

GRID-IMPACT FACTORS OF FIELD-TESTED RESIDENTIAL PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEMS

Nicolas Paulus, Vincent Lemort Thermodynamics Laboratory, University of Liège, Liège, Belgium

Energy transition requires flexible power sources to compensate renewables intermittency (or storage, or demand) \rightarrow For example : "Teaching the duck to fly" $_{\oplus}$ \rightarrow Power sources shall be considered regarding : - Efficiency - LCA carbon footprint - Load factor - (Utilization & capital) costs - Power density - etc - Supply & Demand cover factors Ys γ_d

Both helps evaluating how the electrical production matches the demand :

- $\rightarrow \gamma_s$: What is the share of energy not rejected on the grid ?
- $\rightarrow \gamma_d$: What is the share of the demand provided by the power source ?

The duck curve shows steep ramping needs and overgeneration risk

 $\gamma_s = \frac{\int \min\{P_D, P_S\}dt}{\int P_S dt}$ See paper $\gamma_d = \frac{\int \min\{P_D, P_S\}dt}{\int P_D dt}$

The system :

		PEMFC gas boiler hybrid
Heating output	0.9 - 30.8 kWth (boiler only) but $8 - 30.8$ kWth (with FC + boiler)	
Electrical output FC	750 W	- to to
Thermal output FC	Up to 1.1 kW	
Yearly electrical production	Up to 6200 kWhel	
FC LHV electrical efficiency	37%	
DHW tank capacity	220L	

Natural gas-fed, heat-driven system :

PEMFC turned off if DHW tank is thermally loaded and if there is no more space heating demand; Also turned off if return temperature >50°C

2 houses monitored for the whole year 2020 Sample time <5 minutes Oostmalle -> floor heating (1st floor only) Huy -> high temperature terminal units

Small seasonal effect : lower electrical production in summer leads to higher supply cover factor and lower demand cover factors

Conclusions :

The load factor has a stronger influence on the demand cover factor than on the supply cover factor (due to low and constant production)

Average supply cover factor about 35% \rightarrow literature review at those latitudes shows that PV installations rarely actually reach 35% of supply cover factor (see paper)

Certainly less seasonal dependent than PV installations

BUT : - no flexible electrical production (no significant improvement of supply cover factors against PV installations) - environmentally questionable as it currently burns (fossil) natural gas & lower electrical efficiency than *combined-cycle gas turbines*

