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Abstract

Mixed electrostatic and magnetostatic finite element formulations are considered. Solution meth-
ods for the resulting indefinite algebraic systems are investigated. Methods developed for the mixed
formulations of the Stokes equations are modified in order toapply to the Maxwell equations: an
efficient block preconditioner is proposed and a stabilisedformulation is described. The different
methods are applied to 2D and 3D examples.
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1 Introduction

This paper deals with finite element methods for the numerical solution of the Maxwell equations in elec-
tromagnetism. Potential formulations are traditionally used in the finite element analysis of the Maxwell
equations. Thanks to the definition of a potential, such as the electric scalar potentialV or the mag-
netic vector potentiala, one of the equations can be eliminated from this system of partial differential
equations. In electrostatics and magnetostatics, the system then reduces to one single equation for the
potential. Mixed formulations are based on a different approach. One equation of the system is consid-
ered as a constraint, which is imposed by means of Lagrange multipliers and the constrained problem is
rewritten as a saddle point problem.
The main advantage of potential formulations is that only one equation must be solved. However, the
unknown field, i.e. a scalar or vector potential, is of littlepractical interest and must be differentiated in
order to yield a physically relevant quantity like the electric field e or the magnetic inductionb. These
quantities are computed directly with mixed formulations.The higher computational cost due to the
additional equation is then offset by a higher accuracy [5].Another advantage of the mixed formulation
is the simplified treatment of the curl-free condition for the magnetic fieldh in multiply connected non-
conducting regions. This condition can easily be expressedwith Lagrange multipliers [6, 3]; it is much
more cumbersome to impose it in a direct way. The main challenge of mixed formulations is the solution
of an indefinite linear saddle point problem. This article focuses on the solution of such indefinite systems
arising from the mixedd−V formulation, where the electric displacementd is discretised with Whitney
face elements, and from the mixedh−a formulation whereh anda are both discretised with Whitney
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edge elements. We also address the stabilisation, which, inmixed finite element approaches, causes
unphysical oscillations to be present in the solution.
The structure of the paper is as follows. In section 2, we present an overview of electrostatic and magne-
tostatic formulations. In section 3, we introduce the MINRES solver and design a block preconditioner
suited for the electrostatic and magnetostatic problems. In section 4, we present the stabilised mixed
formulations and propose original expressions for the stabilisation parameters. In section 5, the results
of 2D and 3D simulations are presented. Section 6 concludes the paper.

2 An overview of electrostatic and magnetostatic formulations

2.1 Maxwell equations

The steady-state Maxwell equations can be uncoupled into the electrostatic equations,

∇×e= 0, ∇ ·d = ρ , d = εe, (2.1)

for the electric fieldeand the electric displacementd, and the magnetostatic equations,

∇×h= j , ∇ ·b = 0, b = µh, (2.2)

for the magnetic fieldh and the magnetic inductionb. Each system contains two equations and a con-
stitutive law. The latter relates the two corresponding fields, respectivelye, d andh, b to one another.
Four different formulations can be derived from each system: one can solve forh (resp. e) or b (resp.
d) and in each case, one may either define a potential and reducethe system to one equation or consider
one equation as a constraint which is imposed by means of Lagrange multipliers. The former approach
leads to potential formulations, which are the most frequently used in practice, whereas the latter leads
to mixed formulations. All four possibilities are represented in Table 1 and Table 2. The functionsφ and
V are magnetic and electric scalar potentials. The vector fieldsa andw are magnetic and electric vector
potentials. These potentials are related to the original variables by the following formulas:

b = ∇×a, h = hs−∇φ , d = ds+ ∇×w, e= −∇V , (2.3)

wherehs is a magnetic source field such that∇ × hs = j and ds is an electric source field such that
∇ ·ds = ρ.

E D

Potential ∇ · (−ε∇V) = ρ ∇× (ε−1(ds+ ∇×w)) = 0

Mixed
εe−ds−∇×w = 0

∇×e = 0

ε−1d+ ∇V = 0

∇ ·d = ρ

Table 1: Four equivalent electrostatic formulations.

2.2 Mixed finite element formulations

We will focus in this paper on the mixedd−V formulation and the mixedh− a formulation. These
formulations have the advantage of not requiring the construction of a source field.
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Potential ∇ · (µ(hs−∇φ)) = 0 ∇× (µ−1∇×a) = j

Mixed
µh−∇×a = 0

∇×h = j

µ−1 b−hs+ ∇φ = 0

∇ ·b = 0

Table 2: Four equivalent magnetostatic formulations.

In case of thed−V formulation, the unknown fieldsd, V and the test fieldsd′, V ′ are defined in the
function spaces (2.4) and (2.5) respectively,

Hd(Ω) = {d ∈ H(div;Ω) : n·d|Γd = dn0} , HV(Ω) = {V ∈ H(grad;Ω) : V|Γe = V0} , (2.4)

Hd0(Ω) = {d ∈ H(div;Ω) : n·d|Γd = 0} , HV0(Ω) = {V ∈ H(grad;Ω) : V|Γe = 0} . (2.5)

Here, the functionsdn0 andV0 are known and specified along a boundary segmentΓd andΓe respectively.
The weak form, which is at the basis of the mixed finite elementformulation, reads as follows:

Find d∈ Hd(Ω) and V∈ HV(Ω) such that∀d′ ∈ Hd0(Ω) and∀V ′ ∈ HV0(Ω),
Z

Ω
ε−1d ·d′dΩ−

Z

Ω
V ∇ ·d′ dΩ = −

Z

ΓV

V d′dΓ , (2.6)
Z

Ω
∇ ·dV ′ dΩ =

Z

Ω
ρV ′ dΩ . (2.7)

The fieldsd andV will typically be discretised with face elements (Fig. 1) and nodal elements respec-
tively.
In case of the mixedh− a formulation, the unknown fieldsh anda are defined in the function spaces
(2.8) and (2.9) respectively,

Hh(Ω) = {h∈ H(curl;Ω) : n×h|Γh = ht0} , Ha(Ω) = {a∈ H(curl;Ω) : n×a|Γb = at0} , (2.8)

Hh0(Ω) = {h∈ H(curl;Ω) : n×h|Γh = 0} , Ha0(Ω) = {a∈ H(curl;Ω) : n×a|Γb = 0} . (2.9)

The functionsht0 andat0 are given alongΓh andΓb respectively. The weak form reads:

Find h∈ Hh(Ω) and a∈ Ha(Ω) such that∀h′ ∈ Hh0(Ω) and∀a′ ∈ Ha0(Ω),
Z

Ω
µh·h′ dΩ−

Z

Ω
a·∇×h′ dΩ =

Z

Γb

a×h′ dΓ , (2.10)
Z

Ω
∇×h·a′ dΩ =

Z

Ω
j ·a′ dΩ . (2.11)

Both h anda are discretised with edge elements (Fig. 1).

3 A preconditioned MINRES solver for the indefinite system

The discretisation of the formulations (2.6-2.7) and (2.10-2.11) leads to symmetric indefinite algebraic
systems of the form





K BT

B 0








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y



 =




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, (3.12)
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Figure 1: Example of 2D shape functions for (a) the vector potentiala, (b) the magnetic fieldh and (c)
the electric displacementd.

which is characteristic of mixed formulations. A system of the form (3.12) is called a saddle point
problem. One of the iterative solvers that can efficiently solve such systems is MINRES, a Krylov
subspace method based on the symmetric Lanczos procedure [2]. It requires a preconditioner preserving
the symmetry of the original matrix. When (3.12) is preconditioned with the block diagonal matrix





K 0

0 S





, (3.13)

whereS= BK−1BT is the Schur complement, MINRES converges in three iterations whatever the size
of the problem [1]. In practice, however, constructing and invertingS is much too expensive and one
must find a computable approximationŜof S. The choice ofŜ, which is critical to the performance of
the preconditioner (3.13), is strongly problem-dependent.
The preconditioner suggested in this paper is constructed by analogy to a preconditioner that is used
succesfully for a mixed formulation of the Stokes problem influid dynamics. For the velocity-pressure
formulation of the Stokes equations, the pressure mass matrix Mp is an ’optimal’ approximation of̂S
if the interpolation functions of the velocity and pressuresatisfy the Ladyzhenskaya-Babus̆ka-Brezzi
(LBB) condition [2]. With use of that preconditioner, the number of MINRES iterations will be higher
than 3, but it will be bounded by a finite (small) number independent of the size of the problem. This
important property results from the spectral equivalence betweenSandMp [1]. The following definition
of spectral equivalence is taken from [4].

Definition 3.1 Let H ⊂ (0,∞) be an index set with0 ∈ H (e.g., H: set of all grid sizes). If{Ah}h∈H

and {Bh}h∈H are two families of regular matrices, then{Ah}h∈H and {Bh}h∈H are called spectrally
equivalent if there is a constant C independent of h∈ H such thatcond2(B

−1
h Ah) ≤C, ∀h∈ H.

For the electrostatic and magnetostatic cases, appropriate preconditionerŝSelec and Ŝmagn to the corre-
sponding Schur complement are necessary. The expressions proposed in this article are

Ŝelec =

Z

Ω
ε∇V ·∇V ′ dΩ , (3.14)

Ŝmagn =

Z

Ω
µ−1 ∇×a·∇×a′ dΩ , (3.15)

which correspond respectively to the weak form of the scalarpotentialV and the vector potentiala
formulations. In order to conserve the mesh-independent rate of convergence that was obtained for
the Stokes problem, the Schur complement and its approximations Ŝelec and Ŝmagn must be spectrally
equivalent. Proving that such a relation holds for (3.14-3.15) is not an easy task. A simplified numerical
test has been adopted here: the expressions cond2(Ŝ

−1
elecS) and cond2(Ŝ−1

magS) have been computed for a
set of meshes of the 2D models shown in Fig. 2 with an increasing number of elements (Table 3). The
results show that cond2(Ŝ−1S) is not proportional to the size of the mesh. It seems therefore reasonable
to assume that spectral equivalence betweenSand its approximations (3.14-3.15) has been achieved.



Size(S) 475 546 747 933 1238 1670

cond2(Ŝ
−1
elecS) 53.6 64.2 80.8 75.6 73.8 96.7

Size(S) 253 303 373 508 705 963

cond2(Ŝ−1
magS) 86.8 106.2 143.2 120.1 86.4 130.5

Table 3: Computation of cond2(Ŝ−1 S) for a set of 2D meshes.

4 Stabilised mixed formulations

4.1 Pressure-Stabilised Petrov-Galerkin

Mixed finite element formulations are subject to the LBB stability condition, which limits the choice of
the shape functions for the unknown fields. The best example is the velocity-pressure formulation of the
Stokes equations: if the velocityv and the pressurep are both discretised with first order shape functions,
the pressure solution is contaminated by oscillations. To avoid this problem, one should discretisev with
second order basis functions. Alternatively, one can use the Pressure-Stabilised Petrov-Galerkin (PSPG)
formulation: due to an additional term in the test functionsfor the momentum equation,

v′ → v′ + τe∇p′ , (4.16)

equal order shape functions can be used forv and p. The choice of the free parameterτe determines
the accuracy of the formulation. Several expressions ofτe exist for the Stokes problem: they depend on
parameters such as the local mesh length and the viscosity ofthe fluid. These empirical functions are not
suited for the mixed formulations of Maxwell’s equations which have a different structure and different
properties. Recently, expressions forτe based on the element matrices of the finite element formulation
have been proposed in [7]. It has been shown that such formulae perform well for the Navier-Stokes
equations. In this paper, the same approach is applied to theMaxwell equations.
The test functionsh′ andd′ are modified in a similar way as (4.16),

h′ → h′ + τe,mag∇×a′ , (4.17)

d′ → d′ + τe,elec∇V ′
. (4.18)

Applying (4.17) to theh−a formulation, one finds the stabilised magnetostatic formulation:

Find h∈ Hh(Ω) and a∈ Ha(Ω) such that∀h′ ∈ Hh0(Ω) and∀a′ ∈ Ha0(Ω),
Z

Ω

(

h′ · (µh)−∇×h′ ·a+ τe,mag∇×a′ · (µh−∇×a)
)

dΩ =
Z

Γb

a×h′dΓ , (4.19)

−
Z

Ω
a′ ·∇×hdΩ = −

Z

Ω
a′ · j dΩ . (4.20)

The stabilised electrostatic formulation is obtained by applying (4.18) to thed−V formulation:

Find d∈ Hd(Ω) and V∈ HV(Ω) such that∀d′ ∈ Hd0(Ω) and∀V ′ ∈ Hv0(Ω),
Z

Ω

(

ε−1d′ ·d−∇ ·d′V + τe,elec∇V ′ · (ε−1d+ ∇V)
)

dΩ = −

Z

ΓV

V d′ dΓ , (4.21)

−

Z

Ω
V ′ ∇ ·ddΩ = −

Z

Ω
V ′ρcdΩ . (4.22)



The additional term in the test functions modifies the structure of the system (3.12) which becomes




K BT

B+ τeC τeD


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x
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f

g+ τeh





. (4.23)

The matrix is not symmetric anymore but it is now definite thanks to the termτeD on the diagonal.

4.2 Stabilisation parameter

The stabilisation parameter proposed in [7] is defined in such a way that the entries in the additional
blocksC andD in (4.23) are of the same order of magnitude as those inB. To achieve this, the expression
of τe is defined by

τe =

(

1
τ1

+
1
τ2

)−1

, with τ1 =
|B|e
|C|e

, τ2 =
|B|e
|D|e

, (4.24)

where|.|e is the order of magnitude of the entries of the block evaluated in elemente. Applied to the
magnetostatic formulation, this yields

τ1,mag=
|
R

Ωe
∇×h′ ·adΩ|

|
R

Ωe
∇×a′ · (µh)dΩ|

, τ2,mag=
|
R

Ωe
∇×h′ ·adΩ|

|
R

Ωe
∇×a′ · (∇×a)dΩ|

, (4.25)

and for the electrostatic formulation, one has

τ1,elec=
|
R

Ωe
∇ ·d′V dΩ|

|
R

Ωe
ε−1d ·∇V ′ dΩ|

, τ2,elec=
|
R

Ωe
∇ ·d′V dΩ|

|
R

Ωe
∇V ′ ·∇V dΩ|

. (4.26)

The magnitude of the integrals on a mesh elementΩe is evaluated as the product of a characteristic
magnitude of the integrand times the volume of the element. The characteristic magnitude of the nodal
shape functionsNi, the edge elementsEi , the face elementsF i and their derivatives are|Ni| = 1, |Ei | =
l−1
e , |F i | = l−2

e , |∇Ni| = l−1
e , |∇×Ei | = l−2

e , |∇ · F i| = l−3
e , wherele is a characteristic length of the

elementΩe, such as the diameter of the circumscribed circle. The resulting expressions ofτe read

τe,elec =

(

1
ε

+ le

)−1

, (4.27)

τe,mag =

(

µ+
1
le

)−1

. (4.28)

5 Numerical results

5.1 Two-dimensional results

The different methods have been tested on two problems with asimple geometry, so as to be able to
progressively refine the mesh to study the convergence properties. The electrostatic model represents a
3-phase cable where each of the three internal wires is surrounded by two layers of insulating material.
The magnetostatic model is a classical iron C-core with a coil wound around the central part and an
iron block in the airgap (Fig. 2). The material parametersε andµ are discontinuous; their minimum and
maximum values are in a ratio of 1 to 100 forε and 1 to 104 for µ. Both problems have been solved with
MINRES, first without preconditioner and then with the blockpreconditioner (3.13) making use of the
approximations (3.14) or (3.15). The number of MINRES iterations is given in Table 4. It is larger than
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Figure 2: Geometry of (a) the 2D electrostatic problem and (b) the 2D magnetostatic problem.

3 due to the approximated Schur complement but it remains acceptable and more importantly, it does not
increase with the size of the problem.
An attempt has been made to use a diagonal preconditioner forthe K-block, which is a mass matrix
of edge and face elements respectively in the magnetic and electric cases. The results show that the
convergence of MINRES is strongly influenced by the approximation ofK, at least for the electrostatic
problem.

Electrostatic Magnetostatic

K S # iter K S # iter

(14930 unk.) (5120 unk.) (13600 unk.) (4630 unk.)

no precond. no precond. 2144 no precond. no precond. 1768

K Ŝelec 106 K Ŝmagn 71

diag(K) Ŝelec 1228 diag(K) Ŝmagn 122

Table 4: Number of iterations of MINRES with different blockpreconditioners, applied to the 2D elec-
trostatic and magnetostatic problems (formulations (2.6-2.7) and (2.10-2.11) respectively).

5.2 Three-dimensional results

5.2.1 Electrostatic

The 3D models are constructed by extruding the 2D models in Fig. 2 in the direction perpendicular to
the plane. In 3D, the number of unknowns ofd andV is equal respectively to the number of faces and
the number of nodes. In our examples, the former is typically3 to 10 times larger than the latter. System
(3.12) has been solved with MINRES and the block preconditioner (3.13). The approximation (3.14) of
the Schur complement performs in 3D equally well as in 2D: Table 5 shows that the spectral equivalence
can also be assumed in 3D.

Size(S) 535 586 674 741 871 1005 1155 1365

cond2(Ŝ
−1
elecS) 370 363 162 221 221 193 239 212

Table 5: Value of cond2(Ŝ
−1
elecS) for a set of 3D meshes.



CG tolerance (K) CG tolerance (S) # MINRES iterations

10−10 10−10 123

10−10 10−4 123

10−6 10−4 250

Table 6: Number of MINRES iterations with different preconditioners for the 3D electrostatic problem.
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Figure 3: Solution time (left) and number of iterations (right) of the 3D electrostatic problem solved with
MINRES, with and without preconditioner, for different meshes.

The preconditioner (3.13) uses CG steps for bothK andSblocks. The number of CG steps must be larger
for K than forSbecause the number of MINRES iterations is much more dependent on the former, as
outlined in Table (6). For the examples studied in this paper, the most efficient preconditioner is obtained
by taking the CG tolerance equal to 10−10 for K and 10−2 for S. The solution time and the number of
iterations of MINRES with and without preconditioner are plotted in Fig. 3 for different meshes.
No stability problems have been encountered with the mixed electrostatic formulation. The PSPG for-
mulation (4.21-4.22) has nevertheless been solved in orderto compare its solution time with that of
the Galerkin formulation. For each system, the best available combination of preconditioner and solver
has been used: MINRES and the block preconditioner described above for the non-stabilised system
(Galerkin formulation), BiCGstab and ILU for the non-symmetric stabilised system (PSPG formulation).
Fig. 4 shows that the non-stabilised system is solved much faster than the stabilised one. A well-designed
block preconditioner for the stabilised system would probably be more efficient than ILU. However, in
the absence of stability problems, it is simpler and probably faster anyway to solve the indefinite system
resulting from the Galerkin formulation.

5.2.2 Magnetostatic

In 3D magnetostatic problems, bothh anda are discretised with edge elements and have therefore the
same number of degrees of freedom. This is different from the2D case, where the vector potentiala is
perpendicular to the plane and is discretised with nodal shape functions. This explains the oscillations
of a that are observed in 3D but not in 2D. Similar oscillations ofthe pressure occur in Stokes problems
when equal-order shape functions are used forv andp. Stabilisation is therefore necessary for theh−a
formulation since bothh and a are discretised with first order edge elements. The system resulting
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Figure 4: Comparison of the solution time of the 3D electrostatic problem with the stabilised formulation
(PSPG) solved with ILU-BiCGstab and the non-stabilised formulation (Galerkin) solved with MINRES
and a block preconditioner.
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Figure 5: 2D view of‖∇×a‖ in the iron domain for the 3D magnetostatic problem, (a) without stabili-
sation (Galerkin) and (b) with stabilisation (PSPG).

from the PSPG magnetostatic formulation (4.19-4.20) has been solved. The expression (4.28) of theτe

parameter results in an efficient stabilisation of the problem as illustrated in Fig. 5.
As before, the iterative solution of the stabilised system is problematic. Beyond a certain problem size the
ILU-BiCGstab solver fails to converge in an acceptable number of iterations. A more efficient (block-
)preconditioner is called for, using, e.g., a number of CG iterations for the upper diagonal blockK (a
mass matrix of edge elements) and a multigrid cycle for the lower diagonal block.

6 Conclusion

This paper focuses on the solution of electrostatic and magnetostatic mixed formulations. Solution meth-
ods originally developed for the velocity-pressure formulation of the Navier-Stokes equations are adapted
to the Maxwell equations.
A block preconditioner used in combination with MINRES to solve symmetric indefinite systems arising
from mixed formulations is described. One component of thispreconditioner is the Schur complement



of the system, which must be approximated. The choice of a sensible approximation is critical to the
efficiency of the method and it is strongly problem-dependent. Approximations are proposed for the
electrostatic and magnetostatic formulations. It is shownthat they are spectrally equivalent to the exact
Schur complement, which ensures that the rate of convergence of MINRES is mesh-independent.
Pressure-stabilised Petrov-Galerkin formulations of theelectrostatic and magnetostatic equations are
proposed. Appropriate expressions of the stabilisation parameterτe are found by application of the
method developed in fluid mechanics.
The efficiency of the block preconditioner is first tested with 2D simulations. According to our expecta-
tions, the number of MINRES iterations is small and nearly constant whatever the size of the problem.
In 3D, the preconditioner is equally efficient for the electrostatic problem. The simulations also show
that it is faster to solve the indefinite system with MINRES and the appropriate preconditioner than the
stabilised (definite) system with ILU and BiCGstab. In the 3Dmagnetostatic case, the presence of oscil-
lations indicate that the stabilised formulation must be used. The expression of the parameterτe proposed
in this paper gives satisfactory results.
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