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{e.karangelos;l.wehenkel}@uliege.be

Abstract—We model the risk posed by a malicious cyber-
attacker seeking to induce grid insecurity by means of a load
redistribution attack, while explicitly acknowledging that such an
actor would plausibly base its decision strategy on imperfect
information. More specifically, we introduce a novel formulation
for the cyber-attacker’s decision-making problem and analyze the
distribution of decisions taken with randomly inaccurate data on
the grid branch admittances or capacities, and the distribution
of their respective impact. Our findings indicate that inaccurate
admittance values most often lead to suboptimal cyber-attacks
that still compromise the grid security, while inaccurate capacity
values result in notably less effective attacks. We also find
common attacked cyber-assets and common affected physical-
assets between all (random) imperfect cyber-attacks, which could
be exploited in a preventive and/or corrective sense for effective
cyber-physical risk management.

Index Terms—Cyber-physical system, power system security,
risk modeling.

I. INTRODUCTION

The digitalization of electric power system control & com-
munications is reshaping the scope for security management.
In addition to physical threats (e.g., failures of the physical
infrastructure, forecasting errors, etc.), securing the system
against cyber threats has also become essential [1]. Such
threats notably include the adversary actions of malicious
external agents, seeking to exploit weaknesses in the security
of the system cyberspace so as to disrupt the physical supply
of electricity. Going from physical to cyber-physical security
management therefore requires modeling not only the interde-
pendencies between cyber and physical infastructures, but also
the interaction between cyber-attackers and grid-operators.

A. Related literature

The framework of multi-level optimization is most com-
monly used in the state of the art to model the cyber-attacker
vs grid-operator interaction [2], [3]. The foundations of this
literature lie in [4], showing that an attacker can successfully
introduce false data without being detected in the case of linear
state estimation. Accordingly, bilevel formulations including
a malicious attacker as the upper agent and a grid-operator
solving the linear DC Optimal Power Flow (DC-OPF) problem
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have been proposed to model alternative cyber-physical attack
scenarios. Yuan et al. introduced in [5] the concept of load
redistribution while modeling an attacker seeking to falsify
load measurements so as to provoke out-of-merit generation
dispatching by the grid-operator. The same concept was ex-
ploited in [6] by an attacker seeking to maximize the loading
of a transmission line. Zhang and Sankar developed in [7]
an elaborate bilevel formulation for an attacker using load
redistribution in order to hide a physical change in the grid
topology, while a model of an attacker seeking to maximize
the number of overloads induced through load redistribution
has been presented in [8].

We underline the shared assumption of a cyber-attacker
relying on perfect information (i.e., the correct model of the
power system and of its operator) to determine its attack
strategy. However, Rahman and Mohsenian-Rad [9] stress that
realistically imperfect cyber-attackers would have to rely on an
inaccurate grid model, as they cannot be plausibly assumed
to observe in real-time the status of every circuit breaker,
tap-changer etc.. These authors modeled an attacker with
incorrect line admittance data and found that the probability
of detecting a load redistribution attack designed with such
imperfect information remains rather low. Reference [10] pro-
vides further evidence for challenging the perfect information
assumption by means of a sensitivity analysis with respect to
the attacker’s knowledge of the occurrence of a single line
outage, showing that the incorrect grid topology undermines
the evaluation of the cyber-physical attack. Sanjab and Saad
studied in [11] the interaction between a defender taking
preventive actions and potential realistic cyber-attackers with
limited system knowledge and found that the Nash-equilibrium
strategy against the assumed perfect, fully rational attacker is
not the best defense of the grid.

B. Paper scope & contributions

In this paper we focus on cyber-physical risk modeling
while explicitly acknowledging that a realistic cyber-attacker
would plausibly base her strategy on imperfect information.
We investigate the effect of such imperfect information in
terms of: i) the impact of a cyber-physical attack on the
electricity transmission grid and ii) the various attack vectors
that may be launched by a malicious cyber-attacker. The
former relates primarily to cyber-physical risk assessment
applications, while the latter allows to draw conclusions for
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cyber-physical risk management. Our analysis is based on the
well-studied scenario of load redistribution attacks wherein
a malicious attacker seeks to deceive the grid-operator with
the final purpose of rendering the grid insecure. On top of
imperfect information on the network branch admittances (as
in [9]), we posit that a realistic cyber-attacker may also rely
on inaccurate branch capacity data. Indeed, the ability of
transmission branches to securely sustain loading relies on
ambient conditions and so does in practice the tolerance of
grid-operators for higher loading levels when these ambient
conditions are favourable.

To perform our investigation we use the Monte Carlo
framework while modeling sequentially the decisions of a
(random) imperfect cyber-attacker, the corresponding reaction
of the grid-operator and finally the resulting state of the grid.
The core component of our framework is a bilevel “maxmin”
optimization model of a cyber-attacker, anticipating the re-
action of the grid-operator to a load redistribution attack. In
addition to the standard constraints included in the state of
the art of such models, we formalize here novel constraint
expressions to reflect a malicious cyber-attacker with the
intention of inducing a challenging insecure state, potentially
triggering a cascading failure event.

Our analysis showcases that (even minor) informational
imperfections imply a broad spectrum of potential cyber-
attacks and of respective physical impacts on the electricity
system. Moreover, the spectrum of potential cyber-attacks
clearly features groups of common attacked assets in the
cyber sub-system and common affected assets in the physical
sub-system. The implication is that protecting the cyber sub-
system to avoid/detect intrusion of such common attacked
assets and/or the physical sub-system to withstand the possible
failure of such common affected assets could be effective
cyber-physical risk management strategies.

C. Paper organization

Section II introduces the model of a malicious cyber-
attacker seeking to maximize grid insecurity on the basis of the
data she perceives to be true. Section III presents the proposed
methodology and metrics for acknowledging the informational
imperfections of such an actor in the context of risk assessment
and risk management. Section IV discusses the application
of such methodology on the single area version IEEE-RTS96
benchmark [12] while conclusions are drawn in Section V.

II. CYBER-ATTACKER DECISION-MAKING PROBLEM

We model a malicious cyber-attacker seeking to maximize
the grid physical insecurity through a load redistribution at-
tack. More specifically, we consider an attacker falsifying bus
load measurements so as to mislead the grid-operator into per-
ceiving the grid as insecure and implementing unnecessarily
generation redispatch actions. The cyber-attacker’s objective is
to maximize the total magnitude of branch overloads caused
by the injection of false measurements and the resulting
generation redispatching of the mislead grid-operator. Invoking
the DC-power flow approximation, we cast the cyber-attacker’s

decision making problem as the following bi-level Mixed
Integer Linear Programming (MILP) problem:

max
∑
`∈L

r` (1)∑
`∈L

(
u+` + u−`

)
≥ U (2)∑

n∈N
an ≤ A (3)∑

n∈N
en = 0 (4)

for all nodes n ∈ N :

− an · ε · dn ≤ en ≤ an · ε · dn (5)
an ∈ {0, 1} (6)∑
g∈G

γg,n
(
pg0 + p?g

)
−
∑
`∈L

λ`,n · f ca` = dn (7)

for all branches ` ∈ L:

f ca` = (1/X`) ·
∑
n∈N

λ`,n · θcan (8)

u+` + u−` + u0` = 1 (9)
f ca` − ρ` · f ` ≤ u+` ·M (10)
f ca` − ρ` · f ` ≥ (u+` − 1) ·M (11)
− f ca` − ρ` · f ` ≤ u−` ·M (12)
f ca` + ρ` · f ` ≥ (1− u−` ) ·M (13)
r` ≤ (1− u0`) ·M (14)
(u+` − 1) ·M + (f ca` − f `) ≤ r` (15)
r` ≤ (1− u+` ) ·M + (f ca` − f `) (16)
(u−` − 1) ·M − (f ca` + f `) ≤ r` (17)
r` ≤ (1− u−` ) ·M − (f ca` + f `) (18)
u+` , u

−
` , u

0
` ∈ {0, 1} (19)

subject to the model of the mislead grid-operator:

min
∑
g∈G

cg · πg (20)

for all generators g ∈ G:

πg ≥ 0 (21)
πg ≥ p?g (22)
(p

g
− pg0) ≤ p?g ≤ (pg − pg0) (23)

for all nodes n ∈ N :∑
g∈G

γg,n
(
pg0 + p?g

)
−
∑
`∈L

λ`,nf
go
` =dn + en

(24)

for all branches ` ∈ L:

fgo` = (1/X`) ·
∑
n∈N

λ`,n · θgon (25)

− f ` ≤ f
go
` ≤ f `. (26)



3

G set of generating units;
L set of transmission branches;
N set of nodes;
r` upper-level continuous variable, measuring the magni-

tude of the branch overloads induced by the attack;
u·` upper-level binary variable, indicating the overload status

of branch `, with superscripts (+/−) for an overloaded
branch in the positive/negative flow direction or 0 for no
overload;

U parameter, modeling the minimum number of overloaded
branches targeted by the attacker;

an upper-level binary variable, indicating the injection of
false data at the load measurement of node n;

A parameter, modeling the attacker’s available budget for
attacking the grid load meters;

en upper-level continuous variable, modeling the false ac-
tive power demand measurement data injected by the
attacker at node n;

ε parameter, modeling the maximum relative amount of
false load measurement data that can be injected by the
attacker;

dn parameter, modeling the active power demand at node
n;

γg,n parameter, modeling the connectivity of generator g
with node n;

pg0 parameter, modeling the dispatch of generator g;
pg lower-level continuous variable, modeling the active

power redispatch of generator g by the grid-operator;
λ`,n parameter, modeling the connectivity of branch ` with

node n and the assumed flow direction;
f ca` upper-level continuous variable, modeling the cyber-

attacker’s perceived active power flow value through
branch `;

X` parameter, modeling the reactance of branch `;
θcan upper-level continuous variable, modeling the cyber-

attacker’s perceived voltage angle value at node n;
ρ` parameter, modeling the minimum threshold of over-

loaded flow per branch targeted by the attacker;
f ` parameter, modeling the capacity of branch `;
M a large constant parameter;
cg parameter, modeling the non-negative upward redispatch

marginal cost of generator g;
πg lower-level continuous variable, modeling the upward

redispatch of generator g;
p
g

parameter, modeling the minimum stable output of gen-
erator g;

pg parameter, modeling the capacity of generator g;
fgo` lower-level continuous variable, modeling the grid-

operator’s perceived active power flow value through
branch `;

θgon upper-level continuous variable, modeling the grid-
operator’s voltage angle value at node n.

Objective function (1) seeks to maximize the total magni-
tude of the branch overloads induced by the cyber-attack. We
introduce inequality constraint (2) to model that a malicious

cyber-attacker may strategically prefer to overload at least a
minimum number of branches (U ≥ 2) in order to create an
overwhelming grid insecurity instance outside the “comfort
zone” of N-1 security.

Expression (3) imposes a limit on the maximum number
of load meters that can be manipulated by the attacker, while
(4) enforces that the false load measurement data injection is
balanced across the grid and (5) sets the maximum relative
amount of false data that can be injected by the attacker
at any node1. Equalities (7,8) model the power flow of the
grid as perceived by the cyber-attacker only. Notice that the
power balance constraint (7) includes the optimal values of
the generation redispatch variables (p?g) as decided in the
grid-operator’s lower-level problem (20 – 26). We adopt here
the so-called optimistic bilevel optimization framework [14],
implying that if the cyber-attacker’s strategy yields multiple
optimal solutions for (20 – 26), the optimistic cyber-attacker
believes that the choice of the grid-operator (p?g) will be the
one most suiting objective (1).

The group of inequalities (10 – 13) is used to flag over-
loaded branches either in the positive or in the negative flow
direction, while (14 – 18) are used to measure the magnitude
of the branch overloads caused by the cyber attack. Here we
originally introduce a parameter (ρ` ≥ 1) to model that a
malicious cyber-attacker may strategically prefer to cause an
overloaded flow larger than a threshold on every overloaded
branch in order to create an overwhelming grid insecurity
instance. Indeed, by way of (10 – 18), only overloads above
such threshold contribute in the right-hand-side of constraint
(2) and objective function (1). To the best of our knowledge,
the consolidation of (1 – 2, 9 – 19) to establish the number
and minimum magnitude of branch overloads sought by a
cyber-attacker constitutes a new formulation for the load
redistribution attack problem.

The lower-level problem (20 – 26) is a standard DC-
OPF problem modeling the reaction of the grid-operator to
the injection of the false data by the attacker, seeking to
minimize the cost of upward generation redispatching so as to
maintain all perceived (i.e., false) branch flow values within
the respective capacity ratings. The cyber-attacker’s decision
strategy appears as the false data injection variable (en) in the
right-hand-side of the power balance constraint (24), while
supersrcipt (go) denotes the (false) branch flow and voltage
angle values perceived by the grid-operator.

III. MODELS & METRICS FOR CYBER-ATTACKS WITH
IMPERFECT INFORMATION

We follow the Monte Carlo approach while sampling ran-
dom error terms for the grid parameters to reflect that a cyber-
attacker with imperfect information would base her decisions
on randomly inaccurate grid parameter values. More specifi-
cally, we assume that the branch admittances or transmission
capacities may be imperfectly known by the attacker and

1As discussed in [13] constraints (4,5) are the standard proxy constraints
for the undetectability of a load redistribution attack in the DC model.
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form a simulation sample by drawing a unique, uniformly
distributed, error term per branch. For each simulation sample,
we model the sequence of a cyber-attack as detailed in III-A.
To analyze the resulting distribution of cyber-attacks in the
context of cyber-physical risk assessment and risk manage-
ment we introduce novel metrics in sections III-B and III-C
respectively.

Cyber-attacker’s
grid data

True
grid data

Cyber-attacker’s
decision-making

Grid-operator’s
decision-making

Grid model

True
load data

Fig. 1. Cyber-attack with imperfect information modeling

A. Cyber-attack sequence modeling

Fig. 1 presents the proposed flowchart for modeling a cyber-
attack with imperfect information.

At the top layer of this figure we distinguish between two
different datasets for the grid, the so-called “cyber-attacker’s”
and “true” grid data. The former includes the (possibly inac-
curate) data on the electricity grid that a cyber-attacker would
exploit to decide her cyber-attack strategy. The latter includes
the correct values for all the parameters of the electricity grid
and is only available to the grid-operator. Notice that the load
demand data is not included in any of these two datasets as
it is assumed to be a “true” set of data only known to the
cyber-attacker.

The middle layer of Fig. 1 models the interaction between
the cyber-attacker and the grid-operator by means of two
distinctive decision-making models, which are solved in se-
quence. First, the red box “cyber-attacker’s decision-making”
corresponds to bilevel model (1 – 26) discussed in section II,
used by the cyber-attacker to identify her attack vector for load
redistribution (horizontal red arrow). The green box “grid-
operator’s decision-making” models the reaction of the grid-
operator to the cyber-attack. We must stress here that, even
though a model for the grid-operator’s reaction is embedded
in the cyber-attacker’s problem (1 – 26), the true reaction of
the grid-operator to the attack vector will be based on the true
grid data she has access to. Therefore, to model such reaction,
we solve here the lower-level optimization problem (20 – 26)
only, given the optimal attack vector from the solution of (1

– 26) and all parameters from the “true” grid dataset2.
The lower layer of Fig. 1 illustrates a model of the physical

impact of the cyber-attack on the electricity transmission grid,
which is solved by combining: i) the true load data, ii) the
true grid data and iii) the redispatching decisions the grid-
operator would take given the load redistribution attack and her
knowledge of the true grid data. Seeking to isolate the effect
of imperfect information, in our implementation we combine
such inputs through the same physical model as in the cyber-
attacker’s decision-making problem (i.e., the DC power flow
equations) to measure grid insecurity in terms of the number
and magnitude of overloaded branches3.

B. Metrics related to cyber-physical risk assessment

Cyber-physical security assessment serves to quantify the
threat posed by a malicious cyber-attacker. The paradigm of
the perfect information cyber-attack (i.e., a cyber-atacker hav-
ing access to the “true” grid data) is commonly employed in
assessment applications, to anticipate the worst-case physical
impact on the electricity system. Acknowledging a cyber-
attacker’s imperfect information yields a set of random cyber-
attack samples and respective impact indicators. Beyond the
expected value and distribution of the impact indicators over
the Monte Carlo samples, we propose to analyze the risk of
a cyber-attack with imperfect information by means of the
following exclusive categories.
• Perfect: all samples wherein the attack vector of an im-

perfect cyber-attack matches the vector from the perfect
information cyber-attack.

• Success: all other samples wherein an imperfect cyber-
attack would still achieve the cyber-attacker’s goals in
terms of minimum number of overloaded branches with
a flow above the respective threshold.

• Partial success: all other samples wherein an imperfect
cyber-attack results in overloading at least one transmis-
sion branch with a flow above the respective threshold.

• Failure: all samples wherein an imperfect cyber-attack
would cause no branch overload.

• No attempt: all samples wherein the cyber-attacker, given
her imperfect information, fails to identify a feasible
cyber-attack on the grid.

The share of samples in the first category shows the rel-
evance of the worst-case perfect information cyber-attack, or
alternatively the relevance of acknowledging a cyber-attacker’s
informational imperfections. Note that this category does not
only include instances wherein the cyber-attacker’s grid data
randomly turn out to be perfectly accurate, but also instances
wherein the cyber-attacker’s informational imperfections have

2We should also acknowledge that restricting the physical models and
equations in the grid-operator’s decision-making model to match those of
the cyber-attacker is not necessary by default. We made such choice here so
as to isolate the impact of inaccurate data, and refer the reader to [15] for a
study of the impact of simplifications in the cyber-attacker’s modeling of a
grid-operator’s decision-making.

3An alternative physical model, more detailed than the one used by the
cyber-attacker, may well be relevant for generally assessing the system
vulnerabilities as shown in [6].
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no effect on her strategy. A larger share of samples in the
last two categories indicates that the cyber-physical electricity
system is inherently more secure, either by way of “absorbing”
the physical impact of imperfect cyber-attacks or by way of
appearing more robust to the cyber-attacker.

C. Metrics related to cyber-physical risk management

Cyber-physical risk management serves to efficiently pro-
tect the grid from the threat of a malicious cyber-attacker.
The perfect information cyber-attacker is commonly used in
respective applications to anticipate a worst-case atttack vector
against which resources should be deployed in advance and/or
prepared to be deployed. Facing a distribution of imperfect
attackers translates into a distribution of attack vectors which
we will classify by way of i) the assets in the cyber sub-system
potentially targeted to launch (imperfect) cyber-attacks, and ii)
the assets of the physical sub-system that would undergo the
physical impact of cyber-attacks.

The first classification is more relevant for the deployment
of preventive countermeasures on the cyber sub-system, in
order to impede a successful cyber-physical attack. In the
considered load redistribution attack mode, we propose to
rank the system loads in terms of the share of attack vectors
wherein their respective measurements are tampered with.
In other words, rank the system loads in order of attack
likelihood so as to efficiently select which load measurements
to protect from falsifying. Noting that protecting (a sub-set of)
the measurements under attack may suffice to render a load
redistribution attack detectable, we will further count the share
of imperfect attack vector samples that target an increasing
sub-set (i.e., from at least one to all) of measurements in
common with the perfect information cyber-attack.

We finally propose to rank groups of transmission grid
branches in terms of the share of instances wherein all
branches in a group would undergo an overload following
a cyber-attack. Such ranking can be used to design effective
emergency control strategies for the physical sub-system, so
as to alleviate overloads in a timely manner before triggering
cascading failure events.

IV. CASE STUDIES

A. Test case setup

We adopt the single-area version (24 bus) of the IEEE-
RTS96 benchmark4. Following the practice of relevant studies
(e.g., [5], [6], [8]) we simulate a stressed operational condition
by reducing all branch transmission capacities to 65% of the
original values. We further model a malicious cyber-attacker
seeking to overload at least U = 2 transmission elements to at
least ρ` = 5% of the respective capacities. We set the cyber-
attacker’s resource constraint to falsifying at most A = 10
distinct load measurements and the maximum relative amount
of false data per measurement to ε = 20%.

4All system data can be found at https://matpower.org/docs/ref/matpower5.
0/case24 ieee rts.html.

B. Perfect information load redistribution attack

Under the assumed conditions a cyber-attacker with perfect
information, solving model (1 – 26) with the correct values
for all grid parameters, would indeed be able to induce 2
overloads in the grid by more than 5% of the respective
branch capacities. More specifically, the cyber-attacker would
provoke erroneous redispatch by the grid-operator eventually
overloading branch 12 to 109.1% of its capacity and branch 23
to 118.6% of its capacity. The total magnitude of measurable
overloads (i.e., above the 5% threshold) would amount to 48.8
MW. Figure 2 illustrates the optimal attack vector, with the x-
axis showing the index of the affected bus load meter and the
y-axis the percentage of change in the falsified load data.

Fig. 2. Perfect information optimal attack vector

C. Cyber-attacks with imperfect information on the grid ad-
mittances only

We start by considering that a cyber-attacker may rely on
inaccurate data considering the grid admittances only. To do
so, we derive 10000 inaccurate grid samples, by applying a
distinct error term to the admittance value of each branch,
which is uniformly distributed in the range ±10%. Performing
the respective simulations, we found that such (moderate)
inaccuracy translates into 2677 (out of 10000) unique load
redistribution attack vectors, with an average impact (i.e.,
total measurable overload) of 28.36 MW. The histogram in
Fig. 3 shows the distribution of the impact of such potential
attacks, which as anticipated ranges from 0 (for the case of
not attempted or failed attacks) to the upper-bound set by the
perfect information cyber-attack.

Fig. 3. Impact distribution of cyber-attacks with imperfect admittance data
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We further assess the risk posed by the imperfect cyber-
attacker by means of the categories introduced in section
III-B through the pie-chart in Fig. 4. As shown in this chart,
due to the assumed informational imperfections the cyber-
attacker would only be able to correctly identify the optimal
perfect information attack vector from Fig. 2 on 23.4% of
the simulated instances. Conversely, on 15% of the sampled
instances the cyber-attacker would falsely believe that it would
be fruitless to launch any load redistribution attack while
on 6.5% of the instances, she would launch an attack that
would not be harmful to the grid. Observing that on 40.9% of
the instances a cyber-attack with imperfect information would
cause an overflow on at least two grid branches, while on
78.5% it would cause an overflow on at least one branch, we
may infer from Fig. 4 that this system is insecure5.

Fig. 4. Classification of cyber-attacks with imperfect admittance data

Pursuing the analysis from a risk management perspective,
Fig. 5.a shows the relative frequency of attacking each distinct
bus load meter amongst the 10000 sampled cyber-attacks. The
bars in blue correspond to the perfect information optimal
attack vector from Fig. 2 and it is notable that these are
the meters ranked first in order of decreasing frequency.
Specifically, the least-frequently attacked meter from those in
the perfect information optimal vector has been selected in
58% of imperfect attacks while the most-frequently attacked
meter from those not in the perfect information optimal vector
has only been selected in 41% of the imperfect attacks. Further,
as illustrated further in Fig. 5.b, 97.5% of the imperfect
cyber-attacks share at least 7 common attacked asset(s) with
the perfect information cyber attack while all 10 meters from
Fig. 2 have been attacked in 39.5% of the sampled instances.
The important take-away here is that protecting the meters
that would have been attacked in the perfect information case
may well be sufficient to detect and prevent with very high
probability the cyber-attacks under imperfect information from
physically harming the system.

Finally, Fig.6 demonstrates which transmission branches
would be overloaded due to the imperfect cyber-attacks.
Adopting the color-coding of Fig. 4, we show that for a
large share of the samples the imperfect cyber-attack results
in overloading the same branches as the perfect information

5One may notice however that informational imperfections are in favor of
security, as a perfectly informed attacker would be able to induce insecurity
with 100% likelihood.

Fig. 5. Frequency of attacks (a.) per meter and (b.) sharing common meters
with the perfect information attack

attack, albeit to a smaller degree. The take-away here is
that taking physical preventive/corrective measures for the
possible joint outage of these branches could also be an
effective strategy for managing cyber-physical risk. Notice the
small frequency of imperfect cyber-attacks overloading three
branches, which are suboptimal in terms of total overload
magnitude.

Fig. 6. Physical impact of of cyber-attacks with imperfect admittance data

D. Sensitivity analysis with respect to the admittance error
range

To validate the aforementioned observations we perform
a sensitivity analysis by drawing two additional samples of
10000 inaccurate grid instances while assuming that the im-
perfect cyber-attacker’s error in admittance values is uniformly
distributed in the ±5% and ±15% ranges. As anticipated, in
the former case the average impact of the imperfect cyber-
attacks increases to 35.6 MW (with 1428 unique attack vec-
tors) while in the latter it reduces slightly to 26.72 MW (with
4044 unique attack vectors). It is noteworthy that in the case
of reduced inaccuracy, Fig. 7.a., the percentage of so-called
perfect attacks more-than doubles to 51.3%. This shows that
(the reduced) inaccuracy has a smaller effect on the attack
vector of the imperfect cyber-attacker. Conversely, in Fig. 7.b.,
increased inaccuracy almost halves the percentage of perfect
attacks, with the most notable increase observed in the partial
attack class.

In our detailed results we further find that for both cases
(i.e., under reduced or increased randomness) the set of meters
included in the optimal perfect information attack vector from
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Fig. 7. Classifications for (a.) ±5% and (b.) ±15% admittance error

Fig. 2 remains the set of the 10 most frequently attacked
meters, while the frequency of attacking a large subset of
these meters remains as high. Specifically, for the ±5% error
range 99.7% of the imperfect attacks share at least 7 meters in
common with the perfect information attack and for the ±15%
error range this percentage only reduces to 95.4%. These
findings are well in line with the argument that protecting
the meters involved in the perfect information cyber-attack
is a good starting point for detecting and preventing any
random imperfect cyber-attack vector. Similarly, concerning
the branches that may undergo overloads in the aftermath of an
imperfect cyber-attack, our sensitivity analysis detailed results
qualitatively follow the representation of Fig. 6. That is, most
frequently both branches that would be overloaded in the case
of the perfect cyber-attack are also affected by the imperfect
cyber-attacks.

E. Cyber-attacks with imperfect information on the branch
capacities only

We continue the analysis by henceforth considering the
case where the cyber-attacker relies on inaccurate data about
the branch capacities only. We sample additionally 10000
inaccurate grids, by applying a distinct error term to the
capacity value of each branch, which is again uniformly
distributed in the range ±10%. With such assumptions, the
average cyber-attack impact reduces to 25.31 MW while the
number of unique cyber-attacks increases to 6737.

Fig. 8. Classification of cyber-attacks with imperfect capacity data

Fig. 8 presents the classification of the random cyber-
attacks as per the categories introduced in section III-B. The
qualitative difference with respect to imperfect admittance
values is striking in comparison to Fig. 4. Indeed, for the same

error range: i) the share of perfect attacks has collapsed, ii) the
share of success attacks is (more than) halved, iii) the share
of partial attacks is considerably increased, and, iv) the share
of ineffective attacks is moderately increased. In other words,
imperfect information on the branch capacities leads to much
less effective cyber-attacks posing a smaller risk to the system
cyber-physical security.

We can identify systematic reasons for this finding. Indeed,
in case the cyber-attacker undervalues branch capacities, she
is prone to overestimating the impact of an attack vector in
firstly misleading the grid-operator to redispatch generation to
avoid overloads under the load redistribution, and secondly in
causing actual overloads by way of the erroneous redispatch.
This explains the large shift from perfect/success to partial
attacks. Also, in case the cyber-attacker overvalues branch
capacities, she is prone to believing there is no potential for
attacking the grid.

Concerning risk management, we once again find that the
frequency of attacking a large subset of meters identified in
the perfect information attack remains indicative, with 97.8%
of the imperfect attacks targeting at least 6 meters from the
perfect information optimal vector and 87.3% of the imperfect
attacks targeting at least 7 of these meters. As should be
anticipated by the dominance of the partial attack category, the
most frequent overflow in the system now concerns a single
transmission branch, Fig. 9. Notice here that the groups of
affected branches (x-axis) are all in common with Fig. 6. Both
these findings further showcase the relevance of these groups
of cyber and physical sub-system assets for preventive and
corrective cyber-physical risk management.

Fig. 9. Physical impact of of cyber-attacks with imperfect capacity data

F. Computational environment

Our implementation of the Monte Carlo simulation frame-
work was developed in Julia [16] using the JuMP modeling
language [17] and the PowerModels.jl framework [18]. We
solved the bilevel optimization problem (1 – 26) via its
single level equivalent reformulation, replacing the lower-level
inner minimization problem (20 – 26) with its Karush-Kuhn-
Tucker optimality conditions. We used the big-M approach to
rewrite the disjunctive inequalities expressing the complemen-
tary slackness conditions as mixed-integer linear constraints
and eventually solved all instances of the single-level MILP
problem with the CPLEX [19] solver.
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V. CONCLUSIONS

In this paper we have modeled the risk of cyber-physical
insecurities of the electricity transmission grid, while explicitly
taking into account plausible informational imperfections of a
real-world cyber-attacker. We have considered the scenario of
a load redistribution attack with the final aim of inducing mea-
surable overloads (i.e., beyond a minimum relative magnitude)
to a number of transmission branches. For the purposes of
this study, we have introduced novel constraint expressions to
reflect a cyber-attacker’s intention to create an overwhelming
grid insecurity in the standard maxmin load redistribution
problem formulation. We have further performed a series of
Monte Carlo simulations, modeling potential cyber-attackers
with inaccurate data on branch admittances or transmission
capacities, and proposed a set of metrics to synthesize the
outcome of such simulations in the context of risk assessment
and risk management.

From a risk assessment perspective, we have found in our
case study that inaccurate knowledge of the grid admittance
matrix is not a considerable impediment to inducing physical
insecurity through the cyber sub-system. Indeed, for an in-
creasing degree of inaccuracy on the branch admittance values
between [5− 15]% the frequency of cyber-attacks putting the
IEEE-RTS96 benchmark in an insecure state was found in the
[90 − 76]% range. On the other hand, relying on imperfect
information on the branch transmission capacities was found
to lead to a quite stronger reduction of the cyber-physical risk
as it may lead a cyber-attacker to either i) launch less effective
attacks when underestimating some branch capacities, and/or
ii) give up the idea of attacking the system when overestimat-
ing some of them.

From a risk management perspective we observed in our
case study that in spite of random inaccuracies the meters
identified in the perfect information attack are distinctively the
most frequent targets. This implies that monitoring the state of
the meters that a perfectly informed attacker (i.e., the “worst-
case” from the view-point of the electricity grid end-users)
would select could be a very effective preventive detection
strategy. Moreover the set of the grid assets undergoing the
physical impact of the cyber-attack was in all cases found to
be relatively small, opening the possibility for efficient attack
mitigation strategies on the physical sub-system.

Notice that while we relied on the specific load redistribu-
tion scenario and the specific cyber-attacker model introduced
here, our analysis in principle generalizes to alternative cyber-
attack instances, provided that the cyber-attacker is indeed
optimizing her strategy while presuming perfect knowledge
of the grid model and the grid-operator’s strategy. Further
work will therefore be devoted in modeling alternative cyber-
attacker types, for instance an actor potentially launching any
attack vector that meets some impact threshold constraints
(i.e., any feasible rather than an optimal solution to a bilevel
optimization model). Beyond this direction, we will also
pursue the question of efficiently taking cyber-physical risk

management decisions under uncertainty on the realistic cyber-
attacker properties.
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