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Abstract

Mixed electrostatic and magnetostatic finite element fdatimns are considered. Solution meth-
ods for the resulting indefinite algebraic systems are tiya®ed. Methods developed for the mixed
formulations of the Stokes equations are modified in ordeptoly to the Maxwell equations: an
efficient block preconditioner is proposed and a stabilifgethulation is described. The different
methods are applied to 2D and 3D examples.
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1 Introduction

This paper deals with finite element methods for the numiesalation of the Maxwell equations in elec-
tromagnetism. Potential formulations are traditionaled in the finite element analysis of the Maxwell
equations. Thanks to the definition of a potential, such asethctric scalar potentid or the mag-
netic vector potentiad, one of the equations can be eliminated from this system niapdifferential
equations. In electrostatics and magnetostatics, theraysgien reduces to one single equation for the
potential. Mixed formulations are based on a different apph. One equation of the system is consid-
ered as a constraint, which is imposed by means of Lagrandieliens and the constrained problem is
rewritten as a saddle point problem.

The main advantage of potential formulations is that onlg equation must be solved. However, the
unknown field, i.e. a scalar or vector potential, is of lifactical interest and must be differentiated in
order to yield a physically relevant quantity like the etecfield e or the magnetic inductiob. These
quantities are computed directly with mixed formulationkhe higher computational cost due to the
additional equation is then offset by a higher accuracy Aslother advantage of the mixed formulation
is the simplified treatment of the curl-free condition foe tmagnetic fieldh in multiply connected non-
conducting regions. This condition can easily be expresstdlLagrange multipliers [6, 3]; it is much
more cumbersome to impose it in a direct way. The main chgdleri mixed formulations is the solution
of an indefinite linear saddle point problem. This articleuses on the solution of such indefinite systems
arising from the mixedl —V formulation, where the electric displacemelnt discretised with Whitney
face elements, and from the mixad- a formulation whereh anda are both discretised with Whitney
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edge elements. We also address the stabilisation, whictmixed finite element approaches, causes
unphysical oscillations to be present in the solution.

The structure of the paper is as follows. In section 2, weegsrean overview of electrostatic and magne-
tostatic formulations. In section 3, we introduce the MINIR&0oIver and design a block preconditioner
suited for the electrostatic and magnetostatic problemssettion 4, we present the stabilised mixed
formulations and propose original expressions for theilsgabon parameters. In section 5, the results
of 2D and 3D simulations are presented. Section 6 concluaepaper.

2 An overview of electrostatic and magnetostatic formulatons

2.1 Maxwell equations

The steady-state Maxwell equations can be uncoupled isteltttrostatic equations,

Oxe=0, O-d=p, d=c¢e, (2.2)
for the electric fielde and the electric displacemetit and the magnetostatic equations,

Oxh=j, O:b=0, b=ph, (2.2)

for the magnetic fielcdh and the magnetic inductiom Each system contains two equations and a con-
stitutive law. The latter relates the two correspondingdierespectivelye, d andh, b to one another.
Four different formulations can be derived from each systerre can solve foh (resp. €) or b (resp.

d) and in each case, one may either define a potential and réueisgstem to one equation or consider
one equation as a constraint which is imposed by means ohhggrmultipliers. The former approach
leads to potential formulations, which are the most fretjyarsed in practice, whereas the latter leads
to mixed formulations. All four possibilities are represahin Table 1 and Table 2. The functiopsnd

V are magnetic and electric scalar potentials. The vectalsfiehndw are magnetic and electric vector
potentials. These potentials are related to the origingalkes by the following formulas:

t_):DX§7 h:hs_Dcpa QZQS+DXV_V, EZ_DV7 (23)

wherehg is a magnetic source field such tHat< hy = j andd is an electric source field such that
O- gs =p. -

E D
Potential O-(—e0V) =p Ox (e (dg+0Oxw)) =0
_ ge—d,—Oxw = 0 eld+0vV = 0
Mixed

Oxe = 0 O-d = p

Table 1: Four equivalent electrostatic formulations.

2.2 Mixed finite element formulations

We will focus in this paper on the mixedi—V formulation and the mixeth — a formulation. These
formulations have the advantage of not requiring the cangtm of a source field.



H B

Potential | O- (u(hs— Og)) =0 Ox(ultOxa)=j

ph—Oxa = 0 | plb—h+0Op = 0O
Oxh = | O.b = 0

Mixed

Table 2: Four equivalent magnetostatic formulations.

In case of thed —V formulation, the unknown fieldd, V and the test fields’, V' are defined in the
function spaces (2.4) and (2.5) respectively,

Ha(Q) ={d e H(div;Q) :n-d|r, =dno} , Hv(Q)={V eH(gradQ):V|r,=VWo}, (2.4)
Hao(Q) = {d € H(div;Q) :n-d|r, =0} , Hyo(Q)={V e H(gradQ) :V|r,=0}. (2.5)

Here, the functions,g andV; are known and specified along a boundary segrgandrl ¢ respectively.
The weak form, which is at the basis of the mixed finite elenf@mhulation, reads as follows:

Find d € Hq(Q) and V € Hy (Q) such thatvd’ € Hqo(Q) and WV’ € Hyo(Q),
/e—lg-g'dn—/vm-g’dn — [ vdadr. (2.6)
Q Q

/D-gv’dQ _ /pV’dQ. 2.7)
Q Q

The fieldsd andV will typically be discretised with face elements (Fig. 1)damodal elements respec-
tively.

In case of the mixedh — a formulation, the unknown fields anda are defined in the function spaces
(2.8) and (2.9) respectively,

Hnh(Q) = {heH(curl;Q) :nxh|r, =ho} ., Ha(Q)={acH(curl;Q):nxalr, =aq}, (2.8)
Hno(Q) ={heH(cur;Q):nxh|r, =0} , Hax(Q)={acH(cur;Q):nxalr,=0}. (2.9)

The functiongh,; anda,, are given alond'y andly respectively. The weak form reads:
Find h e Hp(Q) and ac Hy(Q) such thatvh’ € Hyo(Q) andVa' € Hqyo(Q),

/ub-h’dQ—/g-th’dQ - /gxh’dl’, (2.10)
Q Q M
/Dxb-g’dQ — [j-dda. (2.11)
Q Q—

Both h anda are discretised with edge elements (Fig. 1).

3 A preconditioned MINRES solver for the indefinite system

The discretisation of the formulations (2.6-2.7) and (22101) leads to symmetric indefinite algebraic

systems of the form
K BT X f
= , (3.12)
B O y g
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Figure 1. Example of 2D shape functions for (a) the vectoepiidl a, (b) the magnetic fieldh and (c)
the electric displacement

which is characteristic of mixed formulations. A system loé form (3.12) is called a saddle point
problem. One of the iterative solvers that can efficientlivssuch systems is MINRES, a Krylov
subspace method based on the symmetric Lanczos proceduitr¢2uires a preconditioner preserving
the symmetry of the original matrix. When (3.12) is precdindied with the block diagonal matrix

K 0
0 S

(3.13)

whereS= BK~1BT is the Schur complement, MINRES converges in three iteratishatever the size
of the problem [1]. In practice, however, constructing ameerting S is much too expensive and one
must find a computable approximati@of S The choice ofS, which is critical to the performance of
the preconditioner (3.13), is strongly problem-dependent

The preconditioner suggested in this paper is construcyegnhlogy to a preconditioner that is used
succesfully for a mixed formulation of the Stokes problenflund dynamics. For the velocity-pressure
formulation of the Stokes equations, the pressure massxny is an 'optimal’ approximation o

if the interpolation functions of the velocity and presssedisfy the Ladyzhenskaya-Babuska-Brezzi
(LBB) condition [2]. With use of that preconditioner, thember of MINRES iterations will be higher
than 3, but it will be bounded by a finite (small) number indegent of the size of the problem. This
important property results from the spectral equivaleretezbenSandM,, [1]. The following definition

of spectral equivalence is taken from [4].

Definition 3.1 Let H C (0,) be an index set with € H (e.g., H: set of all grid sizes). §An}nen
and {Bn}nen are two families of regular matrices, thefA,}hen and {Bn}nen are called spectrally
equivalent if there is a constant C independent ef{ such that:onch(BglAh) <C,vheH.

For the electrostatic and magnetostatic cases, appma|cp'iat:onditioner§Ae|eC and émagn to the corre-
sponding Schur complement are necessary. The expressimmsspd in this article are

S = /eDV-DV’dQ, (3.14)
Q

Snagn = /;rlmxg-mxg’dg, (3.15)
Q

which correspond respectively to the weak form of the scptdentialV and the vector potentiad
formulations. In order to conserve the mesh-independest ahconvergence that was obtained for
the Stokes problem, the Schur complement and its approxinsa$.ec and Snagn must be spectrally
equivalent. Proving that such a relation holds for (3.1¥bBis not an easy task. A simplified numerical
test has been adopted here: the expressions,(8pS) and cond(%égS) have been computed for a
set of meshes of the 2D models shown in Fig. 2 with an incrgasimber of elements (Table 3). The
results show that condS™S) is not proportional to the size of the mesh. It seems thezefeasonable
to assume that spectral equivalence betw®and its approximations (3.14-3.15) has been achieved.



Size® 475 546 747 933 1238 167D
conch(S,L.S) | 53.6 642 808 756 73.8 96.

Size® 253 303 373 508 705 963
conch(§,L,9) | 86.8 1062 143.2 1201 86.4 1305

Table 3: Computation of condS1S) for a set of 2D meshes.

4 Stabilised mixed formulations

4.1 Pressure-Stabilised Petrov-Galerkin

Mixed finite element formulations are subject to the LBB giglocondition, which limits the choice of
the shape functions for the unknown fields. The best examyilesivelocity-pressure formulation of the
Stokes equations: if the velocityand the pressungare both discretised with first order shape functions,
the pressure solution is contaminated by oscillations.voaathis problem, one should discretig&vith
second order basis functions. Alternatively, one can usétlessure-Stabilised Petrov-Galerkin (PSPG)
formulation: due to an additional term in the test functiémsthe momentum equation,

vV —V+teOp, (4.16)

equal order shape functions can be usedvfand p. The choice of the free parametey determines
the accuracy of the formulation. Several expressiong ekist for the Stokes problem: they depend on
parameters such as the local mesh length and the viscogitg 8tiid. These empirical functions are not
suited for the mixed formulations of Maxwell's equationsigfhhave a different structure and different
properties. Recently, expressions fgibased on the element matrices of the finite element fornomlati
have been proposed in [7]. It has been shown that such foenpgdeorm well for the Navier-Stokes
equations. In this paper, the same approach is applied tdaxevell equations.

The test functiong’ andd’ are modified in a similar way as (4.16),

b/ — b/ + Te’ mag[l X Q/ 5 (417)
d — d+ Te7elecDV/ . (4.18)

Applying (4.17) to theh — a formulation, one finds the stabilised magnetostatic foatioih:
Find h € Hh(Q) and ac Ha(Q) such thatvh’ € Hyo(Q) andVa' € Hqo(Q),

[ ()~ O -2t Temag x & (kh-Ox@) do = [ axildr, (4.19)
Q Mo

—/g’-thdQ - —/g’-de.(4.20)
Q Q -

The stabilised electrostatic formulation is obtained bplgpg (4.18) to thed —V formulation:
Find d € Hq(Q) and V € Hy (Q) such thatvd’ € Hgo(Q) and WV’ € Hyo(Q),

/(s—lg’-g—D-g’v+re,e.ecmv'-(s—1g+DV)) dQ — — [ vddr, 421
Q Y

—/V’D-ng - —/V’pch. (4.22)
Q Q



The additional term in the test functions modifies the stmecbf the system (3.12) which becomes

{ K ! } {X] { | ]
= . (4.23)
B+1.C 1D y g+Teh

The matrix is not symmetric anymore but it is now definite #t&to the ternteD on the diagonal.

4.2 Stabilisation parameter

The stabilisation parameter proposed in [7] is defined imsuevay that the entries in the additional
blocksC andD in (4.23) are of the same order of magnitude as tho&e o achieve this, the expression
of 1e is defined by
1 o1\t Ble Ble

Te=|—+— , With T1=—, To=-—, 4.24

(5 +e) ice 2 e 29
where|.|¢ is the order of magnitude of the entries of the block evallitteelemente. Applied to the
magnetostatic formulation, this yields

| Jo, 0 x -adQ) | Jo, O x I -adQ) 425
Tmag = T (uyda) T ™ [ Oxd (Oxa)da]’ (4.29)
and for the electrostatic formulation, one has
O.-d'vdQ O-dvdQ
|Jo,0-d'VdO| |Jo,0-d'VdQ| 4.26)

T1,elec= |er€_1g. DV’dQ‘ y  T2elec= |er DV"DVdQ‘ .

The magnitude of the integrals on a mesh elent@gnis evaluated as the product of a characteristic
magnitude of the integrand times the volume of the elemehé dharacteristic magnitude of the nodal
shape functiond\;, the edge elements;, the face elements; and their derivatives ard\;| = 1, |E;| =

1L |Fil =152, |[ONi| = 153, |[Ox Ej| =152, |O-F;] = 153, wherele is a characteristic length of the
elementQg, such as the diameter of the circumscribed circle. The tiagutxpressions of, read

1 71
Teelec = E‘He ) (4.27)
1 71
Temag = l-H‘I_ . (4.28)
e

5 Numerical results

5.1 Two-dimensional results

The different methods have been tested on two problems wsimple geometry, so as to be able to
progressively refine the mesh to study the convergence piirepeThe electrostatic model represents a
3-phase cable where each of the three internal wires iswateal by two layers of insulating material.
The magnetostatic model is a classical iron C-core with &wound around the central part and an
iron block in the airgap (Fig. 2). The material parametand are discontinuous; their minimum and
maximum values are in a ratio of 1 to 100 fand 1 to 18 for . Both problems have been solved with
MINRES, first without preconditioner and then with the blgmeconditioner (3.13) making use of the
approximations (3.14) or (3.15). The number of MINRES fitierss is given in Table 4. It is larger than
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Figure 2: Geometry of (a) the 2D electrostatic problem andh® 2D magnetostatic problem.

(b)

3 due to the approximated Schur complement but it remairepgaiole and more importantly, it does not
increase with the size of the problem.

An attempt has been made to use a diagonal preconditionghddf-block, which is a mass matrix
of edge and face elements respectively in the magnetic autriel cases. The results show that the
convergence of MINRES is strongly influenced by the appraiom of K, at least for the electrostatic
problem.

Electrostatic Magnetostatic
K S # iter K S # iter
(14930 unk.)| (5120 unk.) (13600 unk.)| (4630 unk.)
no precond. | no precond.| 2144 || no precond. | no precond.| 1768
K Solec 106 K Shagn 71
diag(K) Siec 1228 | diagK) Snagn 122

Table 4: Number of iterations of MINRES with different blopkeconditioners, applied to the 2D elec-
trostatic and magnetostatic problems (formulations 2&-and (2.10-2.11) respectively).

5.2 Three-dimensional results

5.21 Electrostatic

The 3D models are constructed by extruding the 2D modelsgnZin the direction perpendicular to
the plane. In 3D, the number of unknowns&ndV is equal respectively to the number of faces and
the number of nodes. In our examples, the former is typicatly 10 times larger than the latter. System
(3.12) has been solved with MINRES and the block preconhitid3.13). The approximation (3.14) of
the Schur complement performs in 3D equally well as in 2D1d&tshows that the spectral equivalence
can also be assumed in 3D.

Size® 535 586 674 741 871 1005 1155 1365
cond(§,L.S) | 370 363 162 221 221 193 239 21p

Table 5: Value of cong S, .S) for a set of 3D meshes.



CG toleranceK) | CG tolerance® | # MINRES iterations
10710 10710 123
1010 1074 123
1076 104 250

Table 6: Number of MINRES iterations with different precdrmmers for the 3D electrostatic problem.
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Figure 3: Solution time (left) and number of iterations Kigof the 3D electrostatic problem solved with
MINRES, with and without preconditioner, for different nes.

The preconditioner (3.13) uses CG steps for BotindSblocks. The number of CG steps must be larger
for K than forS because the number of MINRES iterations is much more depé¢ratethe former, as
outlined in Table (6). For the examples studied in this paghermost efficient preconditioner is obtained
by taking the CG tolerance equal to 16 for K and 102 for S. The solution time and the number of
iterations of MINRES with and without preconditioner aretp¢d in Fig. 3 for different meshes.

No stability problems have been encountered with the mixedtr@static formulation. The PSPG for-
mulation (4.21-4.22) has nevertheless been solved in dodeompare its solution time with that of
the Galerkin formulation. For each system, the best availebmbination of preconditioner and solver
has been used: MINRES and the block preconditioner descabeve for the non-stabilised system
(Galerkin formulation), BiCGstab and ILU for the non-symnestabilised system (PSPG formulation).
Fig. 4 shows that the non-stabilised system is solved muwsthiféghan the stabilised one. A well-designed
block preconditioner for the stabilised system would plidypdoe more efficient than ILU. However, in
the absence of stability problems, it is simpler and propéddter anyway to solve the indefinite system
resulting from the Galerkin formulation.

5.22 Magnetostatic

In 3D magnetostatic problems, bdthanda are discretised with edge elements and have therefore the
same number of degrees of freedom. This is different fronRihease, where the vector potentais
perpendicular to the plane and is discretised with nodgbeslianctions. This explains the oscillations

of a that are observed in 3D but not in 2D. Similar oscillationshef pressure occur in Stokes problems
when equal-order shape functions are used/famd p. Stabilisation is therefore necessary for thea
formulation since botth and a are discretised with first order edge elements. The systsuitireg
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Figure 4: Comparison of the solution time of the 3D elecatistproblem with the stabilised formulation

(PSPG) solved with ILU-BiCGstab and the non-stabilisednfiaiation (Galerkin) solved with MINRES
and a block preconditioner.

~ <]
(a) (b)

Figure 5: 2D view ofi|d x al| in the iron domain for the 3D magnetostatic problem, (a) authstabili-
sation (Galerkin) and (b) with stabilisation (PSPG).

from the PSPG magnetostatic formulation (4.19-4.20) has selved. The expression (4.28) of the
parameter results in an efficient stabilisation of the probhs illustrated in Fig. 5.

As before, the iterative solution of the stabilised systeproblematic. Beyond a certain problem size the
ILU-BiCGstab solver fails to converge in an acceptable nerrdd iterations. A more efficient (block-
)preconditioner is called for, using, e.g., a number of Gfgaitions for the upper diagonal blogk (a
mass matrix of edge elements) and a multigrid cycle for theetaliagonal block.

6 Conclusion

This paper focuses on the solution of electrostatic and etagtatic mixed formulations. Solution meth-
ods originally developed for the velocity-pressure foratigin of the Navier-Stokes equations are adapted
to the Maxwell equations.

A block preconditioner used in combination with MINRES tdveosymmetric indefinite systems arising
from mixed formulations is described. One component of pinéconditioner is the Schur complement



of the system, which must be approximated. The choice of sildenapproximation is critical to the
efficiency of the method and it is strongly problem-dependekpproximations are proposed for the
electrostatic and magnetostatic formulations. It is shivat they are spectrally equivalent to the exact
Schur complement, which ensures that the rate of conveegei@INRES is mesh-independent.
Pressure-stabilised Petrov-Galerkin formulations of elextrostatic and magnetostatic equations are
proposed. Appropriate expressions of the stabilisatiomrpaterte are found by application of the
method developed in fluid mechanics.

The efficiency of the block preconditioner is first testedwdD simulations. According to our expecta-
tions, the number of MINRES iterations is small and nearlgstant whatever the size of the problem.
In 3D, the preconditioner is equally efficient for the elestatic problem. The simulations also show
that it is faster to solve the indefinite system with MINRES! &lne appropriate preconditioner than the
stabilised (definite) system with ILU and BiCGstab. In ther@Bgnetostatic case, the presence of oscil-
lations indicate that the stabilised formulation must bedu§ he expression of the paramatgproposed

in this paper gives satisfactory results.
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