is, a cycle-threshold (Ct) value—of Ct ≤ 40. Our 
key finding is that typical positive specimens can still be detected 
even after dilution by up to a 100-fold (Fig. 2). Previously published 

experiments9–11 have demonstrated detection after 30-, 32- and 48-fold 
dilution. As a consistency check, we determined the change in the Ct 
value (ΔCt) when going from a 50- to a 100-fold dilution. As noted above, 
a positive sample diluted 100-fold in principle requires one more cycle 
of PCR amplification than when diluted 50-fold to achieve the same fluo-
rescence signal, implying ΔCt ≈ 1.0. Consistent with this expectation, 
we find ΔCt ≈ 1.0 ± 0.15 (mean ± s.d.) for the N gene and ΔCt ≈ 1.1 ± 0.14 
for the orf1ab gene. The changes in Ct values for other dilutions are also 
consistent with this interpretation.

We estimated the postdilution sensitivities by combining (techni-
cally, convolving) the probability distribution for predilution Ct val-
ues for positive samples (Extended Data Table 3) with the probability 
distribution for the increase in ΔCt as inferred above. Treating both 
distributions as Gaussian, the distribution of postdilution Ct values is 
also Gaussian, with the mean given by the sum of the means and the 
variance given by the sum of the variances. In this way, we estimated 
that a 40-cycle PCR test targeting the SARS-CoV-2 N (or orf1ab) gene, 
respectively, has postdilution sensitivities for 20-, 50- and 100-fold 
dilutions of 91%, 88% and 85% (or 85%, 81% and 77%, respectively). We 
have confirmed these estimates using two additional datasets. First, 
we used an independent sample of Ct values for 107 positive specimens 
collected in Rwanda using tests that targeted the same two genes. Sec-
ond, we reanalysed a published dataset of 26 positive specimens from 
a recent study of pooled testing for SARS-CoV-2 in Israel10, in which a 
single gene (the E gene) was targeted. All three datasets gave broadly 
consistent results.

The positive samples that are most likely to be missed because of dilu-
tion are those with the highest Ct values before dilution—that is, those 
with the lowest viral load. The individuals concerned are likely to be 
the least infectious24,25. Conversely, those individuals—whether symp-
tomatic or asymptomatic—whose samples have the lowest Ct values, 
which are the least affected by sample dilution, are the most important 
to detect as they are likely to be the most infectious. Nevertheless, it is 
important to consider ways in which the loss in sensitivity due to dilu-
tion might be mitigated. The most obvious is to re-test sufficiently often 
(say, every 3 days) to ensure a test occurs in the period of highest viral 
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Fig. 2 | Positive specimens are detected after a 100-fold dilution. a, b, Each 
of six typical SARS-CoV-2-positive specimens was diluted through pooling with 
19, 49 or 99 negative specimens. A Ct value (that is, the PCR cycle at which the 
fluorescence signal generated by a specimen exceeds the baseline signal) was 
determined for each pool through RT–PCR amplification of the N (a) and orf1ab 
(b) genes of SARS-CoV-2. For each gene, the Ct values are plotted against the 
dilution factor. The red horizontal lines indicate the Ct value (40) at or below 
which a specimen is considered positive. All Ct curves stay below the red lines 
even if the positive specimens are diluted 100-fold (Extended Data Fig. 1 and 
Extended Data Table 2).
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abundance, for any individual infected with SARS-CoV-2. Group tests 
involve the greatest degree of dilution in our method, but they are also 
the cheapest testing stage to repeat frequently and to thereby mitigate 
sensitivity loss. Likewise, one could increase the number of PCR cycles 
to 44, the maximum used in the previous study10. Similarly, the volume 
of the sample used in the RT–PCR test can be increased from 5 μl to 10 μl, 
reducing the Ct value by one (this is done in the laboratory that we are 
working with in South Africa). Furthermore, the viral concentration in 
the pooled sample might be increased by physical or chemical methods 
such as ultracentrifugation or precipitation. Finally, PCR machines 
might be re-engineered to enable larger sample volumes to be tested. 
All of these possibilities are worth exploring.

When more than one member of a group is infected
So far, we have assumed that only one member of the group is infected. 
We must also consider what happens when two, three or more mem-
bers of a group are infected. We will have to discover that number in 
the course of the slice tests. A feature of group testing is that the first 
round of group tests, which are relatively few in number, allows us to 
conveniently update our knowledge of the viral prevalence p, before 
any individuals who are infected have been identified (Supplementary 
Information section VIII).

Given p, the probability that k members of a group of size N are 
infected is described by a Poisson distribution with mean λ = pN. For λ 
well below unity, the probability decreases rapidly with increasing k. At 
very low p, the optimal N is very large, so D = logL[N] ≫ 1. The advantages 
of the hypercube algorithm are particularly clear in this limit. There-
fore, we describe this limit first before discussing realistic values of D. 
In this section we asssume, for simplicity, perfect accuracy of all tests.

The first round of slice tests—as described above—yields, for L = 3, 
a set of triples of zeros and ones, that is, {1, 0, 0}, {1, 1, 0} or {1, 1, 1} or a 
permutation thereof, for every principal direction of the lattice. Let 
σ be the sum of the three values (so σ = 1, 2 or 3) and dσ the number of 
directions in which the value σ occurs, so d1 + d2 + d3 = D. For D ≫ 1, the 
number of group members who are infected (k) may be accurately 
inferred from the observed values of dσ, even before any individuals who 
are infected are identified. Knowing k, we then find all individuals who 
are infected as follows. First, if k = 1, then d1 = D. Each positive slice indi-
cates the coordinate value in that direction. Thus, the individual who is 
infected is identified in one round of slice tests. Second, suppose k = 2, 
then d2 > 0 but d3 = 0. If d2 = 1, the two individuals who are infected are 
immediately identified. If d2 > 1, choose one of the directions with σ = 2, 
and treat the two positive slices as smaller hypercubes, each containing 
one individual who is infected. A further round of slice tests identifies 
one and the other is found by elimination. Third, if k = 3 then, at large 
D, at least one direction has σ = 3. Choose one such direction and treat 
two of the positive slices as smaller hypercubes, each containing one 
individual who is infected. A slice test on each identifies two individu-
als who are infected and the third is found by elimination; if k > 3, the 
number of rounds of slice tests required to identify all individuals who 
are infected is slightly larger than k. However, for the optimal value of 
group size, the probability to have k > 3 members who are infected is 
negligibly small.

Thus, in the large D limit, to a good approximation k rounds of slice 
tests suffice to identify k individuals who are infected. In the Supple-
mentary Information, we show that, at low prevalence p, assuming 
Poisson statistics, the expected number of tests per person ⟨T⟩/N that 
is required to identify all individuals who are infected is minimized for 
N ≈ 0.350/p. At this optimal group size, ⟨T⟩/N ≈ epln(0.734/p) (Fig. 3). 
The reciprocal of this number is the efficiency gain—that is, the cost 
savings factor—relative to testing every individual.

For practical applications, we are interested in the efficiency of the 
algorithm at modest values of D such as 3, 4 or 5. This requires a more 
intricate analysis, the details of which we provide in the Supplementary 

Information. However, some simple and general statements are 
included here. First, when all directions yield σ = 1, only one individual 
is infected and they are immediately and uniquely identified. This is 
the most probable outcome of the first round of slice tests. Second, 
when σ > 1 in only one direction then two (or three) individuals who are 
infected are uniquely identified without further tests. If σ > 1 in more 
than one direction, a second round of slice tests is needed. We can 
eliminate any slice that tested negative in the first round of slice tests 
and thus work with a smaller hypercube. We make only one approxima-
tion in our analysis, namely we assume the infected samples are rare in 
the hypercube. They may then be treated as independent, randomly 
chosen points. Within this approximation, we compute the probabili-
ties through to the second round of slice tests. Notably, we find that 
the hypercube algorithm remains highly efficient at modest values of 
D. For example, for λ = 0.35 and D = 4, in 93.3% of cases one round of 
slice tests suffices to identify all individuals who are infected. For the 
remaining 6.7% of cases, one more round suffices in all but 0.01% of 
cases, a very low theoretical failure rate (which, we emphasize, does 
not include experimental errors). The expected total number of tests 
per person, for D = 3, 4 and 5, is plotted in Fig. 3. When 0.35/p is an exact 
power of 3, as is the case at the left end of each coloured curve in Fig. 3, 
the performance is best relative to the large D formula given in the pre-
vious paragraph. As p is increased, an increasing fraction of sites in the 
3D hypercube are left empty until the next exact power of 3 is reached. 
Nevertheless, at the values of p shown, pooling always results in a high 
efficiency gain. As Fig. 3 shows, the large D approximation provides a 
surprisingly good (and very convenient) fit to the low D results (further 
details are provided in Supplementary Information sections IV–VII).

Largely parallel searches are preferred
Some search methods require fewer tests but more rounds of testing. 
A binary search2,3, for example, finds one individual among N in ~log2[N] 
tests, a factor of eln[2] ≈ 1.88 fewer tests than needed by our hypercube 
algorithm at large D. However, the tests must be performed serially, 
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requiring ~log2(1/p) rounds of testing. For p = 0.4% (or 0.15%) a binary 
search takes 8 (or more than 9) rounds of testing whereas a hypercube 
search takes typically 2 and occasionally 3 rounds (in both cases). For 
a highly infectious disease such as COVID-19, saving time is crucial 
because individuals who are infected and still at large can infect others. 
The doubling time for COVID-19 has been estimated at τ2 ≈ 2 days14,26. 
If each testing round takes τ days, the viral prevalence in the population 
at large grows by p~(1/ )τ τ/ 2 during a binary search. If this growth factor 
exceeds eln(2), a binary search will do worse than a hypercube search. 
Assuming τ ≈ 1/3 day, we find that for p < 1%, the hypercube search is 
preferred. Another advantage of the hypercube search is that it includes 
many consistency checks. For example, finding σ = 1 in one direction 
and σ = 0 in the others indicates a testing error. By contrast, a binary 
search relies on repeated testing of the positive sample, so that a single 
false-negative result can prematurely terminate the search.

Conclusions
The hypercube algorithm offers an attractive compromise between 
minimizing the total number of tests to reduce costs and maximizing 
the speed of testing to reduce the spread of the virus. We have demon-
strated its viability for group sizes up to 100 samples, showing that cost 
savings of a factor of nearly 20 can, in principle, already be achieved. We 
have quantified the loss of sensitivity due to dilution and discussed a 
number of ways in which it may be mitigated—for example, through fre-
quently repeated group tests. These strategies could enable the use of 
larger pool sizes, bringing even greater cost savings at low prevalence. 
The most striking aspect of our approach is how rapidly the cost of  
testing a population can fall, pooled test sensitivity permitting, as the 
viral prevalence decreases. This should incentivise decision-makers 
to act firmly to drive the prevalence down through mass screening, 
contact tracing and isolation. As the viral prevalence is reduced, all 
aspects of this strategy become more and more affordable.
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Methods

Observational study design
We conducted an experiment to evaluate the hypothesis that known 
SARS-CoV-2-positive oropharyngeal swab specimens collected dur-
ing COVID-19 surveillance in Rwanda will test positive after they are 
combined with as many as 99 known SARS-CoV-2-negative specimens. 
This was followed by an observational study that aimed to apply our 
hypercube algorithm to increase the efficiency of community testing 
for COVID-19 in Rwanda. In the experiment, two different sets of sample 
pools were tested for SARS-CoV-2 using RT–PCR. Each set consisted of 
three sample pools that contained one known SARS-CoV-2-positive 
sample diluted in ratios of 1:20, 1:50 and 1:100 by combining it with 
equivalent amounts of 19, 49 and 99 known SARS-CoV-2-negative 
samples, respectively (Fig. 2 and Extended Data Table 2). In the obser-
vational study, 1,280 individuals selected from the community were 
tested for SARS-CoV-2 using RT–PCR. One third of the individuals were 
participants in a screening for severe acute respiratory infections and 
influenza-like illness conducted in 30% of the health facilities found 
across the 30 districts of Rwanda. The remaining two thirds were from 
COVID-19 screening of at-risk groups in the capital city of Kigali. The lat-
ter group consisted mainly of individuals (market vendors, bank agents 
and supermarket agents) who remained active during the lockdown 
imposed by the Government of Rwanda to contain COVID-19. Extended 
Data Table 1 summarizes the characteristics of the study participants.

The positive fraction of RT–PCR tests for SARS-CoV-2 conducted in 
Rwanda in March 2020 suggests an upper bound of 2% for the virus 
prevalence in the country. Using p = 2% in the hypercube algorithm 
indicated an optimal sample group size of 17.5. For convenience, the 
1,280 individual samples were combined in 64 groups of 20 samples 
before testing for SARS-CoV-2 (Extended Data Fig. 1).

We used two established experimental protocols for SARS-CoV-2 
testing. The first is a protocol by DAAN Gene and Sun Yat-sen  
University that is available online (https://prolabcorp.com/daan- 
rt-pcr-reagent-set-for-covid-19-real-time-detection-for-48-samples- 
research-use-only), and is also under review by the WHO. The second 
protocol13 is widely used by the scientific community. The first proto-
col is used for routine screening for SARS-CoV-2, whereas the second 
protocol is used only if the first protocol produces a positive result and 
confirmation is therefore required.

Sample collection and pool design
Oropharyngeal swabs were collected by wiping the tonsils and posterior 
pharynx wall with two swabs, and the swab heads were immersed in 3 ml 
viral transport medium. Samples were transported in viral transport 
medium to the Rwanda National Reference Laboratory immediately 
after collection. Samples that had to be transported over a long distance 
were stored in dry ice. Each sample had a volume of 3 ml, of which an 
aliquot of 200 μl was used for pooled testing, and the remainder was 
temporarily stored at −20 °C until the result of the pooled testing was 
known. The aliquot (200 μl) of each sample was mixed with aliquots 
with the same volume of other samples of the same pool in a Falcon 
15-ml conical tube and, after vortexing for 5 s, 200 μl of the mixture was 
pipetted for downstream RNA extraction. Then, 5 μl of the extracted 
RNA was added to 20 μl of master mix for a total of 25 μl to be amplified 
by RT–PCR. If a pool tested positive, stored samples from that pool 
were processed to identify the positive samples. Individual samples 
were barcoded, making it easy to trace individuals that tested posi-
tive and minimizing the risk of confusion of samples. Pool design and 
subsequent experimental analysis (see ‘RT–PCR for SARS-CoV-2’) were 
implemented with the aid of a robot to reduce human error.

RT–PCR for SARS-CoV-2
Total viral RNA was extracted from swab specimens using the QIAamp 
Viral RNA 91 Mini Kit (QIAGEN), according to the manufacturer’s 

instructions. RNA samples were screened for SARS-CoV-2 using a 
2019-nCoV RNA RT–PCR test that targets two genes that, respectively, 
encode an open reading frame (denoted orf1ab) and a nucleocapsid pro-
tein (denoted N) (DAAN Gene and Sun Yat-sen University). For orf1ab, 
CCCTGTGGGTTTTACACTTAA and ACGATTGTGCATCAGCTGA were 
used as forward and reverse primers, respectively, together with a 
5′-VIC-CCGTCTGCGGTATGTGGAAAGGTTATGG-BHQ1-3′ probe. For N, 
GGGGAACTTCTCCTGCTAGAAT and CAGACATTTTGCTCTCAAGCTG 
were used as forward and reverse primers, respectively, together with 
a 5′-FAM-TTGCTGCTGCTTGACAGATT-TAMRA-3′ probe. The RT–PCR 
reaction was set up according to the manufacturer’s protocol, with 
a total volume of 25 μl. The reaction was run on the ABI Prism 7500 
SDS Instrument (Applied Biosystems) at 50 °C for 15 min for reverse 
transcription, denatured at 95 °C for 15 min, followed by 45 PCR cycles 
of 94 °C for 15 s and 55 °C for 45 s. A threshold cycle (Ct) ≤ 40 indicated 
a positive test; Ct > 40 indicated a negative test. Positive controls for 
the reaction showed amplification as determined by curves for FAM- 
and VIC-detection channels, and Ct ≤ 32. Positive tests were confirmed 
using LightMix SarbecoV E-gene and LightMix Modular SARS-CoV-2 
RdRp RT–PCR tests that target the envelope (E) and RNA-directed RNA 
polymerase (rdrp) genes, respectively, as described by the manufac-
turer (TIB MOLBIOL). Both the primers used and the RT–PCR reaction 
conditions were previously described13.

Statistical analysis
Ct values were tested for normality using the Shapiro–Wilk test. A con-
fidence bound for a sample of n Ct values was calculated as C t s± ×t df

⁎ , 
where Ct is the sample mean, s is the sample standard error of the mean 
and td.f.

⁎  is an appropriate quantile of the Student’s t-distribution with 
n − 1 degrees of freedom (d.f.). A confidence bound for the sum of the 
means of two samples of Ct values of sizes n1 and n2, respectively, was 
calculated using the same formula, with Ct set to the sum of the indi-
vidual sample means, s set to the sum of the standard errors of the 
individual sample means and d.f. set to the smaller of n1 − 1 and n2 − 1. 
Statistical analysis was done using the R statistical computing environ-
ment (https://www.r-project.org/).

Loss of sensitivity due to dilution
To estimate the postdilution sensitivities of RT–PCR tests with dif-
ferent maximum numbers of PCR cycles, we combined two datasets. 
First, we used the mean and standard deviations of the number of 
additional PCR cycles required for a positive detection, after a k-fold 
dilution of a positive specimen (Fig. 2, showing the data in Extended 
Data Table 3). Second, we used the mean and standard deviation of 
Ct values for positive specimens sampled from a target population. 
We combined (or, more accurately, convolved) the two probability 
distributions, represented as Gaussians to calculate the sensitivity 
of a ≤x cycle PCR test as the probability that the Ct value of a k-fold 
diluted positive specimen sampled from the same population will be 
≤x. Using a representative sample of 33 positive specimens identified 
during clinical screening for SARS-CoV-2 in Rwanda (Extended Data 
Table 3), we estimate that a ≤40-cycle PCR test targeting the SARS-CoV-2 
N (or orf1ab) gene, respectively, has postdilution sensitivities for 20-, 
50- and 100-fold dilutions of 95%, 92% and 89% (or 86%, 82% and 77%, 
respectively). For a ≤44-cycle PCR test targeting the N (or orf1ab) gene, 
we obtain postdilution sensitivities for 20-, 50- and 100-fold dilutions 
of 99%, 98% and 98% (or 96%, 94 and 92%), respectively. As mentioned 
in the paper, a maximum of 44 PCR cycles was used in the recent study 
of pooled testing for SARS-CoV-2 in Israel10.

As further checks, we applied the same analysis to (1) an independ-
ent sample of 107 positive specimens collected in Rwanda and (2) the 
previously published dataset10, which consists of the 26 positive speci-
mens identified in the previous study10. From the Rwandan dataset, we 
estimated that a 40-cycle PCR test targeting the N (or orf1ab) gene, 
respectively, has postdilution sensitivities for 20-, 50- and 100-fold 

https://prolabcorp.com/daan-rt-pcr-reagent-set-for-covid-19-real-time-detection-for-48-samples-research-use-only
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dilutions of 91%, 88% and 85% (or 85%, 81 and 77%, respectively).  
For a 44-cycle PCR test targeting the N (or orf1ab) gene, respectively, 
the predicted sensitivities are 97%, 96% and 95% (or 94%, 92 and 90%).  
The previously published dataset10 contains Ct values for only one gene—
the E gene of SARS-CoV-2. On the basis of the arguments described 
above, we assume for simplicity that diluting a positive specimen by 
20-, 50- and 100-fold adds approximately 5, 6 and 7, respectively, to 
the original Ct value. Applying these assumptions to the previously 
published dataset10, we infer postdilution sensitivities for 20-, 50- and 
100-fold dilutions of 94%, 92% and 89%, respectively, for a ≤40-cycle 
PCR test, and 99%, 98% and 97%, for a ≤44-cycle PCR test. These results 
are comparable to those reported from our experiments. Together, 
these findings confirm that diluting positive samples does result in a 
loss of sensitivity, but that much of the loss can be offset by increasing 
the number of PCR cycles. In particular, sensitivities above 90% can be 
achieved for 100-fold dilution by using 44 PCR cycles, only 10% more 
than the number routinely employed.

Ethics approval
Ethics approval was obtained from the Rwanda National Eth-
ics Committee (FWA Assurance No. 00001973 IRB 00001497 of 
IORG0001100/20March2020) and written informed consent was 
obtained from the participants.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
All codes that were used in the study are available from the correspond-
ing authors upon reasonable request. 
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Extended Data Fig. 1 | Amplification plot for sample pools. Each of the 64 
sample pools described in the text tests negative for SARS-CoV-2: the RT–PCR 
fluorescence curves show below-threshold net fluorescence values. By contrast, 
for both target genes of the positive control, the fluorescence curves cross the 
threshold after 32 PCR cycles. ΔRn denotes the difference between the 

fluorescence signal generated by a sample and a baseline signal. The yellow 
curves reaching ΔRn ≈ 2,000,000 and 1,750,000 represent the positive control 
for the N and orf1ab genes, respectively. The other yellow and orange curves 
represent internal controls.



Article
Extended Data Table 1 | Characteristics of participants of the field trial for the hypercube algorithm in Rwanda

For more information, see Methods, ‘Observational study design’. 
*SARI, severe acute respiratory infections; ILI, influenza-like illness.



Extended Data Table 2 | Positive specimens are detected after strong dilution

Six SARS-CoV-2-positive specimens that were detected during COVID-19 screening in Rwanda were analysed. The positive specimens were detected using a screening RT–PCR test targeting 
the N and orf1ab genes of SARS-CoV-2 (Ct values from this test are reported in columns 3 and 4), and confirmed using another RT–PCR test targeting the E and rdrp genes (Ct values reported in 
columns 5 and 6). We determined whether the screening test would have detected the positive specimens if they had been combined with 19, 49 or 99 known SARS-CoV-2 negative specimens. 
Three pools were therefore formed per sample, with dilution factors given in column 2. For all 18 pools, fluorescence exceeded background levels at Ct ≤ 40 (columns 3 and 4), suggesting that 
the positive samples would have been detected even if diluted 100-fold.
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Extended Data Table 3 | Representative confirmed positive specimens detected during COVID-19 screening in Rwanda

The specimens were detected using a screening RT–PCR test targeting the N and orf1ab genes of SARS-CoV-2 (Ct values from this test are reported in columns 3 and 5). The samples  
were subsequently confirmed as positive using another RT–PCR test targeting the E and rdrp genes (Ct values are reported in columns 7 and 9).
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Software and code
Policy information about availability of computer code

Data collection Raw data (Ct values) obtained from PCR-RT machines and built-in software available on request

Data analysis Open source code in R (V 4.02) (used to produce Figure 3) available on request; Mathematica (V 12.1) code used to obtain results in given in 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 1200 samples for proof of concept experiment on pooled testing, chosen as maximum feasible size for trial of population screening 
in discussion with Rwandan Ministry of Health; 140 samples for sensitivity analysis for positive samples, this was the largest sample available.

Data exclusions None

Replication Test sensitivity analysis (Section III of the paper) on 33 positive samples, on the basis of data presented in Methods Table 7, confirmed by 
analysis of 107 further samples as well as data taken from an independent study (Ref. 14)

Randomization Random 

Blinding Experimenters had no indication in advance as to whether samples were positive or negative

Reporting for specific materials, systems and methods
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Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics In Rwanda, 1280 individuals selected from the community were tested for SARS-CoV-2 using RT-PCR. One third of the 
individuals were participants in a screening for Severe Acute Respiratory Infections (SARI) and Influenza Like Illness (ILI) 
conducted in 30 per cent of the health facilities found across the 30 districts of Rwanda. The remaining two thirds were from 
COVID-19 screening of at-risk groups in the capital city of Kigali. The latter group is comprised mainly of people (market 
vendors, bank agents, and supermarket agents) who remained active during the lockdown imposed by the Government of 
Rwanda to contain COVID-19. Table 5 summarises the characteristics of the study participants. 

Recruitment Recruited by the Rwandan Ministry of Health COVID-19 team

Ethics oversight  Rwanda National Ethics Committee (Ref: FWA Assurance No. 00001973 IRB 00001497 of IORG0001100/20March2020). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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